https://doi.org/10.31449/inf.v45i4.3176

Informatica 45 (2021) 583-591 583

Formal Verification of Pipelined Cryptographic Circuits: A Functional

Approach

Abir Bitat and Salah Merniz

MISC Laboratory, NTIC faculty, Abdelhamid Mehri University, Constantine, Algeria

E-mail: abir.bitat@univ-constantine2.dz

Keywords: formal design, formal verification, cryptographic circuits, pipelined circuits, functional language, hardware

description language

Received: May 28, 2020

Cryptographic circuits are essential in systems where security is the main criteria. Therefore, it is crucial to
ensure the correctness of not only the cryptographic algorithms, but also their hardware implementations.
Formal methods, unlike the other validation techniques, guarantee the absence of errors. The problem is that
designers still use conventional imperative Hardware Description Languages (HDLs), which are poorly

suited for formal verification.

This paper presents an automatic verification methodology for the pipelined cryptographic circuits using
formal methods. It consists of using the functional HDL Lava to describe and verify the equivalence
between the behavioural specification and structural implementation of a circuit. To the best of our knowl-
edge, we are the first to use this functional HDL for that purpose.

To show the features of the proposed approach, it was applied to verify the pipelined implementation of
the cryptographic circuit AES (Advanced Encryption Standard).

Povzetek: Za namene preverjanja formalne pravilnosti delovanja vezij je opisan funkcionalni pristop.

1 Introduction

Cryptography plays a major role in modern applications,
as the present networks are trusted with highly sensitive in-
formation; hence, cryptographic circuits have become in-
dispensable in these systems. To ensure the security of in-
formation, not only the cryptographic algorithms have to
be verified but also their hardware implementations.

The first step of the design process consists in the con-
version of the informal description of the design to a formal
Behavioural (or Algorithmic) specification. From this lat-
ter, a Structural (or Micro-architectural) implementation is
derived through refinement, followed by a sequence of de-
sign steps that reduce the abstraction levels until a realiz-
able description is obtained. The verification of the circuit
is carried out through all these stages; the most critical one
is the Functional verification, which consists of confirm-
ing that the structural implementation provides the same
behaviour mentioned in the behavioural specification. It
is possible to verify the correctness of the cryptographic
circuits, in quite a few ways, such as simulation, formal
proof, and semi-formal verification in which formal tech-
niques and simulation are strongly combined.

We focus on our work on functional verification, and
we use formal methods to do so. In the following sub-
section, we present a summary of the related literature
and their shortcomings to highlight the problematic; then
we present the features of the proposed approach and the
contribution of this paper. In section two, we explain the
proposed verification methodology. In section three, we

demonstrate how we applied our approach for verifying the
pipelined cryptographic circuit Advanced Encryption Stan-
dard (AES). And finally, conclusions are drawn in section
four.

1.1 Related works

The vast majority of the existing literature related to the
description and verification of pipelined cryptographic cir-
cuits are based on using imperative HDLs such as VHDL
and Verilog,[1], [2], [3], [4], [5]- These languages are made
for description, simulation, and synthesis of hardware;
however, they are poorly suited for formal verification, be-
cause of their lack of formal semantics; besides, they do not
allow descriptions of the highest design levels [6],[7]. In
order to be able to use formal methods for verification, we
need formal descriptions that we can reason about; how-
ever, imperative HDLs provide descriptions that are hard
to express in any formal logic; [8],[6],[9],[10],[11], which
requires either a translation of those descriptions to some
formal logic or rewriting new "equivalent" descriptions,
which eliminates the need for the imperative ones in the
first place, because there is no relation between the two
[6],[12],[13],[14]. This makes the formal verification of
devices expressed in imperative HDLs a quite hard process.

Consequently, simulation is the technique that has been
used in most of these approaches [2], [3], [4]. The problem
with simulation is that it can not be sufficient as a verifica-
tion technique for systems as critical as the cryptographic
circuits. Formal verification can still be done but with

584 Informatica 45 (2021) 583-591

quite a few challenges when using imperative HDLs; there-
fore, the abstract behavioural specification needs powerful
mechanisms of structuring and translating [5]. Mostly, de-
ductive methods are applied for verification of such com-
plex circuits, like the case of [1]; this kind of methods is
quite difficult because it usually requires user interference
through all the verification process in almost a manual way.

Some algebraic approaches [15], [16] used formal meth-
ods for the verification of these circuits; similar to the work
presented in this paper, the hierarchy technique was used to
reduce the complexity of design and therefore simplify the
verification task. However, many details differ in our ap-
proach from this work, in particular, the verification time
is significantly less than the one presented in [15], which
took 13 minutes to formally verify the same 128bit AES
circuit. Another approach that was slightly faster than the
work mentioned before, with a difference of 5 minutes, is
presented in [17]. It consists of a language that supports
automated verification of cryptographic assembly code.

Several functional approaches were applied for the for-
mal verification of hardware designs; however, to the best
of our knowledge, the only one beside ours that was applied
to implement and verify the pipelined cryptographic cir-
cuits is the work presented in [18]. This approach uses the
functional language only to describe the behavioural spec-
ification; but not for the structural implementation; which
makes translation difficulties reappear.

Another formal approach was proposed in [19]; it uses
the equivalence checking technique. The specification is
described at the RTL level using VHDL, and the verifica-
tion process of some pipelined implementations of the KA-
SUMI cipher took from 3 to 9 minutes, depending on the
number of stages. Another work that targeted pipelined im-
plementations is [20]; it uses VHDL to describe private and
public key crypto-processor; the verification was done us-
ing simulation, formal verification, and static timing anal-
ysis.

1.2 Contribution of this work

— The most important feature of our approach, is that
it consists of using a functional HDL, which is very
suitable for hardware description and for formal ver-
ification as well. A comparison study of these HDLs
against other types showed that they give the best re-
sults [21].

— Secondly, our approach performs the functional ver-
ification using formal methods, as this latter consists
of proving mathematically the correctness of a design,
which is crucial for security systems.

— In addition, our approach uses two techniques: which
are hierarchy and modularity, in order to reduce the
complexity of the design, which makes the verifica-
tion much easier.

Unlike the other conventional HDLs, it is possible

A. Bitat et al.

to represent the most abstract descriptions with func-
tional HDLs.

— Descriptions of functional languages and HDLs can
be executed, which allow the verification through the
simulation technique as well as the formal verifica-
tion.

— The functional HDL used in our approach has some
built-in tools that allow automatic formal verification
of circuits.

— The proposed approach presents a verification
methodology that is easier and faster than the previ-
ous related works.

— Lastly, even though our approach was proposed for
pipelined cryptographic circuits, it is not exclusive to
them.

2 The proposed approach

The proposed approach consists of a formal design and ver-
ification methodology for the pipelined cryptographic cir-
cuits using a functional HDL. This choice is motivated by
the interesting characteristics of these HDLs; such as the
composition of functions in the same way that complex
circuits are developed, using function composition, renam-
ing, and abstraction; the other major advantage of intro-
ducing the functional style to hardware design is having
much more concise descriptions, and the ability to provide
reusable functions that are abstractions of common pat-
terns. Moreover, functional languages usually have an ex-
tremely expressive type system, which allows being more
strict on defining the limitations on values. This makes
finding errors and violations easier. Several functional
HDLs have been created over the decades; their high di-
versity is due to the complexity of hardware design. A his-
torical survey that discusses these languages can be found
in [22]. The language that we chose for our approach is
Lava [23], which consists of a simple HDL embedded in
the functional programming language Haskell. To the best
of our knowledge, no functional HDLs (including Lava)
has been used before for both description and formal veri-
fication of the cryptographic circuits.

The design flow of hardware devices is depicted in
Fig. 1. It starts with an algorithmic description which will
be considered as the initial specification of the design; then
other descriptions are derived from it. Each implementa-
tion resulting in a certain abstraction level will be used as
the specification for the next one.

Since the algorithmic level is the most abstract, the ar-
chitectural details do not appear at it; thus, both sequential
and pipelined architectures have the same algorithmic de-
scription. Accordingly, we use the same principle of the
design flow to verify a pipelined implementation of a cryp-
tographic circuit; we start first by verifying the correct-
ness of a sequential structural implementation against its

Formal Verification of Pipelined Cryptographic Circuits. . .

Level Design step
Algorithmic
Micro - Architectual Implementation = Specification
RTL Implementation = Specification
Gate Implementation = Specification

Specification

Implementation

Transistors Implementation =

Layout

Figure 1: The design and verification flow of a hardware
device.

behavioural specification; once it is verified, we check the
equivalence of the pipelined structural implementation to
it, as demonstrated in Fig. 2.

Level

Sequential architecture Pipelined architecture

Algorithmic ‘ Specification

Micro - Architectual

Implementation = Specification +. Implementation
|

Figure 2: A verification approach of a pipelined implemen-
tation of a circuit.

The behavioural specification at the algorithmic level
deals with a different type than the structural implementa-
tions at the micro-architectural level; thus, we need a map-
ping function between the two descriptions, as shown in
Fig. 3.

Input

Behavioral specification
e _ Apstraction
Structural implementation

Figure 3: The abstraction function needed between the be-
havioural specification and structural implementation of a
circuit.

The shared behavioural description is referred to by
Spec; the sequential architecture by imp 1, and the pipelined
one by imp2. So, the correctness rule of this latter would
be described by the following theorem:

YV x, spec (abs x) = abs (imp2 x) (1)

Theorem (1) has to be decomposed to be proven; thus,
we must prove the following couple of theorems:

Yz, spec (abs x) = abs (impl) 2)
A Va, imple = imp2x 3)

The behavioural specification and both structural imple-
mentations are described as functions, the former using the

Informatica 45 (2021) 583-591 585

functional language Haskell, and the latter using the func-
tional HDL Lava; which consists of Haskell modules that
give the user various facilities to work on circuits.

For formal verification; we use one of Lava tools, which
is a SAT solver, that verifies automatically the equivalence
between descriptions. Fig. 4 shows an approach of per-
forming equivalence checking using SAT solvers. If both
descriptions are equivalents, the output of the XOR gate
should be always False; if it becomes True for any input, it
means that the two descriptions are producing different out-
puts for the same input, which negates their equivalence.

0 Equivalent
F= 2

Specification 1 Non-Equivalent
I Implementation |

Figure 4: Performing equivalence checking using SAT
solvers [24].

We must import three modules to be able to shift from
the general-purpose language Haskell to the HDL Lava:
Lava [25], which defines several operations that we can use
to build circuits; Patterns, to access wiring circuits and con-
nection patterns; and Arithmetic, to access the arithmetical
circuits:

import Lava
import Lava.Patterns

import Lava.Arithmetic

Circuits in Lava are described by functions, and their in-
puts and outputs can either be of type Signal Bool which
may take one of two values low or high; or Signal Int.

To verify that a circuit’s structural implementation meets
its behavioral specification, we must define a safety prop-
erty that expresses their equivalence. Thus, for the verifi-
cation of the pipelined implementation, we need two safety
properties corresponding to the two theorems (2) and (3)
mentioned before. These properties are also defined in
Lava by functions in the following forms:

propertyEquivl in = ok
where
outl = spec (abs in)
out2 = abs (impl in)
ok = outl <==> out?2

propertyEquiv2 in = ok
where
outl = 1mpl in
out2 = imp2 in
ok = outl <==> out2

586 Informatica 45 (2021) 583-591

To verify these properties, we use the Lava function satz-
zoo, which is a call to the satisfiability solver:

satzoo propertyEquivl
satzoo propertyEquiv2

This operation generates a logical formula that expresses
the equivalence property; this formula is then sent to an
external theorem prover, which will prove (or disprove) its
validity, and the result is taken back into Lava.

The input in must be of a finite form; this is not possible
in cryptographic circuits, where both data and key are of
an important size that can only be represented by lists. But
since the inputs of block cipher cryptographic circuits are
of a fixed size, we will only verify the properties for that
size. Thus, we define new equivalence properties, which
are explicit about what size of input we want to verify them.

propertyEquivl ForSize n =
forAll (listn) $\ in —
propertyEquivl in

property Equiv2ForSize n =
forAll (listn) $\ in —
propertyEquiv2 in

Then we call the function satzoo for both properties with a
specific size n:

satzoo (propertyEquivl ForSize n)
satzoo (propertyEquiv2ForSize n)

This operation will verify that both descriptions give the
same output, for all inputs of that size. When it finds that
the output of one description always equals the other, it re-
turns Valid. The SAT-solver actually checks that the nega-
tion of the formula is unsatisfiable, leading to the Valid an-
swer inside Lava [25]. Our proposed approach explained
above is depicted in Fig. 5.

3 Application and results

In this section, we demonstrate how we applied the pro-
posed approach to verify the AES sequential circuit, il-
lustrated in Fig. 6; and the pipelined circuit, illustrated in
Fig. 7. AES [26] is a symmetric block cipher, constructed
based on the Rijandael system. The plain and ciphertexts
are taken as blocks of 128 bits. The key, on the other hand,
varies depending on the system version, between 128, 192,
and 256 bits. We only focus here on the 128-bit key size
AES.

The encryption consists of ten identical rounds of pro-
cessing. Except for the last one, each round includes four
steps; the order in which these steps are executed is dif-
ferent in encryption from decryption. The 128-bit input

A. Bitat et al.

Haskell Framework

Behavioural

v

specfication ——» Equivalence property 1

rrrrr » Equivalence property 2

Algorithmic Level

abstraction
uoipesnsqe

Lava Framework

Theorem provers

SAT solver

&> Model checkers

implementation

CNF netlist
Symbolic methods
- | vt [|

Pipelined
implementation

Micro- architectural Level

Not equivalent
Valid

Figure 5: The proposed verification methodology of
pipelined cryptographic circuits in a functional framework.

Plain text Key
Add key
3 ¢ Round ,L

1

= 0o 1 —\ 1 o]

Key
expansion
v
| Register ‘ Register F

—

Cipher text

sel=1:se=0forround 1
sé&l=0; se=0for round 2 1o round §
sel=0; se=1for round 2 to round 10

Figure 6: Sequential architecture of AES128 circuit.

P\im(ml Key

Addkey

Key

Subbytes Roundg |
v
shift rows
Key
expansion

Mix columns

Addkey

Register
Round10

Key
Add key

Cipher text

Figure 7: Pipelined architecture of AES128 circuit.

Formal Verification of Pipelined Cryptographic Circuits. . .

block is organized in a four by four-byte matrix, column by
column. The matrix will be added to a sub-key using the
Xor operation and the result obtained will be transmitted
as input for the first round. At each round, the following
operations are performed:

— The subBytes function is performed using S-boxes.
These boxes in AES are based on a mathematical
model, which is the modular arithmetic using poly-
nomials.

— The shiftRows function is a simple-circular-left shift
of bytes: the first row doesn’t change; the second is
shifted by one position; the third is shifted by two po-
sitions; and the last one, is shifted by three positions.

— The mixColumns function consists on taking each
column of the matrix and multiplying it by a fix ma-
trix, then reducing the answers modulo the polyno-
mial 28 + 2% + 23 + 2! + 20.

— The addKey function adds the round sub-key to the

block. The sub-key used here is calculated by the key-
Expansion function.

The application of these four operations takes place at
each round except for the last one, where the mixColumns
function is not applied. The KeyExpansion is a basic op-
eration in the encryption process; it uses the cipher key to
produce sub-keys in the same number of rounds. The first
sub-key is just the original cipher key; then, to get the next
sub-key, the previous one is passed through a function that
involves a rotation P-box, a set of identical S-boxes, and
addition modulo 2 to a round-constant.

3.1 Behavioural specification of the AES
circuit
The function aesSpec represents the behavioural descrip-
tion of AES; it takes one input (m: plain text, k: cipher
key); and one output (c: cipher text).
aesSpec (m, k) = ¢
where
subKeys = keyExpSpec 1 k
n = addKeySpec (m, (subkeys ! 0))
¢ = roundsSpec 1 (n, subKeys)
The function roundsSpec is recursive and defined in the
following way:
roundsSpec n (ml, subKeys) = m2
where
nl = subBytesSpec m1
n2 = shiftRowsSpec nl
n3 = mixColumnsSpec n2
nd = addKeySpec (n3, (subKeys !l (n — 1)))
m2 = roundsSpec (n + 1) (n4, subKeys)

Informatica 45 (2021) 583-591 587

roundsSpec 10 (m9, subKeys) = m10
where
nl = subBytesSpec m9
n2 = shiftRowsSpec nl
m10 = addKeySpec (n2, (subKeys ! 9))
The keyExpSpec function is recursive as well, and is de-
fined as follows:
keyExpSpecn ki = kj : (keyExpSpec (n+ 1) kj)
where
w0 = wXorSpec (sBox(shiftSpec (kill3)),
kN0, reonst!!(n — 1)
wl = wXorSpec (killl ,w0)
w2 = wXorSpec (kill2 ,wl)
w3 = wXorSpec (kill3 ,w2)
kj = [w0,w]l, w2, w3]

keyExpSpec 10 k9 = k10 : []
where
w0 = wXorSpec (sBox(shiftSpec (k9!3)),
k9N0, rconst!!9
wl = wXorSpec (kN1 | w0)
w2 = wXorSpec (kN2 ,wl)
w3 = wXorSpec (kM3 |, w2)
k10 = [w0, w1, w2, w3]

3.2 Structural implementation of the AES
circuit
3.2.1 AES sequential architecture
The function aesImp1 represents the structural description
of AES sequential architecture. It takes (m,k) as input, and
outputs c. The definition of this function is quite similar to
aesSpec, with the difference in their signature, and their
internal functions, because they work with two different
types. The aesSpec function works with data as hexadeci-
mal, which are taken in Lava as Signal Int. However, aes-
Impl works with bits, which are represented by the type
Signal Bool.
aesSpec :: ([Signal Int], [Signal Int]) — [Signal
Int]
aesImpl :: ([Signal Bool],[Signal Bool]) —
[Signal Bool]
The function aeslmp] is defined as it follows:
aesImpl (m, k) =c
where
subKeys = keyExpImpl 1 k
n = addKeyImpl (m, (subkeys !! 0))
¢ =roundsImpl 1 (n,subKeys)

588 Informatica 45 (2021) 583-591

The functions that aesImpl calls represent the inner
components of the AES circuit; they differ from their cor-
responding functions in aesSpec, even though they use the
same hierarchical way of description.

3.2.2 AES pipelined architecture

The function aesImp?2 represents the structural description
of a pipelined architecture of AES. Its definition is differ-
ent than aesImpl; to allow the hardware parallelism, we
need multiple functional components, one for each round;
instead of using the same one for all of them; this will al-
low us to encrypt multiple blocks at the same time. For in-
stance, when the first data block is on the second round of
encryption, another block can start its first round; therefore
when the first block is at its last round, nine other blocks
can be calculated simultaneously. aeslmp2 has the same
signature as aesImpl and it is defined in the following way:

aesImp?2 ([Signal Bool],[Signal Bool]) —

[Signal Bool]

aesImp2 (m, k) =c

where

s0 = addKeyImp2 (m, k)
kl=getK 1k

sl = roundImp2 (s0, k1)
k2 =getK 2kl

s2 = roundImp2 (s1, k2)
k3 = getK 3 k2

s3 = roundImp2 (s2, k3)
k4 = getK 4 k3

s4 = roundImp2 (s3, k4)
kb = getK 5 k4

sb = roundImp2 (s4, kb)
k6 = getK 6 kb

$6 = roundImp2 (s5, k6)
k7= getK 7 k6

s7 = roundImp2 (s6, k7)
k8 = getK 8 k7

s8 = roundImp2 (s7, k8)
k9 = getK 9 k8

s9 = roundImp2 (s8, k9)

k10 = get K 10 k9

$10 = roundl10Imp2 (s9, k10)
c=s10

The functions roundImp?2 is recursive as well, and it is

A. Bitat et al.

defined in the following way:

roundImp2 (s, k) = nextS
where
s1 = subBytesImp2 s
$2 = shiftRowsImp?2 sl
$3 = mizColumnsImp2 s2
nextS = addKeyImp2 (s3, k)

roundl0Imp2 (s9, k10) = s10
where
s1 = subBytesImp2 s9
$2 = shiftRowsImp?2 sl
$10 = addKeyImp2 (s2, k10)

The function getK is the corresponding of keyExpImpl
on the sequential implementation, it calculates only one
key, and it is defined in the following way:

getK n ki =kj
where
w0 = wXorImp2 (sBox(shiftImp2
(ki!13)), ki 110, rconst I (n — 1)
wl = wXorImp2 (ki!'1 ,w0)
w2 =wXorImp2 (ki!'2 jwl)
w3 = wXorImp2 (ki 13 ,w2)
kj = [w0,wl, w2, w3]

3.3 Formal verification of the AES circuit

To verify the correctness of the AES pipelined circuit, we
need to prove theorem (4) that expresses the equivalence
between its behavioural specification and sequential
implementation; and then theorem (5) that expresses the
equivalence between the sequential implementation and
the pipelined one.

Y'm, k, m € [SignalBool], k € [SignalBool],
aesSpec (absl (m,k)) = abs2 (aesImpl (m,k)) (4)

V'm, k, m € [SignalBool], k € [SignalBool],
aesImpl (m, k) = aesImp2 (m, k) ®)
The equivalence properties are described by functions
with one input (m,k) of type Signal Bool, which will be
passed to both descriptions, in order to verify that they al-
ways produce the same output. As a result, an abstraction

function called fromSbToSi is introduced, it converts from
the type Signal Bool to Signal Int. Both functions abs/ and

Formal Verification of Pipelined Cryptographic Circuits. . .

abs?2 are defined using fromSbToSi.

propertyEquivSeqAES in = ok
where
outl = aesSpec (absl in)
out2 = abs2 (aesImpl in)
ok = outl <==> out2

propertyEquivPipAES in = ok
where
outl = aesImpl in
out2 = aesImp?2 in
ok = outl <==> out2

Since we use the infinite structure /ist, we also need to
define equivalence properties that are explicit about the size
of inputs:

propEquivSeqAES_forSize n =
forAll (listn) $\ m —
forAll (listn) $\ k —
propertyEquivSeqAES (m, k)
propEquivPipAES_forSize n =
forAll (listn) $\ m —
forAll (listn) $\ k —
propertyEquivPipAES (m, k)

To verify the AES pipelined circuit, we call the satzoo
function for both implementations:

verificationSeqAES =

satzoo (propEquivSeqAES_forSize 128)
verificationPipAES =

satzoo (propEquivPipAES_forSize 128)

The satzoo function generates an output of the type /0
proofResult. The execution of this function outputs the
value Valid for both properties, which means that the se-
quential implementation aesImpl gives the same output
as the behavioural specification aesSpec, and the pipelined
implementation aesImp2 gives the same output as the se-
quential one aesImpl, for every possible combination of
plain test and key of 128 bits size. Thus, we conclude that
the pipelined implementation aesImp2 is equivalent to its
behavioural specification aesSpec.

A comparison between the proposed approach and all the
similar works mentioned here is summarized in Table .1.
As we can see the majority of the previous works are based
on using imperative HDLs [1],[2],[3],[4],[51,[17],[19],[20].
Unlike functional HDLs, the imperative ones used in these
approaches do not permit abstract descriptions of the high
levels of design, which means that their descriptions are
more detailed and therefore require longer code-lines;
which makes them of higher complexity. Besides, finding

Informatica 45 (2021) 583-591 589

Work| Approach | Method Circuit | Time
(s)

[1] Imperative | Formal SHA1 /
methods

[2] Imperative | Simulation TDES /

[3] Imperative | Simulation AES /

[4] Imperative | Simulation Kasumi | 180

[5] Imperative | Formal DES 59
methods

[15] | Algebraic | Formal AES 800
methods

[16] | Algebraic | Formal AES 844
methods

[17] | Imperative | Formal SHA 2100
methods AES

[18] Functional | Formal AES /
methods

[19] | Imperative | Formal Kasumi | 180
methods

[20] | Imperative | Formal AES /
methods

Ours | Functional | Formal AES 2.23
methods

Table 1: Comparative table to the similar works’ verifica-
tion methods and time.

errors and correcting them becomes a harder and more te-
dious process compared to functional HDLs descriptions.
Although there is no actual comparison of the different
approaches’ code-lines (due to the lack of data), we can
say with no hesitation that the functional HDLs provide
more concise descriptions than the imperative ones for the
same circuit. [2],[3],[4] use the simulation technique for
the functional verification, which is not sufficient for criti-
cal systems such as the cryptographic circuits, even if they
provide fast and automatic verification. As we can see, it
is still possible to use formal verification with imperative
HDLs, but as we established since they lack formal seman-
tics, this makes the verification process very hard, as it re-
quires translation of descriptions into a formal logic to be
able to reason about them. [2] used deductive methods,
which means that the verification process was not auto-
matic. In the proposed approach we were able to verify the
AES sequential data-path automatically in 1.18s, and the
AES pipelined one in 1.05s, which makes the total 2.23s,
which is faster than all of the other works that we know of
their verification time [5], [15],[16],[17],[19].

Since the behavioural specification and both structural
implementations are specified by functions, they are exe-
cutable; therefore, we can simulate them and examine the
results. This is interesting because it allows us to verify
that not only they are equivalents to each other, but that
in fact, they give the expected results. All three functions
(aesSpec,aeslmpl,aeslmp2) were simulated and they give
the expected output of encryption.

590 Informatica 45 (2021) 583-591

To verify the other versions of AES, with the appropriate
changes in the behavioural and structural descriptions, the
equivalence properties need to be explicit about two differ-
ent sizes.

propEquivSeqAES_forSizes n l =
forAll (listn) $\ m —
forAll (list 1) $\ k —
propertyEquivSeqAES (m, k)
propEquivPipAES_forSizes n | =
forAll (listn) $\ m —
forAll (list 1) $\ k —
propertyEquivPipAES (m, k)

For instance, to verify the AES circuit of 192-bit key
size, we call the satzoo function in the following way:

verificationSeqAES192 =

satzoo (propEquivSeqAES_forSizes 128 192)
verification PipAES192 =

satzoo (propEquivPipAES_forSizes 128 192)

When automatic verification is not possible, we can use
the bottom-up proof method proposed in [27], where they
started by verifying the functions (components) at the low-
est level of the hierarchy, once they are verified, they re-
placed the implementation with its equivalent specification
at the upper level, and so on until verifying the whole cir-
cuit.

4 Conclusion

In this paper, we presented an automatic formal verifica-
tion methodology for the pipelined cryptographic circuits.
It is the first application of the functional HDLs for the de-
sign and verification of such complex circuits. The pro-
posed approach was demonstrated and applied to the 128-
bit AES pipelined circuit. As prospects, we aim to verify
the super-scalar designs as well, on which the adopted scal-
able methodology should be able to prove.

References

[1] Toma, D. (2006) Vérification Formelle des systemes
numériques par démonstration de théoremes: appli-
cation aux composants cryptographiques (Doctoral
dissertation).

[2] Singh, Kirat Pal, and Shivani Parmar. (2015) "Design
of high performance MIPS cryptography processor
based on T-DES algorithm."

[3] Ali, Imran, Gulistan Raja, and Ahmad Khalil Khan.
(2014) "A 16-Bit Architecture of Advanced Encryp-
tion Standard for Embedded Applications." [2th

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. Bitat et al.

International Conference on Frontiers of Information
Technology. IEEE, Pakistan, pp 220-225.
https://www.doi.org/10.1109/FIT.
2014.49

Lam, Chiu Hong. (2009) Verification of pipelined ci-
phers. MS thesis. University of Waterloo.

Clarke, E., Kroening, D. (2003) "Hardware verifi-
cation using ANSI-C programs as a reference". The
ASP-DAC Asia and South Pacific Design Automation
Conference, IEEE, Japan, pp. 308-311.
https://www.doi.org/10.1109/ASPDAC.
2003.1195033

Camilleri, A., Gordon, M., Melham, T. (1986). Hard-
ware verification using higher-order logic University
of Cambridge, Computer Laboratory.No. UCAM-
CL-TR-91.

Damaj, I. W. (2007). Parallel algorithms develop-
ment for programmable devices with application
from cryptography. International Journal of Parallel
Programming, 35(6), 529-572.
https://doi.org/10.1007/
s10766-007-0046-1

Salah, M. (2008) Meéthodologie de Vérification
Formelle Pour les Microarchitectures RISC: Ap-
proche Fonctionnelle (Doctoral dissertation).

Walker, R. A., Camposano, R. (2012). A survey of
high-level synthesis systems. Springer Science and
Business Media. Vol. 135.

Seger, C. J. (1992). An introduction to formal hard-
ware verification. University of British Columbia,
Department of Computer Science.

Salem, A. M. E. F. (1992). Vérification formelle des
circuits digitaux décrits en VHDL (Doctoral disserta-
tion, Université Joseph-Fourier-Grenoble I).

Guo, X., Dutta, R. G., Jin, Y., Farahmandi, F.,
Mishra, P. (2015). Pre-silicon security verification
and validation: A formal perspective. In Proceedings
of the 52nd Annual Design Automation Conference
ACM. United States. (pp. 1-6).
https://doi.org/10.1145/2744769.
2747939

Araiza-Illan, D., Eder, K. Richards, A. (2014). For-
mal verification of control systems’ properties with
theorem proving. UKACC International Conference
on Control (CONTROL). United Kingdom. IEEE.
(pp- 244-249).
https://doi.org/10.1109/CONTROL.
2014.6915147

Singh, K. P., Parmar, S. (2015). Design of high perfor-
mance MIPS cryptography processor based on T-DES
algorithm. arXiv preprint arXiv:1503.03166.

Formal Verification of Pipelined Cryptographic Circuits. . .

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Homma, Naofumi, Kazuya Saito, and Takafumi
Aoki. (2011) "A Formal Approach to Designing
Cryptographic Processors Based on GF'(2™) Arith-
metic Circuits." IEEE Transactions on Information
Forensics and Security vol. 7,no 1, p. 3-13.
https://doi.org/10.1109/TIFS.2011.
2157687

Homma, Naofumi, Kazuya Saito, and Takafumi
Aoki. (2013) "Toward formal design of practical
cryptographic hardware based on Galois field arith-
metic." IEEE Transactions on Computers. vol. 63, no
10, p. 2604-2613.

https://doi.org/10.1109/TC.2013.131

Bond, Barry, et al. (2017) "Vale: Verifying high-
performance cryptographic assembly code." 26th
USENIX Security Symposium (USENIX Security 17).
USENIX, Canada, p. 917-934.

Lewis, Jeff. (2007) "Cryptol: specification, imple-
mentation and verification of high-grade crypto-
graphic applications." The 2007 ACM workshop
on Formal methods in security engineering., ACM,
United States, p. 41-41.
https://doi.org/10.1145/1314436.
1314442

Lam, Chiu Hong, and Mark D. Aagaard. (2007)
"Formal Verification of a Pipelined Cryptographic
Circuit Using Equivalence Checking and Completion
Functions." 2007 Canadian Conference on Electrical
and Computer Engineering. IEEE, Canada, p. 1401-
1404.
https://doi.org/10.1109/CCECE.2007.
352

Kim, Ho Won, and Sunggu Lee. (2004) "Design and
implementation of a private and public key crypto
processor and its application to a security system."
IEEE Transactions on Consumer Electronics.vol. 50,
no 1, p. 214-224.
https://doi.org/10.1109/TCE.2004.
1277865

Wolfs, Davy, et al. (2011) "Design automation for
cryptographic hardware using functional languages."
Proceedings of the 32nd WIC Symposium on Informa-
tion Theory in the Benelux. Werkgemeenschap voor
Informatie-en Communicatietheorie.; Netherlands, p.

194-201.

Chen, Gang. (2012) "A short historical survey of
functional hardware languages." ISRN Electronics vol
2012.
https://doi.org/10.5402/2012/271836

Bjesse, Per, et al. (1998) "Lava: hardware design in
Haskell." ACM SIGPLAN Notices vol. 34, no 1, p.
174-184.

[24]

[25]

[26]

[27]

Informatica 45 (2021) 583-591 591

https://doi.org/10.1145/291251.
289440

Guo, Xiaolong, et al. (2015) "Pre-silicon security
verification and validation: A formal perspective."
The 52nd Annual Design Automation Conference.,
Association for Computing Machinery United states,
p. 1-6.
https://doi.org/10.1145/2744769.
2747939

Claessen, Koen, and Mary Sheeran. (2007) A slightly
revised tutorial on lava: A hardware description and
verification system.

Daemen, Joan, and Vincent Rijmen. (2013) "The de-
sign of Rijndael: AES-the advanced encryption stan-
dard". Springer Science and Business Media.

Abir, Bitat.,, and merniz. Salah. (2018) "Towards
formal verification of cryptographic circuits: A func-
tional approach." The 3rd International Conference
on Pattern Analysis and Intelligent Systems (PAIS).
IEEE, Algeria, p. 1-6.
https://doi.org/10.1109/PAIS.2018.
8598527

592 Informatica 45 (2021) 583-591 A. Bitat et al.

