
446

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

#$%
 ��&�' �(&�

���������	
��������
������������
�������������������������

��������������

)���
*�+��
,�-��.
�
/&
,���+�����0

1�2���
1�
������
��
�������!
%�����
���
3��2���
$�
���
��2
�������������!
/��������!
1�2��

��������������������������
�����
���������������
�����������������
��������
�������
��������
�����
�

���
���
��
�����

����
���������������������
���������������� ����
�����������
��������������������
��������������������������

�
� ����������������!������
������
���
�������������
�������
���
��������

���������
��� ����������������������� �"�� ������
������
�����
����
�� ����
��� ���������!� �������� ���
����

���������
������ ������ �
� �
��������
��
�������
������#������� ���������
������
�������
��� ������
����

��������������������������
�������
����
�� ����
������������������������
����������������
�������������
�����

�������������������
���������������� ������ ��������������������� ������
�� ��������� �����
�������������
�����

������������������������
����
������
����������
������� ��
�����������������$����������������������������

����������!�����������������������
����
���������!���������
�������������
�������������������������������

�������������
����������
��%������������
��
�

�����������
�&��
�����������
����
��������
�����
���
���!

��
���
�&��������������������'
�����(�����������)
���)�������*'())+

�
�����������������������
��
�������������������������
������
�����������
��
�
���������������������
��������

�������������������
�������"�����
������
��������������������������������
��������
��� �����
���������������

���
�������� ��
��������������
������
��������������
����
����������������
��������
���������
��������������

�������
��������������������������������
������
��
�
������������'())��
�����������,"'�������������
�

�����������������������
��������
������
�������
������������
��������������������������
������
�������������
�

������������
��
����������
��������
 ���
����
������������������
�����������������������
���������,"'

���������������������������������������

4
����
�������
��
����������
�����������&
5��
�����

��
����2&

���������������
��������� ��!�"�������������������
���!�
���"����������������� ��!�"���
�����

����������������

3�-��
�������2'

��&�&����

3�-��
����-��2'

6�&�&����

*Corr. Author’s Address: 1�2���
1�
������
��
�������!
%�����
���
3��2���
$�
���
��2
�������������!
/��������!
1�2��!

�	�7�-2+&��
�&�����&��

1 INTRODUCTION

Given the sheer complexity and variety
required in products today to meet the requirements
of an increasingly savvy and aware customer, it is
impossible for any organisation to manage the product
development process without collaboration [1].

Collaboration across multiple locations,
multiple domains/disciplines is required to be able
to deliver the right product at the right time and
right cost. For such a collaboration to be successful,
not only data but information and knowledge must
be exchanged.

Product Lifecycle Management (PLM) is
emerging as a “computational framework which
effectively enables capture, representation, retrieval
and reuse of product knowledge” across the product
lifecycle to support such a knowledge-intensive
product development environment [1].

If PLM as a solution has to include all phases
in the product lifecycle and all the stakeholders,
then exchange of data and information between the
different phases and stakeholders becomes a critical
element of PLM. Exchange of product information
(including data) as opposed to data alone is a key
differentiator of PLM over the earlier approaches.
The motivation being that if product information
is exchanged then, it is possible to have knowledge
based solutions in each phase to reason about the
information to arrive at decisions.

Currently, exchange of data requires the use
of dedicated translators or recreation of models.
Product information (data at a higher level of
abstraction) however is exchanged only through
human intervention. With product development
happening in multiple locations with multiple tools/
systems, semantic interoperability between these
systems/domains becomes important.

Gupta.pmd 10. 06. 08, 18:15446

447

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

�

Semantic is the meaning associated with a
terminology in a particular context and
interoperability means the ability to work together
to accomplish a common task. So, semantic
interoperability of product model refers to
automatic exchange of meaning associated with the
product data, among application domains
throughout the product development cycle.
Application domain refers to any of the following
- product design, manufacturing, ERP, CRM, and
SCM. Semantic interoperability implies the
existence of a common and shared understanding
of the meaning underlying the information that is
being exchanged [4]. In contrast to the common
usage of the term “product semantics” in the design
community, our interest is in the semantics of the
product information that is being exchanged and
not the semantics communicated by the product
itself.

Exchanging the semantics/meaning
associated with shape data enables manipulation
of and reasoning with the shape model at higher
levels of abstraction. The semantics associated with
shape data can convey design intent, inter-
relationships between entities in the shape and other
data important for downstream applications such
as manufacturing. As the product model does not
support semantics, its use in other systems/domains
leads to construction of new models. Using a single
product model across the product lifecycle is
beneficial from the point of view of maintaining
integrity of the data and avoiding the effort in
creating multiple models. Lack of semantic
agreements is due to several reasons. Semantics
associated with data and procedures is not explicitly
represented and is often context-dependent.
Mismatch in terms and meanings also arise due to
independent development efforts often aimed at
establishing proprietary naming and other
conventions. Resolving the semantic mismatch in
most domains requires the involvement of people.
In the product development cycle several different
domains (engineering design, industrial design,
manufacturing, supply chain, marketing) come into
play making the ability to exchange product data
with semantics very critical.

1.1 Product Data Exchange

Exchange of product data has undergone
considerable evolution since the days of annotated

engineering drawings. At that point the focus was
to exchange primarily shape/geometric data
between design and manufacturing. With the advent
of computer aided design and drafting systems,
exchange of shape models between different CAD/
CADD systems was required. Different approaches
being used to handle the interoperability problem
between product models are – a single CAD
environment for all tasks, direct data transfer
between different systems which requires (n.(n-1))
translators for “n” tools. Another approach uses
neutral file formats. This approach requires (2n)
translators for “n” tools as depicted in Figure 1.

#
�
��
�������
���+��
���������
8���+�
���

-�������2
 ���+�9��	
 ��

����
 ���
 2���
 �:������

-��8��+&

;��
$��9���
�:������
<��+��
�$=<�

�

���
2������
�������
���+��
�
�2
��
�:������
�$

2��9���
2���
����

2��������
2��9���
����
&
;���!

1������
,��-���

�:������
�-�����������
 �1,���!

�������
 �������
 ���+��!
 9�

 �����2���2
 ���

�:������
 ��
 ���+���0
 �����+�����
 8��9���

2�

�+����

0
��+
&
 1,��
��9����!
 �

 ��-�8��
��

����
�������
���0
���
���+���0
��
���
-��2���>
���

�������+���0
��2
2�
���
������
���
��
�&
����2��2

�:������
��
3��2���
2���
+�2��
��;�3!
���+���0

1�?
6�@�@�
������2
��
�����������
���
���+�����
��2

�������+�����
2���
��
�
�
����
��2
+���������
9�0

��
 ��-��
���
 -��2���
 �������
+�2��

�
 ����
 ���

��+-����
 2�
���-����
 ���
8�
 �:������2
8��9���

%5$

0
��+
&
����2��2
���
;���
���
��2
�:������

��
3��2���
+�2��
2���
 ��;�3�
 �

��
-��
���
+�
�

��+-�����
���

���2��2
 ��
 �22��

 ���
���2

 ���

�:������
��
���+�����
2���&

5
+����
�2�������
��

�;�3
�����
�

0��
��
8�
����0
�:-�����2�
�

����
��
�

-�

�8��
��
2�����-

���2��2

���
�:������
��
2���

8��9���
2��������
2�+���

��
���
-��2���
�����0���&

5���0
�

��2
+������������
���
�9�
��
���
2�+���

����
����
8���
���2��2

�
���&
A���
���
�+�������

��
�������

���������0
��
%5$

0
��+

���
-��8��+

��
�:��������
�������
+�2��

�����
���
���+�����

2���
 ��
 ������
 �����

 ��
 �8
���������
 8���+�

�+-������&
%������
���
��
�:������
��
-��2���
2���

�

 By Direct Translators By Neutral Format
<��&
6&
.�
������������������

Gupta.pmd 10. 06. 08, 18:15447

448

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

�

 ��
 ���
 �����
 ��
 �:��������
 �������
+�2��
&

<������
8�
�2
-��2���
2���
�:������
�

�+������

��
����++�2���
2�
���
 ������
 ���
2���
�:������&

<������

 ���
 ��-�8��
 ��
 ����0���
 ���
������
!

-���+����

��2
�--��������
�����8���
&

5
9��	���

2����
 ��
 ���
��������
 ��
���0
 �������

 ��

 8���

2�����-�2
80
���
�;�3
����-
B C&

%������
���
��

�:��������
 -���
 ���+�����
 2���
 �
��-�
+�2��
�

2��

 ���

����
 ���

�+�����
 ������-���8����0

-��8��+
�

 ���

��-�
+�2��
2��

���
�����0
 ���

-��2���

�+�����
&

1.2 Issues in Semantic Interoperability in
Product Development

In the present paper, the focus is restricted
to exchange of shape models. Semantic
interoperability arises due to the use of shape model
in different systems and different domains.
Different types of semantic interoperability
problems arising during exchange of shape models
in product development are first identified.

1.2.1 Different Labels Referring to Same Shape

Two or more terms may refer to same shape
in product development environment. A cylinder
removed from one another cylinder which can be
defined in terms of bush and circular hole referring
to the same shape as shown in Table 1. Similarly
one can define other models in the Table 1.

1.2.2 Different Representation for Same Shape

Associated representation for a shape may
be different. For example cylinder removed from
one another cylinder can be obtained by revolution,
sweep or extrusion as described in Table 2.

Similarly other model in Table 2 can be obtained
by extrusion or sweep.

1.2.3 Meaning of a Term is Context Dependent

The term condenser has a different meaning
in heat transfer domain and the electrical
engineering domain. Examples in product design
and manufacturing are shown in Table 3.

2 LITERATURE REVIEW

As mentioned earlier the need for sharing
and exchanging product data between various
domains has been around for a while now [17].
Owen [10] and Pratt [12] provide a review of the
work on exchange of data and features between
CAD systems. Most efforts in exchanging
semantics involve features. This is only natural as
features evolved to carry semantic information
about form, function and behaviour [2]. In this
section we focus only on those efforts that address
the exchange of product semantics using features.
There have been several attempts in defining
ontologies for features [5] and [14]. The focus here
is to extend feature specification by using ontology
of design concepts (as high level modelling entities)
to link product function to shape. Most efforts in
building feature ontologies have focused on

;�8��
6&
-�������������������������

Table 2. Shape has different representations

;�8��
 @&
 -��������� ��� ��
����� ������� ���

��������������0112

Gupta.pmd 10. 06. 08, 18:15448

449

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

capturing taxonomy and not on any reasoning based
on the ontology [2].

Brunetti, et al. [2] propose the use of features
to achieve a semantic interface to different CAx
applications. They describe a conceptual
framework of how an ontology of features and
shape can be used to provide a semantic retrieval
system or semantic interface to 3D modelling
systems. The framework prescribes ontologies at
different levels of abstraction namely, the model,
features, constraints, topology and geometry that
are available in a CAD system. The paper only
describes the conceptual model and no
implementation is described.

Patil, et al. [11] also present an ontology
based approach to enable semantic interoperability.
They propose the use of an ontology defined in
Product Semantic Representation Language
(PSRL) as an intermediate layer between the two
systems that need to exchange the product data and
semantics. Semantic translation then becomes a
problem of mapping from one system to the
ontology in PSRL and then from this to the target
system. The axioms and definitions that form the
ontology in PSRL have to be a union/superset of
the terms in the systems exchanging data. Therefore
for every new system to be included, the ontology
in the PSRL has to be extended with the new terms
or labels not present in the ontology.

Mostefai, et al. [8] propose an ontology
based approach to enable collaboration. The
proposed ontology supports queries on the product
model across three views (design, assembly and
manufacturing). They also mention the concept of
equivalence between entries in the ontology that is
similar to the first type of interoperability problem
identified in this paper. In their approach the
linkages between the entries in the ontology have
to be specified and the ontology editor then uses
these linkages to answer queries and establish
equivalence. The ontology proposed would have
to be significantly expanded for them to address
the semantic mismatches identified in the present
work.

Subramani [16] describes another approach
to exchange the product data via feature models.
In this work, feature-volume based product data
exchange is proposed. Feature-based modeling
captures semantics and the designer’s intent
through parameters and constraints. This method
transfers product data as feature volumes; feature

volume contains feature faces and their attributes.
STEP definition of faces and geometry is used to
represent the feature volume. Construction history
of the feature model is recreated using the face
attributes. Unlike current methods for data
exchange, the proposed scheme allows exact
representation of 2D and 3D constraints through
face classification and multiple construction
procedures for each feature instance. The latter
allows handling of situations where the receiving
system does not support some of the procedures in
the source system. Since individual feature volumes
are transferred, constraint and parameter
representation is preserved and validation of
features with respect to the part model is avoided.
The proposed method has been implemented using
the eXtensible Markup Language (XML), which
carries semantic representation.

Presently, the use of XML schema has been
proposed to enable the exchange of data between
different systems/applications. Several XML
schemas have already been proposed by researchers
[7] and [16] and vendors (3DXML, PLM-XML,
X3D). However, these focus only on enabling
exchange of data and visualization of shapes.

3 OVERVIEW

Our research is focused on enabling
seamless exchange of product information (as
opposed to only shape data) across the entire
product lifecycle. As a first step to this goal, the
present study aims at exchanging product semantics
along with product shape.

1�
 ��
�������
9��	!
 �
 ���+�9��	
8�
�2
��

2�+���
��2�-��2���
���+
�������

�$1<<�
�<��&
��

<��&
�&
)������
�������������������������������

0132

Gupta.pmd 10. 06. 08, 18:15449

450

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

9�

-��-�
�2
��
���8��
�:������
��
�������
+�2��

8��9���
%5$

0
��+

B6 C&

1�
���
-��
���
9��	!
9�
-��
���
�
�������+��0

���+�9��	
 ���
 �:������
��
 -��2���
 �����+�����

+�2��!
 -��2���

�+�����

 ��
 -���������&
 ;��

���+�9��	
 �

 8����
 �
���
 ���
 $1<<
 �

 ���

��-��
��������
��
�������

��
���

��-�
+�2��
�����

9���
��
�������0
����
��-����

���
����8����0
��
�
�

��
 �������
+�2��
&
 ;�����
 <�����
 @

��9

 ���

���+����
���
���0
���

�����
��2
������

0
��+!
�����

���
8�
 ��0
��+8��
��
 ������

0
��+

��2

�����

0
��+
&
1��������
�

�
�2
��

�����
D
���2
�������

��2

���
��������
��
���0
��
�
-��2���
���
�
������

0
��+&

,����
���
�������
��
���
��������
��
���0
��

���

�����

0
��+!
 �������
 ����+�

 ��
 ���
$1<<

���+��
 ���
 8�
 ���
������2
 B6�C&
 <��+
 ���
$1<<

+�2��!
���������
��8��

���
�
�
��
���
������

0
��+

���
 8�
 �2�������2&
 1�
 �����
 �

 ��
 ��8��
+�������

�������

0
��+
 �

 ��9�
 ����
+�������
 �������

���
��������
 ��
$1<<
+�2��

 ���
 ���
 ���
 ��8��

������8��
 ��
 ���
 ������

0
��+
��2
 ����
 ���2���
�

+����
 80
 ��+-�����
 ���
$1<<
+�2��

 �8�����2

9���
���
$1<<
+�2��
�����
-��2���
��
���
�������

��
8�
�:������2&
1�
��2��
��
�:������
���
��������

��
���0
�

������2
9���
���
�������
��8��
�

�+����

-����2���
�

�����9�2&
5
���
�����
+�2���
����
���

�:�����
+����-��
 ���
��������
 D���9

��
 �
 �������

��

8���
2�����-�2&
;��

���
�����
+�2���
�

�
�2

��
 �

������
+����-��
 ���
��������
 -���

 ���
 ���

�������

��2
�

������
���
�--����8��
+������

���+

���
 �������0
9���
 ���
$1<<
+�2��&
����
 ������

0
��+
���
��9
�
�
���

�+�����

��2
���
��������

��
���0

�--����2
80
 ��
 ��
 �������
+���-�����
 ���

-��2���
+�2��&

1�
��
�
��
+�
+����
��
���
��8��

��
 ���+

 ��
 ���
 ���
��������
 ��
���0!
 ���
 �������

���
��������
 -���
 �

 �2�������2
 80
+�������
 ���

�����
-��2���
$1<<
�������
&
E�9����
���
-��
���

�+-��+��������
��

8���
2���
�
���
��
�������0

�2����
 ��
 ���
 ������
�

 ��
 F���	
 -�����0-���&

5

-�����0-�
��
���
�������0
��2
���
���
�����
��
���

�������0
��

8���
8����
�
���
���
3���G�G
�������0

�2����
B6@C&
1�
���
�����9���

������
9�
���
�
8�����0

2�
���8�
���
$1<<
�������

��������
�����9�2
80
�

2�
���-����
��
���
����
2�����-�2&

4 DOMAIN INDEPENDENT FORM FEATURE
(DIFF) MODEL

Feature is defined in terms of faces and faces
adjacency relationships. Features are viewed as
formed by subtracting/adding a single solid-piece
from/to a base-solid as depicted in Figure 4. The
solid existing before subtraction or addition is
referred to as the base-solid and the solid subtracted
or added is referred to as solid-piece [9]. The
created feature inherits the structure of the solid-
piece. The classification of faces and faces
adjacency relationships in the DIFF model is
described in the following section.

4.1 Classification of Feature Faces

The faces that form the closed shell are
classified as shell-faces and the two faces which

<��&
@&
-������������������
����������������
�����������
����
������
���

<��&
�&
)�����������
��������������������������

����������
���
��������
���
�������
�
���

Gupta.pmd 10. 06. 08, 18:15450

451

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

close the ends of the shell are classified as end-
faces as shown in Figure 5. Addition or subtraction
of the solid-piece leaves an impression (feature)
on the base-solid. The faces in the impression which
did not exist in the base-solid before the addition
or subtraction operation, are classified as created
faces (newly created faces). The neighbouring faces
of the impression exist in the base-solid before the
operation, are shared by the solid-piece and the
base-solid which are classified as shared faces
(modified faces) as shown in Figure 5.

;��
����

��
���
�����

���2
�

������2
9���

��
��2���2���
�������
���
���

����2
�

�����9
'

• %�����2

����
����

�%�<
�>
��9�0
������2
����

��
���
8�
��
���2
�����
-��2���
��
���

���������

��
���

���2�-����&

• �����2

����
����

���<
�>
�����20
�:�
����
����

��
���
8�
��
���2
�����
-��2���
��
���

���������

��
���

���2�-����&

• %�����2
��2
����

�%�<
�>
��9�0
������2
����

��
���
8�
��
���2
�����
-��2���
��
���
��2�����

��
���

���2�-����&

• �����2
��2
����

���<
�>
�����20
�:�
����
����

��
���
8�
��
���2
�����
-��2���
��
���
��2�����

��
���

���2�-����&

�����
�������

���
2�����2
��
���+

��
���
�

����
 �0-�

 ��
 ����
!
 �������
 2���������

 ���

���
�
����
��2
+���������2��
���2�8��&
;��
�
����

�0-�

 ��
 ����

 ��
 ����
 �������
 ���

����2
 ��
 ���

�������
+�2��
9���
����
�2������0
��������
��-
&

4.2 Semantics of Product Model

Feature definitions are structured to separate
the generic content from the non-generic content.
The overall form and shape of a feature are
separated into type and shape. The type of the

feature is specified by the generic type and the
shape of the feature is specified by the cross-section
of the feature. Class of similar features based on
faces and face adjacency relationships are
identified. Features, having similar types of faces
and face adjacency relationships of a class, lie in
that class. An instance of a class has same meaning
as that of the class. Instances of such a class are
created by specifying values for its parameters. A
class of object is often called a family of objects,
and an instance is a member of the family. A
member of a class is referred to as feature/generic
feature. We propose to define an ontology of form
features in terms of the DIFF representation of a
feature. Given any feature or construction history,
the volume associated with the feature can be
obtained and the DIFF representation of the feature
volume captured. Once the DIFF representation of
a feature is available, matching entities with the

<��&
�&
,�����������
��
���������������

<��&
 &
4���������
��������������
�������������

����������������
��052

Gupta.pmd 10. 06. 08, 18:16451

452

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

same DIFF representation can be searched to find
the label or construction of interest.

The ontology of features in the present
approach is implemented using Protégé ontology
editor [13]. Screen shot of protégé editor for DIFF
model is shown in Figure 8 in the next section. Our
objective is to enumerate the generic form features,
the generic and non-generic content of form feature
are separated as “type” and “shape”. For example,
in circular through-hole feature, generic aspects are
two shared end-faces, and concave angle between
adjacent CSFs. The non-generic content is the
circular cross-sectional shape of the cylindrical
created-face. Hierarchy of classification criteria in
feature definition is depicted in Figure 6.

#$%����������&��������������������������'�����
�

5
�������
���
8�
2�����2
�

�

��
��
 ����

9���
 �2������0
 ��������
��-
 9����
 ���8��

�

��������
��
	��9��2��&
;��
����
�0-�

��
����
!

2�
���8�2
��
$1<<
+�2��
��-����
���
���+
��
 ���

��������
���2
 ��2
 ���
 �������
 ��������
 -����

&

<������

���
���

����2
��
���+

��
��+8��
��
����

��2
����

�2������0
��������
��-

��
���
����
�0-�

��
����

9����
���
����������H�2
80
���
�����9���

����
������
&

4.3.1 Numbers and Arrangement of SSFs

Based on this factor, features are divided into
four classes. These classes are defined as follows:

Hole, zero shared-shell-faces: This case
arises when the shell of the feature-solid is
completely inside the base-solid. This class
corresponds to features commonly referred to as
holes. In the proposed taxonomy also, it is referred
to as hole.

Slot, one shared-shell-face: This class of
features results from the coincidence of a single
shell-face of the feature- solid with the base-solid.
This class corresponds to features commonly
referred to as slots, and in our taxonomy also, it is
referred to as slot.

Corner slot, two adjacent shared-shell-
faces: This class of features results when any two
adjacent shell faces of the feature-solid coincide
with two adjacent faces of the base-solid. Since
two faces meet at a corner we have named this class
as corner slot in our taxonomy. The feature referred
to as step in the literature, belongs to this class.

Virtual corner slot, Three or more
adjacent shared-shell-faces: These features result
from coincidence of 3 or more adjacent shell faces
of feature-solid with 3 or more adjacent faces of
the base-solid. Though these features are not cited
in the literature as individual features, their
combinations are referred to as virtual slots and
virtual pockets. This class of features is named as
virtual corner slot in the proposed taxonomy.

4.3.2 Type of End Faces

Each class (holes, slots and corner slots) is
further divided into sub-classes through, blind, and
double blind based on the type of the two end faces.

Double blind, zero shared end-faces: This
class corresponds to the set of features that are
generated such that the two ends of the feature-
solid are totally inside the base-solid and hence,
there are two CEFs and no SEFs. This class is
referred to as double-blind in our taxonomy.

Blind, one shared end-face: This class of
features is generated when one end of the feature-
solid coincides with face(s) of base-solid and hence,
there are one SEFs and one CEFs. This class is
referred to as blind in our taxonomy.

Through, two shared end-faces: This class
of features arises when both ends of the feature-
solid coincide with the face(s) of the base-solid and
hence, there are two SEFs and no CEFs. This class
is referred to as through in our taxonomy.

Closed, no ends: When the feature-solid is
a result of sweep about a closed path, such as toroid,
there are no ends. There is no SEFs and no CEFs.
Features of this class are referred to as closed
features in the proposed taxonomy.

The combination of the above two steps of
classification results in generic types of features
such as through hole, blind slot, double blind corner
slot, etc… The variation in the number of SEFs at
one coinciding end is broadly classified into single-
shared-end-face (SSEF) corresponding to single
SEF and multiple-shared-end-face (MSEF)
corresponding to more than one SEF.

4.3.3 Cross-sectional Shape of a Feature Based on
Numbers of CSFs and SSFs

Feature definitions are structured to separate
the generic content from the non-generic content.
The overall form and shape of a feature are

Gupta.pmd 10. 06. 08, 18:16452

453

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

separated into type and shape. The type of the
feature is specified by the generic type and the
shape of a feature is the cross-sectional shape of
the CSFs and SSFs. Some of the common shapes
are rectangle, triangle, circle, L, U, T and I.

4.3.4 Type of Angle Between Adjacent Faces

Each class is further divided into sub-
classes, depression and protrusion based on the
angle between adjacent faces of a feature.

Depression; This class of feature has angle
between two adjacent CSFs or adjacent CEFs and
CSFs as concave.

Protrusion; This class of feature has angle
between two adjacent CSFs or adjacent CEFs and
CSFs as convex.

If CSFs are more than one then angle between
adjacent CSFs is sufficient to answer whether a feature
is protrusion or depression. If CSFs is equal to one
then angle between adjacent CEFs and CSFs is
required to answer protrusion or depression feature.

5 ONTOLOGY FOR DIFF MODEL

The structure defined above is used to develop
ontology of features. Protégé editor [13] is used to
develop ontology for DIFF (domain independent form

feature) model with semantics. A high level view of
the ontology is shown in Figure 7.

5��
 �������

 ���
 ���

����2
 ��
 ���+

��
 ���

��������
2�
���8�2
��

������
�
��2
<�����
 &
<�����

�

��9

���
���

��������
���
 ���
�������
�������

�0-�
�+��	�2
��
���
����
-�����&
��+�
��
�����

��

���
�������
 �������
 �0-�
���

��9�
 ��
 ���
+�22��

-����&
;��
�����8���

 ����
���
�

������2
9���
����

�������
��
�����
��2
�
�2
��
���
���
�����
���

��9�

��
 ���
 �����
 -����&
$1<<
 �������
 I;������
����J

�+��	�2
��
���
+�22��
-�����
9���
�����8���
K
�����

���
���
�����
-�����
���
��
�
2�
���8�2
��
<�����
�&

;��
���
��������
��
���0
�

������2
9���
���

�������
�����

��
���
-�

�8��
9�0

���
�������
���
8�

+�2���2
��
���
������2&
;��
�
��
2�����2
�������

�8�

���

�

�
-����
���2��
���
�������

9���
2��������
��8��

��2
��
�
���
�������
�:���
���

��
���
�������
�������0

��
���2��
�������

����
���
���
������
2�
���8�2
��

��-�

8�
�2&
<�����
(

��9

���
��
�����

��
�
��
2�����2

�������

�+��	�2
��
���
�������

���
�

���
�
�
�2
��

�
-��2���
+�2��
�

��9�
��
<�����
6�
�+��	�2
��

���
�������&
5
�
��
2�����2
�������
�

����2
�

��9

�������
��
���
�������
�

2��������
���+
���
$1<<
+�2��&

;��
$1<<

��������
���
8�
�8�����2
���

���
�������

�

��9�
��
<�����
66&

5
�
��
2�����2
 �������
I/�

���������J
 �

���
 �����
 ��
 ���
$1<<
+�2��&
;��
 �������
I/�

�

��������J
�

����2
�

��9
�������
�

9���
�+��	�2

<��&
"&
-���������
��'())��
���������� ��
����
��
�
��

Gupta.pmd 10. 06. 08, 18:16453

454

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

��
 ���
 �������&
 ;��

 �������
 ��

 ���

�+�
$1<<

��-��
��������
 �

 ���
 �������

 I;������
%�����

����J
��2
I3�����
���J
�
��

�����

���
��
<��&
66�&

��
+�����

 ��
 �������
 ��8��

 8��9���
 2��������

�--��������

 ���
 2�
���8�2
 ��
 ���
 ��:�

������&

��
+�����

 ��
-��
��������
 D���
��������
��
���0

���
��
�
2�
���8�2
��
���
�����9���

������
&

5.1 Handling Different Labels Referring to
Same Shape

Given a feature from a host system (Fig. 10),
the feature volume corresponding to each feature

in the source system is used to identify its
corresponding DIFF structure. Figure 12 shows the
DIFF structure identified for one such feature say
label “boss-extrude2”.

Using the query feature in the ontology
editor, the label in the source system is first matched
with the label (feature name) in the DIFF structure.
The query for user defined feature “boss-extrude2”
is depicted in Figure 13 which is used to find the
same feature in the ontology (marked in the left
panel). The feature corresponding to boss-extrude2
is present in the DIFF model with different label
namely, “Rectangular double blind slot -

<��&�&
-���������
��'())��
����������������!���
������������������������

<��&
(&
(���������
����������������������

Gupta.pmd 10. 06. 08, 18:16454

455

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

protrusion (boss)” (marked in the right panel).
The other labels associated with this DIFF feature
are now searched to check if there is a match with
the target system.

5.2 Handling Features with Different
Construction History/Representation

As mentioned earlier, the construction
history or representation of each DIFF feature is
stored in the DIFF structure. Figure 14 shows the
different construction possibilities for a particular
feature. Let us take a construction method
“Sweep_Blind_Hole_Protrusion” in DIFF model.
The Figure 14 shows different constructions/
representations for “Sweep_Blind_Hole_
Protrusion” as “Pad1” and “Extruded_
BossBase1” (marked in the right panel). We know
“Pad1” in Unigraphics and “Extruded_
BossBase1” in Solid Works which are equivalent
to each other.

Given a user-defined feature for which the
matching features in another system have been
identified, the next task is to resolve any mis-match
in the construction process/representation of the
feature. First it is checked if the target system
supports any of the construction history associated
with the DIFF feature corresponding to the feature
being exchanged. Otherwise, for the different
construction methods available in the target system,
the DIFF representation is obtained and used to
match with the feature being exchanged. Figure 14
shows the output for a query for other construction
methods for a given feature.

6 DISCUSSIONS

Using a single product model across the
product lifecycle has been suggested to maintain
integrity of the data which avoids the effort in
creating multiple models. Product model is created
only once in any modeling software. The same
product model can be used for further
manipulations and editions throughout the product
lifecycle and can also be used among different
vendors to share knowledge.

We have identified different types of
semantic interoperability problems arising during
exchange of product models in product
development. These are: different terms referring
to same shape, associated representation for a shape

<��&
6�&
��������
������������������������0112 <��&
66&
(���������
���������������������
��
�
��

�

<��&
6�&
'()�)����������
�����
�������������
�

���������������������������6�
��
�������78

Gupta.pmd 10. 06. 08, 18:16455

456

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

���������	��
������

�������

may be different, meaning of terms are context
dependent and term with meaning is there in one
domain may not be there in other domain.

Once an ontology for a DIFF model for a
product model (for any source system) is developed
then the features and construction history for any
target system can be obtained. There is no need to
enumerate separate feature and construction history
for a new system. The features and construction
history for a product model can be obtained through
DIFF model.

We have presented a one-to-many
framework for exchange of product information

model, product semantics in particular as semantics
associated with shape data can convey design
intent, inter-relationships between entities in the
shape and other data important for downstream
applications such as manufacturing. Feature based
product data exchange has been used as features
(means geometric data at higher levels of
abstraction) are capable of carrying constraints,
parameters and application attributes.

DIFF structure is described and ontology is
developed that captures the vocabulary used in
feature models. A prototype of the ontology and
the reasoning on the ontology has been built using

Fig. 13. Query to find similar feature of boss-extrude2

Fig.14. Query “Find representation methods in different applications for
“Sweep_Blind_Hole_Protrusion” in DIFF representation?”

Gupta.pmd 10. 06. 08, 18:16456

457

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�� ���"

"�)�������������)�����
�&��
��-��������(����
�����������
��.�
�����/
����

the Protégé ontology editor. The method is
demonstrated to handle mismatches in labels and
construction history using Protégé ontology editor.

7 CONCLUSIONS

A new feature based ontology has been
proposed to address the problem of semantic
interoperability between shape models. In contrast
to present art, the proposed ontology enables
reasoning to handle situations where equivalence
between terms is not already captured in the
existing ontology. A prototype implementation that
is able to handle mismatches in labels and
construction history has been described. Handling
other mismatches and incorporation of the feature
model and ontology in the core product model [3]
has been identified as future work.

8 REFERENCES

[1] Ameri, F., Dutta, D. Product lifecycle
management: closing the knowledge loops.
Computer-Aided Design & Applications, vol.
2, no. 5, 2005, p. 577-590.

[2] Brunetti, G., Grimm, S. Feature ontologies for
the explicit representation of shape semantics.
International Journal of Computer
Applications in Technology, vol. 23, no.2,
2004, p. 192-202.

[3] Fenves, S., Foufou, S., Bock, C., Bouillon, N.,
Sriram, R. D. CPM2: A revised core product
model for representing design information.
National Institute of Standards and
Technology, NISTIR 7185, Gaithersburg, MD
20899, USA, 2004.

[4] Heiler, S. Semantic interoperability. ACM
Computing Surveys, vol. 27, no. 2, 1995, p.
271-273.

[5] Horváth, I., Pulles, J., Bremer, A. P., Vergeest,
J. S. M. Towards an ontology-based definition
of design features. Proceedings of the SIAM
Workshop on Mathematical Foundations for
Features in Computer Aided Design,
Engineering and Manufacturing, October 22-
23, 1998, Troy, Michigan USA.

[6] ISO 10303. ISO/CD 10303-Part 111: Product
data representation and exchange: Integrated
application resource: Construction history

features. International Organization for
Standardization, 2004.

[7] Lee, C.K.M, Lau H.C.W., Yu, K.M., Ip, W.H.
A generic model to support rapid product
development: an XML schema approach.
International Journal of Product Development,
vol. 1, no. 3/4, 2005, p. 323-340.

[8] Mostefai, S., Bouras, A., Batouche, M.
Effective collaboration in product
development via a common sharable ontology.
International Journal of Computer
Intelligence, vol. 2, no. 4, 2005, p. 206-212.

[9] Nalluri, S.R.P.R. Form feature generating
model for feature technology. PhD thesis, Indian
Institute of Science, Department of Mechanical
Engineering, Bangalore, India, 1994.

[10] Owen, J. STEP: An introduction. Winchester,
UK: Information Geometers Ltd., 1993.

[11] Patil, L., Dutta, D., Sriram, R. Ontology-based
exchange of product data semantics. IEEE
Transactions on Automation Science and
Engineering, vol. 2, no. 3, 2005, p. 213-225.

[12] Pratt, M. J. Introduction to ISO 10303 - the
STEP standard for product data exchange.
Journal of Computing and Information
Science in Engineering, vol. 1, no. 1, 2001, p.
102-103.

[13] Protégé. Protégé ontology editor. Stanford
University, 2007, http://protege.stanford.edu/

[14] Pulles, J. P. W., Horváth, I., van der Vegte.
Beyond features: an ontology oriented
Interpretation. Proceedings of the
International conference on engineering
design (ICED 99), August 24-26, 1999,
Munich, p. 1761 – 1764.

[15] Subramani S, Nalluri, S.R.P.R., Gurumoorthy
B. 3D clipping algorithm for feature mapping
across domains. Computer Aided Design, vol.
36, no.8, 2004, p. 701-721.

[16] Subramani, S. Feature mapping, associativity
and exchange for feature-based product
modeling. PhD thesis, Indian Institute of
Science, Department of Mechanical
Engineering, Bangalore, India, 2005.

[17] Szykman, S., Fenves, S.J., Keirouz, W.,
Shooter, S.B. A foundation for interoperability
in next-generation product development
systems. Computer Aided Design, vol. 33,
no.7, 2001, p. 545-559.

Gupta.pmd 10. 06. 08, 18:16457

