
 Informatica 30 (2006) 453–460 453

A System Generating CV through Intelligent Agents and Apache
Cocoon
Evelio J. González, Alberto Hamilton, Lorenzo Moreno, Juan A. Méndez, José Sigut and Marta Sigut
Dpto. Ingeniería de Sist. y Automática y Arq. y Tecnología de Computadores
Universidad de La Laguna, CP 38207, La Laguna, SPAIN
E-mail: ejgonzal@ull.es

Keywords: MAS, Apache Cocoon, Development

Received: May 5, 2006

The aim of this paper is to present a dynamic system for the automatic and dynamic generation of CV
documents in an academic and research environment. In particular, this system has been developed in
the FES Department of the University of La Laguna, Spain. For that purpose, the authors have
integrated Multiagent Systems (MAS) with XML and Apache Cocoon, designing a web portal where the
users – in this case, professors and research students- can manage their CV data. Regarding to the use
of Apache Cocoon and apart from showing its great potential, one of the main contributions of the work
presented in this paper consists of the dynamic generation of the web environment, since the forms
presented to the user change as soon as the structure of the XML files is modified. In other aspect, the
agents will ensure the privacy and safety of the data.

Povzetek: Predstavljen je sistem za avtomatsko generiranje CV.

1 Introduction
The Spanish Universitary model requires its members to
manage a big amount of personal data, such as
publications in journals and conferences attended.
Different official institutions – Ministry of Education and
Science, regional governments, universities – often
require researchers and students for these data in order to
different purposes such as awarding a contract or
research fellowship, annual reports, etc. Unfortunately, it
is usual that each institution has its own template to fill,
so researchers are often condemned to waste their time
typing the same data in different documents. It has been
calculated that the generation of a CV takes an average
3-hour period and that an automated system could save at
least $25,000 per 100 generated CV’s.
This scenario immediately brings XML back. This
standard language provides a well-supported and
powerful technology for the described scenario. Users
would only need to type their data once in a XML file
and apply a different XSL transformation in order to
generate each type of document. Unfortunately, there are
a good number of users in this scenario that find XML
extremely difficult. For example, it is hard to imagine a
standard Philosophy Ph.D. student typing a XML file and
applying a XSL transformation to it. Thus, it would be
desirable a user-friendly web environment in which
researchers and students could manage their personal
data – enter/delete/look for/update a publication, course,
etc. – and generate their updated CV with only a click.
For that purpose, the authors have decided to use Apache
Cocoon as base of the designed web environment. An

interesting tool provided by Apache Cocoon is its forms
(Cocoon forms or CForms), a XML way to build forms
that can be filled by the users. In this sense, and this is
one of the main contributions of this paper, it would be
desirable that the forms were generated in a dynamic
way. In other words, that the structure of the form should
change as soon as the data architecture is modified, as
several fields can be added in the CV data request by the
official institutions. In addition to this, the data
introduced through these forms should be validated
against the restrictions codified in XML, e.g.,
maxInclusive in numeric data.
This system for the dynamic generation of CV
documents has been integrated in a Multiagent System,
originally developed for the automatic management of
agendas in a Universitary Scenario [1][2][3]. This
system, called MASplan, has been designed using FIPA
specifications [4] and its aim is to help the members of
the Universitary Scenario to organize internal meetings
and to get resources such as portable computers and
projectors. For the integration of the web environment
into that system, the authors have implemented several
agents whose behaviour can be studied in an independent
way. In addition to this, the agents in MASplan, and
therefore the new agents, take the advantage of the use of
ontologies, expressed in a highly expressive language,
OWL.
Why do the authors use agents in the generation of CV
documents when it seems that a simple database for each
user could be sufficient? Some researchers may think

454 Informatica 30 (2006) 453–460 E.J. González et al.

that the decision of developing a MAS in this case is
questionable. They could think that employing MAS is a
bit like using a sledge-hammer on a thumb-tack. The
answer lies in the human behaviour. Firstly, it has been
observed that sometimes the corresponding author of an
article forgets to communicate the acceptance of that
paper to the rest of the authors. Even if the corresponding
author sends, e.g., an e-mail to a co-author
communicating the good news, this co-author is usually
so busy that he/she prefers to update his/her CV database
later, taking the risk of ‘losing’ the paper in his/her CV.
This behaviour implies that each user sends an e-mail to
every related colleague, looking for that ‘lost’
publications, whenever he/she needs to present a CV
document, wasting a lot of time in this way. Thus, a
general database – an initial attempt was initially
implemented in Apache Cocoon-, covering all the users’
merits, could be a good solution. However, once more
the authors have bumped into the human behaviour. In
spite of the security offered by the database manager, a
significant number of members of the Universitary
Scenario were reluctant to insert their data, claiming that
they did not want leave their data in a centralized system
where they could be accessed by malicious people. In
this context, the features provided by the multiagent
systems – distribution, reliability, proactivity,
autonomous and reactive behaviour, etc.- seem to be
especially useful.
The remainder of this paper is structured as follows.
Firstly, state of the art in the three involved aspects in
this paper – multiagent systems, Apache Cocoon and
generation of CV documents- are described. After that
description, the authors will detail the changes
introduced in the original MASplan system in order to
manage the desired environment. The next step will be
the description of the web environment, paying special
attention to those aspects related to the dynamic
generation of CForms. After a brief inform about the
experience using the designed system, some conclusions
will be reported.

2 State of the art in MAS, Apache
Cocoon and Generation of CV
documents

As stated above, this section is dedicated to describing
the state in the art of the main elements of the
development of the system.

2.1 Multiagent systems and ontologies
Agents and Multi-Agent Systems (MAS) are part of a
new programming paradigm. They have been
successfully used in a wide range of applications such as
robotics, e-commerce, agent-assisted user training,
military transport or health-care. However, why using
agents? This is not a trivial question, as there is not a
uniform and widely accepted definition of agent. In fact,
agents are often characterized by describing their features
(long-lived, autonomous, reactive, proactive,

collaborative, ability to perform in a dynamic and
unpredictable environment…). Users can delegate to
agents tasks that are designed to be carried without
human beings intervention, for instance, as resource
managers or personal assistants that learn from its user.
In most of applications, a standalone agent is not
sufficient for carrying out the task: agents are forced to
interact with other agents, forming a multi-agent system.
Due to their capacity of flexible autonomous action,
MAS can treat with open – or at least highly dynamic or
uncertain- environments. On the other hand, MAS can
effectively manage situations where distributed systems
are needed: the problem being solved is itself distributed,
data are geographically distributed, managed by different
control systems and/or difficult to share, systems with
many components and huge content…
In this context, having a shared ontology that all the
agents utilize in their inter-agent communication is
critical to successful communication because a shared
ontology provides the common format in which express
data and knowledge. An ontology is a set of classes,
relations, functions, etc. that represents knowledge of a
particular domain.
Ontologies have made a number of applications which
are more capable of handling complex and disparate
information. Agents do not offer any advantage if they
are not intelligent and ontologies represent an intelligent
way to manage knowledge. The main advantages of the
use of both MAS and ontologies are extensibility and
communication with other agents sharing the same
language. These advantages are shown in the case of
open systems, that is, when different MAS from different
developers interact. Moreover, agents can use the
information stored in the ontology (not only vocabulary,
but instances and constraints/axioms) for achieving their
goals.
There are several ontology languages such as KIF or
OKBC (although this is actually the name of an API).
Nevertheless, the authors prefer those languages known
as "markup languages". The last generation of these
languages (RDF, DAML+OIL, OWL) offers several
advantages: source files are compact and portable, easy
to learn and use, flexibility...
In this sense, OWL is on the top of the ontologies
languages, although there are other markup languages,
such as DAML+OIL that are sufficiently expressive for
carrying out the project described in this paper. As W3C
indicates:
"Where earlier languages have been used to develop
tools and ontologies for specific user communities
(particularly in the sciences and in company-specific e-
commerce applications), they were not defined to be
compatible with the architecture of the World Wide Web
in general, and the Semantic Web in particular. OWL
uses both URIs for naming and the description
framework for the Web provided by RDF to add the
following capabilities to ontologies: ability to be
distributed across many systems, scalability to Web
needs, compatibility with Web standards for accessibility
and internationalization and openness and extensibility.
OWL builds on RDF and RDF Schema and adds more

A SYSTEM GENERATING CV THROUGH… Informatica 30 (2006) 453–460 455

vocabulary for describing properties and classes: among
others, relations between classes (e.g. disjointness),
cardinality (e.g. "exactly one"), equality, richer typing of
properties, characteristics of properties (e.g. symmetry),
and enumerated classes."
OWL is usually recommended for ontology
developments due to the following reasons:
• It is based on well-known existing technologies:

XML, RDF, DAML+OIL...
• There are many tools with regard to OWL such as

editors, reasoners, consistence checkers and translators
from other ontology languages (DAML+OIL).

• It allows the representation of instances, not only
classes and/or relations.

• It is the most likely candidate to lead Semantic web.
In this sense, it is a recent W3C recommendation.

Nevertheless, some disadvantages have been found:

• Tools are at very early stage, especially for the most

expressive subset (OWL Full).
• There are some limitations on what can be

expressed, especially in the subsets called OWL Lite
and OWL DL.

• Unfortunately, OWL does not allow developers to
express all the constraints they would like, for instance,
those related to the limitation in the range of a value or
constraints between values. In this way, A MAS
system could manage these situations, for instance,
taking advantage of the fact that OWL datatype
properties may make use of simple types defined in
accordance with XML Schema datatypes.

It is noted that the main aim of this paper is not to justify
the use of MAS and ontologies in a strict way (there is a
lot of literature about that fact), but to present the
software experience when using them in the development
of an example application [5,6].

2.2 Apache Cocoon
The second component used in this work is Apache
Cocoon. This is a mature and popular web development
framework, developed in Java and based on the Servlet
API model, that has been built around Separation of
Concerns (SoC) and component-based development
(COP), providing pipelined SAX processing. From a

more formal point of view, Cocoon is said to adopt the
“pyramid model of web contracts”(Figure 1). This model
is composed of four separated contexts (management,
logic, content and style) and five contract contents (the
lines depicted in the figure) between the different
contexts. As can be seen, the contract between style and

logic is removed, as it is considered as a bugging web
site development since the beginning of the Web.
It introduces design patterns, evolutionary guidelines and
software that make easy the creation of web services,
using a cache system in order to get a better performance.
This technology, interfacing with many different back-
end and data formats, is focused on human resource
management rather then technological details, left in the
middleware level. Apache Cocoon is a well-supported
Open source project, as there can be found a good
number of resources in the Internet, such as newsgroups,
Wiki, etc. On the other hand, its modular structure and
Model-view-controller (MVC) architecture, based on
XML files, makes the development extremely
customizable with minimal coding. Furthermore, there is
a really plethora of tools and XML derivates that can
interact with Apache Cocoon. In this sense, one of these
XML languages is XML-FO (Formatting Objects), a
XML namespace that allows to describe the way to build
a document, that is, how to draw and place the text on
screen on paper (size of the document, fonts, paragraphs,
tables, etc.) and to generate different outputs (PDF, RTF,
HTML, etc.).
From a practical point of view, Apache Cocoon uses a
centralized configuration mechanism called the sitemap,
a declarative XML document describing a set of
pipelines that will be invoked upon a URI pattern match.
A pipeline consists of three main components: a
generator (which produces SAX events), one or more
transformers (which operate on the SAX event stream,
transforming it into some other grammar) and a serializer
(which transforms the SAX event stream into an output
stream for the client browser or file) [9].
In spite of Apache Cocoon started as a simple servlet for
static XSL styling, it has become a powerful tool as
many features have been included. One of these features
is their CForms. It consists of an advanced forms
framework that provides a solid basis for building
interactive web applications. Describing the structure of
the forms involves the definition of the widgets it consist
of. A widget is an object that knows how to read its state
from a Request object, how to validate itself, and can
generate an XML representation of itself. Using widgets,
developers can indicate, for example, that a specific field
should contain an integer or a date [10]. In order to create
a CForm, a developer needs to define two XML files: a
form model – that describes the structure of the form-

and a form template – that informs the place a widget is
desired to appear in the form. An optional third file is the
form binding, which avoids having to write actual code
for the edition of things like the properties of a bean or
data from an XML document [7,8,9].

Manageme

Logic Content Style

Figure 1: Pyramid model of web contracts

456 Informatica 30 (2006) 453–460 E.J. González et al.

2.3 Generation of CV’s
The problem of the automatic generation of CV’s is not
new. A good number of institutions and companies have
realized that users often waste a lot of time when writing,
updating and - not less important- formatting their CV’s.
For example, collecting the CV’s of a relatively high
number of members of an institution for an annual
information and giving the impression of style
homogeneity could become a heroic effort, even when
strict guidelines were given. Thus, several developers
have tried to solve this problem through different
software. The authors will cite in this work three
significant approaches.
Vitae is a free Tcl/Tk-based curriculum vitae
management tool for use with the Illinois Computer
Affiliates Program, whose purpose is to standarize the
format of CV’s provided to visitors to the annual Illinois
Computer Affiliates Program Conference. Another cited
system is a more general application developed by i-
Linksoft solutions for the Faculty of Medicine of the
University of Malaya. Among other features, the system
allows the faculty staff to avoid writing their CV’s every
time it is needed for submission. Finally, University of
Windsor is said to save thousands of dollars using a
commercial application, IntelliPRINTPLUS, for
reporting from Lotus Notes applications. This tool is
used for the automatic generation of CV's, eliminating
manual CV processes.
All these attempts seem to be limited to an only style of
CV and they do not take any of the advantages of using
the XML technology. Moreover, two of them are based
on commercial products, so a user is laid when a
structural change in the application is desired. In this
aspect the design of a system, based on XML and open-
source technologies is justified.

3 MAS Architecture and
Development

The application of MAS to this problem is justified by
the following reasons.

• The environment is dynamic. For instance, the
number of users and their preferences can
change in an unpredictable way. The agents
should adapt themselves to these situations.

• The agents form a distributed system and it is
not necessary a permanent connection. The
agents are who interact, not the users.

• Extensibility. Using both MAS and ontologies,
new types of agents (or new instances of the
same agents, even implemented by different
developers) can be added easily to the system,
making its functionality grow in a dynamic way.
In general, this easiness cannot be reached by
centralized systems, for example, a central
server that every user interacts with via their
Web browser.

For the development, the authors adopted FIPA
specifications because they have become a stronger
standard in MAS development and involves not only

agent language specifications but agent management,
conversations …
FIPA (Foundation for Intelligent Physical Agents) is an
organisation whose purpose is to promote the
development of specifications of generic agent
specifications (Faratin et. al, 1998). Its agent
management reference model provides the normative
framework within which FIPA agents exist and operate.
The Directory Facilitator (DF) provides yellow pages
services to agents that query it to find out services
offered by other agents. The Agent Management System
(AMS) offers white pages services and maintain a
directory, which contain transport addresses for agents
registered in the Agent Platform (AP). The Message
Transport Service (MTS) is the default communication
between agents on different APs (FIPA Agent
Management Spec.).
These specifications allow users not to be worried about
technical aspects such as a detailed communication
implementation. As indicated above, agent-based
computing provides the decomposition, organization and
abstraction of multifaceted applications in heterogeneous
networks.
The authors have implemented a MAS for planning and
scheduling in a University Research Group. This MAS,
called MASplan, should help group members to find the
best possible time frames to perform a meeting and to
designate the use of the common resources. Originally
the system MASplan was composed of 6 different types
of agents. The agents for CV generation have been
integrated in this system, thus the authors consider its
brief description as illustrative.

User Agent (UA): This agent is an end-user
interface, which shows the schedule to its related user
and allows it to ask for a meeting or a resource. When it
occurs, this agent tries to locate its negotiator agent and
communicates what user needs. Once the negotiator has
finished its work, the user agent receives the result and
shows it to the user.

Negotiator Agent (NA): The implementation of the
meeting and resource negotiation algorithm is applied via
this agent. When it is asked by its related user agent for a
meeting negotiation, it looks in the DF for the negotiator
agents of the rest of the intended attendees. Then, the
negotiation process begins. Alternatively, in the case of a
resource negotiation, it looks for the resource agent.

Ontology Agent (OA): It provides ontology services
to an agent community, so that the identification of a
shared ontology for communication between two agents
is facilitated. The definition of an external ontology,
managed by an OA, provides numerous general
advantages: it permits consultation with regard to
concepts, the updating and use of ontologies and it
eliminates the need to program the entire ontology in
every agent, hence reducing required resources.

Resource Agent (RA): This agent is invoked when a
resource negotiation occurs. Firstly, it asks the Ontology
Agent for the instances of the selected resource type.

Mail Agent (MA): When an agenda change is
confirmed, the Mail Agent is requested by the respective
negotiator agent to send an email to the user via the mail

A SYSTEM GENERATING CV THROUGH… Informatica 30 (2006) 453–460 457

software. For this purpose, it asks to OA for the email
address of the user, as these data are stored in the
ontology.

Rule Agent (RuA): This agent provides the system
with the ability of learning from the users. The RuA is
consulted whenever there is an agenda change in order to
organize a meeting. The NA will consult with this agent
in order to determine whether or not the user is supposed
to agree to a possible agenda change.
In this scenario, several mobile agents have been
integrated. Each user owes its own mobile agent, called
CVSearchAgent (CVSA) that is periodically migrating in
the network looking for new merits in which its user is
involved. It is clear from the nature of the scenario that
the CVSA’s do not need to be always active as users do
not need to be continuously submitting their CV. Thus,
their activity is reduced to a few hours each 7-15 days.
This fact and the characteristic of mobility make that the
network is not overloaded, as the interaction with other
agents and the search of new merits can be done off-line.
Whenever a new merit is found, the CVSA asks the
MASplan MA for sending an e-mail to the corresponding
user, informing of the result of the search. This way, the
user can obtain a copy of the found data for other
purposes different to the generation of CVs. Apart from
this interaction, the CVSA send these data to the UA for
its inclusion in the local user CV database.
The implementation of these local databases does not
affect the dynamic generation of the forms as the XSD’s
are accessed from a remote server.
As stated in the introduction of the paper, a centralized
database could have been a good solution. Nevertheless,
and in spite of the security offered by the database
manager, a significant number of members of the
Universitary Scenario were reluctant to insert their data,
claiming that they did not want leave their data in a

centralized system where they could be accessed by
malicious people. Thus, each user owes its own database,
stored in the local system and accessed through the
Cocoon web portal environment with an authorization
and verification process. That database should be
managed by an agent in the system. In order to reuse

code and resources, the authors have implemented that
management functions in the UA code. Thus, the CVSA
interacts with the corresponding UA when it is necessary.
One of the actions to be carried out is to avoid
redundancy in the merits.
CVSA’s have been implemented using JADE tool. This
is a well-supported agent framework and the authors
consider that its use is more adequate for this
implementation, as it allows a better management of the
agent life cycle (active/inactive), although keeping in
mind the restrictions mentioned above. The fact of
having implemented agents in different frameworks (the
original agents were implemented in FIPA-OS tool) is
not a problem as both frameworks are FIPA-compliant.
The original MASplan one has complemented with the
inclusion of new concepts related to CV activities. As
example of these new definitions, the following OWL
code points that research activities related to the
Philosophy area are disjoint with those related to
Biomedicine.

<owl:Class

rdf:about="#Philosophy_Research_Activity">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Research_Activity"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Biomedicine_

Research_Activity "/>
 </owl:disjointWith>
</owl:Class>

This type of definitions makes easier the interaction
among the CVSA’s and the UA’s. When both agents
start a conversation, they compare the research areas of
their corresponding users. In case of disjointness, there is

no need of search in the XML database, avoiding its
computational cost, and maybe more important, avoiding
future unproductive conversations. A more refined
version, currently in progress, will consist in using the
DF functionality as a yellow pages service of research
activities.

Figure 2: Message flow in the system

458 Informatica 30 (2006) 453–460 E.J. González et al.

Another open line in this project consists of providing
more intelligence to the system. The purpose would be
that the CVSA’s themselves were able to extract the rules
of interaction among users regarding analogue research
areas- for example, if two areas are compatible or not –
from the list of keywords in the titles of publications or
common authors in the merits. For that purpose, several
well-known techniques can be used, e.g., Dempster-
Shafer method [10]. After that deduction, the CVSA
would interact with the RuA and OA for the inclusion of
the deduced axiom in the ontology.
Figure 2 shows a standard simplified message flow
between the CVSA and UA agents.

4 Description of Cocoon Web portal
In this section, the Cocoon web portal will be described.
It is noted, as stated above, that the interaction of the web
portal with the MAS is done via the UA’s. The Cocoon
distribution offers a good number of useful developing
examples. From one of these examples, in particular
from the address samples/blocks/portal-
fw/sunspotdemoportal, the authors have developed their
web environment.
After an initial verification process, the user is presented
a frame configuration where several parts can be
distinguished. The most important one is located on the
left, including a set of controls. Clicking on the controls,
a user can insert, modify, look for and update their data,
as generating several formats of CV. An example of
generated CV CForm is shown in Figure 3. It is
important to remark that the number of the identity card
is the parameter used to match the data with the
corresponding user. This is necessary due to it is clearly
not desirable that a user could access data related to other
users. The use of this parameter in the session is not
trivial and requires modifying some XML and XSL files,
such as sunrise-newuser.xml, sunrise-changeuser.xml,
portal.xsl and sunriseconfHTML.xsl.
The data involved in the structure of the system have
been divided into four categories, declared in their
respective schemas.

• Courses (lectures, seminaries): name of the
course, recommended bibliography, etc.

• Personal data: name, address, spoken
languages, etc.

• Merits: list of the merits to be included in a
CV, such as publications in journals,
conferences, books, chapters, research
activities, etc.

• Groups: list of research groups, members,
address, director, etc. – accessed only by the
administrators of the system.

It is noted that for avoiding repetition in this structure,
each document includes a reference field, a kind of main
key in a database. This key is the number of identity card
(DNI) of the user.
As stated above, the web environment is generated in a
dynamic way. It is interesting that the information could
change following the structure of the XML files, in other
words, following the changes produced in the XML

schemas. This purpose has been reached through the
design of a set of XSL transformations that allow
generating Cocoon forms. As expected, a change in the
XML schema involves a change in the corresponding
CForm.
For this purpose, three transformation files were
designed: form-template, form-definition and form-
binding. These transformations are applied to the XSD
files in order to generate the forms presented to the user.
A possible problem could be that the application of three
transformations whenever a form is generated could be
excessively slow. Fortunately, Cocoon offers an effective
cache system. When a form is loaded for the first time,
the rest of forms can be showed in a more quick way.
This methodology has been simultaneously used by other
developers, in particular, Arje Cahn and Max Pfingsthorn
from Hippo.nl. However, that implementation is even
much more limited than the presented in this work. As
example, the date type is treated as a mere string.
The mentioned files collect the XSD structure and extract
recursively the data and turn it into a CForm structure.
All of them have a similar structure, based on recursive
invocations with attribute inheritance and recollection in
groups of information. Thus, the differences are not in
their structure but in their content, due to their specific
syntax using their respective namespaces.
It is noted that for each transformation three possible
simple types have been considered:
• Those defined as xs:simpleType.
• Those defined as complex type, but they are

xs:extension.
• Those types that have directly defined from the

complex type, for example, a complex type with
attribute type=”xs:string”.

It has been observed that there are some fields that are
rather difficult to manage. A significant case is that of the
“author” field in the file including the CV Merits. This
field should include the number of the identify card of
each author involved in the merit (for example, the list of
authors of a paper accepted for publication in a journal).
Nevertheless, these numbers are difficult to remember by
the users. It would be desirable an easier way for the
inclusion of the authors. This problem has been resolved
including a new attribute, called “src”, to the tags
xs:element and xs:attribute, called “Combo-Professor”
when it is necessary. This name is related to the match
actions -in the sitemap file located in the directory forms-
that indicate that users should be inserted through a
combo widget instead of a textfield one.
As example of design of XSL transformation, the authors
will describe the transformation in order to get the form
template file.

4.1 Design of the form template

The algorithm for the creation of this form is based on
the following steps:

When a complex type is found
For each element, a group of items is created:

 If (maxOccurs=1) and (minOccurs=1):

A SYSTEM GENERATING CV THROUGH… Informatica 30 (2006) 453–460 459

Recursive call
 Else:

Add a repeater
Recursive call.
Add bottoms for its management.

For each attribute, recursive.
When a simple or similar type is found

Add a widget with a field “id”, that is a
parameter inherited from the previous
recursive calls. This field is the chain of the
id’s of the previous elements that make up a
unique path to the node. That also allows to
establish the style of the widget.

Mainly, the idea consists in reading the schema from the
root element to its children elements, at the same time as
each child element inherits the attributes of its parent
element. This structure will be used whenever the system
needs to extract information from a XSD document.

4.2 Restrictions in the transformations

The designed transformations do not cover all the
possible XSD syntax. As it is said in Apache web site
“The difficulty with schemas is that they can contain an
implicit structure by means of references to elements”
However, due to the designed structure, it is possible to
make easily updates and code improvements. The main
restrictions in the XSD structure are summarized as
follows:
• There can be as many complex and simple types as

desired, but it is not allowed that the root element –
or their children – has those types as children
elements.

• Each immediately children element of the root
element must define an attribute “xs:ID”, that
identifies univocally that element. The name of that
ID element must be the same for all the elements
of the same document. This element is used due to
two reasons:

- Avoiding repeated id’s.
- Allowing the search of elements for modifications

and deletions.

• In a complex type the following defined elements
are included
xs:sequence/xs:element|xs:choice/xs:element|xs:all/
xs:element|xs:simpleContent/xs:extension.

• In a complex type the following defined attributes
are included:
xs:attribute|xs:simpleContent/xs:extension/xs:attrib
ute.

• Datatypes ,documentation, cardinality and
validation tags can be applied to a simple type. In
the case of the validation tags, they are restricted to
xs:pattern, xs:minLength, xs:maxLength,
xs:maxInclusive, xs:minInclusive.

The first phase of the project was only focused on this
web environment. When a user desires to generate an
updated CV, a XSL-FO transformation is applied in
order to get that CV which is accessed in the browser.
The system has been used successfully for the generation
of the documentation regarding the PhD studies program
of three departments of the University of La Laguna.
That program covers nearly 100 professors, thus the
recollection of information of the lectures and giving
homogeneity to the presentation of that information
could involve a great amount of time without that web
environment (as stated above, the mean time for the
generation of a CV has been calculated as 3 hours).
Moreover, the users can get their CV with only a click
when it is required or generate their web page with their
research data.

5 Conclusions
In this paper, the authors have presented a multi-agent
system for the automatic generation of CV’s for a
Universitary scenario. The agents related to this purpose
have been integrated with a previously designed system,
called MASplan, for planning and scheduling in a
University Research Group Scenario. The included
agents, called CVSA, are mobile- one for each user in the
system- and their task consists of the search of merits
related to their corresponding user. This search is carried
out interacting with other agents, called UA, in charge of
the management of local merits databases. The main
reason for this distribution, and thus for the use of a
multiagent system, lies in the human behaviour. Firstly, it
has been observed that sometimes the corresponding
author of an article forgets to communicate the
acceptance of that paper to the rest of the authors and that
a co-author is usually so busy that he/she prefers to
update his/her CV database later, taking the risk of
‘losing’ the paper in his/her CV. Secondly, a significant
number of members of the Universitary Scenario were
reluctant to insert their data, in a centralized system. In
this context, the features provided by the multiagent
systems – distribution, reliability, proactivity,
autonomous and reactive behaviour, etc.- seem to be
especially useful.
The original MASplan system included an ontology for
the automatic meeting negotiation in an intelligent way
amongst several researchers, among other several
features. This ontology was implemented in OWL, a

Figure 3: A detail of generated CV form

460 Informatica 30 (2006) 453–460 E.J. González et al.

highly expressive markup language. In the context of
this work, some new concepts have been introduced, for
example axioms related to the disjointness of different
research areas, facilitating the interaction among the
agents involved. Currently, the authors are working on
the addition of new interesting features in the system, as
the ability of the agents of deducing axioms on-line.
Other interesting aspect of this work is the
implementation of a dynamic web environment for the
management of the CV generation. The development of
this environment has been carried out using Apache
Cocoon, a mature and popular web development
framework, developed in Java and based on the Servlet
API model. The web environment is generated in a
dynamic way. The information changes follow the
structure of the XML files, in other words, following the
changes produced in the XML schemas. This purpose has
been reached through the design of a set of XSL
transformations that allow to generate Cocoon forms. As
expected, a change in the XML schema involves a
change in the corresponding CForm.
The system has been used successfully for the generation
of the documentation regarding the PhD studies program
of three departments of the University of La Laguna,
Spain. That program covers nearly 100 professors, so the
use of this web environment has saved a lot of time in the
data treatment.

References
[1] E.J. González, A. Hamilton, L. Moreno, R.

Marichal, S. Torres (2003) "Masplan: A Multi-
Agent System for Automated Planning and
Scheduling in a University Research Group
Scenario". 1st Multidisciplinary International
Conference on Scheduling: Theory and
Applications. Nottingham.

[2] E.J. Gonzalez (2004) "Diseño e implementación de
una arquitectura multipropósito basada en agentes
inteligentes: Aplicación a la planificación
automática de agendas y al control de procesos".
Ph.D. Thesis, University of La Laguna.

[3] E.J. González, A. Hamilton, L. Moreno, R.
Marichal, J. Toledo (2004) "Ontologies in a Multi-
Agent System for Automated
Scheduling". Computing and Informatics, Vol. 23,
No 2, 157-178.

[4] FIPA Abstract Architecture Specification.
Technical Report, SC00001L. FOUNDATION
FOR INTELLIGENT PHYSICAL AGENTS.
December, 2002.

[5] S. Falasconi, G. Lanzola, M. Stefanelli (1996)
"Using ontologies in Multi-Agent Systems". Tenth
Knowledge Acquisition for Knowledge-Based
Systems Workshop.

[6] Fonseca S.P., Griss M.L. and Letsinger R. (2002)
"Agent Behavior Architectures. A MAS Framework
Comparison". Proceedings of the first international
joint conference on Autonomous agents and
multiagent systems, Bologna, Italy.

[7] Stefano Mazzocchi (2000) “Adding XML
Capabilities with Cocoon”, ApacheCON 2000 -
Orlando, 2000

[8] Introducing Apache Cocoon”, Available:
http://cocoon.apache.org/2.1/introduction.html

[9] Steven Noels. (2003) “Standards Applied: Using
Apache Cocoon and Forrest”, XML Europe 2003,
London, England.

[10] M. Bauer (1995), "A Dempster-Shafer Approach to
Modelling Agent Preferences for Plan
Recognition", User Model. User-Adapt. Interact.
5(4): 317-348.

