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Summary: Anthropogenic pollution constitutes a worldwide problem of growing concern. Increased environmental pollution 
can be attributed to a variety of factors associated with industrial and agricultural technologies. Triazine herbicides are among 
the most commonly used pesticides in the world, and are predominant class of herbicide. In recent years, concerns about the 
persistence, mobility and toxicity of triazines and their metabolites have been growing, owing to the detection these herbicides 
compounds and their of residual concentrations in different environmental compartments. The detectable levels are in drinking 
and ground water, food and fish, also their metabolites are frequently found in water ecosystems. Moreover, some of triazine 
pesticides are prohibited in European country. Eight s-triazines have been identified as relevant in a study on the prioritizing of 
substances dangerous to the aquatic environment in the member states of the European Community and they are included 
in the European Union Priority Pollutants List and the U.S. Environmental Protection Agency’s List. Current knowledge about 
residual triazine in the aquatic environment, including status, toxic effects, and traizne in fish, are reviewed. Based on the above, 
we identify major gaps in the current knowledge and some directions for future research. A review contains the impact of the 
seven most frequently detected triazines in water (ametryne, atrazine, metribuzine, prometryne, simazine, terbuthylazine, and 
terburyne) on fish physiology and acute toxicity. Toxic effect of triazine has influence mainly on growth, early development, 
oxidative stress biomarkers, antioxidant enzymes, hematological, biochemical plasma indices, caused histopatological 
changes in liver and kidney of fish.
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Abbreviations & Units: AChE – acetylcholinesterase; ACP – acyl carrier protein; ALB – albumin; ALP – alkaline phosphatase; ALT 
– alanine aminotransferase; APND – aminopyrine; AST – aspartate aminotransferase; Ca – calcium; CA – carbonic anhydrase; 
CAT – catalase; CbE – carboxylesterase; CF – condition factor; CK – creatine kinase; CREA – creatine; CYP – cytochrome; DS – 
distal segments; EC – ceruloplasmin; ERND – erythromycin N-demethylase; EROD – ethoxyresorufin-O-deethylase; FRAP – ferric 
reducing ability of plasma; GLOB – total globulins; GLU – glucose; GSH – reduced glutathione; GPx – glutathione peroxidase; 
GR – glutathione reductase; Hb – hemoglobin; MRCs – mitochondria-rich cells; HSI – hepatosomatic index; Hsp – heat shock 
protein; iNOS – inducible nitric oxide synthase; LACT – lactate; LC50 – lethal concentration; LDH – lactate dehydrogenase; LPO 
– lipid peroxide; MCH – mean corpuscular hemoglobin; MCHC – mean corpuscular hemoglobin concentration; MCV – mean 
corpuscular volume; MDA – malondialdehyde; Mg – magnesium; Na – natrium; NCR – NADPH cytochrome P450 reductase; 
NH3 – ammonia; P – phosphorus; PCV – hematocrit; PD – proximal segments; PHOS – inorganic phosphate; POD – guaiacol 
peroxidase; PROD – pentoxyresorufin-O-deethylase; RBC – erythrocyte count; RCs – rodlet cells; ROS – reactive oxygen 
species; SOD – superoxide dismutase; SSI – spleen somatic index; SW – spleen weight; TAG – triacylglycerols; TBARS – 
thiobarbituric acid reactive substances; TP – total protein; UDPGT – UDP-glucuronosyltransferase; WBC – leukocyte count; 11-
KT – 11-ketotestosterone. 
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Introduction

Sources of pollution constitute a problem of 
increasing concern all over the world (1). Increased 
environmental pollution can be attributed to a 
variety of factors resulting from different industrial 
and agricultural technologies (2). Agricultural 
development has led a parallel growth in the use 
of chemical agents for plague controls, which 
are known as pesticides. These compounds are 
released into the environment and due to their 
physico-chemical properties, such as water 
solubility, vapor pressure or partition coefficients 
between organic matter (soil or sediment) and 
water, they can disperse in various environmental 
media provoking serious health problems (3).

Effects of the residues of various substances 
persisting in the aquatic environment, the most 
important of those being pesticides, also are 
monitored. From among pesticides, the most 
frequently found are residue of triazine herbicides. 
Triazine herbicides are among the most commonly 
used pesticides in the world. The triazine was 
discovered in 1954 (4). The chemical structure of 
triazines is divided into asymmetric (metribuzine) 
and symmetric (atrazine, simazine, prometryne, 
etc.). The structures of all of the triazine herbicides 
have a six-member ring containing three nitrogen 
atoms and three carbon atoms (5). Triazines 
compounds are used against a wide variety of weed 
species. They are used primarily to selective control 
broad leaf and grassy weeds (6). As herbicides, the 
triazines may be used alone or in combination 
with other herbicide active ingredients to increase 
the weed control spectrum (7).

In recent years, concerns about the 
persistence, mobility and toxicity of triazines 
and their metabolites have been growing, owing 
to the detection of residual concentrations 
of these herbicides in groundwater and in 
different environmental compartments (8, 
9). Moreover, some of triazine pesticides are 
prohibited in European countries. Triazines 
have been identified as relevant in a study on 
the prioritizing of substances dangerous to the 
aquatic environment in the member states of the 
European Community (10) and they are included 
in the EU Priority Pollutants List and the US 
Environmental Protection Agency’s List. Triazine 
are highly toxic to moderately toxic to fish (Tab. 
1.). On base of these informations, we decided to 
write a review about the impact of the seven most 

frequently detected triazines in water (ametryne, 
atrazine, metribuzine, prometryne, simazine, 
terbuthylazine, and terburyne) on fish.

Ametryne

Ametryne (4-N-ethyl-6-methylsulfanyl-2-N-
propan-2-yl-1,3,5-triazine-2,4-diamine) was first 
registered as a pesticide use to control broadleaf 
weeds and annual grasses in sugarcane fields in 
the USA in 1964. Ametryne has also been used as 
a general herbicide in uncultivated areas, rights of 
way, and industrial areas and aquatic weeds. Over 
time, the uses of ametryne have been cancelled 
so that only four use sites remain: field corn, 
popcorn, pineapple, and sugarcane. Currently, 
only one ametryne end use product is registered. 
In 2005 US EPA has received requests for 
voluntary cancellation of all other products (37). 
The extensive use of ametryne in agriculture and 
some properties of this herbicide such as aerobic 
soil halflife of 53.2 days, adsorption coefficient of 
3.45, and leaching potential of 6.94 (38) suggest 
that it could be present in the environment as a 
potential contaminant of soil, surface water and 
groundwater, and river sediment (39).

Environmental fate

Ametryne is a moderately persistent herbicide 
which inhibits photosynthesis and other enzymatic 
processes. The environmental fate of ametryne 
varies based on the site-specific properties of 
the soil to which it is applied. Based on packed 
soil column leaching studies, ametryne and its 
degradates exhibit moderate to high mobility in 
most sandy to loamy soils, except for clay where 
its mobility is low. The major route of degradation 
of ametryne is aerobic soil metabolism, with an 
observed half-life range of 9.6 days to 84 days. 
Ametryne is stable to hydrolysis, and degrades 
slowly by aquatic photolysis, half-life is 368 days 
(37). Major metabolite product of ametryne is 
deethyl ametryne (38).

Ametryne is persistent, it may leach as a result 
of high rainfall, floods, and furrow irrigation. 
Given its persistence and mobility, transport of 
ametryne to ground water and surface water is 
expected. Monitoring of ametryne concentrations 
in ground water and surfase water is limited. In 
Europe rivers ametryne levels can reach values, 
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Exposure 96hLC50 [mg/L] (Reference)

Species Ametryne Atrazine Metribuzine Prometryne Simazine Terbuthylazine Terbutryne

Guppy (Poecilia reticulata) 0.3 (11) 4.3 (13) - 7.0*** (29) - 1.6 (13) -

Japanese eel (Anguilla 
japonica) 1.5** (12) - - - - - -

Rainbow trout 
(Oncorhynchus mykiss) 3.4 (13) 8.8 (13) 42.0 (24) 2.9 (14) 100.0* (14) 3.4 (14) 3.0 (13)

Sheepshead minnow 
(Cyprinodon variegatus) 5.8 (14) 13.4 (14) 85.0 (14) 5.1 (28) 4.3 (14) - -

Goldfish (Carassius auratus) 14.0 (14) 58.6 (22) - 4.0 (14) 32.0 (14) - -

Fathead minnow (Pimephales 
promelas) 16.0 (14) 4.1 (15) - - - - -

Bluegill (Lepomis 
macrochirus) 19.0 (13) 50.0 (13) 76.0 (14) 7.9 (28) 100.0 (34) 7.5 (14) 4.0 (13)

Black bullhead (Ameiurus 
melas) 25.0 (11) 35.0 (11) - 3.0 (11) 65.0 (11) 7.0 (11) 3.0 (11)

Crucian carp (Carassius 
carassius) 27.0 (11) 100.0** (11) - - 100.0 (13) 66.0 (13) 4.0 (11)

Channel catfish (Ictalurus 
punctatus) - 10.0 (16)

3.4 (23)

100.0 (24)
- 85.0 (14) - -

Coho salmon (Oncorhynchus 
kisutch) - 12.0 (17) - - - - -

Common carp (Cyprinus 
carpio) - 18.8 (18) 175.1 (26) 8.0 (27) 40.0** (33) - 4.0 (35)

Chinook salmon 
(Oncorhynchus tshawytscha) - 19.0 (17) - - 910.0 (17) - -

Fera (Coregonus fera) - 26.3 (19) - - - - -

Brown trout (Salmo trutta) - 27.0 (20) - - 70.0 (20) - -

Zebrafish (Danio rerio) - 40.0** (21) - 3.0 (27) 12.6 (31) - -

Red rasbora (Rasbora 
heteromorpha) - - 140.0 (25) - - - -

Red-tailed rasbora (Rasbora 
borapetensis) - - 145.0 (25) - - - -

Minnow (Phoxinus phoxinus) - - - 4.5 (27) - - -

Silver carp 
(Hypophthalmichthys 
molitrix)

- - - 7.0 (27) - - -

Western mosquitofish 
(Gambusia affinis) - - - 10.0* (30) - - -

Tilapia mosambicus 
(Oreochromis mossambicus) - - - - 3.1 (31) - -

Barbus ticto (Barbus ticto) - - - - 24.5 (31) - -

Rohu (Labeo rohita) - - - - 26.9** (32) - -

Yellow bullhead (Ameiurus 
natalis) - - - - 110.0 (14) - -

genus Bullheads (Ameiurus 
sp.) - - - - - 7.0 (13) -

Perch (Perca fluviatilis) - - - - - - 4.0 (11)

Grass carp 
(Ctenopharyngodon idella) - - - - - - 8.9** (36)

Table 1: Acute toxicity of triazines on fish

* 24hLC50; ** 48hLC50; *** 72hLC50
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up to 1.14 µg/L (39-41). In surface water near to 
Sao Paulo (Brasil) was found contamination from 
0.17 to 0.23 µg/L (42, 43).

Acute toxicity

Ametryne is highly toxic to moderately toxic to 
fish. The lethal concentration (96hLC50) for fish 
is in range 0.3 to 27.0 mg/L (Tab. 1.). Ametryne 
is highly toxic to crustaceans and moderately to 
highly toxic to mollusks (44).

Effect of ametryne on fish

Although the lethal toxicity of fish to ametryne, 
have been well-documented, there is a dearth of 
data on the effects of ametryne on fish physiology. 
Only three studies on effects on fish physiology of 
ametryne have been conducted. Ametryne caused 
increase of plasma glucose level, hepatic glucose-
6-phosphatase and decreased of muscle and liver 
glycogen contents in grass carp (Ctenopharyngodon 
idella) during sublethal and lethal (96hLC50) 
exposure (45). Acute exposure of ametryne 
inhibited of cholinesterase in juvenile and adult 
zebrafish (Danio rerio). Ametryne caused increase 
of acivity glutathione S-transferase only in larvae, 
but not in adult fish. And they conclude that these 
biomarkers are a useful tool to evaluate the risk of 
fish exposure of ametryne, even at sublethal levels 
(46). Mix atrazine and ametryne in concentrations 
(0.5, 1.0, 1.5, and 2.0 μg/L) exposure caused 
micronuclei formation and erythrocytic nuclear 
abnormalities in zebrafish (47).

Atrazine

Atrazine (6-chloro-N2-ethyl-N4-(1-methylethyl)-
1,3,5-triazine-2,4-diamine) was used for control 
of some annual broadleaf and grass weeds in 
corn, sorghum, sugar cane, orchards, vineyards 
and non-agricultural areas (48). Atrazine causes 
blockage of electron transport by Hill´s reaction 
in plant photosynthesis (49). It is an indirect 
endocrine disruptor (50, 51) because it can cause 
convert testosterone to estrogen (52). Atrazine 
and plant protection products containing this 
substance were banned in 2005 by Commission 
Decision 2004/247/CE.

Environmental fate

Atrazine is toxic, persistent and bioaccumulative 
(53). According to its physical and chemical 
characteristics of the group of compounds that 
are moderately resistant and moderately mobile 
in soils. The half-life of atrazine, depending upon 
the environment and the amount and frequency 
of administration, varies between a few days 
to several months. The photolysis in water is 
very slow. An estimated half-life is 805 days. 
In controlled aerobic water-sediment systems 
atrazine was eliminated from the water with a half-
life of 28-134 days, while the degradation half-life 
was found to be 45-253 days for the whole system 
(54). In European rivers atrazine levels can reach 
values, up to 6.47 µg/L (55), but in US rivers was 
about 20 µg/L (56).

Acute toxicity

Lethal acute toxicity (96hLC50) of atrazine 
for fish is ranging from units to hundreds 
milligrams per liter (Tab. 1.). Order of sensitivity 
to atrazine is: macrophytes > phytoplankton > 
zooplankton > fish > benthos (57). Fish subjected 
to acute exposure of atrazine herbicide displayed 
uncoordinated behavior. At the initial exposure, 
fish were alert, stopped swimming and remained 
static in position in response to the sudden 
changes in the surrounding environment. After 
some time they tried to avoid the toxic water with 
fast swimming and jumping. Faster opercula 
activity was observed as surfacing and gulping 
for air. They secreted copious amounts of mucus 
from whole body continuously and soon a thick 
layer of mucus was found deposited in the buccal 
cavity and gills. Body pigmentation was decreased. 
Ultimately fish lost their balance, consciousness, 
engage in rolling movement and became exhausted 
and lethargic. Lastly, they remained in vertical 
position for a few minutes with anterior side or 
terminal mouth up near the surface of the water, 
trying to gulp air and tail in a downward direction. 
Soon they settled at the bottom of the tank, and 
after some time their bellies turned upward and 
the fish died (58).
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Table 2: The effect of atrazine on common carp

Development 
stage Concentration Exposure Effects Reference

Juvenile 4.28, 42.8, 428 
μg/L 40 days ↑ EROD, PROD, CYP, CYP1A mRNA level in liver (61)

Juvenile

5 mg/L

96 hours

↑ GLU; ↓ RBC, WBC

(62)

15 mg/L ↑ GLU, TP, ALB, ALT, ALP, LDH, myclocytes
↓ WBC, lymfocytes

20 mg/L ↑ GLU, TP, ALT, ALP, LDH, myclocytes, 
↓ P, Ca, WBC, lymfocytes 

30 mg/L

↑ GLU, ALT, AST, LDH, myclocytes, monocytes; injection of visceral 
vessels,

↓ PCV, RBC, Hb, WBC, lymfocytes; dystrophic lesions of hepatocytes, 
teleangiectasis in gill

Juvenile

4.28 μg/L

40 days

↑ ACP in spleen, ACP in head kidney
↓ Na+/K+-ATPase in head kidney

(63)42.8 μg/L
↑ ACP in spleen, ACP in head kidney ,MDA in spleen,

↓ SOD in spleen, SOD in spleen, head kidney, Na+/K+-ATPase in 
head kidney

428 μg/L
↑ ACP in spleen, ACP in head kidney, MDA in spleen, head kidney 

↓ ALP in spleen, ALP in head kidney, Na+/K+-ATPase in spleen, Na+/K+-
ATPase in head kidney, SOD in spleen, SOD in head kidney

Juvenile

4.28 μg/L 40 days ↑ HSP90

(64)4.28, 42.8, 428 
μg/L 40, 80 

days
↑ HSP60

42.8, 428 μg/L ↑ HSP70

Juvenile 4.28, 42.8, 428 
μg/L 40 days ↑ APND, ERND, mRNA levels of CYP1 family (CYP1A, CYP1B, CYP1C) in 

gill (65)

Juvenile 4.28, 42.8, 428 
μg/L 40 days ↑ iNOS, production of NO in brain (66)

Juvenile 428 μg/L 40 days ↓ AChE, mRNA levels of AChE (67)

Juvenile 42.8, 428 μg/L 40 days

↑ MDA in kidney, MDA in brain; ↓ CAT in kidney, SOD in kidney, SOD in 
brain, GSH-Px in kidney; GSH-Px in brain; 

different degrees of granule cell loss in the hippocampus, reduction 
of Nissl bodies, degeneration of Purkinje cells, neuropil loss; swelling 
of epithelial cells of renal tubules, necrosis in the tubular epithelium, 

contraction of the glomerulus and expansion of Bowman’s space,

(68)

Juvenile

4.28 μg/L

40 days

↑ CAT in gill; CAT in liver
↓ GSH-Px in liver

(69)
42.8, 428 μg/L

↑ MDA in liver, MDA in gill
↓ CAT in liver, CAT in gill; SOD in liver, SOD in gill, GSH-Px in liver, 

GSH-Px in gill;

different degrees of hydropic degeneration of liver , vacuolisation, pyknotic 
nuclei, and fatty infiltration; varied degrees of epithelial hypertrophy in 
gill, telangiectasis, oedema with epithelial separation from basement 

membranes, general necrosis, and epithelial desquamation

Juvenile 428 μg/L 40 days ↑ mRNA levels of IL-1 beta, mRNA levels of IL-1R1 (70)

Juvenile 4.28, 42.8, 428 
μg/L 40 days ↓ RNA levels of AChE in brain and muscle (71)

Juvenile 4.28, 42.8, 428 
μg/L 40 days ↓ AChE, CbE in brain and muscle (72)

Juvenile
< 7 μg/L

14 days
induction cytochrome P4501A1

(73)
< 100 μg/L ↑ DNA strand breaks

Embryo - 
larvae

0.3 μg/L

30 days

↑ GPx, GST, SOD, CAT, GR

(74)30 μg/L ↓ GR

100, 300 μg/L ↑ TBARS, ↓ GR
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Development stage Concentration Exposure Effects Reference

Juvenile

0.3 μg/L

28 days

↑ GPx, GR; ↓ CAT

(75)

3 μg/L ↑ GPx; ↓ CAT

30 μg/L ↑ GPx, GR, SOD, TBARS; ↓ CAT

90 μg/L ↑ GPx, SOD, TBARS; ↓ CAT

25 μg/L scattered lesions in gill

Juvenile 90 μg/L 28 days ↓ growth rates; dystrophic lesions of hepatocytes;
↑ MRCs in filament epithelium of gill (76)

Juvenile
2.5 μg/L 21 days ↑ SOD, CAT

(77)
2.5, 5, 10 μg/L 14, 21 days ↑ POD

Adult – female

10 μg/L

14 days

↑ SOD in ovary, CAT in ovary; 
↓ GSH in liver

(78)100 μg/L ↑ SOD in liver, MDA in liver; 
↓ GSH in liver

1000 μg/L ↑ SOD in liver, CAT in liver, MDA in liver; 
↓ GSH in liver

Adult – female

0.01, 0.1, 1 
mg/L 10, 15 days ↑ cytochrome P450 content, APND, ERND

(79)

0.01, 0.1, 1 
mg/L 20, 25 days ↑ APND, ERND, NCR

Adult – male

0.01, 0.1, 1 
mg/L 10, 15 days ↑ cytochrome P450 content, NCR, APND, ERND

0.1 mg/L 20, 25 days ↑ cytochrome P450 content, APND

Embryo - larvae

4 mg/L

48 hours

disturbed the normal development to long pec stage

(80)
10-20 mg/L

retardations in organogenesis, a slowdown of 
movements, and functional disturbances of heart and 

circulatory system

Embryo - larvae 5 mg/L 48 hours ↑ soluble (s) and microsomal (m) GST (81)

Table 3: The effect of atrazine on zebrafish

Effect of atrazine on fish

Effects of atrazine on fish physiology, have 
been well-documented. Its effect is the best 
described from all triazines. Atrazine affected 
hematological, biochemical profile, antioxidant 
enzymes, oxidative stress indices, growth and 
caused histopatological changes in tissues. The 
effects of atrazine are mentioned on carp (Tab. 2.), 
zebrafish (Tab. 3.), Salmonidae (Tab. 4.), other fish 
(Tab. 5.). In a study conducted by Ventura et al. 
(59), it was observed that the herbicide atrazine 
has a genotoxic and mutagenic effect. In this 
study, the authors observed that the herbicide can 
interfere in the genetic material of the organisms 

exposed, even at doses considered residual, which 
led the authors to suggest that residual doses of 
atrazine, resulting from leaching of soils of crops 
near water bodies, can interfere in a negative 
form in the stability of aquatic ecosystems. The 
bioaccumulation factors for atrazine in the liver, 
muscle, heart, gonads and brain of banded tilapia 
(Tilapia sparrmanii) is ranged from 0.9 to 20.0 
(60).

Metribuzine

Metribuzine (4-amino-6-tert-butyl-3-(methythio)-
1,2,4-triazin-5-one) is an asymmetrical triazine 
herbicide. It is distinct from the symmetrical 
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Species Concentration Exposure Effects Reference

Rainbow trout (Oncorhynchus 
mykiss) Juvenile 555 μg/L 4 days ↑ cortisol, monocytes; ↓ SSI, lymphocytes (82)

Atlantic salmon (Salmo salar L)
Smolts 100 μg/L 21 days ↓ feeding, Cl-, Mg2+, Na+, Ca2+; ↑ cortisol (83)

Atlantic salmon (Salmo salar L)
Smolts

2 μg/L
7 days

↓ Na+K+ATPase in gill
(84)

5, 10 μg/L ↑ cortisol; ↓ Na+K+ATPase in gill

Atlantic salmon (Salmo salar L)
Smolts

atrazine (1 μg/L) + 
4-nonylphenol (5 

μg/L)
7 days

↑ Na+K+ATPase in gill, plasma Cl−, Na+

(85)
atrazine (2 μg/L) + 
4-nonylphenol (10 

μg/L)
↑ plasma Cl−, Na+; ↓ Na+K+ATPase in gill

Atlantic salmon (Salmo salar L.) 
Adult - male above 0.04 μg/L shorten ↓ 17,20 beta-dihydroxy-4-pregnen-3-one in 

plasma and milt (86)

Rainbow trout (Oncorhynchus 
mykiss) Renal tubules

10, 20, 40, 80, 160 
μg/L 4 weeks

In PS I - proliferation of smooth endoplasmic 
reticulum, atypical mitochondria and lysosomes, 

as well as gradual alterations of the apical 
plasmalemma; 

In PS II - cells proliferation of peroxisomes, 
ring- and cup-shaped mitochondria, alterations 
in the basal labyrinth; in DS cells, proliferation 

of atypical mitochondria with longitudinally 
oriented cristae, disorganization of Golgi fields 

and vacuolization of the cell base.

(87)

Table 4: The effect of atrazine on Salmonidae

triazines such as atrazine and simazine, in which 
the central ring structure has alternating carbon 
and nitrogen atoms, in that metribuzin possesses 
two nitrogen atoms and two adjacent carbon atoms. 
It was first registered as a pesticide in the U.S. in 
1973. Metribuzine is used to selectively control 
certain broadleaf weeds and grassy weed species on 
a wide range of sites including vegetable and field 
crops, turf grasses in recreational areas, and non-
crop areas (103). Metribuzine is applied by various 
methods including aerial, chemigation, and ground 
application (103, 104).

Environmental fate

Metribuzine, like other triazine and triazinone 
herbicides, is prone to runoff into surface waters 
due to its physical and chemical characteristics: 
water solubility 1.220 mg/L; Koc 41; vapor 
pressure 1.3 mPa; and soil half-life 30 days (104, 
105). The degradation of metribuzine is through 
photochemical, chemical and biochemical 
deamination. Aqueous photolysis of metribuzin is 
rapid with a half-life of <1 day, and this clearly 

contributes to the half-life of <7 days in natural 
pond water. Contamination of waters could 
result from spray and vapour drift, runoff or 
leaching from treated land, or from accidental 
spills. Measured environmental concentrations 
of metribuzine in water are usually low, with 
maximum concentrations below 1.8 µg/L (106), 
but modelling studies have indicated that 
metribuzine can reach concentrations as high as 
390 g/L in surface water runoff (104).

Acute toxicity

During the acute exposure of metribuzine fish 
show increased respiration and loss of movement 
and coordination. Fish lying on the bottom of the 
tank and moving in circles, followed by a short 
excitation stage (convulsions). Necropsy after 
acute exposure can revealed increased watery 
mucus on body surfaces, black pigmentation of the 
skin, and abdominal distention with generalized 
edema. The body cavity contains transudate, and 
hyperemia of visceral organs and ascites (26).

Acute toxicity 96hLC50 of metribuzine for fish 
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Species Concentration Exposure Effects Reference

Rhamdia quelen
Juvenile 2, 10, 100 μg/L 96 hours

↓ CAT, GST, GPx, GR,

leukocyte infiltration, hepatocyte vacuolization like steatosis 
and necrosis areas, leading to raised lesion index levels in all 

tested concentrations. ↑ free melanomacrophage

(88)

Prochilodus lineatus 
Juvenile 2, 10 pg/L 24, 48 

hours ↓ EROD, ROS, CAT, SOD, GPx, GR, MDA in liver (89)

Silver catfish (Rhamdia 
quelen) Juvenile 1.02 mg/L 24 hours ↓ bactericidal activity of the serum, bacteria agglutination, 

total serum peroxidase activity (90)

Prochilodus lineatus
Juvenile

10 μg/L
14 days

↑ GST, SOD, CAT, LPO
(91)

25 μg/L scattered lesions in gill

Prochilodus lineatus
Juvenile 25 μg/L

48 hours ↓ osmolarity

(92)
14 days

↓ CA;

↑ Na+, Cl-, MRCs in filament epithelium of gill

Rhamdia quelen
Juvenile 0.73 mg/L 96 hours ↓ intracelomatic cells, phagocytic index (93)

Fathead minnow 
(Pimephales promelas)

Adult

0.5, 5.0, 50 
μg/L 30 days

↓ production of egg; pathological lesions in testes: 
granulomatous inflammations, mineralized material in 

testicular tubules and efferent ducts at rates, variably-sized 
perinucleolar stage oocytes

(94)

Green Snakehead  
(Channa punctata)

Juvenile

4.238 mg/L 5, 7, 10, l5 
days

↑ SOD
(58)

5.3, 10.6 mg/L ↑ SOD, TBARS, CAT 

Rare minnow  
(Grobiocypris rarus)

Adult – male 
333 μg/L 28 days ↑ HSI, hypertrophy of hepatocytes (95)

Rare minnow  
(Grobiocypris rarus)

Adult 
3, 10 μg/L 28 days

lesions in gill including hyperplasia, necrosis in epithelium 
region, aneurysm and lamellar fusion

lesions in kidney included extensive expansion in the lumen, 
degenerative and necrotic changes of the tubular epithelia, 

shrinkage of the glomerulus, increase of the Bowman’s space

(96)

Caquetaia kraussii  
Juvenile 2.5 μg/L 72 hours

hepatocytes lost the cytoarchitecture (the hepatocytes 
have different diameters and irregular contour);  isolated 

associations between mitochondria and rough endoplasmic 
reticulum  in the cytoplasm

(97)

Rhamdia quelen
Juvenile

3.5, 5.25 mg/L 
Herbimix® 
(simazine + 
atzrazine)

96 hours ↑ cortisol (98)

Goldfish (Carassius 
auratus L.) 
Juvenile

1 000 μg/L 56 days ↑ 11-KT (99)

Red drum (Sciaenops 
ocellatus) Larvae 40, 80 μg/L 4 days

↓ growth;

behaviour: swam significantly faster, with a higher rate of 
travel, active swimming speed, hyperactive, swam considerably 

more convoluted paths compared to control

(100)

Goldfish (Carassius 
auratus) Juvenile 0.5 μg/L 24 hours ↓ sheltering, grouping behavior, burst swimming; ↑ surfacing 

activity (101)

Mormyrid fish 
(Gnathonemus petersii)

Juvenile
0.5, 5 mg/L 6 hours breaks in the gill epithelium, which developed into deep pits (102)

Table 5: The effect of atrazine on other fish
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is ranging from units to hundreds milligrams per 
liter (Tab. 1.).

Effect of metribuzine on fish

The effects of metribuzine on fish physiology 
have been well-documented. Metribuzine affected 
hematological, biochemical profile, growth and 
caused hitopatological changes in tissues (Tab. 
6.). During acute poisoning of metribuzin in 
rainbow trout (Oncorhynchus mykiss) or common 
carp (Cyprinus carpio), the following clinical 
symptoms are observed: accelerated respiration, 
loss of movement coordination, fish lying on 
their flanks and moving in this position. The 
subsequent short excitation stage (convulsions, 
jumps above the water surface, movement in 
circles) changes into a resting stage and another 
short-time excitation follows again. In the end, 
fish fall into damp, moving mainly on their flanks. 
The respiration is slowed down, and the damp 
phase and subsequent agony are very long. Fish 
are produceds of watery mucus on body surfaces, 
the skin is matt dark in colour and the ventricle 
expansion. The body cavity contained transudate, 
and an increased injection of visceral vessels is 
also obtained (26, 107).

Prometryne

Prometryne (2,4-bis(isopropylamino)-6-meth-
ylthio-s-triazine) was the first effective herbicide 
for several crops, making it a true pioneer her-
bicide in the methylthiotriazine class of chemis-
try (112) and was first registered in 1964 by Ciba 
Crop Protection (113). Prometryne is selective her-
bicide of the s-triazine chemical family, has been 
utilized as a pre- or post-emergence controller of 
annual grasses and broadleaf weeds in a variety 
of crops, including cotton, celery, pigeon peas and 
dill. Prometryn’s mechanism of action inhibits the 
electron transport in susceptible species (114). 
Prometryne application is not permitted in Eu-
rope, but is widely used in China (115), Australia, 
Canada, New Zealand, South Africa, and the Unit-
ed States (28).

Environmental fate

Prometryne is usually soil-applied and 
relatively water soluble, it tends to accumulate in 

crops (114). Prometryne binds readily to soils with 
high clay and organic matter content. Available 
data indicate that this herbicide is mobile in 
sandy soils and moderately mobile in sandy loam 
soils. Its mobility appears to be related to organic 
content of the soil. Prometryne the lower the 
organic content, the more mobile prometryne is 
in soil. Prometryne is adsorbed to a greater extent 
than most other commercial triazine herbicides 
(116). Prometryn is a persistent chemical, it is 
persists in the soil from one to three months. 
Its soil half-life is 60 days. Following multiple 
annual applications of the herbicide, prometryne 
activity can persist for 12-18 months after the last 
application. It will persist longer under dry or cold 
conditions which are not conducive to chemical 
or biological activity. It resists abiotic hydrolysis, 
direct photolysis, and biodegradation under 
anaerobic conditions. Its half-life under aerobic 
conditions is in excess of 270 days (117).

Significant traces of prometryne are documented 
in the environment, mainly in water, soil, and plants 
used for human and domestic animal consumption. 
Maximal environmental concentration prometryne 
is 0.51 μg/L in the Czech rivers (14). In surface 
waters of Greece, prometryne has been recorded 
at concentrations from 0.19 to 4.40 µg/L (118). 
Prometryne to contaminate the groundwater 
resources of the Axios river basin in Macedonia, 
Northern Greece, during 1992–1994 were detected 
at concentrations occasionally exceeding 1 μg/L 
(118). In surface water of Western France, remains 
of prometryne were detected at concentrations 
from 0.1 to 0.44 µg/L (119).

Acute toxicity

Exposure prometryne to nontarget organisms 
can result from direct applications, spray drift, and 
runoff from treated areas. Studies indicate that 
prometryne poses an acute risk to nonendagered 
and endangered terrestrial and aquatic plants 
(113). Prometryne is toxic to fish (Tab. 1.). The 
most sensitive aquatic organisms are freshwater 
algae (14).

Effect of prometryne on fish

Although the lethal toxicity of fish to prometryne, 
have been well-documented, there is a dearth of 
data on the effects of prometryne on fish physiology. 
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Species Concentration Exposition Effects on fish Reference

Bluegill 
(Lepomis 

macrochirus)
Juvenile

9, 19, 38, 75 µg/L 6 weeks No effects on fish survival and growth (103)

Rainbow trout 
(Oncorhynchus 

mykiss) 
Juvenile

89.3 mg/l Sencor 
70 WG (active 

substance 70% of 
metribuzin)

96 hours

↓ TP, TAG, AST, NH3, Ca, LACT, ALP, RBC, PCV, 
lymphocyte coun.

↑ MCH, relative and absolute count of neutrophile granulocytes 
Revealed mild proliferation of goblet cells of the respiratory 

epithelium of secondary gill lamellae and hyaline degeneration of 
epithelial cells of the renal tubules of the caudal kidney.

(107)

Common carp 
(Cyprinus 

carpio)
Juvenile

1.75 mg/L 28 days ↑ RBC, PCV (108)

Common carp 
(Cyprinus 

carpio) 
Juvenile

250.2 mg/L Sencor 
70 WG (active 

substance 70% of 
metribuzin)

96 hours

↑ GLU, NH3, Ca, monocytes, neutrophile granulocytes, 
developmental forms myeloid sequence,basophiles.

↓ TP, ALB, GLOB, TAG, LDH, LACT, PHOS, PCV, Hb, MCV, 
WBC, lymphocyte

Revealed hyaline degeneration of the epithelial cells of renal 
tubules of the caudal kidney.

(26)

Common carp 
(Cyprinus 

carpio) 
Embryo - 

larvae

0.9, 4, 14, 32 mg/L

30 days

↑ GST

(109)0.9, 4, 14 mg/L ↑ GR

0.9 mg/L ↑ TBARS

Common carp 
(Cyprinus 

carpio)
Embryo - 

larvae

0.9, 4, 14, 32 mg/L

30 days

↓ specific growth rate, body weight, length

(110)
32 mg/L

Diffuse vacuolization of the cytoplasm of hepatocytes, often with 
compression of nuclei at the periphery of the cells. Monocellular 

necroses of hepatocytes. 
Eosinophilia of tubular epithelial cells with coagulation of 

cytoplasm and desquamation of necrotic cells into the lumen of 
proximal tubules in the caudal kidney.

Zebrafish 
(Danio rerio)

Juvenile

33, 55 mg/L

28 days

↓ specific growth rate, body weight, length

(111)
55 mg/L

Moderate dystrophic lesions of hepatocytes, initial cell injury 
represented by diffuse hydropic to vacuolar degeneration of 

hepatocytes.

Table 6: Effect of metribuzine on fish

Only three studies on effects of prometryne on 
carp physiology have been conducted (Tab. 7.). 
Chronic exposure has no influence on growth, 
oxidative stress biomarkers and it has influence 
on hematological, biochemical plasma indices, 
antioxidant enzymes and caudal kidney (120-122).

Simazine

Simazine (6-chlor-N2,N4-diethyl-1,3,5-triazin-
2,4-diamin) is one of the first compound triazines 
(a six-membered ring containing three carbon and 
three nitrogen atoms), was introduced by a Swiss 
company J. R. Geigy in 1956 and was registered 

in 1957 (5). From 1990 to 1993 are among the 
most widely used herbicides in the U.S. Simazine 
belongs to a group of selective triazine herbicides, 
is used for a pre- and post-emergence control most 
weeds field crops as well as in non-crop areas. 
When applied to the soil is absorbed by leaves 
and roots, causing inhibition of photosynthesis 
in whole plants (123). It is biodegradable, is 
metabolized in plants and soil, both chemical, 
and microbiological processes (112). It is fairly 
resistant to physical and chemical dissipation 
processes in the soil. It is persistent and mobile in 
the environment (124). Even before 1992 simazine 
was used to kill submerged (growing in water) weeds 
and algae in large aquariums, ponds, swimming 
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Species Concentration Exposition Effects on fish Reference

Common carp 
(Cyprinus carpio)
Embryo - larvae

0.51, 80, 1 200 µg/L 35 days ↓ GR activity (120)

Common carp 
(Cyprinus carpio)

Juvenile

80 µg/L

14 days

↓ GR in brain, SOD in intestine

(121)

8, 80 µg/L ↓ SOD in gill, ↑ SOD in brain

0.51, 8, 80 µg/L ↑ GR in muscle

8, 80 µg/L
30 day

↓ SOD in brain

0.51, 8, 80 µg/L ↓ SOD in gill

80 µg/L 60 days ↑ CAT in intestine, ↓ CAT liver, SOD in gill

Common carp 
(Cyprinus carpio)

Juvenile

80 µg/L 30 days ↑ GLU

(122)
8, 80 µg/L 60 days

↑ GLU, MCH, MCHC, Hb

↓ SW, LACT

0.51, 8, 80 µg/L
30, 60 days ↑ CK, ALT, ↓ AST, Ca, Mg, PHOS

60 days Hyaline degeneration of the epithelial cells of caudal kidney 
tubules

Table 7: Effect of prometryne on fish

pools or cooling towers (125). Simazine and plant 
protection products containing this substance 
were banned in 2004 by Commission Decision 
2004/247/CE. The presence of simazine in the 
soil–water system in considered an environmental 
hazard, and, because of its estrogenic effect on 
various cell lines in laboratory experiments, it has 
recently become subject to control (6, 126).

Environmental fate

Simazine in soil and groundwater is moderately 
persistent with an average field half-life of 60 
days. Soil half-lives have been reported of 28-149 
days (127). Residual activity may remain for a 
year after application (2 to 4 kg/ha) in high pH 
soils. Simazine is moderately to poorly bounds to 
soils (105). Simazine is metabolized in plants and 
soil, both chemical, and microbiological processes 
(125). It does, however, adsorb to clays and 
mucks. It is low water solubility, however, makes 
it less mobile, limiting it is leaching potential. 
Simazine has little, if any, lateral movement in 
soil, but can be washed along with soil particles 
in runoff. Simazine is subject to decomposition by 
ultraviolet radiation, but this effect is small under 

normal field conditions. Loss from volatilization 
is also insignificant. In soils, microbial activity 
probably accounts for decomposition of a 
significant amount of simazine in high pH soils. 
In lower pH soils, hydrolysis will occur (48).

Simazine can be persistent in aquatic systems, 
particularly in shallow, well-mixed lakes and 
ponds (128). Residues may persist up to 3 years in 
soil under aquatic field conditions. Dissipation of 
simazine in pond and lake water has been found 
to be variable, with half-life ranging from 50 to 700 
days (105). Slow biodegradation of simazine may 
occur in water, similar to that observed in soil. 
Simazine may undergo hydrolysis at lower pH. It 
does not readily undergo hydrolysis in water at pH 
= 7 (48). Simazine and its degradation products 
are detected less frequently than atrazine in the 
aquatic environment.

Simazine is the second most commonly 
detected pesticide in surface and ground waters 
in the U.S., Europe, and Australia. Simazine, 
and its major degradation products (deisopropyl 
atrazine and diamino chlorotriazine), have been 
extensively monitored in 20 counties in California 
with concentrations ranging from 0.02 to 49.2 
µg/L (129, 130). Simazine levels can reach values, 
up to 5.0 µg/L in Europe rivers (131-134).
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Species Concentration Exposition Effects on fish Reference

Seabream  
(Sparus aurata) 

Larvae
4.5 mg/L 72 

hours

Cellular alterations related to loss of cellular shape in 
hepatocytes, lipid inclusions, focal necrosis and abundant 

nuclear pyknosis in the hepatocytes.
(136)

Common carp  
(Cyprinus carpio)

Juvenile
45 µg/L 90 

days

↑ mucus production during the experiment,
Hyperplasia of epithelial cells of seconadary lamellae, 

slight necrosis
(137)

Goldfish  
(Carassius auratus)

Adult

50 µg/L ∑ atrazine 
+simazine + diuron + 

isoproturon

4, 8, 12 
weeks

↑ plasma lysozyme aktivity; production of O2.− in spleen, 
kidney; SOD in spleen and liver;

↓ antibody titre, CAT in liver, spleen, kidney
(138)

Common carp  
(Cyprinus carpio)

Juvenile
45 µg/L 90 

days ↓ AChE in brain and muscle (139)

Rhamdia quelen
Juvenile

16.6%, 33% 50% 
96h LC50

hatrazine + simazine 
(Herbimix™)

96 
hours

Decreased capacity in exhibiting an adequate response to 
cope with stress and in maintaining the homeostasis, with 

cortisol level lower than that in the control fish
(140)

Common carp  
(Cyprinus carpio)

Juvenile
4, 20, 50 µg/L 28 

days

↑ PCV, lymphocytes, developmental phases –myeloid 
sequence, GLU, LDH, CK, CREA; 

↓ MCHC, neutrophil granulocytes bands, NH3, AST
Decline in hematopoietic tissue in caudal kidney; steatosis, 

hyperaemia, and necrosis in liver 

(141)

Common carp  
(Cyprinus carpio)

Juvenile
45 µg/L

15, 30, 45, 
90 days

No efect on muscle LACT, LDH (142)

↑ mucus hyperproduction in gills and skin;
No efect on MDA and GSH (143)

90 days ↑ PCV, necrotic areas in hematopoietic and excretory 
tissues of the kidneys; Isolated necrotic areas in liver (144)

Rhamdia quelen
Juvenile

16.6% 96h LC50
hatrazine + simazine 

(Herbimix™)

96 
hours ↑ plama cortisol (145)

Zebrafish 
(Danio rerio)

Juvenile
60 µg/L 28 

days

Hypertrophy, hyperplasia of epietelial gill cells with 
lamellar fusion. Initial cell injury represented by swelling 
and hydroscopic vacuolar degeneration of hepatocytes). 

Coagulation of the apical part of the cytoplasma of 
epithelial cells of the renal tubules

(146)

Common carp  
(Cyprinus carpio)
Embryo - larvae

60 µg/L

35 
days

Alteration of tubular system included destruction of 
tubular epithelium with or without casts, vacuolization of 

tubular epithelia and disintegration of glomerules
(147)

0,6, 3 mg/L
↓ growth; alteration of tubular system included destruction 
of tubular epithelium with or without casts, vacuolization 

of tubular epithelia and disintegration of glomerules

Common carp  
(Cyprinus carpio)

Juvenile

0.06 µg/L

90 
days

↑ ALP; ↓ WBC; hyaline degeneration of the epithelial cells 
of renal tubules of the caudal kidney

(148)1, 2 µg/L ↑ HSI, ALP, AST; ↓ WBC; hyaline degeneration of the 
epithelial cells of renal tubules of the caudal kidney

4 µg/L
↑ HSI, TP, ALB, AST, ALP; ↓ WBC

hyaline degeneration of the epithelial cells of renal tubules 
of the caudal kidney

Table 8: Effect of simazine on fish
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Acute toxicity

Simazine was identified as relevant a study 
of the prioritization of substances dangerous to 
the aquatic environment in the member states 
of the European Community (10). Lethal acute 
toxicity for fish is ranging from units to hundreds 
milligrams per liter (Tab. 1.).

Effect of simazine on fish

The effects of simazine mainly on carp 
physiology have been well-documented in 
laboratory studies. Chronic exposure of simazine 
has influence mainly on growth, oxidative stress 
biomarkers, antioxidant enzymes, hematological, 
biochemical plasma indices, and caused 
histopathological changes in gill, liver and kidney 
(Tab. 8.). Simazine has been recently reported as 
suspected endocrine disruptors, it is also known 
to cause multiple types of cancers (135).

Terbuthylazine

Terbuthylazine (N-tert-butyl-6-chloro-N’-ethyl-
1,3,5-triazine-2,4-diamine) was registered in the 
United States in 1975 (150). Terbuthylazine is 
herbicide that belongs to the chlorotriazine family, 
is used in both pre- and post-emergence treatment 
of a variety of agricultural crops and in forestry 
(118). Terbuthylazine have very similar chemical 
structure to atrazine. The difference is only iso-
butyl and tert-butyl substituent on the amino 

group. The minimum difference in structure affects 
the decomposition reactions of these substances 
in the environment that led to a ban on atrazine in 
the European Union. The EU had more stringent 
drinking water standards caused farmers to shift 
from atrazine to terbuthylazine. Terbuthylazine 
is used as a substitute for atrazine since the end 
of 2006 (151). Terbuthylazine breaks down much 
more rapidly than atrazine in both soil and water, 
and is therefore believed less likely to contaminate 
drinking water (152).

Environmental fate

Terbuthylazine is stable to hydrolysis, and to 
aqueous photolysis. It degrades very slowly under 
aerobic aquatic conditions, and will persist under 
most aquatic conditions (150). Terbuthylazine 
is a slightly basic, slightly water soluble triazine 
herbicide or algacide which adsorbs to soil 
organic matter. Degradation of terbuthylazine 
in natural water depends on the presence of 
sediments and biological activity (124). Under 
laboratory conditions, aquatic photolytic half-
lives ranged from around 3 hours (attenuated) 
to a more realistic 1.5-5 days under more usual 
test conditions that seem to be reflected in the 
recommended use pattern. Usually, the main 
degradation product was hydroxy-terbuthylazine, 
although with an attenuator N-dealkylation is 
favoured. Laboratory studies in soils (sandy loam) 
gave half-lives of 73-138 days at 20-25 °C, but 
this extended to 456 days at 10 °C, with hydroxy-
terbuthylazine and desethyl-terbuthylazine as the 

Common carp 
(Cyprinus carpio)

Juvenile

0.06 µg/L
28 days ↑ GSH in liver;

(149)

60 days ↑ CAT in muscle, GSH in liver

2 mg/L

14 days ↑ SOD in muscle; CAT in muscle, liver; GSH in liver;
↓ GPx in liver

28 days ↑ SOD in muscle CAT in muscle, liver; GSH in liver;
↓ GPx in liver

60 days ↑ ROS in liver; GSH in liver, brain;
↓ SOD in muscle; CAT in muscle, liver;

4 mg/L

14 days ↑ CAT in liver; SOD in muscle; GSH in liver, brain;
↓ GPx in liver

28 days ↑ ROS in liver; SOD in muscle; GSH in liver, brain;
↓ GPx in liver

60 days
↑ ROS in muscle, brain, liver; GST in brain;

↓ GST and GPx in liver, SOD in muscle; CAT in brain, liver, 
muscle
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Species Concentration Exposition Effects on fish Reference

Rainbow trout 
(Oncorhynchus mykiss)

Juvenile

35.1, 42.9, 45.8 
µg/L 7 days ↓ EROD, UDPGT (159)

European sea bass 
(Dicentrarchus labrax L.)

Juvenile

3.55, 5.01, 7.08 
mg/L

24 hours

↑ RCs in gills, intestine, kidney
histopatological examination displayed cellular and/or 
ultrastructural alterations in all the organs examined. 

In the gills necrosis, lamellar and cellular oedema, 
epithelial lifting, telangectasia, and fusion of secondary 

lamellae were encountered. The liver presented myelin-like 
figures, cytoplasmic rarefaction and acute cell swelling of 
hepatocytes. The renal tubular epithelial cells,  exhibited 

‘blebs’.
(158)

48 hours

↑ RCs in gills, intestine
histopatological examination displayed cellular and/or 
ultrastructural alterations in all the organs examined. 

In the gills necrosis, lamellar and cellular oedema, 
epithelial lifting, telangectasia, and fusion of secondary 

lamellae were encountered. The liver presented myelin-like 
figures, cytoplasmic rarefaction and acute cell swelling of 
hepatocytes. The renal tubular epithelial cells, exhibited 

‘blebs’.

Common carp 
(Cyprinus carpio)

Juvenile

550 µg/L

91 days

↑ TAG, ALB, Na, TP, EC, FRAP
↓. MCHC, MCH, MCV, AST, P

(160)60 µg/L ↑ TAG, ALB
↓. MCH, MCV, AST, P

380 ng/L ↑ HSI, CF, TAG, TP

Common carp 
(Cyprinus carpio)

Juvenile

13.0 mg/L  
Gardoprim Plus 

Gold 500 SC 
(corresponding 
to 2.25 mg/L 
terbuthylazine 
and 3.75 mg/L 
S-metolachlor

96 hours
↑ GLU, AST, NH3, LDH 

↓ lymphocyte counts, WBC, PCV, PHOS, TAG, chlorides
lesions in gills and liver

(161)

Common carp 
(Cyprinus carpio)
Embryo - larvae

520 µg.L-1 30 days ↑ GR (109)

Zebrafish (Danio rerio)
Juvenile

400 µg/L

28 days

↑ GST

(162)700 µg/L ↑ GR, GST, pathological changes in the liver

1000 µg/L ↑ GR, GST, TBARS, pathological changes in the liver

Common carp 
(Cyprinus carpio)
Embryo - larvae

520, 820 µg/L 30 days
↓ specific growth and body weight, delay in development, 
mild leisons in liver including diffuse formation of smal 
round to oval vacuoles in the cytoplasma of hepatocates

(163)

Common carp 
(Cyprinus carpio)

Juvenile
3.3 mg/L 24 hours

↑ GLU, AST, ALT, natrium, chlorides, phosporus, Ca, 
circulation disorders in gills represented by abundant 
presence of capillary aneurysms in gill filaments and a 

local hyperplasia of respirátory epithelium

(164)

Common carp  
(Cyprinus carpio)
Embryo - larvae

0.0029, 0.07, 
1.4, 

3.5 mg/L
terbuthylazine-2-

hydroxy

26, 35 
days ↓ SOD, specific growth and body weight

(165)

1.4, 3.5mg/L
terbuthylazine-2-

hydroxy
35 days damage to caudal kidney tubules, delay in development

Table 9: Effect of terbuthylazine on fish
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Species Concentration Exposition Effects on fish Reference

Rainbow trout 
(Oncorhynchus mykiss)

Juvenile
28.3 29.2, 32.6 µg/L 7 days ↓ EROD, UDPGT (159)

Seabream (Sparus aurata) 
Larvae

2.5 mg/L 
terbutryn+triasulfuron 72 hours

cellular alterations related to loss of cellular 
shape of hepatocytes and intense nuclear 

pyknosis  in the hepatocytes
(175)

Zebrafish (Danio rerio)
Juvenile 0.6 mg/L 28 days ↓ specific growth; wieght, damage to tubular 

system of kidneys (176)

Common carp 
(Cyprinus carpio)

Juvenile
2, 20, and 40 µg/L 28 days

↑ RBC, NH3, AST, LDH, CK, LACT
↓ MCV, MCH, CK 

Diffused steatosis of the liver - the loss of 
cellular shape and the presence of lipid 

inclusions in hepatic cells; damage to caudal 
kidney tubules

(177)

Common carp 
(Cyprinus carpio)

Juvenile

0.2, 2 µg/L
90 days

↑ RBC, MCHC, neutrophil granulocyte bands, 
GLU, AST, LDH, LACT, TBARS in brain, liver; 

CP in brain, gill; SOD in liver, brain
↓ WBC, MCV, CK, Mg, GR in liver, intestine (178)

0.02 µg/L ↑ TBARS in brain, liver, SOD in liver
↓ GR in liver

Common carp 
(Cyprinus carpio)
Embryo - larvae

2 mg/L

30, 36 days

↓ CF

(179)

0.2, 2 mg/L delay in development

0.02, 0.2, 2 mg/L

Alteration of tubular system in caudal kidney 
included destruction of tubular epithelium 

with or without casts, vacuolization of tubular 
epithelia and disintegration of glomeruli

0.00002, 0.02, 0.2,  
2 mg/L

↓ mass and total length; damage to caudal 
kidney tubules

Table 10: Effect of terbutryne on fish

main degradation products (153). Terbuthylazine 
photo-degrades in water this is likely to be the 
main degradation pathway. The fate of residues 
in aerobic and anaerobic aquatic conditions is 
similar. The major metabolites of terbuthylazine 
are the de-chlorinated and N-dealkylated 
products, which are more mobile than the parent, 
and exhibit some herbicidal activity when they 
retain the chlorine atom on the triazine ring plus 
one alkyl group (152, 153).

Terbuthylazine levels can reach values up to 
2.9 µg/L in Europe rivers (40, 154, 155). The 
groundwater situation in different countries was 
surveyed by the French Ministry of Agriculture 
and Fisheries. In Germany and Sweden 22 out 
of 3204 samples and 6 out of 230 samples were 
positive for terbuthylazine (above 0.1 μg/L), 
respectively (156).

Acute toxicity

The ecotoxicity profile of terbuthylazine is typical 
for a herbicide, with toxic effects mostly apparent 
towards plants/algae. However, terbuthylazine 
shows slight toxicity towards fish and shellfish, 
and variable toxicity towards aquatic crustaceans, 
from very highly toxic to practically non-toxic 
(124). Standard toxicity tests with various fish 
species as nontarget organisms revealed LC50 
values between 4.6 and 66 μg/L (Tab. 1.). As a 
consequence, terbuthylazine might be considered 
as a moderately or slighty toxic. The acute exposure 
to terbuthylazine, however, leads to significant 
alterations of the average swimming velocity on the 
fish. After a nonuniform initial phase of swimming 
irritation, an increase in motility can be observed. 
With every exposure tested, this hyperactivity 
exceeded any preexposure motility (157).
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Effect of terbuthylazine on fish

Exposure to terbuthylazine affected on growth, 
oxidative stress biomarkers, hematological, 
biochemical plasma indices, antioxidant 
enzymes, detoxification enzymes and caused the 
histopatological changes in gill, liver, intestine and 
kidney (Tab. 9.). Fish during the terbuthylazine 
intoxication showed uncoordinated swimming 
and hyporeflexia increasing (158).

Terbutryne

Terbutryne (N2-tert-butyl-N4-ethyl-6-methylthio-
1,3,5-triazine-2,4-diamine) was used as a selective 
pre- and early post- emergence controll agent of 
most grasses and many annual broadleaved weeds 
for a variety of crops, such as cereals, legumes, 
and tree fruits. It is also used as a herbicide for 
control of submerged and free-floating weeds and 
algae in water courses, reservoirs, and fish ponds 
(166, 167). Large quantities of terbutryne have been 
used since the mid-1980s (168). Terbutryne and 
plant protection products containing this substance 
were banned in 2005 by Commission Decision 
2004/247/CE.

Environmental fate

Terbutryne degrades slowly, with a half-life of 
240 and 180 days in pond and river sediments, 
respectively (169). Its tendency to move from 
treated soils into water compartments through 
water runoff and leaching has been demonstrated, 
and residual amounts of terbutryne and its 
metabolites have been found in drinking water 
and industrial food products long after application 
(170). The application of terbutryne has been 
banned in many countries because it has the 
potential to bioaccumulate in organisms, but it has 
been still detected in water environment (171). The 
highest concentration reported in surface water 
in the Weschnitz River, Germany, at a maximal 
concentration of 5.6 μg/L from September 2003 
to September 2006 (172). Terbutryn was also 
detected in Mediterranean coastal waters at a 
concentration of 5-184 ng/L (173).

Acute toxicity

Acute toxicity 96hLC50 of terbutryne for fish 
is ranging from units of milligrams per liter. 
Terbutryne is toxic to fish (Tab. 1.). 

Effect of terbutryne on fish

The effects of terbutryne mainly on carp, 
zebrafish and rainbow trout, physiology have 
been documented in laboratory studies. Chronic 
exposure of terbutryne has influence mainly on 
growth, oxidative stress biomarkers, antioxidant 
enzymes, hematological, biochemical plasma 
indices, caused histopatological changes in liver 
and kidney (Tab. 10.). The results demonstrate 
that the terbutryne accumulated to a somewhat 
greater extent in the viscera (liver, intestine, 
and pyloric caeca) than in the muscle tissue of 
the carp and trout during exposure (169, 174). 
Bioconcentration factors (BCFs) of terbutryne for 
fish were estimated 312 (169).

Conclusion

Triazines are predominant class of herbicide. 
They are most frequently detected pesticide in 
aquatic environment. Moreover, some of triazine 
pesticides are prohibited in European countries. 
Triazines have been identified as relevant in a 
study on the prioritizing of substances dangerous 
to the aquatic environment in the member 
states of the European Community and they are 
included in the EU Priority Pollutants List and 
the US Environmental Protection Agency’s List. 
All of above cited seven triazines are banned or 
severely restricted in EU (180). Acute toxicity 
was assessment on 28 fish species. Toxic effect 
of triazine has influence mainly on growth, 
early development, oxidative stress biomarkers, 
antioxidant enzymes, hematological, biochemical 
plasma indices, caused histopatological changes 
in liver and kidney. Investigation of triazine 
and their metabolites properties in connection 
with environment, chronic effects and potential 
bioaccumulation must continue thoroughly. 
Research on non-target species should be really 
detailed and should continue because as can be 
seen in the previous text, triazines are able to 
cause pathological changes in fish. We assume 
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that triazines and their metabolites have similar 
effects on other non-target organisms as to have 
on fish. As shown some studies on crayfish (181-
183). It is necessary to focus on the research 
of triazines metabolites using new molecular 
techniques and gene expression. 
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UČINEK TRIAZINSKIH HERBICIDOV NA RIBE: PREGLED

D. Koutnik, A. Stara, J. Velisek

Povzetek: Onesnaževanje okolja je svetovni problem, ki povzroča vse večjo zaskrbljenost in je posledica različnih človekovih 
dejavnosti povezanih z industrijo in kmetijstvom. Triazinski herbicidi so med najpogosteje uporabljenimi pesticidi. V zadnjem času 
vse bolj naraščata zavedanje in zaskrbljenost zaradi njihove široke uporabe, saj so ostanki in presnovki triazinov zelo obstojni 
in se kopičijo v različnih delih okolja. Triazini so bili zaznani tudi v vodnih ekosistemih, v pitni vodi in podzemnih vodah ter tudi v 
ribah. Zato je uporaba določenih triazinskih pesticidov v evropskih državah že prepovedana. Osem s-triazinov je  bilo uvrščeno v 
študijo za pripravo prednostnega seznama snovi, nevarnih za vodno okolje v državah članicah Evropske unije in so že vključeni v 
prednostni seznam onesnaževalcev okolja v Evropski unije in ZDA (European Union Priority Pollutants List in U.S. Environmental 
Protection Agency’s List). V preglednem članku je predstavljeno trenutno poznavanje stanja ostankov triazina v vodnem okolju in 
njihovi strupeni učinki na ribe.  Na osnovi pregleda dosedanjega poznavanja problematike smo opredelili glavne vrzeli v trenutnem 
znanju in nekatere usmeritve za prihodnje raziskave.  Pregled vsebuje vpliv sedmih najpogosteje odkritih triazinov v vodi (ametrin, 
atrazin, metribuzine, prometrin, simazin, terbutilazin in terburine) na fiziologijo rib in njihovo akutno strupenost. Toksični učinki 
triazinov vključujejo vpliv na rast rib, njihov zgodnji razvoj, oksidativni stres in izražanje antioksidantnih encimov, pa tudi na krvne in 
biokemične parametre v plazmi ter na histopatološke spremembe v jetrih in ledvicah rib.

Kljuène besede: triazini; ribe; strupenost; biokemični profil; hematologija; histologija


