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Abstract. We study a model of the Roper resonance in which the two-pion decay proceeds
via intermediate hadrons, the ∆(1232) isobar and the σ meson. We derive the coupled
channel formalism for the K-matrix and show that the coupling of the σ meson to the
N(1440) and N(1710) resonances is responsible for the peculiar behavior of the inelasticity
in the P11 channel.

1 Introduction

Among the low-lying nucleon excitations, the Roper resonance N(1440) plays a
very special role due to its relatively low energy as well as a rather peculiar be-
havior of the scattering and electro-excitation amplitudes. Its low energy can be
explained in models in which the quarks are strongly coupled to chiral mesons,
e.g. in the framework of the Constituent Quark Model [1]. Yet, the form of the
scattering amplitudes which is far from the familiar Breit-Wigner shape, and in
particular the unusual behavior of the inelasticity in the P11 channel, indicate that
the structure of the state can not be explained by a simple excitation of the quark
core (like most of the other low lying states) and that other degrees of freedom
have to be included (see [2] and references therein).

In this work we shall concentrate on the decays of the Roper resonance rather
than on the problem of its low energy. We shall show that the behavior of the scat-
tering amplitude can be explained in a simple model in which the chiral partner
of the pion, the σ meson, is included together with the quark and pion degrees
of freedom. The model assumes that the two-pion decay proceeds only through
intermediate hadrons, either the ∆(1232), the σ or the ρ meson. Since the decay
into the ρ meson and the nucleon is relatively weak, we keep only the first two
intermediate hadrons.

In our previous work [3,4] we have introduced an approach to calculate the
K-matrix for pion scattering and electro-production in quark models with chi-
ral mesons. We have successfully applied it to the calculation of the phase shift
and electro-production amplitudes in the P33 channel. We have also presented a
method how to include the simplest two pion decay, namely the decay into the
intermediate ∆ and the pion.
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2 K matrix in chiral quark models

Chew and Low [5] have shown that in models in which the mesons are coupled
linearly to the source, it is possible to find the exact expression for the T ma-
trix without explicitly specifying the form of asymptotic states. In [3,4] we have
found that the expression for the K matrix in this case and write down an integral
equation which can be used to calculate the K matrix for a particular model.

To describe the core to which the mesons are coupled we consider quark
models in which the quarks emit/absorb a meson by flipping the spin and isospin,
and through the excitation to a higher radial state. The part of the Hamiltonian
referring to the p-wave pions can be written as

Hπ =

∫
dk
∑

mt

{
ωk a

†
mt(k)amt(k) +

[
Vmt(k)amt(k) + V

†
mt(k)a

†
mt(k)

]}
, (1)

where a†mt(k) is the creation operator for a pion with the third components of
spin m and isospin t, and Vmt(k) = −v(k)

∑3
i=1 σ

i
mτ

i
t is the general form of the

pion source, with the quark operator, v(k), depending on the model. It includes
also the possibility that the quarks change their radial function which is specified
by the reduced matrix elements VBB ′ = 〈B||V(k)||B ′〉, where B are the bare baryon
states (e.g. the bare nucleon, ∆, Roper, . . .)

The coupling of the σ meson to the quark core is explicitly present in the
linear sigma model, however, due to the meson self-interaction potential it is no
longer possible to write down the meson part of the Hamiltonian in the form (1)
which would permit the use of the exact expressions for the T and the K matrix.
In non-linear versions of different models with chiral mesons the σ meson rep-
resents two strongly correlated pions in a relative s-state. The σ meson has been
included at purely phenomenological level in several multichannel analyzes of
πN reactions (see [6] and references therein).

In our approach we consider the s-wave σ mesons as independent degrees
of freedom linearly coupled to the quark core, so that we can use the same for-
malism as in the case of the pion. We assume the one-σ meson states are labeled
by the momentum k and by the σ meson rest mass µ equivalent to the two-pion
invariant mass. The effective σ Hamiltonian is taken in the form

Hσ =

∫
dµ
∫

dkωµk b†µ(k)bµ(k) + V̄†
µ(k)b†µ(k) + V̄µ(k)bµ(k) , (2)

where
ω2µk = k2 + µ2 . (3)

The operators bµ and b†µ are the annihilation and creation operators for the s-
wave σ mesons with the invariant mass µ, 2mπ < µ < ∞. The quark-sigma
interaction is taken in the form:

V̄µ(k) = κ
k√
2ωµk

wσ(µ) . (4)
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Here wσ(µ) is a weight function centered around the experimental value of the
σ meson mass (∼ 600 MeV) and normalized as

∫∞
2mπ

dµw2σ(µ) = 1. The (dimen-
sionless) coupling parameter κ is taken as a free parameter.

In the basis with good total angular momentum J and isospin T , in which the
K and T matrices are diagonal, it is possible to express the Kmatrix for the elastic
channel in the form [4]

KNN(k, k0) = −π

√
ωk

k
〈ΨN(W)||V(k)||ΦN〉 . (5)

Here ΦN is the ground state of the system, and ΨN the principal-value state [7]
obeying

|ΨN(W)〉 =

√
ω0

k0

{[
a†(k0)|ΦN〉

]JT
−

P
H−W

[V(k0)|ΦN〉]JT
}
, (6)

where [ ]JT denotes coupling to good J and T , k0 andω0 are the pion momentum
and energy:

k0 =

√
ω20 −m2π , ω0 =

W2 −m2N +m2π
2W

, (7)

mN is the nucleon rest mass andW the invariant energy of the system (W =
√
s).

The K matrices for the inelastic processes π + N → π + ∆(m) where m is the
invariant ∆ mass can be written as

KN∆(k, k0) = −π

√
ωk

k
〈ΨN(W)||V(k)||Ψ∆(m)〉 . (8)

Here Ψ∆(m) is the principal value state corresponding to the πN scattering in the
P33 channel as determined in [4] except that it is now normalized to δ(m −m ′)

rather than to (1+K∆(m)2)δ(m−m ′). For the process π+N→ σ(µ)+Nwe have

KNσ(kµ, k0) = −π

√
ωµk

kµ
〈ΨN(W)|V̄µ(kµ)|N〉 . (9)

3 Coupled channels

The K matrix is related to the T matrix through the Heitler equation:

T = −
K

(1 − iK)
or T = −K+ iKT . (10)

Since the elements of the K matrix corresponding to inelastic channels depend
on the invariant masses m and µ, the above matrix equation becomes a set of
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coupled integral equations for the T matrix, valid for eachW:

TNN = −KNN + i
[
KNNTNN +

∫W−mπ

mN+mπ

dmKN∆(m)T∆N(m)

+

∫W−mN

2mπ

dµKNσ(µ)TσN(µ)

]
, (11)

T∆N(m) = −K∆N(m) + i
[
K∆N(m)TNN +

∫W−mπ

mN+mπ

dm ′ K∆∆(m,m ′)T∆N(m ′)

+

∫W−mN

2mπ

dµK∆σ(m,µ)TσN(µ)

]
, (12)

TσN(µ) = −KσN(µ) + i
[
KσN(µ)TNN +

∫W−mπ

mN+mπ

dmKσ∆(µ,m)T∆N(m)

+

∫W−mN

2mπ

dµ ′ Kσσ(µ, µ
′)TσN(µ ′)

]
. (13)

The equations involve only the on-shell K matrix elements?. Apart of the K matrix
elements corresponding to the processes with the nucleon and the pion in the
initial state we have to include the processes with the pion and the ∆, as well as
the σ meson and the nucleon in the initial and in the final state. The pertinent
on-shell matrix elements are defined as

K∆N(W,m) = −π

√
ωm

km
〈Ψ∆(m)||V†(km)||ΨN(W)〉 ,

K∆∆(W,m,m ′) = −π

√
ωm

km
〈Ψ∆(m ′)||V†(km ′)||Ψ∆(W,m)〉 ,

KσN(W,µ) = −π

√
ω0

k0
〈ΦN||V†(k0)||Ψ

σ(W,µ)〉 ,

K∆σ(W,m,µ) = −π

√
ωµ

kµ
〈ΦN|V̄µ

†
(kµ)|Ψ∆(W,m)〉 ,

Kσ∆(W,µ,m) = −π

√
ωm

km
〈Ψ∆(m)||V†(km)||Ψσ(W,µ)〉 ,

Kσσ(W,µ, µ
′) = −π

√
ωµ ′

kµ ′

〈ΦN|V̄µ
′ †

(kµ ′)|Ψσ(W,µ)〉 . (14)

Here Ψ∆(W,m) is the principal value state corresponding to the pion scattering
on the ∆ state of invariant mass m in the P11 channel, and Ψσ(W,µ) the state
corresponding to the scattering of the σmeson of invariant mass µ on the nucleon.
These states obey similar relations as the principal value state for πN scattering
(see eq. 6):

|Ψ∆(W,m)〉 =

√
ωm

km

{[
a†(km)|Ψ∆(m)〉

]JT
−

P
H−W

[V(km)|Ψ∆(m)〉〉]JT
}
,

(15)
? To label the on shell matrix elements we prefer to use the total invariant energy of the

system,W, (which we sometimes drop) as well as the invariant massesm and µ instead
of pion momenta.
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where
ωm =

W2 −m2 +m2π
2W

, km =

√
ω2m −m2π . (16)

For scattering of the σ meson on the nucleon we have

|Ψσ(W,µ)〉 =

√
ωµ

kµ

{
b†µ(kµ)|ΦN〉 −

P
H −W

V̄µ(kµ)|ΦN〉〉
}
, (17)

where
ωµ =

W2 −m2N + µ2

2W
, kµ =

√
ω2µ − µ2 . (18)

To preserve unitarity, the K matrix has to be real and symmetric, i.e.: KHH ′ =

KH ′H.
Let us mention that the set of coupled equations similar to (13) has been used

in several analysis of experimental data for the pion scattering (see e.g. Ref. [8]
and [9] and references therein). In these approaches the K matrix is taken at the
tree level with meson-baryon form-factors as well as the masses of the hadrons
considered as free parameters.

4 Integral equations for the scattering amplitudes

The equations (6), (15) and(17) are too difficult to treat in their general form and
we rather use a suitable ansatz for the state ΨH, {H = N, ∆ or σ}, valid in the low
energy regime. Let us note that the second term in the above equations generates
configurations with different recoupling of the quark spins and isospins as well
as excitations to higher radial states. In addition, the quark core gets dressed by
a cloud of pions and σ mesons. If we allow asymptotic states with only one pion
and one σ meson, the ansatz takes the form

|ΨH〉 =

√
ωH

kH

{
|ΨH0 〉 + cHR |ΦR〉 +

∫
dk χ

NH(k, kH, k0)

ωk −ω0
[a†(k)|ΦN〉] 1

2
1
2

+

∫
dk
∫

dm ′ χ
∆H(k, kH, km ′)

ωk −ωm ′

[a†(k)|Ψ̂∆(m ′)〉] 1
2

1
2

+

∫
dk
∫

dµ ′ χ
σH(k, kH, kµ ′)

ωµ ′k −ωµ ′

b
†
µ ′(k)|ΦN〉 + cN|ΦN〉

}
(19)

Here ΨH0 is the first term on the RHS of (6), (15) and (17) respectively, the stateΦR
is a resonant state with the excited quark core with the nucleon quantum num-
bers, (it corresponds to the Roper state as obtained in a calculation with the bound
state boundary conditions). The next three terms represent one-pion states on top
of the nucleon and ∆ and one-σ meson state on top of the nucleon, respectively,
with scattering boundary conditions (i.e. the irregular waves). The last term en-
sures the orthogonality of the scattering state with respect to the ground state
ΦN, and is responsible for the proper behavior of the scattering amplitudes at
the nucleon pole. The states denoted by Φ may contain the meson cloud which
however vanishes asymptotically; among such states, only the ground state ΦN
is the eigenstate of the Hamiltonian.
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From (5), (8), and (9), we immediately obtain the relations between the matrix
elements of the K matrix and the pion amplitudes, χ, in the above ansatz. For the
on-shell matrix elements we have

KNH = π

√
ω0ωH

k0kH
χNH(k0, kH, k0) ,

K∆H = π

√
ωm ′ωH

km ′kH
χ∆H(km ′ , kH, km ′) ,

K∆H = π

√
ωµ ′ωH

kµ ′kH
χσH(kµ ′ , kH, kµ ′) , (20)

Here kH = k0 for H = N, kH = km for H = ∆ and kH = kµ for H = σ.
Using the ansatz (19) and the equations for the principal value state (6), (15)

and (17)), we obtain a set of integral equations for the scattering amplitudes χHH ′

of the form

χHH
′

(k, kH ′ , kH) = −cH
′

R VRH(k) − cH
′

N VNH(k) + KHH ′

(k, kH ′ , kH)

+
∑

H ′′

∫
dk ′ KHH

′′

(k, k ′)χH
′′H ′

(k ′, kH ′′ , kH ′)

ω ′
k −ωH ′′

(21)

where the sum over H ′′ implies also the integration over the corresponding in-
variant massm ′′ or µ ′′ in the π∆ and σN case, respectively, andωH ′′ is eitherω0,
ωm ′′ or ωµ ′′ , respectively. The matrix elements VRH are VRN = 〈ΦR||V(k)||ΦN〉,
VR∆ = 〈ΦR||V(k)||Ψ∆(m)〉, and VRσ = 〈ΦR|V̄µ(kµ)|ΦN〉; the VNH have analogous
structure with ΦR replaced by ΦR. The coefficients cR and cN obey the following
equations

(ω0 − ε0R)cHR = VRH(kH) +
∑

H ′

∫
dkVRH ′(k)

χH
′,H(k, kH, kH ′)

ωk −ωH ′

(22)

(ω0 − εN)cHN = VNH(kH) +
∑

H ′

∫
dkVNH ′(k)

χH
′H(k, kH, kH ′)

ωk −ωH ′

(23)

Here ε0R = (m0R
2

− m2N)/2W, εN = m2π/2W, and m0R is the rest energy of the
state ΦR. The kernel KHH ′′ has in general a very complicated structure. It can be
considerably simplified by making the following assumptions: (i) in the ansatz
(19) the ground state ΦN and the state corresponding to the incoming and out-
going ∆, Ψ∆(m), is not modified in the presence of the scattering mesons, and (ii)
the integral over the invariant masses is substituted by the integrand evaluated
at m = mB, i.e. at the position of the resonance. The first assumption yields the
usual approximation made in this type of calculation:

1

ωk +ω ′
k −ω

≈ ω

ωkω
′
k

which makes the kernel separable. The second assumption requires that the reso-
nances are sufficiently narrow, so that the main contribution to the integral comes
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from values of m close to the position of the resonance (i.e. the pole of the corre-
sponding K matrix). This assumption is justified in the case of the∆ resonance but
less valid in the case of higher resonances. In the P11 channel this approximation
does not have a large effect since the contribution of the ∆ resonance dominates
over the contribution of higher resonances. Under these two assumptions the ker-
nel takes the form:

KHH ′

(k, k ′) =
∑

H ′′

gHH ′H ′′

(ωH + εH ′′ − εH − εH ′)VHH ′′(k)VH ′H ′′(k ′)

(ωk + εH ′′ − εH)(ω ′
k + εH ′′ − εH ′)

. (24)

Here gHH ′H ′′ are spin-isospin recoupling coefficients; in the static approximation
εH = mH − mN; taking into account the recoil, we use approximate u-channel
denominators averaged over the directions of the meson momenta (see e.g. [10]).

The important point in the above derivation is that due to the separable ker-
nels the set of integral equations reduces to a set of algebraic equations which
immediately leads to the exact solution for χ and c. Furthermore, it can be explic-
itly shown that the approximations preserve the symmetry of the K matrix which
in turn ensures the unitarity of the S matrix.

Neglecting the integrals in (21)–(23) the problem reduces to the tree level and
is the usual starting point in analyzing the experimental data using the K matrix
approach mentioned above.

The solution of the system (21)–(23) can be written in a similar form as the
expression at the tree level:

χHH
′

(k, kH ′ , kH) = −cH
′

R VRH(k) − cH
′

N VNH(k) + DHH ′

(k, kH ′ , kH) , (25)

cHR =
VRH(kH) − VNH(kH)nRN

ZR(W)(W −mR)
, (26)

cHN =
VNH(kH)

ZN(W)(W −mN)
+ nRNc

H
R . (27)

Here VHH ′ can be interpreted as a renormalized vertex and ZH(W) as the wave
function renormalization of the state. In addition, the quasi bound Roper stateΦR
acquires an admixture of the ground state due to the requirement that the ground
state is orthogonal to the full scattering state rather than toΦR itself. Furthermore,
it can be easily seen that at the nucleon pole (i.e.W = mN) the residuum involves
only the pion-nucleon interaction vertex, so that the behavior of the phase shift
at low energies is governed by the πNN coupling constant alone.

5 Results for the Roper in the Cloudy Bag Model

We illustrate the method by calculating scattering amplitudes in the P11 chan-
nel. Though the expressions derived in the previous sections are general and can
be applied to any model in which mesons linearly couple to the quark core, we
choose here the Cloudy Bag Model, primarily because of its simplicity. The pion
part of the Hamiltonian of the model has the form (1) with

v(k) =
1

2fπ

k2√
12π2ωk

ω0MIT
ω0MIT − 1

j1(kR)

kR
, (28)
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when no radial excitation of the core takes place, while

v∗(k) = rωv(k) , rω =
1√
3

[
ω1MIT(ω0MIT − 1)

ω0MIT(ω1MIT − 1)

]1/2
, (29)

when one quark is excited from the 1s state to the 2s state. Here ω0MIT = 2.04

and ω1MIT = 5.40. The free parameter is the bag radius R. Though the bare val-
ues of different 3-quark configurations are in principle calculable in the model,
the model lacks a mechanism that would account for large hyperfine splitting be-
tween certain states, e.g. the nucleon and the ∆. For each R we therefore adjust
the splitting between the bare states such that the experimental position of the
resonance is reproduced. Furthermore, using the experimental value of fπ in (28)
leads to a too small πNN coupling constant irrespectively of the bag radius; in
our calculation we have therefore decreased this value by 10 %.

We include also the excited state of the ∆, the ∆(1600) isobar assuming the
same radial structure as for the N(1440). In order to see the effect of other higher
positive-parity nucleon excitation we have included the N(1710) isobar.
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Fig. 1. The phase shift (a) and the inelasticity (b) normalized such that the unitarity limit
is 1, as a function of the invariant mass for three choices of the bag radius. Beside the
∆(1232) and N(1440), the ∆(1600) ≡ ∆∗ and N(1710) ≡ R∗ are included in the calculation.
The pole in the K matrix is chosen to be at 1480 MeV for N(1440), 1700 MeV for ∆(1600)

and 1900 MeV for N(1710). Depending on the bag radius, the strength of the πN∆ coupling
is 45 % – 55 % larger, while that of πNR 3 % – 15 % smaller than the corresponding bare
quark values. The mass of the σ meson is 550 MeV and its width 600 MeV; the effective
σNR coupling parameter κ (see (4)) is between 0.7 and 0.6, depending on the bag radius.
The admissible πNR∗ is in the range 0 % – 20 % of the πNN coupling constant, while the
couplings σNR∗ and σNR are comparable. The data points are from [11].

The coupling of the σ meson to the quark core is not explicitly present in
the model. It is interpreted as the coupling of two correlated pions through non-
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Fig. 2. The real (a) and the imaginary (b) parts of the T matrix as a function of the invari-
ant mass for three choices of the bag radius. For the explanation of different curves see
Figure 1.

linear term in the expansion of the pion field [12]. In our approach we simply
include this coupling at the phenomenological level and consider its strength as
an adjustable parameter.

At low energies the phase shift (Fig. 1) is dominated by the nucleon pole
term, and the crossed (u-channel) term with the ∆(1232) and ∆(1600) as the inter-
mediate states. Here the πN∆ coupling strength has to be increased with respect
to its bare value by some 40 % to 50 % in accordance with our results in the P33
channel [4]. At higher energies around the resonance, the amplitude is governed
by the πNR coupling; its strength is enhanced as compared to the bare quark
value by a factor 1.4 – 1.8 through the vertex and wave function renormaliza-
tion such that the bare value has to be decreased up to 15 % in order to obtain
reasonable agreement with the experiment.

The presence of the σN channel is most clearly manifested in the inelasticity,
−(4ImTNN+ |TNN|2). It becomes important already at energies slightly above the
two pion threshold (Fig. 1). This effect is a clear consequence of the s-wave meson
coupling to the quark core and can not be obtained in the competitive process
in which the two pions are produced through the intermediate ∆, since in this
case the p-wave pions contribute only at relatively high energies. The results are
sensitive mostly to the σNR coupling and much less to the σNN; the latter can be
even put to 0. This can be understood since in the static limit the s-channel and the
u-channel contributions cancel each other in the case of the nucleon intermediate
state. At higher energies (W > 1600 MeV) the role of the N(1710) becomes more
important; we treat the corresponding meson couplings as adjustable parameters.
We do not include other isobars such as the negative-parity excitations so the
results in this energy range may be somewhat inconclusive. Nonetheless, there
is a rather clear indication that N(1710) more strongly couples to the σN channel
rather than to the elastic channel and supports our conjecture about the nature
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of this excited state [2]. For the function wσ(µ) we have assumed a Breit-Wigner
shape; the results favor the σmeson mass in the range from 500 MeV to 600 MeV
and a relatively large width of 600 MeV or even higher, though the results are
rather insensitive to the width provided we readjust the strength of the parameter
κ in (4). Choosing a larger width can to some extend compensate the fall-off of
the inelasticity at higher energies for larger bag radii.

In conclusion, we emphasize two most important results of our calculation:
(i) though the quark models – including the CBM – predict relatively weak πNR
coupling which would result in a much too small width of the resonance, we have
shown that through the dressing of pions and other isobars the coupling becomes
considerably stronger and produces the correct behavior of the scattering ampli-
tudes in the vicinity of the resonance (Fig. 2); (ii) by including the σ meson we
have been able to explain the unusual behavior of the inelasticity as well as the
scattering amplitude from the two-pion threshold up to energies well above the
resonance.
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