143 Key words: habitats, petrophytic communities, classification, chasmophytic plants, ferns, bryophytes, ecological parameters, threats. Ključne besede: habitati, petrofitske združbe, klasifikacija, hazmofiti, praproti, mahovi, ekološki dejavniki, grožnje. Corresponding author: Iuliia Vasheniak E-mail: arrhenatherum@gmail.com Received: 8. 9. 2022 Accepted: 4. 4. 2023 Rare shady chasmophytic habitat communities (8210) in Ukraine Yakiv Didukh1 , Illia Chorney2 , Vasyl Budzhak3 , Iuliia Vasheniak4 , 5 , Olesya Bezsmertna6 , 7 , Ruslan Gleb8 & Svitlana Nyporko1  Abstract The characteristics of shaded chasmophytic habitats on calcareous rocks in for- est conditions are described, where the forest canopy primarily acts as a shading factor that determines microclimate, humidity and light levels. These communi- ties can be found in deciduous forests of the Carpinion betuli, Fagion sylvaticae and Tilio-Acerion alliances, where they are confined to steep calcareous rock faces and cliffs. Syntaxonomically, these communities belong to the Polypodietea class (Ctenidio-Polypodietalia vulgaris order, Ctenidio-Polypodion vulgaris alliance) and to four informal communities: Isothecium alopecuroides-Polystichum braunii, Porella platyphylla-Asplenium ruta-muraria, Pseudanomodon attenuatus-Chrysosplenium alternifolium and Pedinophyllum interruptum-Polystichum aculeatum. We evaluated indices of environmental parameters according to the synphytoindication method using Didukh’s scales. An assessment of the threat impacts and indicators of sociological significance shows that the habitat belongs to a rare type (II class), and therefore requires specific conservation measures. Iz vleček Opisali smo značilnosti zasenčenih hazmofitskih habitatov na karbonatnih skalah v gozdovih, kjer gozd predstavlja dejavnik zasenčenosti in s tem določa mikro- klimatske, vlažnostne in svetlobne značilnosti rastišča. Take združbe najdemo v listopadnih gozdovih zvez Carpinion betuli, Fagion sylvaticae in Tilio-Acerion, kjer so omejene na strmih apneniških skalah in klifih. Sintaksonomsko te združbe uvrščamo v razred Polypodietea (red Ctenidio-Polypodietalia vulgaris, zveza Ctenidio- -Polypodion vulgaris) in štiri združbe: Isothecium alopecuroides-Polystichum braunii, Porella platyphylla-Asplenium ruta-muraria, Pseudanomodon attenuatus-Chrysosple- nium alternifolium in Pedinophyllum interruptum-Polystichum aculeatum. Okoljske spremenljivke smo ovrednostili s sinfitoindikacijsko metodo z Didukhovimi indi- katorji. Ocena ogroženosti in indikatorji sociološkega pomena kažejo, da habitat uvrščamo kot redek tip (razred II) in potrebuje posebne mere varovanja. DOI: 10.2478/hacq-2022-0022 22/2 • 2023, 143–160 1 M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. 2 Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine. 3 Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. 4 Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine. 5 Masaryk University, Brno, Czech Republic. 6 Taras Shevchenko Kyiv National University, Kyiv, Ukraine. 7 Tsumanska Pushcha National Nature Park, Kivertsi, Volyn region, Ukraine. 8 Carpathian Biosphere Reserve, Rakhiv, Ukraine. 22/2 • 2023, 143–160 144 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Introduction Petrophytic habitats and floristically poor plant commu- nities have generally received much less attention than forests and grasslands, but they have recently become the subject of more precise analysis. They have been consid- ered, inter alia, to be “ecological islands”, protected from the competition of characteristic species and the influ- ence of various external factors (fire, human activity, grazing, climate change) (Pigott & Walters, 1954; Lar- son, 2000; Theurillat & Guisan, 2001; Lavergne et al., 2004; Speziale & Ezcurra, 2012; Tomaselli et al., 2019). They have also been interpreted as “ecological traps”, or unique ecological niches that provide conditions for specific, narrowly adapted species (Larson, 2000, To- maselli et al., 2019). Nevertheless, they contribute to an increase in γ-floristic and phytosociological diversity and are thereby protected and included within the habitat definitions listed in the EU Habitats Directive (Council Directive 92/43/EEC) as 8210 “Calcareous rocky slopes with chasmophytic vegetation” or 8220 “Siliceous rocky slopes with chasmophytic vegetation”. The EUNIS clas- sification system allocates these habitats to a separate class (H) (Rodwell et al., 1998). In the latest summary of the European vegetation classification (Mucina et al., 2016), communities of this habitat are divided into eight classes and are given high syntaxonomic status. The approaches of the classification of biotopes (Palae - arctic Habitat, CORINE, EUNIS) and plant communi- ties (EuroVegChecklist) used do not match, so from the point of view of developing a new classification, these issues need to be resolved. Communities of this type are not large, are often frag- mented, and characterized by habitat mosaics because of typological, topological and regional differences. Many questions thus arise, such as the delimitation of syntaxa and their place in the classification system, the place of the bryophyte component reflected in their name etc. At the same time, due to the paucity of species in the floristic composition, the emphasis in the classification process is not only on floristic criteria but on the specif- ics of the ecological conditions. The essential aspect in this context is the question of the rocky habitat assess- ment forming in shady conditions. According to Didukh et al. (2016), a habitat is an ecosystem at a topological level characterized by interactions between biotic and abiotic components that ensure structure, organization and integrity over an extended period and matter cycle, with metabolism, energy transformation, pedogenesis, biota existence at the population level, reproduction, species evolution and adaption to particular conditions. Petrophytic communities in forests should therefore be interpreted as a habitat type, different from surrounding forest habitats. Their existence is not directly related to the forest com- munities: the forest canopy here acts as a shading factor that determines the peculiarities of the microclimate, hu- midity etc., which are different from those of open rock communities. The floristic composition, structure and organization of these habitats differ from forest habi- tats, and they are the habitat of specific species within the boundaries of the forest communities (Chorney at al., 2014). These chasmophyte species of rock communities develop and reproduce on shallow soils – nudilitic lepto- sols (IUSS Working Group WRB, 2015), and are not re- lated to the successional process of the forest ecosystems. Notably, this type of habitat forms in specific orographic conditions: with the presence of rocks and outcrops of calcareous bedrock and is not characteristic of the forest habitat type within which it occurs. According to data recorded for shaded rocks (Sádlo & Chytrý, 2009), the temperature is positive from April to the end of Novem- ber, and the summer temperature does not exceed 15° C. Communities of distinctive and specific species compo- sition (6–13 species of spermatophytes and 4–7 species of bryophytes) develop in shady and wet conditions, in contrast to those of open rock habitats. All the available evidence indicates that evolutionary processes are weak for this habitat type; successional de- velopment here actually slows down, and when commu- nities degrade, their recovery is probably also very slow (Sádlo & Chytrý, 2009). For example, all ferns are poly- ploids in these habitats (2n=72, 143, 144, 148. 160, 168) due to the evolutionary process (Onete, 2012; Chorney et al., 2014). This habitat combines chasmophyte (Polypodietea class) and bryophyte communities: epilithic (Ctenidi- etea mollusci class) and epiphytic-epigeic (Neckeretea complanatae class), which are reflected in the name of the Ctenidio-Polypodietalia vulgaris order. On the other hand, the bryophyte component of the habitat is consid- ered independently, although in the composition of this habitat they co-exist as a whole system (Gapon, 2013). Many questions thus require complex, systematic analy- sis, which determines the purpose of this publication. Considering these questions, we aimed to investigate the phytosociological and ecological peculiarities of shady chasmophytic habitats in Ukraine. To achieve this aim, we addressed the following questions: i) how is a shady chasmophytic habitat described syntaxonomically? ii) which ecological conditions are characteristic of shady chasmophytic habitats? iii) to what threats and risks are shady chasmophytic habitats exposed, and how can they be protected? 22/2 • 2023, 143–160 145 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Study area Our research covered 5 localities from the Pre-Carpathian region within the Ivano-Frankivsk and Chernivtsi regions and Transcarpathian region (Figure 1), where the habitat type occurs on steep rocky slopes or vertical rock faces of northern or western exposure, on ridges or large calcar- eous rocks and cliffs, shaded by a canopy of deciduous trees. The limiting factor that ensures constant atmos- pheric wet and cool summer temperatures is the dense shading by the deciduous tree canopy (mesophytic scio- phytic conditions) (Didukh et al., 2016). The Pre-Carpathian region (Prut-Dniester confluence) is situated in the western part of Ukraine and geologi- cally combines Precambrian bedrocks (gneisses, granites and argillites), Silurian and Devon bedrocks (limestones, dolomites and marls), alluvial clays and loess loams. The geomorphology of the Prut-Dniester confluence consists of ancient and developed valleys of the Dniester and Prut Rivers and their tributaries. The soil cover in the Prut- Dniester confluence is podzolic grey soils, sod-podzolic soils, podzolic chernozems, wet-meadow soils and shal- low and skeletal soils on rocks and outcrops of calcareous bedrocks with deciduous forests, meadows, dry meadow steppes and chasmophytic communities. The climate of the Prut-Dniester confluence is moderately continental with mild winters and a relatively warm, wet summer (the average temperature for January is -5.1 °C, the av- erage temperature for July is 18.7 °C, and the range in annual precipitation is from 500 to 700 mm (Heren- chuk, 1973, 1978). The T ranscarpathian region is also situated in the west- ern part of Ukraine and is characterized by a mountain- ous relief. This region geologically combines Proterozoic (gneisses and crystalline shales), Cretaceous (flysches) and Sarmatian bedrocks (clays, sandstones, limestones and conglomerates). The hydrography of the region is provid- ed by the Tysa, Uzh, Latorytsia rivers and their tributar- ies. The soil cover in the region is formed by burozems, meadow burozems, shallow and skeletal soils on rocks and outcrops of sandstones, limestones and conglomer- ates with deciduous and coniferous forests, sub-alpine meadows and chasmophytic communities. The climate of the T ranscarpathian region is moderately continental that strongly depends on temperature fluctuations (the aver- age temperature for January is -4.8 °C, the average tem- perature for July is 17.1 °C). The range in annual precipi- tation is approximately 1122 mm (Herenchuk, 1981). Figure 1: Locations of shady chasmophytic habitat communities in Ukraine. Slika 1: Lokacije zasenčenih hazmofitskih združb v Ukrajini. 22/2 • 2023, 143–160 146 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Materials and methods The subject of this research was calcareous cliffs and rocks that occur within the deciduous forests of the south- eastern and south-western macro-slopes of the Ukrainian Carpathians (Table 1). These are confined to altitude lim- its of 250 ± 20 to 850 ± 20 m a.s.l., respectively. The rock faces and slopes range from a height of 1.5 m to 5–10 m, with slopes up to 90°, with narrow rock protrusions up to 30 cm. We recorded 46 phytosociological relevés with a uni- form plot size of 4 m 2 , using the Braun-Blanquet ap- proach (Braun-Blanquet, 1964) and the recommenda- tions of Chytrý & Otýpková (2003) for the plot size of rocky vegetation, which we collected from Ukraine in 2018–2019, with specific vascular plants, bryophytes and epigeic lichens. We identified habitats by the pres- ence of chasmophyte ferns (Asplenium  L.,  Cystopteris Bernh., Polypodium L.), a dense cover of mosses that grow on rocks with steep slopes, and cliffs with ledges up to 30 cm wide (such ledges can accumulate soil and have a different floristic composition). We recorded different types of slopes and focused on the typical conditions of the habitat. The distribution map was created with the help of MapInfo Professional software (MapInfo, 2007). The nomenclature for the vascular plant species is ac- cording to the Euro+Med Database checklist (http:// www.emplantbase.org/), while bryophytes are according to Hodgetts et al. (2020), and lichens are according to the Index Fungorum (http://www.indexfungorum.org/). Syntaxa nomenclature followed Mucina et al. (2016), Stodiek (1937), Cain & Sharp (1938), Herzog & Höfler (1944), Duda (1951) and Redžić et al. (2002). The data were analysed in JUICE software (Tichý, 2002). We used a TWINSPAN modified algorithm (Roleček et al., 2009): three pseudospecies cut level -0, 5 and 25, and Whittaker’s method for distinguishing the clusters. Diagnostic species for individual clusters were es- timated based on the phi-coefficient (threshold of fidelity at more than 30%), tested by Fisher’s exact test (p≥0.01) (Chytrý et al., 2002), with the sizes of all groups stand- ardized to an equal size (Tichý & Chytrý, 2006). We used a threshold of constancy of more than 50% for the de- termination of highly constant species, and for constant species of more than 25%. Phytoindication scales of Y. Didukh (Didukh, 2011; Didukh et al., 2021) are comparable to other environ- mental indicator values (Ellenberg) and reflect ampli- tude indices of the species characterized by the following dimensions: ecological indicator of soil humidity (Hd – 23 grades), ecological indicator of variability of damp- ing (fH – 11 grades), ecological indicator of soil acidity (Rc - 15 grades), ecological indicator of total salt regime (Sl – 19 grades), ecological indicator of carbonate content (Ca – 13 grades), ecological indicator of nitrogen con- tent (Nt – 11 grades), ecological indicator of soil aeration (Ae – 15 grades), ecological indicator of thermoregime (Tm – 17 grades), ecological indicator of humidity of microclimate (Om – 23 grades), ecological indicator of continentality (Kn – 17 grades), ecological indicator of cryoregime(Cr – 15 grades) and ecological indicator of light in the community (Lc – 9 grades). DCA analysis (Detrended Correspondence Analysis) was conducted to assess the impact of environmental fac- tors on plant communities. Phytoindication values were passively projected onto a DCA graph. We used the R program (R Core T eam, 2021) to visualize the DCA anal- ysis. The cyclogram of the quantitative indices of leading environmental parameters dispersion and determination of ecological valence of the communities was conducted using the application of environmental parameters’ calcu- lations (Didukh & Budzhak, 2020). Habitat-level identification was performed using the EUNIS-ESy Expert System (Chytrý et al., 2020) to iden- tify each relevé in the phytosociological table (Table 2). The impact of threats and sociological assessment of the habitats were conducted using a four-categories impact scale (Table 4) and ultimately summing them (Table 3) (Didukh, 2014; Didukh et al., 2018). By calculating the sum of points, the indices (in percentages) of the stability degree (Stability) S = (S*1 – 3.99) × 8.33 and value de- gree (Value) V= (V*1 – 9.99) ×3.33 were evaluated. Based on these indices, the corresponding classes were selected: I – > 80%, II – 61–80, III – 41–60, IV – 21–40, and V – < 21%. Results Shady chasmophytic communities occur from 250– 500 m a.s.l., confined to forests of the Carpinion betuli and Tilio-Acerion alliances. The dominant tree species are Acer platanoides, A. pseudoplatanus, Carpinus betu- lus, Quercus robur and Tilia cordata. In Transcarpathia, such communities occur within an altitudinal range of 520–850 (1020) m a.s.l., in beech forests of the Fagion sylvaticae alliance. The cover of vascular plants fluctu- ates from 20 to 50%, the cover of bryophytes is 50–80% and the cover of the bare surface of rocks is 10–40%. At the foot of the rocks, and on more or less horizontal sur- faces, there are beds of shrubs dominated by Sambucus nigra, rarely by Euonymus verrucosa, as well as seedlings of Acer platanoides or Fagus sylvatica trees, the roots of which penetrate very deeply and disrupt the structure of the calcareous rocks. The syntaxonomical peculiarity of 22/2 • 2023, 143–160 147 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine these communities is the presence of chasmophyte ferns with winter-green fronds (Asplenium trichomanes, A. ruta- muraria, A. viridis, Phyllitis scolopendrium and Polypodi- um vulgare). These chasmophyte species develop rhizomes that fill screes and rock depressions, thus contributing to soil formation (Fabiszewski et al., 1997). Description of the communities (Table 1, Table 2, Figure 3 a-d) We obtained four well-differentiated clusters using a modified TWINSPAN algorithm (Figure 2), which could be interpreted as informal communities. this community is endangered due to climbing and tour- ist activity (camping sites, fireplaces, litter accumulation) in the T ranscarpathian region (Table 3). Cluster 2. Porella platyphylla-Asplenium ruta- muraria community Floristical characteristics. The Porella platyphylla- Asplenium ruta-muraria community is characterized by the following diagnostic species: Anomodon viticulosus, Cardaminopsis arenosa, Homalothecium philippeanum, Porella platyphylla. Sagina procumbens, Seseli libano- tis. The species Exerthotheca crispa and Hedera helix are dominant in the communities. The total species cover is 70–90%, based on bryophytes and overlapped by vascu- lar plants. Distribution and threats. This community forms loose mats on thin soils that are rich in nitrogen com- pounds, covering partially shaded calcareous rocks mainly on western, northern and north-western slopes and occupying an area of almost 40–60%, where the rest of the surface is exposed rock at an elevation from 232 to 657 m a.s.l. The community is found in the Pre-Car - pathian (Chernivtsi region, Ukraine) and the Transcar- pathian regions (Ukraine). According to the sociologi- cal assessment of the habitat and impact of threats, this plant community is an endangered habitat due to tourist activity and has a high constancy of synanthropic spe- cies (Chelidonium majus, Geranium robertianum, Urtica dioica) (Table 3). Cluster 3. Pseudanomodon attenuatus- Chrysosplenium alternifolium community Floristical characteristics. The Pseudanomodon atten- uatus-Chrysosplenium alternifolium community is char- acterized by the following diagnostic species: Campan- ula rapunculoides, Chiloscyphys polyanthos var. rivularis, Conocephalum salebrosum, Cystopteris fragilis, Lamium galeobdolon. The species Conocephalum salebrosum and Pseudanomodon attenuatus are dominant in the com- munities. The total species cover is 60–80%, based on bryophytes and overlapped by vascular plants. Distribution and threats. This community occurs in forests, mainly on shaded steep calcareous cliffs (75– 90°), primarily on northern, north-western, and south- eastern slopes of the Transcarpathian region (Ukraine) at an elevation of 536–1014 m a.s.l. and is formed on dry nudilitic leptosols. According to the sociological as- sessment of the habitat and impact of threats, this plant community is influenced by climbing and the mining of limestones in illegal quarries in the Transcarpathian region; we therefore decreased the threat impact index (3 points) (Table 3).   Figure 2: Dendrogram based on the modified TWINSPAN algorithm classification. Cluster 1 – Isothecium alopecuroides-Polystichum braunii community (8 relevés); Cluster 2 – Porella platyphylla-Asplenium ruta-muraria community (16 relevés); Cluster 3 – Pseudanomodon attenuatus-Chrysosplenium alternifolium community (17 relevés); Cluster 4 – Pedinophyllum interruptum-Polystichum aculeatum community (5 relevés). Slika 2: Dendrogram na osnovi algoritma klasifikacije TWINSPAN. Klaster 1 – združba Isothecium alopecuroides-Polystichum braunii (8 popisov); Klaster 2 – združba Porella platyphylla-Asplenium ruta- muraria (16 popisov); Klaster 3 – združba Pseudanomodon attenuatus- Chrysosplenium alternifolium (17 popisov); Klaster 4 – združba Pedinophyllum interruptum-Polystichum aculeatum (5 popisov). Cluster 1. Isothecium alopecuroides-Polystichum braunii community Floristical characteristics. The Isothecium alopecu- roides-Polystichum braunii community is characterized by the following diagnostic species: Ctenidium molluscum, Dentaria glandulosa, Homalia trichomanoides, Isothesium alopecuroides, Plagiomnium cuspidatum, Polystichum brau- nii. The species Ctenidium molluscum, Homalia trichoma- noides, Pseudanomodon attenuatus are dominant in the communities. The total cover of the species is 60–90% and the cover of cryptogam species is 60%. Distribution and threats. This community occurs on Marmarosh calcareous cliffs and conglomerates (Tran- scarpathian region) of north-eastern and north-western slopes on which dry nudilitic leptosols are formed at an elevation of 233–307 m a s.l. According to the sociologi- cal assessment of the habitat and the impact of threats, 22/2 • 2023, 143–160 148 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Cluster 4. Pedinophyllum interruptum-Polystichum aculeatum сommunity Floristical characteristics. The Pedinophyllum inter- ruptum-Polystichum aculeatum community is character- ized by the following diagnostic species: Asarum europae- um, Campanula carpatica, Fissidens dubius, Pedinophyllum interruptum, Scopolia carniolica, T amobryum alopecurum,. The species Conocephalum salebrosum and Hedera helix are dominant in the communities. The total species cover is 60–95%, based on bryophytes and overlapped by vascu- lar plants. Distribution and threats. This community occurs on steep Marmarosh calcareous cliffs (45–90°), mainly on southern and south-western slopes of the T ranscarpathian region (Ukraine) at an elevation of 519–574 m a.s.l. and formed on dry nudilitic leptosols. According to the socio- logical assessment of the habitat and impact of threats, this plant community is influenced by the colonization of forest species (Aegopodium podagraria, Asarum euro- paeum, Scopolia carniolica) in the Carpathian Biosphere Reserve (Transcarpathian region); we therefore decreased the threat impact index (3 points) (Table 3). Number of relevés 8 16 17 5 Cluster 1 2 3 4 Isothecium alopecuroides-Polystichum braunii community Isothecium alopecuroides 63 6 . . Plagiomnium cuspidatum 63 . . . Ctenidium molluscum 63 19 . 20 Homalia trichomanoides 50 . . 20 Acer platanoides (juv.) 38 6 . 20 Polystichum braunii 38 . . 20 Rubus idaeus 38 . . . Eurhynchium striatum 38 19 . . Porella platyphylla-Asplenium ruta-muraria community Campanula trachelium . 50 6 . Porella platyphylla . 44 . . Fagus sylvatica (juv.) 25 38 . . Asplenium ruta-muraria . 38 18 . Sagina procumbens 13 38 . . Galium intermedium 25 31 24 . Exsertotheca crispa 25 31 . 20 Pseudanomodon attenuatus-Chrysosplenium alternifolium community Pseudanomodon attenuatus 88 50 94 40 Conocephalum salebrosum . . 71 40 Chrysosplenium alternifolium . . 53 40 Campanula rapunculoides . . 35 20 Pedinophyllum interruptum-Polystichum aculeatum community Polystichum aculeatum 13 19 . 80 Asarum europaeum 25 . 12 80 Campanula carpatica . 6 . 60 Poa nemoralis 13 6 29 60 Pedinophyllum interruptum . 6 . 60 Lunaria rediviva . 19 6 60 Fissidens dubius . . . 40 Veronica urticifolia . 6 . 40 Carex montana . 13 . 40 Pulmonaria obscura . . . 40 Scopolia carniolica . . . 40 Senecio nemorensis . . . 40 Number of relevés 8 16 17 5 Cluster 1 2 3 4 Radula complanata 25 13 . 40 Salvia glutinosa . 25 18 40 Aegopodium podagraria . . 6 40 Moehringia trinervia . 13 6 40 Galium transcarpaticum . 6 . 40 Alleniella complanata . 19 . 20 Ctenidio-Polypodion vulgaris alliance, Ctenidio-Polypodietalia vulgaris order, Polypodietea class Phyllitis scolopendrium 88 88 100 100 Polypodium vulgare 88 50 59 60 Asplenium trichomanes 75 94 65 60 Hedera helix 75 19 29 80 Cystopteris fragilis 13 63 76 40 Dryopteris filix-mas 75 31 6 60 Lamium galeobdolon 25 25 82 80 Other vascular plants in alphabetical order Cardaminopsis arenosa . 50 . 60 Chelidonium majus . 38 29 20 Geranium robertianum 25 50 47 80 Hepatica nobilis . 31 24 40 Hylotelephium maximum . 31 18 40 Mercurialis perennis . 25 6 20 Mycelis muralis 13 75 . 40 Sambucus nigra (juv.) . 31 41 40 Urtica dioica 13 25 12 20 Valeriana sp. . 19 . 20 Other cryptogam species in alphabetical order Anomodon viticulosus 25 63 12 60 Chiloscyphus polyanthos var. rivularis . . 18 . Homalothecium philippeanum . 25 . . Lepraria membranacea 13 31 . 40 Metzgeria conjugata 63 . . 40 Mnium stellare . . 24 20 Plagiochila porelloides 50 6 6 40 Thamnobryum alopecurum 50 13 . 60 Table 1: Synoptic table of shadow chasmophytic communities, indicating the constancy of species expressed by their percentage frequency in the respective four clusters. Species are ranked by decreasing constancy and phi coefficient values are not shown, although species with a phi- value greater than 0.25 are accepted as differential for the syntaxa. Species of each syntaxon with a constancy of 15% or less, as well as other taxa with a constancy of 15% or less, are not shown in the table. Tabela 1: Sinoptična tabela zasenčenih hazmofitskih združb. Prikazana je stalnost vrst s frekvenco v odstotkih v štirih klastrih. Vrste so razvrščene glede na padajočo stalnost, vrednosti fi koeficienta niso prikazane. Kot razlikovalne vrste smo upoštevali tiste, ki imajo fi koeficient večji od 0,25. Vrste s stalnostjo, manjšo od 15% v posameznem sintaksonu in vse vrste z stalnostjo manjšo od 15%, niso prikazane v tabeli. 22/2 • 2023, 143–160 149 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Proposed syntaxonomical scheme We did not find relevant associations within the Ctenidio- Polypodion vulgaris alliance, Ctenidio-Polypodietalia vul- garis order, Polypodietea class. However, we did not find all diagnostic bryophyte species to describe them as bry- ophyte associations. We therefore we propose a syntaxo- nomical scheme of the distinguished clusters interpreted as informal communities. Figure 3: Pictures of shady chasmophytic habitat communities: a) Velyka Ugolka, T ranscarpathia region, Ukraine, photo by Bezsmertna Olesya; b) Prut-Dniester confluence, Chernivtsi region, photo by Budzhak Vasyl; c) Pre-Carpathia, Ivano-Frankinsk region, photo by Didukh Yakiv; d) right bank of Dniester River, Chernivtsi region, Ukraine, photo by Didukh Yakiv Slika 3: Slike zasenčenih hazmofitskih habitatnih tipov: a) Velyka Ugolka, regija T ranscarpathia, Ukrajina, fotografija Olesya Bezsmertna; b) sotočje rek Prut-Dniester, regija Chernivtsi, fotografija Vasyl Budzhak; c) Pre-Carpathia, regija Ivano-Frankinsk, fotografija Yakiv Didukh; d) desni breg reke Dnester, Chernivtsi region, Ukraine, fotografija Yakiv Didukh. Cl. Polypodietea Jurko et Peciar ex Boscaiu, Gergely et Codoreanu in Ratiu et al. 1966 Ord. Ctenidio-Polypodietalia vulgaris Jurko et Peciar ex Boscaiu, Gergely et Codoreanu in Ratiu et al. 1966 All. Ctenidio-Polypodion vulgaris S. Brullo et al. 2001 1) Isothecium alopecuroides-Polystichum brau- nii community 2) Porella platyphylla-Asplenium ruta-muraria community 3) Pseudanomodon attenuatus-Chrysosplenium alternifolium community 4) Pedinophyllum interruptum-Polystichum acu- leatum community a b c d 22/2 • 2023, 143–160 150 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Ecological characteristics of the shadow chasmophytic habitat communities We assessed the ecological factors’ indices according to the synphytoindication methodology (Didukh, 2011). According to humidity indices, these communities can be interpreted as meso-hygromesophyte and well-wetted; ac- cording to the variability of dampness indices, these com- munities can be interpreted as hydro-hemicontrasthopho- bic with uniform steady or slightly uniform hydration; according to the aeration indices, hemiaerophobic with uniform aerated substrata; according to the acidity indi- ces – neutrophilic with pH from 6.5 to 7.1; according to the total salt regime in soil indices, semi eutrophic; according to the carbonate content indices these commu- nities are acarbonatophilic, despite the carbonate richness of the bedrocks; according to the nitrogen content indi- ces, heminitrophilic – nitrophilic, with high concentra- tions of nitrate ions. According to the thermoregime in- dices these communities are submesothermic; according to the cryoregime indices, hemicryophytic; according to the continentality indices, hemioceanic; according to the humidity of the climate indices, subombrophytic. Such climatic characteristics of this habitat correlate with the indicators of the Carpinion betuli and Fagion sylvaticae alliances (Didukh et al., 2016), They are similar to for- est habitats, but deviate from zonal ones and reflect their preferences to shading by a wooded canopy. Based on the calculation of ecological indicators’ values, cyclograms illustrate the environmental niches of shady chasmophytic habitat communities, which are character- ized by a narrow amplitude of environmental factors and are typical for stenotopic species. The most limited range of tolerance is prominent (Figure 4 a-d): the soil humid- ity (Hd) (mainly Isothecium alopecuroides-Polystichum braunii community and Pedinophyllum interruptum-Pol- ystichum aculeatum community), the total salt regime (Sl) (all distinguished communities), carbonate content (Ca) (mainly Pedinophyllum interruptum-Polystichum aculea- tum community) and acidity (Rc) (mainly Pedinophyllum interruptum-Polystichum aculeatum community).                    Figure 4: Cyclogram of ecological indicator values of shady chasmo- phytic habitats. Acronyms of the ecological indicators are the same as in the Materials and methods section. The dashed line shows the minimum and maximum of the ecological indicator indices. The solid line shows the ecological op- timum of the shady chasmophytic habitat communities. a) – Isothecium alopecuroides- Polystichum braunii community, b) – Porella platyphylla-Asplenium ruta-muraria community, c) – Pseudanomodon attenuatus- Chrysosplenium alternifolium community, d) – Pedinophyllum interruptum-Polystichum aculeatum community. Slika 4: Ciklični graf ekoloških indikatorskih vrednosti zasenčenih hazmofitskih združb. Okrajšave ekoloških indikatorjev so enake kot v poglavju Material in metode. Prekinjena črta prikazuje najmanjšo in največjo vrednost indikatorja. Polna črta prikazuje optimum zasenčenih hazmofitskih združb.                    b                    d                    a                    c 22/2 • 2023, 143–160 151 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Four shady chasmophytic communities were clearly distinguished on the DCA visualization (Figure 5). The main axis (DCA 1) compared to the vectors of ecological indicators (carbonate content, thermoregime, cryoregime and humidity), whereby a significant differentiation be- tween the Isothecium alopecuroides-Polystichum braunii community and the Pseudanomodon attenuatus-Chrysosp- lenium alternifolium community is observable. Although the second axis (DCA 2) does not show substantial differ- ences between the communities, it is closer to the vectors of ecological indicators (total salt regime in the soil and soil humidity). In the Prodrome of the Vegetation of Europe, the clas- sification of these communities has undergone signifi- cant changes (Mucina et al., 2016). The chasmophytic vegetation of rocks and screes belongs to 8 classes, 36 or- ders and 146 alliances. However, at the same time, many questions arise regarding the delimitation of syntaxa and their place in the classification system, especially when the bryophyte component, which plays a significant role in certain classes and has high diagnostic value, is not taken into account. We must emphasize the division of two classes Asplenietea trichomanis and Polypodietea. This division is based on the chemical characteristics of substrata, humidity and shading. The Polypodietea class, which consists of 3 orders and 13 alliances and represents communities of shady rocks and crevices, with character- istic species: chasmophyte, sciophyte plants and a high cover of bryophytes, which occupy rock surfaces and crevices where a small amount of detritus accumulates (Tomaselli et al., 2019). Finding the syntaxonomical affiliation of the bryophyte component generally causes discussion (Cain & Sharp, 1938). On the one hand, if the bryophyte communities are interpreted as a part of the whole, synusia or mero- coenos, within the shady chasmophytic habitat, then the opinion of Berg et al. (2019) is fully justified. Following this claim of Berg et al. (2019), bryophyte communi- ties should not be considered separate classes at the level of holocoenoses, which can be reflected in their name by introducing the appropriate suffixes. On the other hand, Mucina et al. (2016) claimed that synusia (micro- communities) are elements within plant associations or separate syntaxonomic units; we therefore preliminarily consider the distinguished clusters to be informal com- munities within the Ctenidio-Polypodion vulgaris alliance, Ctenidio-Polypodietalia vulgaris order, Polypodietea class (Table 1). Moreover, we did not aim to investigate the bryophyte communities as separate syntaxonomical units and used a traditional approach to describe the vascular plants’ com- munities. Based on this, we omitted some species that could be diagnostic in some bryophyte associations. The first cluster was interpreted as the Isothecium alopecuroides-Polystichum braunii community, which had related connections with the association Tortello- Ctenidietum mollusci (Gams 1927) Stodiek 1937, which was described by Stodiek (1937) with the presence of diagnostic bryophyte species (Ctenidium molluscum, Isothecium alopecuroides, Plagiomnium cuspidatum) that belong to the alliance Ctenidion mollusci Ştefureac 1941, order Ctenidietalia mollusci Hadač et Šmarda in Klika et Hadač 1944, class of Ctenidietea mollusci von Hübsch- mann ex Grgić 1980. On the other hand, there is a                 Figure 5: Detrended Correspondence Analysis (DCA) of shady chasmophytic habitat communities. 1 – Isothecium alopecuroides- Polystichum braunii, 2 – Porella platyphylla-Asplenium ruta-muraria, 3 – Pseudanomodon attenuatus-Chrysosplenium alternifolium, 4 – Pedinophyllum interruptum-Polystichum aculeatum. Acronyms of the ecological indicators are the same as in the Materials and methods section. Slika 5: Korespondenčna analiza z odstranjenim trendom (DCA) zasenčenih hazmofitskih združb. 1 – Isothecium alopecuroides- Polystichum braunii, 2 – Porella platyphylla-Asplenium ruta-muraria, 3 – Pseudanomodon attenuatus-Chrysosplenium alternifolium, 4 – Pedinophyllum interruptum-Polystichum aculeatum. Okrajšave ekoloških indikatorjev so enake kot v poglavju Material in metode. Discussion Syntaxonomical revision Chasmophytic communities are often a mosaic in struc- ture, due to variations in the microrelief. They typically have a lower level of floristic richness, with a combination of different taxa (vascular plants, bryophytes, lichens) and their syntaxonomy is described differently (Valachovič, 1995; Sádlo & Chytrý, 2009). 22/2 • 2023, 143–160 152 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine significant presence of vascular plants (Acer planatoides (juv.), Denatria glandulosa, Polystichum braunii) and the absence of numerous diagnostic species (Brachythecium glareosum, Ditrichum flexicaule, Fissidens dubius) of the Ctenidion mollusci alliance (Ştefureac, 1941; Klika, 1948; Ragulina & Orlov, 2021). We classified the second cluster as the Porella platyphyl- la-Asplenium ruta-muraria community, with the presence of ferns (Asplenium ruta-muraria, Phyllitis scolopendrium, Polypodium vulgare) and spermatophytes (Campanula trachelium, Fagus sylvatica, Sagina procumbens) as the di- agnostic species. It should be added that the distinguished cluster has two diagnostic species (Porella platyphylla and Exsertotheca crispa) of the bryophyte association of Homa- lothecio sericei – Porelletum platyphyllae Stormer 1938 ex Duda 1951, which was described by Duda (1951) within the alliance Neckerion complanatae Šmarda et Hadač ex Klika 1948, order Neckeretalia complanatae Jezek et Von- dracek 1962 and class Neckeretea complanatae Marstaller 1986. However, since we have diagnostic species of the association (Ragulina & Orlov, 2021), we did not observe numerous diagnostic species of the Neckerion complana- tae alliance (Metgeria conjugata, Sciuro-hypnum populeum, Thamnobryum alopecurum). In the third cluster, there were some diagnostic bryo- phyte species (Pseudanomodon attenuates, Conocepha- lum salebrosum), which could lead us to the association Anomodontetum attenuati Cain & Sharp 1938, which has also been considered within the alliance Neckerion complanatae, order Neckeretalia complanatae and class Neckeretea complanatae (Peciar 1965). The fourth cluster, designated the Pedinophyllum interruptum-Polystichum aculeatum community, has the features of Pedinophylle- tum interrupti Herzog & Höfler 1944, which was consid- ered by Vadam (1983). However, it cannot currently be treated as the Pedinophylletum interrupti association since we do not have a clear group of diagnostic bryophyte spe- cies (Cololejeunea calcarea, Fissidens pusillus, Pedinophyl- lum interruptum). Moreover, we did not find evidence of the presence of the Pedinophylletum interrupti association in Ukraine (Ragulina & Orlov, 2021). Additionally, it must be noted that the high constancy of Phyllitis scolopendrium within all distinguished com- munities may indicate Asplenio-Phyllidetum scolopendrii Redžić et al. 2002, first described by Redžić et al. (2002) and confirmed within the Carpathian Mountains (Besky- dy Mountains) by Świerkosz (2004). However, it can only be confirmed after collecting appropriate data and providing a comprehensive analysis within the Carpatho- Pannonian region in Central Europe. Ecological assessment of shady chasmophytic communities Calcareous rocks in the Pre-Carpathian and Transcar- pathian regions obviously have various chemical com- positions of rocks (thin-bedded limestones, sandstones, flysches and conglomerates): a different content of car- bonate anions, calcium/magnesium cations and soil acid- ity indices that have apparently (Hnylko et al., 2015) gen- erated a differentiation of the shady chasmophytic habitat communities (Didukh et al., 2016). The distribution of species within the shady chasmo- phytic habitat communities is irregular – they grow in local spots, mats, and have vascular plants that occur in small beds and patches, determined by the range of vari- ation of the microrelief (Sádlo & Chytrý, 2009). Moreo- ver, they are heated unequally, which also causes unequal transpiration and humidity loss on the different faces of rocks (Larson et al., 2000; Păşcuţ, 2018). The cryo- and thermoregimes, as the microclimate indices, also caused a differentiation of the plant communities in the micro- refugia formed on the rock cliffs (Garcia et al., 2020). Conservation status of the shady chasmophytic habitat communities Shady chasmophytic habitats are protected in accord- ance with Resolution 4 of the Bern Convention (Coun- cil of Europe, 2018) as H3.252 Communities of shady, cool, often moist rockfaces of the Alps and neighbour- ing regions, of the Carpathians, of the Jura, the Hercyn- ian ranges, the British Isles, with many ferns, including [Cystopteris fragilis], [Cystopteris regia], [Asplenium viride], [Asplenium scolopendrium], [Asplenium trichomanes] and with [Carex brachystachys] and 8210 Calcareous rocky slopes with chasmophytic vegetation in accordance with NATURA 2000 (Table 3). According to the classification of Ukrainian habitats (UkrBiotop), the equivalent of this habitat has been de- scribed for the Crimea Mountains: H:2.114 Shaded chas- mophyte communities with a complex of lichens and bry- ophytes (Didukh et al., 2011). Thereafter Didukh et al. (2018) considered a single habitat K5.2 “Chasmophyte and bryophyte communities of shaded calcareous cliffs”, which combined communities of the Polypodietea class, Ctenidio–Polypodion vulgare alliance, which is distributed in the Carpathian Mountains and adjacent lowlands of Ukraine (Table 3). It must be added that the results of the ESy-EUNIS expert system evaluation (Table 2) showed undefined expectations: many relevés were identified with a ques- tion mark “?”. On the other hand, the last cluster has 22/2 • 2023, 143–160 153 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine been assigned as R55 (Lowland moist or wet tall herb and fern fringe dominants) and R57 (Herbaceous forest clear- ing vegetation) habitats, although the elements of these habitats are present in shady chasmophytic communities. It should be mentioned that these shady chasmophytic habitat communities are described as H32c (Temperate lowland to montane base rich inland cliff) according to the modern EUNIS classification (Chytrý et al., 2020); however, the group of characteristic species of H32c is missing in our results. The main threat to this habitat’s existence is deforesta- tion, which increases light levels, warming and a moisture deficiency of the substrata, and eutrophication, as a result of which nitrophilic species invade these communities (Didukh et al., 2016). Moreover, in our opinion, some other kinds of threats could include climbing, tourist ac- tivity and mining of dolomites and limestones (Świerkosz et al., 2011; Świerkosz & Reczynska, 2012), when, due to mechanical disturbance, the restoration of the communi- ties is very slow (Didukh et al., 2012). The shady chasmophytic habitat is thus rare (Table 3) and has limited distribution, with a low potential for res- toration. These communities are sensitive to the influence of anthropogenic factors and require targeted protection measures, which must be taken into account when man- agement plans for habitat protection are created. Acknowledgments We warmly appreciate Neil Lockhart and Martin Cree- gen for proofreading the text and improving the English spelling. We are also grateful to Dr. Marina Ragulina and Dr. Vitalii Virchenko for the determination of the bryophyte difficult groups. We are grateful to the Editor- in-Chief Urban Šilc, Milan Chytrý and two anonymous referees for their valuable comments and suggestions. Notably, we want to express our gratitude to the Armed Forces of Ukraine for providing the opportunity for us to undertake our research activity in safety. Yakiv Didukh  https://orcid.org/0000-0002-5661-3944 Illia Chorney  https://orcid.org/0000-0002-1382-9112 Vasyl Budzhak  https://orcid.org/0000-0002-7754-6437 Iuliia Vasheniak  https://orcid.org/0000-0003-1020-3007 Olesya Bezsmertna  https://orcid.org/0000-0001-8764-8878 Svitlana Nyporko  https://orcid.org/0000-0003-3451-0319 References Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer. Cain, S. A., & Sharp, A. J. (1938). Bryophytic unions of certain forest types of the Great Smoky Mountains. American Midland Naturalist, 20, 249–301. Chorney, I., Budzhak, V., Tokaryuk, A., & Volutsa, O. (2014). Khorolohiya rarytetnoho bioriznomanittya Bukovyny. Chastyna I. Arkhehoniaty. DrucArt. Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. https://doi. org/10.1111/j.1654-1103.2002.tb02025.x Chytrý, M., Tichý, L., Hennekens, S.M., Knollová, I., Janssen, J.A.M., Rodwell, J.S., Peterka, T., Marcenò, C., Landucci, F ., Danihelka, J., Hájek, M., Dengler, J., Novák, P ., Zukal, D., Jiménez-Alfaro, B., Mucina, L., Abdulhak, S., Aćić, S., Agrillo, E., Attorre, F ., Bergmeier, E., Biurrun, I., Boch, S., Bölöni, J., Bonari, G., Braslavskaya, T., Bruelheide, H., Campos, J.A., Čarni, A., Casella, L., Ćuk, M., Ćušterevska, R., De Bie, E., Delbosc, P ., Demina, O., Didukh, Y., Dítě, D., Dziuba, T., Ewald, J., Gavilán, R.G., Gégout, J.-C., Giusso del Galdo, G.P ., Golub, V., Goncharova, N., Goral, F ., Graf, U., Indreica, A., Isermann, M., Jandt, U., Jansen, F ., Jansen, J., Jašková, A., Jiroušek, M., Kącki, Z., Kalníková, V., Kavgacı, A., Khanina, L., Korolyuk, A.Yu., Kozhevnikova, M., Kuzemko, A., Küzmič, F ., Kuznetsov, O.L., Laiviņš, M., Lavrinenko, I., Lavrinenko, O., Lebedeva, M., Lososová, Z., Lysenko, T., Maciejewski, L., Mardari, C., Marinšek, A., Napreenko, M.G., Onyshchenko, V., Pérez-Haase, A., Pielech, R., Prokhorov, V., Rašomavičius, V., Rodríguez Rojo, M.P ., Rūsiņa, S., Schrautzer, J., Šibík, J., Šilc, U., Škvorc, Ž., Smagin, V.A., Stančić, Z., Stanisci, A., Tikhonova, E., Tonteri, T., Uogintas, D., Valachovič, M., Vassilev, K., Vynokurov, D., Willner, W ., Yamalov, S., Evans, D., Palitzsch, Lund M., Spyropoulou, R., T ryfon, E., & Schaminée, J.H.J. (2020). EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 23, 648–675. https:// doi.org/10.1111/avsc.12519 Council of Europe. (2018). Revised Annex I to Resolution 4 (1996) of the Bern Convention on Endangered Natural Habitat Types using the EUNIS Habitat Classification (Adopted by the Standing Committee on 30 November 2018). https://rm.coe.int/16807469e7 Didukh, Y. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre. Didukh, Y., Phytsailo T., Korotchenko, I., Iakushenko, D., Pashkevych, N., & Alioshkina, U. (2011). Biotopy lisovoyi ta lisostepovoyi zon Ukrayiny. PP Makros. Didukh, Y. (2014). Assessment of stability and risk of loss of ecosystems. Scientific notes of National University of Kyiv-Mohyla Academy, 158. Biology and ecology, 54–60. Didukh, Y., Chorney, I., & Khodosovtsev, O. (2018). K5.2 Chasmophyte and moss communities of shaded carbonate rocks. In: Kuzemko, A., Didukh, Y., Onyshchenko, V. et al. (Eds.). National habitat catalogue of Ukraine. PP Klymenko. Didukh, Y., Chorney. I., Budzak, V. et al. (2016). Climatogenic Changes of Plant Life of the Ukrainian Carpathians. DrucArt. 22/2 • 2023, 143–160 154 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Didukh, Y., Kagalo, O., & Prots, B. (Eds.). (2012). Biotopy (oselyshcha) Ukrainy: naukovi zasady yikh doslidzhennya ta praktychni rezultaty inventaryzatsii. Materialy robochoho seminaru. Kyiv, 21–22 bereznya 2012 roku. M.G. Kholodny Institute of Botany. National Academy of Sciences of Ukraine. Didukh, Y., Kuzemko, A., & Vakarenko, L. (2018). Otsinka znachymosti ta kadastr ridkisnykh biotopiv Ukrainy dlia zberezhennia bioriznomanittia ta monitorynhu dovkillia. Klasyfikatsiia roslynnosti ta biotopiv Ukrainy. M.G. Kholodny Institute of Botany. National Academy of Sciences of Ukraine. Didukh, Y., & Budzhak, V. (2020). Prohrama dlya avtomatyzatsii protsesu rozrakhunku balnykh pokaznykiv ekolohichnykh faktoriv: metodychni rekomendatsii. Chernivtsi National University. Didukh, Y. (2021). Climate Change Assessment Based on Synphytoindication Method. In M. Lackner et al. (Eds.). Handbook of Climate Change Mitigation and Adaptation. Springer Science+Business Media, LLC, part of Springer Nature 2021. https:// doi.org/10.1007/978-1-4614-6431-0_137-1 Duda J. (1951). Spolecenstva Bryophyt na piskovcovych skalach v Beskydach. Prirodoredecky Sbornik ostravskeho Kraje, 12, 323–334. Euro+Med. (2006-2020). Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/ EuroPlusMed/query.asp . Fabiszewski, J., Koła, W., & Kwiatkowski, P . (1997). Phyllitis scolopendrium (L.) Newm. in the Sudeten Mountains. Annales Silesiae, 27, 49–62. Gapon, S.V. (2013). Methodological aspects of the moss vegetation studies. Ukrainian Botanical Journal, 70(3), 392–397. https://doi. org/10.15407/ukrbotj70.03.392 Herzog, T., & Höfler, K. (1944). Kalkmoosgesellschaften um Golling. Hedwigia, 82 (1/2), 2–90. Herenchuk, K.I. (1973). Pryroda Ivano-Frankivskoi oblasti. Vyshcha shkola. Herenchuk, K.I. (1978). Pryroda Chernivetskoi oblasti. Vyshcha shkola. Herenchuk, K.I. (1981). Pryroda Zakarpatskoi oblasti. Vyshcha shkola. Hill, M. (1979). TWINSPAN – A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornel University, Ithaca. Hnylko, O., Krobicki, M., Feldman-Olszewska, A., & Iwanczuk, J. (2015). Geology of the volcano-sedimentary complex of the Kamyanyi Potik Unit on Chyvchyn Mount (Ukrainian Carpathians): preliminary results. Geological Quarterly, 59 (1), 145–156. http://dx.doi. org/10.7306/gq.1220 Hodgetts, N. G., Söderström, L., Blockeel, T. L., Caspari, S., Ignatov, M. S., Konstantinova, N. A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N. E., Blom, H. H., Bruggeman- Nannenga, M. A., Brugués, M., Enroth, J., Flatberg, K. I., Garilleti, R., Hedenäs, L., Holyoak, D. T., Hugonnot, V., Kariyawasam, I., Köckinger, H., Kučera, J., Lara, F ., & Porley, R. D. (2020). An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology, 42 (1), 1–116. https://doi.org/10.1080/03736687. 2019.1694329 IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports № 106. FAO. Klika, J. (1948). Rostlinna sociologie (Fytocoenologie). Melantrich. Larson, D.W., Matthes, U., & Kelly, P .E. (2000). Cliff ecology. Pattern and process in cliff ecosystems. Cambridge University Press. Lavergne, S., Thompson, J.D., Garnier, E., & Debussche, M. (2004). The biology and ecology of narrow endemic and wide-spread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos, 107, 505–518. https://doi.org/10.1111/j.0030-1299.2004.13423.x MapInfo. (2007). MapInfo Professional v. 9.5. Pitney Bowes MapInfo. https://mapinfo-professional.software.informer.com/9.5/ Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P ., Dengler, J., Čarni, A., Šumberová, K., Raus, T., di Pietro, R., Gavílan García, R., Chytrý, M., Yakushenko, D., Schaminée, J.H.J., Bergmeier, E., Santos Guerra, A., Daniëls, F .J.A., Ermakov, N., Valachovic, M., Pignatti, S., Rodwell, J. S., Pallas, J., Capelo, J., Weber, H.E., Lysenko, T., Didukh, Y.P ., Capelo, J., Weber, H., Solomesh, A., Dimopolous, P ., Aguiar, C., Freitag, H., Hennekens, S.M., & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen and algal communities. Applied Vegetation Science, 19(1), 3–264. https://doi.org/10.1111/avsc.12257 Onete, M. (2012). Assessment and conservation status of ferns from Buila-Vânturaria National Park. Oltenia Studii şi comunicări Ştiinţele Naturii, 28(2), 144–148. Păşcuţ, C.G. (2018). Phytocoenological study of rocky vegetation from Codru-Moma Mountains based on ecological indices. Annals of the University of Oradea, Fascicle: Environmental Protection, 30, 145–156. https://doi.org/10.5281/zenodo.4362296 Peciar, V. (1965). Epiphytische Moosgesellschaften der Slowakei. Acta Botanica Facultatis Rerum Naturalium Universitatis Comenianae, 12, 371–471. Pigott, C.D., & Walters, S.M. (1954). On the interpretation of the discontinuous distributions shown by certain British species of open habitats. Journal of Ecology, 42, 95–116. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ Ragulina, M.E., & Orlov, O.L. (2021). Mokhova roslynnist skelnykh vykhodiv lisovogo zakaznyka “Chortova skelya” ta yiyi antropogenna dunamika. Naukovi Zapysky Derzhavnogo Pryrodnychogo Muzeiu, 37, 137–142. Redžić, S. (Ed.). (2002). Evaluation of Natural Values of Environment of Brcko District. Center of ecology and natural resources of the Faculty of Science University of Sarajevo & Counterpart International. Rodwell, J.S., Schaminée, J.H.J., Mucina, L., Pignatti, S., Dring, J., & Moss, D. (1998). The Scientific Basis of the EUNIS Habitat Classification. Report to the European Topic Centre on Nature Conservation. Unit of Vegetation Science, Lancaster Roleček, J., Tichý, L., Zelený, D., & Chytrý, M. (2009) Modified TWINSPAN Classification in Which the Hierarchy Respects Cluster 22/2 • 2023, 143–160 155 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Heterogeneity. Journal of Vegetation Science, 20, 596–602. https://doi. org/10.1111/j.1654-1103.2009.01062.x Sádlo, J., & Chytrý, M. (2009). Vegetace skal, zdí a stabilizovaných sutí (Asplenietea trichomanis). Vegetation of rocks, walls and stable screes. In: Chytrý M. (Ed.). Vegetace České republiky. 2. Ruderální, plevelová, skalní a suťová vegetace. Academia. Speziale, K.L., & Ezcurra, C. (2012). The role of outcrops in the diversity of Patagonian vegetation: Relicts of glacial palaeofloras. Flora, 207, 141–149. https://doi.org/10.1016/j.flora.2011.09.002 Stodiek, E. (1937). Soziologische und ökologische Untersuchungen an den xerotopen Moosen und Flechten des Muschelkalkes in der Umgebung Jenas. Repertorium specierum novarum regni vegetabilis. Beiheft, 99, 1–46. Ştefureac, T. I. (1941). Cercetări sinecologice şi sociologice asupra Bryophytelor din codrul secular Slătioara (Bucovina). Analele Academiei Române, Memoriile Secțiuni & Ibreve; Ştiințifice, 3(16), 1–197. Świerkosz, K. (2004). Notes on the syntaxonomy of the Asplenietea trichomanis class in Poland. Polish Botanical Journal, 49(2), 203–213. Świerkosz, K., Reczyńska, K. Kulpiński, K., & Tyc, A. (2011). Udział gatunków obcych w zbiorowiskach z klasy Asplenietea trichomanis (Br.- Bl. in Meier & Br.-Bl. 1934) Oberd. 1977 w południowej Polsce. Acta Botanica Silesiaca, 6, 97–114. Świerkosz K., & Reczynska K. (2012). Wapienne ściany skalne ze zbiorowiskami Potentilletalia caulescentis. In: W. Mróz (Ed.). Monitoring siedlisk przyrodniczych. Przewodnik metodyczny. GIOŚ. Theurillat, J.-P ., & Guisan, A. (2001). Potential impact of climate change on vegetation in the European Alps. Climatic Change, 50, 77–109. https://doi.org/10.1023/A:1010632015572 Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453. https://doi. org/10.1111/j.1654-1103.2002.tb02069.x Tichý, L., & Chytrý, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17, 809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x Tomaselli, M., Foggi, B., Carbognani, M., Gennai, M., & Petraglia, A. (2019). The rock-face vegetation in the northern Apennines and neighbouring mountain areas, from the coast line to the highest summits. Phytocoenologia, 49(1), 7–70. https://doi.org/10.1127/ phyto/2018/0117 Vadam, J.-C. (1983). Les groupements muscinaux des escarpements et rochers calcaires des environs de Montbéliard (Doubs). Ann. Sc. Univ. Franche-Comté, Besançon, Biol. Vég.,4(4), 55—96. Valachovič, M. 1995: Asplenietea trichomanis (Br.-Bl. In Meier et Br.- Bl. 1934) Oberd. 1977. In: M.Valachovič (Ed.). Rastlinné spoločenstvá Slovenska. 1. Pionierskavegetácia, Veda. 22/2 • 2023, 143–160 156 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Relevé ID Date (year/ month/day) Latitude Longitude Relevé area (m2) Altitude (m) Aspect (degrees) Slope (degr ees) Cover total (%) Cover herb layer (%) Cover moss layer (%) Author 1 29.07.2018 49.002238 24.877798 8 263 45 40 90 40 90 BV 2 29.07.2018 49.000647 24.835605 10 283 45 30 80 70 80 ChI 3 28.05.2008 48.496594 27.437630 15 233 180 80 80 30 ChI 4 28.07.2018 49.021633 24.784517 – 287 350 80 60 30 50 DY 5 28.07.2018 49.021633 24.784517 – 287 360 80 80 20 80 DY 6 28.07.2018 49.021633 24.784517 – 287 270 90 70 20 70 DY 7 28.07.2018 49.021633 24.784517 – 287 360 90 70 20 70 DY 8 29.07.2018 48.990813 24.857666 – 307 360 80 80 50 40 DY 9 29.07.2018 48.990813 24.857666 – 307 270 70 50 40 40 DY 10 29.07.2018 48.990813 24.857666 – 247 360 80 90 45 80 DY 11 29.07.2018 49.134067 24.700400 – 232 320 80 60 40 40 DY 12 28.07.2018 49.021633 24.784517 – 284 360 90 70 35 70 DY 13 29.07.2018 48.990813 24.857666 – 247 360 80 85 20 80 DY 14 28.07.2018 49.021308 24.768802 10 273 – – 80 40 80 ChI 15 12.07.2013 48.529253 24.446425 14 233 45 50 60 60 50 ChI 16 28.07.2018 49.021633 24.784517 – 284 360 80 70 30 70 DY 17 29.07.2018 48.990813 24.857666 12 307 180 60 50 50 10 DY 18 01.08.2018 47.942574 24.115118 10 486 120 90 90 20 50 VI/BO/RG 19 01.08.2018 47.940410 24.111568 10 521 320 90 95 20 55 VI/BO/RG 20 01.08.2018 47.936740 24.104383 10 426 300 90 95 40 55 VI/BO/RG 21 31.07.2018 47.950290 24.091400 10 657 290 87 80 20 60 VI/BO/RG 22 31.07.2018 47.950330 24.090490 10 645 275 90 70 15 55 VI/BO/RG 23 01.08.2018 47.938880 24.109010 10 439 20 90 95 40 55 VI/BO/RG 24 01.08.2018 48.458617 26.103283 – 334 360 80 70 40 40 VI/BO/RG 25 31.07.2018 47.950170 24.089620 10 638 280 20 80 20 60 VI/BO/RG 26 31.07.2018 47.950450 24.083850 10 635 350 90 80 20 60 VI/BO/RG 27 31.07.2018 47.950290 24.090760 10 651 310 85 90 20 70 VI/BO/RG 28 03.08.2019 48.266350 23.634320 10 564 80 5 60 60 0 VI/BO/RG 29 03.08.2019 48.263900 23.629190 10 1014 300 90 60 20 40 VI/BO/RG 30 03.08.2019 48.266880 23.629290 10 598 120 90 60 20 40 VI/BO/RG 31 05.08.2019 48.256430 23.677520 10 827 200 90 80 20 60 VI/BO/RG 32 05.08.2019 48.256550 23.677540 10 807 210 85 80 30 50 VI/BO/RG 33 05.08.2019 48.256430 23.677500 10 846 210 90 80 5 75 VI/BO/RG 34 05.08.2019 48.256430 23.677870 10 842 223 75 70 10 60 VI/BO/RG 35 05.08.2019 48.256970 23.678410 10 835 270 90 60 5 55 VI/BO/RG 36 05.08.2019 48.256300 23.677300 10 840 140 90 70 20 50 VI/BO/RG 37 03.08.2019 48.266350 23.634320 10 557 100 90 80 20 60 VI/BO/RG 38 04.08.2019 48.268990 23.633700 10 565 160 30 80 30 50 VI/BO/RG 39 03.08.2019 48.264850 23.642230 10 754 290 90 80 20 60 VI/BO/RG 40 03.08.2019 48.270900 23.629260 10 602 300 90 70 20 50 VI/BO/RG 41 03.08.2019 48.257540 23.531370 10 536 10 90 60 20 40 VI/BO/RG 42 04.08.2019 48.268970 23.630950 10 547 270 90 90 20 70 VI/BO/RG 43 04.08.2019 48.269050 23.633440 10 547 250 87 95 10 85 VI/BO/RG 44 04.08.2019 48.276870 23.640530 10 557 140 90 90 10 80 VI/BO/RG 45 05.08.2019 48.268910 23.633920 10 519 240 90 80 2 78 VI/BO/RG 46 03.08.2019 48.267120 23.629600 10 574 40 45 60 20 40 VI/BO/RG Table 1: Geographical references of shady chasmophytic habitat communities in Ukraine. Tabela 1: Geografski podatki za zasenčene hazmofitske združbe v Ukrajini. Acronyms: BV – Budzhak Vasyl, ChI – Chorney Illia, DY – Didukh Yakiv, VI – Vasheniak Iuliia, BO – Bezsmertna Olesya, RG – Gleb Ruslan Appendix 22/2 • 2023, 143–160 157 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Number of relevés 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Esy-EUNIS expert system ? ? ? ? ? ? C22a ? ? ? R55 R55 V ? ? ? R55 ? ? ? R55 ? ? ? S35 ? ? ? C21a ? ? ? ? ? ? ? ? ? V39 ? ? R57 R55 R55 R57 R55 Syntaxa ID 1 2 3 4 Isothecium alopecuroides-Polystichum braunii community Isothecium alopecuroides 3 3 + . 2 . 2 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plagiomnium cuspidatum . 1 . + + . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ctenidium molluscum + . . r 5 5 . 2 5 5 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Homalia trichomanoides . 3 . + . . 3 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Acer platanoides . . + . + . . 1 . . . . + . . . . . . . . . . . . . . . + . . . . . . . . . . . . . r . . . Polystichum braunii . . . . 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . Rubus idaeus 1 . . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eurhynchium striatum + 2 . . 2 . . . . . . . + . . . . . . . + 2 . . . . . . . . . . . . . . . . . . . . . . . . Porella platyphylla-Asplenium ruta-muraria community Campanula trachelium . . . . . . . . . . . + 1 . + . + . + . 1 . 1 1 . . . . . . . . . 1 . . . . . . . . . . . . Porella platyphylla . . . . . . . . . . . r . + . . . . + + r . r 2 . . . . . . . . . . . . . . . . . . . . . . Fagus sylvatica (juv.) . . . . + . . 1 . . + + . . . . r . . . + + r . . . . . . . . . . . . . . . . . . . . . . . Asplenium ruta-muraria . . . . . . . . 1 1 . + . . . + 1 . . . . . + . . . . . . . 3 . 1 . . . . . . . 1 . . . . . Sagina procumbens 1 . . . . . . . . 2 . 1 2 . . . 1 + . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . Galium intermedium + . . . 1 . . . 1 . 1 1 . . . . 2 . . . . . r . . . . . . . . . 1 . 1 . . . 1 1 . . . . . . Exsertotheca crispa 2 . + . . . . . . . + . . 4 . 4 . 5 . . . 5 . . . . . . . . . . . . . . . . . . . 2 . . . . Pseudanomodon attenuatus-Chrysosplenium alternifolium community Pseudanomodon attenuatus 3 1 3 + + . + 3 . . + + + . 3 . . . 2 3 + . + . 5 5 5 5 5 5 5 5 3 1 5 4 5 . 5 5 5 . . + 4 . Conocephalum salebrosum . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2 . 2 2 1 5 . . . 3 3 . 3 1 2 4 . . . 4 Chrysosplenium alternifolium . . . . . . . . . . . . . . . . . . . . . . . . 2 . 5 1 1 1 . 3 . . . . . 5 3 . 2 . . . 1 + Campanula rapunculoides . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . 1 1 1 . 2 . . . . 1 . 1 . . . . Pedinophyllum interruptum-Polystichum aculeatum сommunity Polystichum aculeatum . . . . 1 . . . . . + . + . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1 . 1 1 + Asarum europaeum . . . 1 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 3 . . 1 . . . . . 1 2 . 1 1 Campanula carpatica . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . + 2 Poa nemoralis . . . . . . . + . . . . . . . . . + . . . . . . . 1 . . . . 5 2 . . . . . . 3 . 1 1 . . + 1 Pedinophyllum interruptum . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . + . . + + Lunaria rediviva . . . . . . . . . . . . 1 . . . + . . . . . + . . . . . . . . 1 . . . . . . . . . 1 1 2 . . Fissidens dubius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 1 . Veronica urticifolia . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . + . . 1 . Table 2: Phytosociological table of shady chasmophytic habitat communities. Species are arranged according to decreasing phi-values and according to decreasing overall constancy for non-diagnostic species Tabela 2: Fitocenološka tabela zasenčenih hazmofitskih združb. Vrste so urejene po padajočih vrednostih fi koeficienta, ne diagnostične vrste pa po padajoči stalnosti. 22/2 • 2023, 143–160 158 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Number of relevés 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Carex montana . . . . . . . . . 1 . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . + + Pulmonaria obscura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + . Scopolia carniolica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . + . Senecio nemorensis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . + . Radula complanata 1 . 2 . . . . . . . . . . . . . . . . . + . + . . . . . . . . . . . . . . . . . . . . + r . Salvia glutinosa . . . . . . . . . . . + 1 . . + . . . . + . . . 1 . . 1 . . r . . . . . . . . . . r . . . + Aegopodium podagraria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . 1 r . . . Moehringia trinervia . . . . . . . . . . . . . . + . . . . . . . . 1 . . . . . . . . . . . . . . . r . 1 . . . + Galium transcarpaticum . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . + Alleniella complanata . . . . . . . . . . . . . 2 . 2 . . . . . . . 1 . . . . . . . . . . . . . . . . . 2 . . . . All. Ctenidio-Polypodion vulgaris, Ord. Ctenidio-Polypodietalia vulgaris, Cl. Polypodietea Phyllitis scolopendrium 1 2 2 3 . 1 1 2 1 . + 1 2 3 1 1 2 1 + 2 2 . 1 1 2 5 4 2 5 3 2 2 3 3 3 4 4 3 2 3 3 1 4 2 1 2 Polypodium vulgare + 2 + 2 2 1 . + + 2 1 . . . . 1 . + . 1 . 1 . 1 5 . . 2 . . r 5 1 . 2 . 1 3 3 5 . 1 . . 1 1 Asplenium trichomanes + 1 2 . 1 1 . 1 2 2 + + . 1 2 1 1 1 1 + 1 1 r 1 . 1 1 1 . . 3 2 . 3 5 1 1 . 1 . 5 1 . . 2 2 Hedera helix 1 1 1 1 1 . . 1 3 . . . . 5 . . . . . . 2 . . . 3 . . . . 2 . . 5 . . 1 . . . 1 . . 5 1 4 1 Cystopteris fragilis . . . . . . 1 . . . 1 1 + + . + 1 + . . 1 + + . 2 1 3 1 1 . 1 1 . 2 . 1 1 . 1 r 1 r . . . 1 Dryopteris filix-mas 2 1 1 . 2 1 . + . . + . . + . . . . 1 1 . . . 1 . . . . . . . . . . 1 . . . . . . . 1 + . + Lamium galeobdolon . . 1 + . . . . . . . . . . . + 1 . 1 1 . . . . 3 1 5 5 1 1 3 5 2 1 3 . 1 . . 1 5 . 5 1 2 1 Other vascular plants in alphabetical order Cardaminopsis arenosa . . . . . . . . . . . . r + + 1 r . + . r . r . . . . . . . . . . . . . . . . . . 1 . . r 1 Chelidonium majus . . . . . . . . . . . r + + . + . . . . + . + . . . 5 . . . 2 . . . . . . . 2 3 3 1 . . . . Geranium robertianum r . . 1 . . . . . . + 1 r . + . 1 r . . r . 1 . 2 2 1 . . . 2 . . . . 1 + 5 5 . . 1 r . + 1 Hepatica nobilis . . . . . . . . 1 . . 1 1 . . . 1 . . . . . + . . . . . . . . . 1 1 1 . 1 . . . . . 2 . . + Hylotelephium maximum . . . . . . . . + 1 . . 1 . . . 1 . . . . . 1 . . + . . . . . . . . . . . . 3 1 . + . . + . Mercurialis perennis . . . . . . . . . . + . . . . . . . . 1 1 . + . . . . . . . . . 3 . . . . . . . . . . . . + Mycelis muralis + . . . . . . . . . + + + . + + 1 + 1 + 1 . + + . . . . . . . . . . . . . . . . . r . . . + Sambucus nigra (juv.) . . . . . . . . . . . + 2 . . . + . . . + . r . 5 . 3 . + 1 . 2 . . 1 . . . . 2 . + . + . . Urtica dioica . . . + . . . . . . . + + . . . + . . . + . . . . 1 . . . . . . . . . . . . . . r . . 1 . . Valeriana sp. . . . . . . . . . . . + + . . . + . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . Other cryptogam species in alphabetical order Anomodon viticulosus . . 5 + . . . . . . + + + 2 3 . . . 2 2 + . + 3 . . 1 . . . . . . . . . . . 1 . . 2 . + . 3 Chiloscyphus polyanthos var. rivularis . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . 1 . . . . . . . . . . . . Homalothecium philippeanum . . . . . . . . . . . . . . 2 . . . 1 1 . . . 1 . . . . . . . . . . . . . . . . . . . . . . Lepraria membranacea . . . . . + . . . . . . . + . + . + . . . + r . . . . . . . . . . . . . . . . . . + . . . + Metzgeria conjugata . . + + . 1 3 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 r Mnium stellare . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 1 . 1 . . . . 2 . . . . . + . Plagiochila porelloides r . r . . 1 . r . . . . . + . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 + Thamnobryum alopecurum . . 3 + . . + 1 . . . . . 1 . . . 5 . . . . . . . . . . . . . . . . . . . . . . . 1 . + . 2 22/2 • 2023, 143–160 159 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine 1 – Isothecium alopecuroides-Polystichum braunii commu- nity, 2 – Porella platyphylla-Asplenium ruta-muraria com- munity, 3 – Pseudanomodon attenuatus-Chrysosplenium alternifolium community, 4 – Pedinophyllum interruptum- Polystichum aculeatum community Taxa that rarely occurred in the table Vascular plants: Acer pseudoplatanus (11:+; 34:+), Aruncus dioicus (28:4), Asplenium viride (9:1; 11:+), Athyrium filix-femina (4:+; 11:+; 27:+), Atropa bella-donna (14:+; 24:1; 25:+), Bromopsis sp. (13:+), Campanula persicifolia (12:1; 28:+), Carex digitata (36:r; 38:r), Carex sp. (12:+; 13:+), Circaea lutetiana (27:2), Corylus avellana (25:1), Daphne mezereum (9:1), Dentaria glandulosa (2:+; 4:+), Dryopteris carthusiana (4:+), D. expansa (6:1), Epipactis helleborine (17:+), Equisetum palustre (43:r), Euonymus europaea (27:3), E. verrucosa (38:3; 45:3), Fraxinus excelsior (17:+), Galium aparine (31:+), G. odoratum (6:+; 21:+; 26:r), Gentiana asclepiadea (25:+), Geranium lucidum (44:5), Glechoma hederacea (28:+), Hieracium murorum subsp. sylvularum (31:+), Impatiens noli-tangere (13:1; 17:1), Luzula luzuloides (6:+), Maianthemum bifolium (9:+), Melandrium dioicum (21:+), Melica picta (17:+), M. uniflora (15:+), Melittis melissophyllum subsp.carpatica (9:+), Orthilia secunda (9:+), Oxalis acetosella (6:1; 18:1; 36:3), Paris quadrifolia (18:+; 26:r), Phegopteris connectilis (6:+), Pilosella echioides (16:1; 29:+), Polygonatum multiflorum (17:+), Prenanthes purpurea (9:+), Quercus robur (10:r), Rosa pendulina (9:+), Seseli libanotis (12:+; 17:+; 23:+), Silene sp. (17:+; 23:+), Solidago virgaurea (36:1; 38:1), Sorbus aucuparia (10:+), Stachys sylvatica (11:+; 12:+), Symphytum cordatum (27:1), Tilia cordata (5:+), Ulmus glabra (41:+), Valerianella dentata (16:1; 29:1), Vincetoxicum hirundinaria (17:+; 23:+), Viola riviniana (15:+). Cryptogam species: Atrichum undulatum (6:1), Brachythecium rivulare (6:1; 7:3) B. rutabulum (30:1), B. salebrosum (7:3), Campyliadelphus chrysophyllus (29:1), Campylophyllopsis calcarea (37:1), Cololejeunea rossetina (29:+), Conocephalum conicum (18:+), Dicranum scoparium (9:3), Ditrichum flexicaule (10:1), Eurhynchium angustirete (7:+), Homalothecium lutescens (11:+; 12:+; 37:3), Hypnum cupressiforme (6:1; 10:2), Lejeunea cavifolia (14:+; 28:+), Lescuraea incurvata (13:+; 17:+), Leucodon sciuroides (10:+; 12:+), Lophocolea bidentata (29:+), Mannia fragrans (39:1), Metzgeria furcata (2:r), M. pubescens (14:+), Plagiomnium rostratum (14:+), Polytrichum sp. (27:1), Porella arboris-vitae (28:2), Ptychostomum capillare (17:+), Rhizomnium punctatum (1:5; 3:+; 30:5), Sciuro-hypnum populeum (39:1), Thuidium recognitum (2:+; 7:1), Tortella tortuosa (11:+; 17:+). Table 3: Impact of threats and sociological assessment of the shady chasmophytic communities. Tabela 3: Vpliv groženj in sociološka ocena za zasenčene hazmofitske združbe. Cluster ID UkrBiotop (2011) National Habitat Catalogue (2018) Natura 2000 EUNIS 1 2 3 4 Sum of the threats Stability, % Class 5 6 7 8 9 10 11 12 13 14 Sum of the sociological assessment Value, % Class 1 H2.114 K5.2 8210 H3.252 2 2 2 4 10 66.77 II 4 4 4 4 4 4 4 3 1 2 34 79.95 II 2 H2.114 K5.2 8210 H3.252 2 2 2 4 10 66.77 II 4 4 4 4 4 4 4 3 1 2 34 79.95 II 3 H2.114 K5.2 8210 H3.252 3 2 2 4 11 77.88 II 4 4 4 4 4 4 4 3 1 2 34 79.95 II 4 H2.114 K5.2 8210 H3.252 3 2 2 4 11 77.88 II 4 4 4 4 4 4 4 3 1 2 34 79.95 II 1 – Isothecium alopecuroides-Polystichum braunii community, 2 – Porella platyphylla-Asplenium ruta-muraria community, 3 – Pseudanomodon attenuatus-Chrysosplenium alternifolium community, 4 – Pedinophyllum interruptum-Polystichum aculeatum community. 1 – results of threats’ impact; 2 – scale of the negative impact; 3 – degree of the negative influence of external factors; 4 – degree and speed of recovery (plastic, dynamic stability); 5 – position in the successional series is the final steady climax and subclimax stages; 6 – regional representativity; 7 – nature of the distribution; 8 – ecological amplitude (scales); 9 – environmental parameters of dis- tribution; 10 – presence of invasive species; 11 – degree of hemerobity, 12 – ratio of species between strategy types stress-tolerant/ expellerant species; 13 – sociological significance; 14 – synsociological state. 22/2 • 2023, 143–160 160 Didukh et al. Rare shady chasmophytic habitat communities in Ukraine Name of the factor Impact of threats Category 4 3 2 1 Results of the threats’ impact (EX) damaged habitats; (CR) habitats under critical threat of extinction (EN) endangered habitats (VU) vulnerable habitats (TC) habitats that are not threatened with extinction Scale of the negative impact General (global) Regional Local Absent negative impact Degree of the negative influence of external factors Very powerful (destructive), destroyed completely, and recovers from pioneer stages Significant, the structure of dominants is changing Moderate, changing species composition Changes are invisible, or biotopes are formed under the direct influence of an anthropogenic factor Degree and speed of recovery (plastic, dynamic stability) Very weak (more than 100 years) Weak (more than 10 years) Tolerable (more than 15 years) Good (several years) Sociological assessment The position in the successional series is the final steady climax and subclimax stages Permanent climax and sub-climax stages Long-term stages of endoecogenesis affecting change in the microclimate and soil Medium-term serial syngenetic stages that do not affectchange in soil and microclimate characteristics Pioneer and short-term stages Regional representativity Spread within one or two geobotanical regions or districts Spread within one geobotanical province Spread within one geobotanical area or geographical zone Spread within several geobotanical area or geographical zones Nature of the distribution Some small localities are known Habitat has disjunctive distribution Habitat is sporadically spread on the border of its area Habitat is usually spread within its area Ecological amplitude (scales) Narrow amplitude (less than 5%) of all environmental factors Narrow amplitude (less than 5%) for one environmental factor; and the amplitude is less than 10% for other environmental factors Wider amplitude (less than 10%) of more than one environmental factors Wide amplitude (more than 10%) of all environmental factors Environmental parameters of distribution Specific, extreme environmental conditions Narrow distribution of rare habitat Sporadical distribution within optimal conditions Common distribution within optimal conditions Presence of invasive species Absence of invasive species Presence of invasive species Presence of invasive species as diagnostic species with high constancy Invasive species are dominant in the habitat Degree of hemerobity Ahemerobic and oligohemerobic habitats (ha less than 25) Mesohemerobia habitats (ha=25–50) Euhemerobia habitats (ha=50–75) Polyhemerobic and metahemerobic habitats (more than 75) Ratio of species between strategy types stress-toler- ant / expellerant species More than 1.7 1.2–1.7 0.7–1.2 Less than 0.7 Sociological significance Presence or dominance of CR, EN species or a large number of red-listed species Dominant species are VU, LC, DD categories or red- listed species Presence of VU, LC, DD species, or a couple of red- listed species Absence of rare species SYnsociological estate Habitat listed in Resolution 4 of the Bern Convention, Habitat Directive and in the Green Book of Ukraine Habitat is listed in the Green Book of Ukraine Habitat is listed in Resolution 4 of the Bern Convention, Habitat Directive Habitat is not listed and not protected Table 4: Categorization of habitat characteristics for assessing the impact of threats and sociological assessment (Didukh et al., 2018) Tabela 4: Kategorije habitatnih značilnosti za oceno vpliva groženj in sociološko oceno.