
Informatica 39 (2015) 237–247 237

Strategic Deployment in Graphs

Elmar Langetepe and Andreas Lenerz
University of Bonn, Department of Computer Science I, Germany

Bernd Brüggemann
FKIE, Fraunhofer-Institute, Germany

Keywords: deployment, networks, optimization, algorithms

Received: June 20, 2014

Conquerors of old (like, e.g., Alexander the Great or Ceasar) had to solve the following deployment prob-
lem. Sufficiently strong units had to be stationed at locations of strategic importance, and the moving
forces had to be strong enough to advance to the next location. To the best of our knowledge we are the
first to consider the (off-line) graph version of this problem. While being NP-hard for general graphs, for
trees the minimum number of agents and an optimal deployment can be computed in optimal polynomial
time. Moreover, the optimal solution for the minimum spanning tree of an arbitrary graph G results in a
2-approximation of the optimal solution for G.

Povzetek: Predlagana je izvirna rešitev za razvrstitev enot in premikanje na nove pozicije.

1 Introduction
LetG = (V,E) be a graph with non-negative edge end ver-
tex weights we and wv , respectively. We want to minimize
the number of agents needed to traverse the graph subject
to the following conditions. If vertex v is visited for the
first time, wv agents must be left at v to cover it. An edge
e can only be traversed by a force of at least we agents. Fi-
nally, all vertices should be covered. All agents start in a
predefined start vertex vs ∈ V . In general they can move
in different groups. The problem is denoted as a strategic
deployment problem of G = (V,E).

The above rules can also easily be interpreted for mod-
ern non-military applications. For a given network we
would like to rescue or repair the sites (vertices) by a
predifined number of agents, whereas traversing along the
routes (edges) requires some escorting service. The results
presented here can also be applied to a problem of posi-
tioning mobile robots for guarding a given terrain; see also
[3].

We deal with two variants regarding a notification at the
end of the task. The variants are comparable to routes
(round-trips) and tours (open paths) in traveling-salesman
scenarios.

(Return) Finally some agents have to return to the start
vertex and report the success of the whole operation.

(No-return) It suffices to fill the vertices as required, no
agents have to return to the start vertex.

Reporting the success in the return variant means, that
finally a set, M , of agents return to vs and the union of all
vertices visited by the members of M equals V .

We give an example for the no-return variant for the
graph of Figure 1. It is important that the first visit of a

e1

e3
e4

e2

v1 = vs

v2

v3
v5

v4

1

1

1
15

1

1

20 7

1

e5 25

22

e6

Figure 1: A graph with edge and vertex weights. If the agents
have to start at the vertex v1 an optimal deployment strategy re-
quires 23 agents and visits the vertices and edges in a single group
in the order (v1, e1, v2, e2, v3, e2, v2, e1, v1, e3, v4, e3, v1, e1,
v2, e4, v5). The traversal fulfills the demand on the vertices in the
order v1, v2, v3, v4, v5 by the first visits w.r.t. the above sequence.
At the end 4 agents are not settled.

vertex immediately binds some units of the agents for the
control of the vertex. For start vertex vs = v1 at least 23
agents are required. We let the agents run in a single group.
In the beginning one of the agents has to be placed imme-
diately in v1. Then we traverse edge e1 of weight 1 with
22 agents from v1 to v2. Again, we have to place one agent
immediately at v2. We move from v2 to v3 along e2 of
weight 20 with 21 agents. After leaving one agent at v3 we
can still move back along edge e2 (weight 20) from v3 to v2

with 20 agents. The vertex v2 was already covered before.
With 20 agents we now visit v4 (by traversing e1 (weight
1) and e3 (weight 1), the vertex v1 was already covered and
can be passed without loss). We have to place one agent
at v4 and proceed with 19 agents along e3 (weight 1), e1

(weight 1) and e4 (weight 7) to v5 where we finally have to
place 15 agents. 4 agents are not settled.
It can be shown that no other traversal requires less than

238 Informatica 39 (2015) 237–247 E. Langetepe et al.

23 agents. By the results of Section 3 it turns out that
the return variant solution has a different visiting order
v1, v2, v3, v5, v4 and requires 25 agents.

Although the computation of an efficient flow of some
items or goods in a weighted network has a long tra-
dition and has been considered under many different
aspects the problem presented here cannot be covered
by known (multi-agent) routing, network-flow or agent-
traversal problems.

For example, in the classical transportation network
problem there are source and sink nodes whose weights
represent a supply or a demand, respectively. The weight of
an edge represents the transportation cost along the edge.
One would like to find a transshipment schedule of mini-
mum cost that fulfils the demand of all sink nodes from the
source nodes; see for example the monograph of [4] and the
textbooks [10, 1] . The solutions of such problems are of-
ten based on linear programming methods for minimizing
(linear) cost functions.

In a packet routing scenario for a given weighted net-
work, m packet sets each consisting of si packets for
i = 1, 2, . . .m are located at m given source nodes. For
each packet set a specified sink node is given. Here the
edge weights represent an upper bound on the number of
single packets that can be transported along the edge in one
time step. One is for example interested in minimizing the
so-called makespan, i.e., the time when the last packet ar-
rives at its destination; see for example [13]. For a general
overview see also the survey [9].

Similarily, in [11] the multi-robot routing problem con-
siders a set of agents that has to be moved from their start
locations to the target locations. For the movement between
two locations a cost function is given and the goal is to min-
imize the path costs. Such multi-robot routing problems
can be considered under many different constraints [16].
For the purpose of patrolling see the survey [14].

Additionally, online multi-agent traversal problems in
discrete environments have attracted some attention. The
problem of exploring an unknown graph by a set of k agents
was considered for example in [5, 6]. Exploration means
that at the end all vertices of the graph should have been
visited. In this motion planning setting either the goal is
to optimize the number of overall steps of the agents or to
optimize the makespan, that is to minimize the time when
the last vertex is visited.

Some other work has been done for k cooperative clean-
ers that move around in a grid-graph environment and have
to clean each vertex in a contaminated environment; see
[2, 17]. In this model the task is different from a simple
exploration since after a while contaminated cells can rein-
fect cleaned cells. One is searching for strategies for a set
of k agents that guarantee successful cleanings.

Our result shows that finding the minimum number of
agents required for the strategic deployment problem is
NP-hard for general graphs even if all vertex weights are
equal to one. In Section 2 this is shown by a reduction
from 3-Exact-Cover (3XC). The optimal number of agents

for the minimum spanning tree (MST) of the graphG gives
a 2-approximation for the graph itself; see Section 3. For
weighted trees we can show that the optimal number of
agents and a corresponding strategy for T can be computed
in Θ(n log n) time. Altogether, a 2-approximation for G
can be computed efficiently. Additionally, some structural
properties of the problem are given.

The problem definition gives rise to many further inter-
esting extensions. For example, here we first consider an
offline version with global communication, but also online
versions with limited communication might be of some in-
terest. Recently, we started to discuss the makespan or
traversal time for a given optimal number of agents. See
for example the masterthesis [12] supervised by the second
author.

2 General graphs
We consider an edge- and vertex-weighted graph G =
(V,E). Let vs ∈ V denote the start vertex for the traversal
of the agents. W.l.o.g. we can assume that G is connected
and does not have multi-edges.

We allow that a traversal strategy subdivides the agents
into groups that move separately for a while. A traversal
strategy is a schedule for the agents. At any time step any
agent decides to move along an outgoing edge of its current
vertex towards another vertex or the agent stays in its cur-
rent vertex. We assume that any edge can be traversed in
one time step. Long connections can be easily modelled by
placing intermediate vertices of weight 0 along the edge.
Altogether, agent groups can arrive at some vertex v at the
same time from different edges.

The schedule is called valid if the following condition
hold. For the movements during a time step the number of
agents that use a single edge has to exceed the edge weight
we. After the movement for any vertex v that already has
been visited by some agents, the number of agents that are
located at v has to exceed the vertex weight ve. From now
on an optimal deployment strategy is a valid schedule that
uses the minimum number of agents required.

Let N :=
∑
v∈V wv denote the number of agents re-

quired for the vertices in total. Obviously, the maximum
overall edge weightwmax := max{we|e ∈ E} of the graph
gives a simple upper bound for the additional agents (be-
yond N) used for edge traversals. This means that at most
wmax +N agents will be required. With wmax +N agents
one can for example use a DFS walk along the graph and
let the agents run in a single group.

2.1 NP-hardness for general graphs
For showing that computing the optimal number of agents
is NP-hard in general we make use of a reduction of the
3-Exact-Cover (3XC) problem. We give the proof for the
no-return variant, first.

The problem 3-Exact-Cover (3XC) is given as follows.
Given a finite ground set X of 3n items and a set IF of sub-

Strategic Deployment in Graphs Informatica 39 (2015) 237–247 239

a1

1 1 1 1 1 1 1 1 1 1 1 1

a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

F1 F2 F3 F4 F5 F6

vs

d1

0

1 1 1 1 1 1

000000

0

m− n + 1 = 6− 4 + 1 = 3 333333
3

33
3

3333
3

3
3

Figure 2: For X = {a1, a2, . . . , a12} and the subsets IF = {F1, F2, . . . , F6} with F1 = {a1, a2, a3}, F2 = {a1, a2, a4}, F3 =
{a3, a5, a7}, F4 = {a5, a8, a9}, F5 = {a6, a8, a10} and F6 = {a9, a11, a12} there is an exact 3-cover with F2, F3, F5 and F6. For
the start vertex vs an optimal traversal strategy moves in a single group. We start with 3n+m+ 1 = 19 agents, first visit the vertices
of F2, F3, F5 and F6 and cover all elements from there, visiting an element vertex last. After that 3n+n = 4n = 16 agents have been
placed and m− n+ 1 = 3 still have to be placed including the dummy node. With this number of agents we can move back along the
corresponding edge of weight m− n+ 1 = 3 and place the remaining 3 agents.

sets of X so that any F ∈ IF contains exactly 3 elements
of X . The decision problem of 3XC is defined as follows:
Does IF contain an exact cover of X of size n? More pre-
cisely is there a subset Fc ⊆ IF so that the collection Fc
contains all elements of X and Fc consists of precisely n
subsets, i.e. |Fc| = n. It was shown by Karp that this
problem is NP-hard; see Garey and Johnsson[8].

Let us assume that such a problem is given. We de-
fine the following deployment problem for (X, IF). Let
X = {a1, a2, . . . , a3n}. For any ai there is an element
vertex v(X)i of weight 1. Let IF consists of m ≥ n sub-
sets of size 3, say IF = {F1, F2, . . . , Fm}. For any Fj =
{aj1 , aj2 , aj3}we define a set vertex v(IF)j of weight 1 and
we insert three edges (v(IF)j , v(X)j1), (v(IF)j , v(X)j2)
and (v(IF)j , v(X)j3) each of weight m− n+ 1. Addition-
ally, we use a sink vertex vs of weight wvs = 0 and insert
m edges (vs, v(F)j) from the sink to the set vertices of
IF. All these edges get weight 0. Additionally, one dummy
node d of weightwd = 1 is added as well as an edge (vs, d)
of weight 0.

Figure 2 shows an example of the construction for
the set X = {a1, a2, . . . , a12} and the subsets IF =
{F1, F2, . . . , F6} with F1 = {a1, a2, a3}, F2 =
{a1, a2, a4}, F3 = {a3, a5, a7}, F4 = {a5, a8, a9}, F5 =
{a6, a8, a10} and F6 = {a9, a11, a12} withm−n+1 = 3.

Starting from the sink node vs we are asking whether
there is an agent traversal schedule that requires exactly
N = 3n+m+ 1 agents. If there is such a traversal this is
optimal (we have to fill all vertices). The following result
holds. If and only if (X, IF) has an exact 3-cover, the given
strategic deployment problem can be solved with exactly
N = 3n+m+ 1 agents.

Let us first assume that an exact 3-cover exists. In this
case we start with N = 3n + m + 1 agents at vs and let
the agents run in a single group. First we successively visit
the set vertices that build the cover and fill all 3n element
vertices using 3n + n agents in total. More precisely, for
the set vertices that build the cover we successively enter
such a vertex from vs, place one agent there and fill all
three element vertices by moving back and forth along the
corresponding edges. Then we move back to vs and so on.
At any such operation the set of agents is reduced by 4. Fi-
nally, when the last set vertex of the cover was visited, we
end in the overall last element vertex. After fulfilling the
demand there, we still have N − 4n = 3n+m+ 1− 4n =
m − n + 1 agents for traveling back to vs along the cor-
responding edges. Now we fill the remaining set vertices
by successively moving forth and back from vs along the
edges of weight 0. Finally, with the last agent, we can visit
and fill the dummy node.

Conversely, let us assume that there is no exact 3-cover
for (X, IF) and we would like to solve the strategic deploy-
ment problem withN = 3n+m+1 agents. At some point
an optimal solution for the strategic deployment problem
has to visit the last element vertex v(X)j , starting from a
set vertex v(IF)i. Let us assume that we are in v(IF)i and
would like to move to v(X)j now and v(X)j was not vis-
ited before. Since there was no exact 3-cover we have al-
ready visited strictly more than n set vertices at this point
and exactly 3n−1 element vertices have been visited. This
means at least 3n− 1 +n+ 1 = 4n agents have been used.

Now we consider two cases. If the dummy node was al-
ready visited, starting with N agents we only have at most
3n+m+ 1− 4n− 1 = m−n agents for travelling toward

240 Informatica 39 (2015) 237–247 E. Langetepe et al.

the last element vertex, this means that we require an ad-
ditional agent beyond N for traversing the edge of weight
m− n+ 1. If the dummy node was not visited before and
we now decide to move to the last element vertex, we have
to place one agent there. This means for travelling back
from the last element vertex along some edge (at least the
dummy must still be visited), we still require m − n + 1
agents. Starting with N at the beginning at this stage only
3n + m + 1 − 4n − 1 = m − n are given. At least one
additional agent beyond N is necessary for travelling back
to the dummy node for filling this node.

Altogether, we can answer the 3-Exact-Cover decision
problem by a polynomial reduction into a strategic deploy-
ment problem. The proof also works for the return variant,
where at least one agent has to return to vs, if we omit the
dummy node, make use of N := 3n + m and set the non-
zero weights to m− n.

Theorem 1. Computing the optimal number of agents for
the strategic deployment problem of a general graph G is
NP-hard.

2.2 2-approximation by the MST

For a general graph G = (V,E) we consider its minimum
spanning tree (MST) and consider an optimal deployment
strategy on the MST.

Lemma 1. An optimal deployment strategy for the mini-
mum spanning tree (MST) of a weighted graphG = (V,E)
gives a 2-approximation of the optimal deployment strategy
of G itself.

Proof: Let e be an edge of the MST of G with maxi-
mal weight we among all edges of the MST. It is sim-
ply the nature of the MST, that any traversal of the graph
that visits all vertices, has to use an edge of weight at
least we. The optimal deployment strategy has to tra-
verse an egde of weight at least we and requires at least
kopt ≥ max{N,we} agents. The optimal strategy for the
MST approach requires at most kMST ≤ we + N agents
which gives kMST ≤ 2kopt. 2

2.3 Moving in a single group

In our model it is allowed that the agents run in differ-
ent groups. For the computation of the optimal number
of agents required, this is not necessary. Note that group-
splitting strategies are necessary for minimizing the com-
pletion time. Recently, we also started to discuss such op-
timization criteria; see the masterthesis [12] supervised by
the first author.

During the execution of the traversal there is a set of set-
tled agents that already had to be placed at the visited ver-
tices and a set of non-settled agents that still move around.
We can show that the non-settled agents can always move
in a single group. For simplicity we give a proof for trees.

Theorem 2. For a given weighted tree T and the given
minimal number of agents required, there is always a de-
ployment strategy that lets all non-settled agents move in a
single group.

Proof: We can reorganize any optimal strategy accord-
ingly, so that the same number of agents is sufficient.

Let us assume that at a vertex v a set of agents X is
separated into two groups X1 and X2 and they separately
explore disjoint parts T1 and T2 of the tree. Let wTi be
the maximum edge weight of the edges traversed by the
agents Xi in Ti, respectively. Clearly |Xi| ≥ wTi

holds.
Let |X1| ≥ |X2| hold and let X ′2 be the set of non-settled
agents of X2 after the exploration of T2. We can explore
T2 by X = X1 ∪ X2 agents first, and we do not need the
set X2 there. |X1| ≥ wT2

means that we can move back
with X1 ∪X ′2 agents to v and start the exploration for T1.

The argument can be applied successively for any split
of a group. This also means that we can always collect all
non-settled vertices in a single moving group. 2

Note that the above Theorem also holds for general
graphs G. The general proof requires some technical de-
tails because a single vertex might collect agents from dif-
ferent sources at the first visit. We omit the rather technical
proof here.

Proposition 1. For a given weighted graph G and the
given minimal number of agents required, there is always
a deployment strategy that lets all non-settled agents move
in a single group.

2.4 Counting the number of agents

From now on we only consider strategies where the non-
settled agents always move in a single group. Before we
proceed, we briefly explain how the number of agents can
be computed for a strategy given by a sequence S of ver-
tices and edges that are visited and crossed successively. A
pseudocode is given in Algorithm 1. The simple counting
procedure will be adapted for Algorithm 2 in Section 3.3
for counting the optimal number of agents efficiently.

For a sequence S of vertices and edges that are visited
and crossed by a single group of agents the required num-
ber of agents can be computed as follows. We count the
number of additional agents beyond N (where N is the
overall sum of the vertex weights) in a variable add. In an-
other variable curr we count the number of agents currently
available. In the beginning add := 0 and curr := N holds.
A strategy successively crosses edges and visits vertices of
the tree, this is given in the sequence S. We always choose
the next element x (edge e or vertex v) out of the sequence.
If we would like to cross an edge e, we check whether
curr ≥ we holds. If not we set add := add + (we − curr)
and curr := we and can cross the edge now. If we visit a
vertex v we similarily check whether curr ≥ wv holds. If
this is true, we set curr := curr − wv . If this is not true, we
set add := add+(wv− curr) and curr := 0. In any case we set

Strategic Deployment in Graphs Informatica 39 (2015) 237–247 241

Algorithm 1: Number of agents, for G = (V,E) and
given sequence S of vertices and edges.

N :=
∑
v∈V wv; curr := N ; add := 0; x := first(S);

while x 6= NIL do
if x is an edge e then

if curr < we then
add := add + (we − curr); curr := we;

end if
else if x is a vertex v then

if curr < wv then
add := add + (wv − curr); curr := 0;

else
curr := curr− wv;

end if
wv := 0;

end if
x := next(S);

end while
RETURN N + add

wv := 0, the vertex is filled after the first visit. Obviously
this simple algorithm counts the number of agents required
in the number of traversal steps of the single group.

3 Optimal solutions for trees
Lemma 1 suggests that for a 2-approximation for a graph
G, we can consider its MST. Thus, it makes sense to solve
the problem efficiently for trees. Additionally, by Theorem
1 it suffices to consider strategies of single groups.

vs

n

1 1

0

n−1 · · · 2

1

1

1

Figure 3: An optimal strategy that starts and ends in vs has to
visit the leafs with respect to the decreasing order of the edge
weights. The minimal number of agents is n+1. Any other order
will lead to at least one extra agent.

3.1 Computational lower bound
Let us first consider the tree in Figure 3 and the return
variant. Obviously it is possible to use n + 1 agents and
visit the edges in the decreasing order of the edge weights
n, n − 1, . . . , 1. Any other order will increase the number
of agents. If for example in the first step an edge of weight
k 6= n is visited, we have to leave one agent at the corre-
sponding vertex. Since the edge of weight n still has to be
visited and we have to return to the start, n + 1 agents in
total will not be sufficient. So first the edge of weight n has
to be visited. This argument can be applied successively.

Altogether, by the above example there seems to be a
computational lower bound for trees with respect to sort-
ing the edges by their weights. Since integer values can
be sorted by bucket sort in linear time, such a lower bound
can only be given for real edge and vertex weights. This
seems to be a natural extension of our problem. We con-
sider the transportation of sufficient material along an edge
(condition 1.). Additionally, the demand of a vertex has to
be fully satisfied before transportation can go on (condition
2.). How many material is required?

For a computational lower bound for trees we consider
the Uniform-Gap problem. Let us assume that n unsorted
real numbers x1, x2, . . . , xn and an ε > 0 are given. Is
there a permutation π : {1, . . . , n} → {1, . . . , n} so that
xπ(i−1) = xπ(i)+ε for i = 2, . . . , n holds? In the algebraic
decision tree model this problem has computational time
bound Ω(n log n); see for example [15].

In Figure 3 we simply replace the vertex weights of 1
by ε and the n edge weights by x1, x2, . . . , xn. With the
same arguments as before we conclude: If and only if the
Uniform-Gap property holds, a unique optimal strategy has
to visit the edges in a single group in the order of decreasing
edge weights xπ(1) > xπ(2) > · · · > xπ(n) and requires an
amount of xπ(1) + ε in total. Any other order will lead to at
least one extra ε.

The same arguments can be applied to the no return vari-
ant by simple modifications. Only the vertex weight of the
smallest xj , say xπ(n), is set to xπ(n).

Lemma 2. Computing an optimal deployment strategy for
a tree of size n with positive real edge and vertex weights
takes Ω(n log n) computational time in the algebraic deci-
sion tree model.

3.2 Collected subtrees

The proof of Lemma 2 suggests to visit the edges of the
tree in the order of decreasing weights. For generalization
we introduce the following notations for a tree T with root
vertex vs.

For every leaf bl along the unique shortest path, Πbl
vs ,

from the root vs to bl there is an edge e(bl) with weight
we(bl), so that we(bl) is greater than or equal to any other
edge weight along Πbl

vs . Furthermore, we choose e(bl) so
that it has the shortest edge-distance to the root among all
edges with the same weight. Let v(bl) denote the vertex
of e(bl) that is closer to the leaf bl. Thus, every leaf bl
defines a unique path, Tbl , from v(bl) to the leaf bl with
incoming edge e(bl) with edge weight we(bl). The edge
e(bl) dominates the leaf bl and also the path T (bl).

For example in Figure 4 we have e(b2) = e5 and v(b2) =
v3, the path T (b2) from v3 over v5 to b2 is dominated by
the edge e5 of weight 10.

If some paths Tbl1 , Tbl2 , . . . , Tblm are dominated by the
same edge e, we collect all those paths in a collected sub-
tree denoted by T (bl1 , bl2 , . . . , blm). The tree has unique
root v(bl1) and is dominated by unique edge e(bl1).

242 Informatica 39 (2015) 237–247 E. Langetepe et al.

For example, in Figure 4 for b6 and b7 we have v(b6) =
v(b7) = v4 and e(b6) = e(b7) = e7 and T (b6, b7) is given
by the tree Tv4 that is dominated by edge e7.

Altogether, for any tree T there is a unique set of disjoint
collected subtrees (a path is a subtree as well) as uniquely
defined above and we can sort them by the weight of its
dominating edge. For the tree in Figure 4 we have disjoint
subtrees T (b6, b7), T (b2, b3, b4), T (b1), T (b5) and T (b0)
in this order.

e1

e11e10

v3

b4

1

3

10

3 8

e4

e2

v1

b0 b1

5

2 3

4 9

vs
4

e9e8

v2

b6 b7

5

2 1

1 3

e5

b5

2

9

6

v4

e3 e6

12

e7

72

e13e12

v5

b2 b3

1

2 1

2 1

T (b0)
T (b1)

T (b2, b3, b4)

T (b5)

T (b6, b7)

Figure 4: The optimal strategy with start and end vertex vs vis-
its, fully explores and leaves the collected subtrees T (b6, b7),
T (b2, b3, b4), T (b1), T (b5) and T (b0) in the order of the weights
we7 = 12, we5 = 10, we3 = 9, we4 = 7 and we2 = 4 of the
dominating edges.

3.3 Return variant for trees
We show that the collected subtrees can be visited in the
order of the dominating edges.

Theorem 3. An optimal deployment strategy that has to
start and end at the same root vertex vs of a tree T can visit
the disjoint subtrees T (bl1 , bl2 , . . . , blm) in the decreasing
order of the dominating edges.

Any tree T (bl1 , bl2 , . . . , blm) can be visited, fully ex-
plored in some order (for example by DFS) and left then.

An optimal visiting order of the leafs and the optimal
number of agents required can be computed in Θ(n log n)
time for real edge and vertex weights and in optimal Θ(n)
time for integer weights.

For the proof of the above Theorem we first show that we
can reorganize any optimal strategy so that at first the tree
T (bl1 , bl2 , . . . , blm) with maximal dominating edge weight
can be visited, fully explored and left, if the strategy does
not end in this subtree (which is always true for the return
variant). The number of agents required cannot increase.
This argument can be applied successively. Therefore we
formulate the statement in a more general fashion.

Lemma 3. Let T (bl1 , bl2 , . . . , blm) be a subtree that is
dominated by an edge e which has the greatest weight
among all edges that dominate a subtree.

Let S be an optimal deployment strategy that visits some
vertex vt last and let vt be not a vertex inside the tree
T (bl1 , bl2 , . . . , Tblm). The strategy S can be reorganized
so that first the tree T (bl1 , bl2 , . . . , blm) can be visited, fully
explored in any order and finally left then.

Proof: The tree T (bl1 , bl2 , . . . , Tblm) rooted at v(bl1) and
with maximal dominating edge weight we(bl1) does not
contain another subtree T (bk1 , bk2 , . . . , Tbkn

). This means
that T (bl1 , bl2 , . . . , Tblm) is the full subtree Tv(bl1) of T
rooted at v(bl1). Let Path(v(bl1) denote the number of
agents that has to be settled along the unique path from
vs to the predecessor, pred(v(bl1)), of v(bl1).

Let us assume that an optimal strategy is given by a
sequence S and let Sv(i) denote the strategy that ends
after the i-th visit of some vertex v in the sequence of
S. Let |Sv(i)| denote the number of settled agents and
let curr(Sv(i)) denote the number of non-settled agents
after the i-th visit of v. We would like to replace S
by a sequence S′S′′. If vertex v(bl1) is finally vis-
ited, say for the k-th time, in the sequence S, we re-
quire curr(Sv(bl1)(k)) ≥ we(bl1) and |Sv(bl1)(k)| ≥
|T (bl1 , bl2 , . . . , Tblm)|+ Path(v(bl1) since the strategy ends
at vt 6∈ T (bl1 , bl2 , . . . , Tblm). In the next step S will move
back to pred(v(bl1)) along e(bl1) and in S the root v(bl1) of
the tree T (bl1 , bl2 , . . . , Tblm) and the edge e(bl1) will never
be visited again.

If we consider a strategy S′ that first visits v(bl1),
fully explores T (bl1 , bl2 , . . . , Tblm) by DFS and
moves back to the start vs by passing e(bl1), the
minimal number of agents required for this move-
ment is exactly |T (bl1 , bl2 , . . . , Tblm)| + Path(v(bl1) +
we(bl1) with we(bl1) non-settled agents. With(
|Sv(bl1)| − |T (bl1 , bl2 , . . . , Tblm)| − Path(v(bl1)

)
+

we(bl1) agents we now start the whole sequence S again.
In the concatenation of S′ and S, say S′S, the

vertex v(bl1) is visited k′ = k + 2 times for
|T (bl1 , bl2 , . . . , Tblm)| ≥ 2 and k′ = k+1 times form = 1
and v(bl1) = T (bl1 , bl2 , . . . , Tblm).

After S′ was executed for the remaining move-
ment of S′Sv(bl1)(k

′) the portion we(bl1) of(
|Sv(bl1)| − |T (bl1 , bl2 , . . . , Tblm)| − Path(v(bl1)

)
+

we(bl1) allows us to cross all edges in S′Sv(bl1)(k
′) for

free, because we(bl1) is the maximal weight in the tree.
Thus obviously curr(S′Sv(bl1)(k

′)) = curr(Sv(bl1)(k))
holds and S′S and S require the same number of agents.
In S′S all visits of T (bl1 , bl2 , . . . , Tblm) made by S were
useless because the tree was already completely filled by
S′. Skipping all these visits in S, we obtain a sequence S′′

and S′S′′ has the desired structure. 2

Proof (Theorem 3) The strategy of the single group has
to return back to the start vertex vs at the end. Therefore no

Strategic Deployment in Graphs Informatica 39 (2015) 237–247 243

subtree T (bl1 , bl2 , . . . , blm) contains the vertex vs visited
last. Let us assume thatN1 is the optimal number of agents
required for T .

After the first application of Lemma 3 to the subtree
T (bl1 , bl2 , . . . , blm) with greatest incoming edge weight
we(bl1) we can move with at least we(bl1) agents back to
the root vs without loss by the strategy S′. Let us assume
that N ′1 agents return to the start.

We simple set all node weights along the path from
vs to v(bl1) to zero, cut off the fully explored sub-
tree T (bl1 , bl2 , . . . , blm) and obtain a tree T ′. Note
that the collected subtrees were disjoint and apart from
T (bl1 , bl2 , . . . , blm) the remaining collected subtrees will
be the same in T ′ and T . By induction on the number
of the subtrees in the remaining problem T ′ we can visit
the collected subtrees in the order of the dominating edge
weights.

Note that the number of agents required for T ′ might be
less thanN ′1 because the weightwe(bl1) was responsible for
N ′1. This makes no difference in the argumentation.

We consider the running time. By a simple DFS walk
of T , we compute the disjoint trees T (bl1 , bl2 , . . . , blm)
implicitly by pointers to the root vertices v(bl1). For
any vertex v, there is a pointer to its unique subtree
T (bl1 , bl2 , . . . , blm) and we compute the sum of the ver-
tex weights for any subtree. This can be done in overall
linear time. Finally, we can sort the trees by the order of
the weights of the incoming edges in O(n log n) time for
real weights and in O(n) time for integer weights.

For computing the number of agents required, we make
use of the following efficient procedure, similar to the al-
gorithm indicated at the beginning of this Section. Any vis-
ited vertex will be marked. In the beginning let add := 0 and
curr := N . Let |T (bl1 , bl2 , . . . , blm)| denote the sum of the
vertex weights of the corresponding tree. We successively
jump to the vertices v(bl1) of the trees T (bl1 , bl2 , . . . , blm)
by making use of the pointers. We mark v(bl1) and starting
with the predecessor of v(bl1) we move backwards along
the path from v(bl1) to the root vs, until the first marked
vertex is found. Unmarked vertices along this path are la-
beled as marked and the sum of the corresponding vertex
weights is counted in a variable Path. Additionally, for any
such vertex v that belongs to some other subtree T (. . .) we
subtract the vertex weight wv from |T (. . .)|, this part of
T (. . .) is already visited.

Now we set curr := curr− (|T (bl1 , bl2 , . . . , blm)|+ Path).
If curr < we holds, we set add := add + (we − curr) and
curr := we as before. Then we turn over to the next tree.
Obviously with this procedure we compute the optimal
number of agents in linear time, any vertex is marked only
once. A pseudocode is presented in Algorithm 2. 2

We present an example of the execution of Algorithm 2.
For example in Figure 4 we have N := 41 and first jump
to the root v4 of T (b6, b7), we have |T (b6, b7)| = 8. Then
we count the 6 agents along the path from v4 back to vs
and mark the vertices v2 and vs as visited. This gives
curr := 41− (8 + 6) = 27, which is greater than we7 = 12.

Additionally, for v2 we subtract 2 from |T (b5)|which gives
|T (b5)| = 9. Now we jump to the root v3 of T (b2, b3, b4)
with |T (b2, b3, b4)| = 8. Moving from v3 back to vs to
the first unmarked vertex just gives no step. No agents are
counted along this path. Therefore curr := 27−(8+0) = 19
and curr > we5 = 10. Next we jump to the root b1 of T (b1)
of size |T (b1)| = 3. Moving back to the root we count the
weight 5 of the unvisited vertex v1 (which will be marked
now). Note that v1 does not belong to a subtree T (. . .).
We have curr := 19 − (3 + 5) = 11. Now we jump to
the root v2 of T (b5) of current size |T (b5)| = 9. Therefore
curr := 11−(9+0) = 2 which is now smaller thanwe4 = 7.
This gives add := add + (we − curr) = 0 + (7 − 2) = 5
and curr := we = 7. Finally we jump to b0 = T (b0)
and have curr := 7 − (2 − 0) = 5 which is greater than
we2 . Altogether 5 additional agent can move back to vs
and N + add = 46 agents are required in total.

Algorithm 2: Return variant. Number of agents for
T = (V,E). Roots v(bl1) of trees T (bl1 , bl2 , . . . , blm)
are given by pointers in a list L in the order of dom-
inating edge weights. NIL is the predecessor of root
vs.

N :=
∑
v∈V wv; curr := N ; add := 0;

while L 6= ∅ do
v(bl1) := first(L); deleteFirst(L);
Mark v(bl1);
Path := 0; pathv := pred(v(bl1));
while pathv not marked and pathv 6= NIL do

Path := Path + wpathv;
if pathv belongs to T (. . .) then
|T (. . .)| := |T (. . .)| − wpathv

end if
Mark pathv; pathv := pred(pathv);

end while
curr := curr− (|T (bl1 , bl2 , . . . , blm)|+ Path).
if curr < we then

add := add + (we − curr); curr := we;
end if

end while
RETURN N + add

3.4 Lower bound for traversal steps

It is easy to see that although the number of agents required
and the visiting order of the leafs can be computed sub-
quadratic optimal time, the number of traversal steps for a
tree could be in Ω(n2); see the example in Figure 5. In this
example the strategy with the minimal number of agents is
unique and the agents have to run in a single group.

3.5 No-return variant

Finally, we discuss the more difficult task of the no return
variant. In this case for an optimal solution not all collected

244 Informatica 39 (2015) 237–247 E. Langetepe et al.

1 1 1 1 1 1

m m−1m−2 m−32 1

0

0

0

vs

m

L R

1
1

1 1

Figure 5: An optimal deployment strategy for the tree with 3m
edges requires m+ 1 agents and successively moves from L to R
beyond vs in total Ω

(
m
2

)
times. Thus Ω(m2) steps are required.

subtrees will be visited in the order of the decreasing dom-
inating edge weights.

For example a strategy for the no-return in Figure 4 that
visits the collected subtrees T (b6, b7), T (b2, b3, b4), T (b1),
T (b5) and T (b0) in the order of the weights we7 = 12,
we5 = 10, we3 = 9, we4 = 7 and we2 = 4 of the dominat-
ing edges requires 46 agents even if we do not finally move
back to the start vertex. As shown at the end of Section 3.3
we required 5 additional agents for leaving T (b5), entering
and leaving T (b0) afterwards requires no more additional
agents.

In the no return variant, we can assume that any strategy
ends in a leaf, because the last vertex that will be served
has to be a leaf. This also means that it is reasonable to
enter a collected subtree, which will not be left any more.
In the example above we simply change the order of the last
two subtrees. If we enter the collected subtrees in the order
T (b6, b7), T (b2, b3, b4), T (b1), T (b0) and T (b5) and T (b5)
is not left at the end, we end the strategy in b5 (no-return)
and require exactly N = 41 agents, which is optimal.

Theorem 4. For a weighted tree T with given root vs and
non-fixed end vertex we can compute an optimal visiting or-
der of the leafs and the number of agents required in amor-
tized time O(n log n).

For the proof of the above statement we first characterize
the structure of an optimal strategy. Obviously we can as-
sume that a strategy that need not return to the start will end
in a leaf. Let us first assume that the final leaf, bt, is already
known or given. As indicated for the example above, the
final collected subtree will break the order of the collected
subtrees in an optimal solution. This behaviour holds re-
cursively.

Lemma 4. An optimal traversal strategy that has to
visit the leaf bt last can be computed as follows: Let
T (bl1 , bl2 , . . . , blm) be the collected subtree of T that con-
tains bt.

1. First, all collected subtrees T (bq1 , bq2 , . . . , bqo) of
the tree T with dominating edge weight greater than
T (bl1 , bl2 , . . . , blm) are successively visited and fully

explored (each by DFS) and left in the decreasing or-
der of the weights of the dominating edges.

2. Then, the remaining collected subtrees that do not
contain bt are visited in an arbitrary order (for ex-
ample by DFS).

3. Finally, the collected subtree T (bl1 , bl2 , . . . , blm) that
contains bt is visited. Here we recursively apply the
same strategy to the subtree T (bl1 , bl2 , . . . , blm). That
is, we build a list of collected subtrees for the tree
T (bl1 , bl2 , . . . , blm) and recursively visit the collected
subtrees by steps 1. and 2. so that the collected sub-
tree that contains bt is recursively visited last in step
3. again.

Proof: The precondition of the Theorem says that there
is an optimal strategy given by a sequence S of visited
vertices and edges so that the strategy ends in the leaf bt.
Let T (bl1 , bl2 , . . . , blm) be the collected subtree of T that
contains bt and let we(bt) be the corresponding dominating
edge weight. So bt ∈ {bl1 , bl2 , . . . , blm} and v(bt) is the
root of T (bl1 , bl2 , . . . , blm). Similarily as in the proof of
Lemma 3 we would like to reorganize S as required in the
Lemma.

For the trees T (bq1 , bq2 , . . . , bqo) with dominating edge
weight greater than we(bt) we can successively apply
Lemma 3. So we reorganize S is this way by a sequence S′

that finally moves the agents back to the start vertex vs.
Then we apply the sequence S again but skip the visits
of all collected subtrees already fully visited by S′ before.
This show step 1. of the Theorem.

This gives an overall sequence S′S′′ with the same num-
ber of agents and S′′ does only visit collected subtrees of
T with dominating edges weight smaller than or equal to
we(bt). Furthermore, S′′ also ends in bt.

The collected subtree T (bl1 , bl2 , . . . , blm) with weight
we(bt) does not contain any collected subtree with weight
smaller than or equal towe(bt). At some point in S′′ the ver-
tex v(bt) is visited for the last time, say for the k-th time,
by a movement from the predecessor pred(v(bt) of v(bt) by
passing the edge of weight we(bt). At least we(bt) agents
are still required for this step. At this moment all subtrees
different from T (bl1 , bl2 , . . . , blm) and edge weight smaller
than or equal to we(bt) habe been visited since the strategy
ends in bt ∈ {bl1 , bl2 , . . . , blm}.

Since we(bt) agents are required for the final movement
along e(bt) there will be no loss of agents, if we pos-
tone all movements into T (bl1 , bl2 , . . . , blm) in S′′ first and
then finally solve the problem in T (bl1 , bl2 , . . . , blm) opti-
mally. For the subtrees different from T (bl1 , bl2 , . . . , blm)
and edge weight smaller than or equal to we(bt) we only re-
quire the agents that have to be placed there, since at least
we(bt) non-settled agents will be always present. There-
fore we can also decide to visit the subtrees different from
T (bl1 , bl2 , . . . , blm) and edge weight smaller than or equal
to we(bt) in an arbitrary order (for example by DFS). This
gives step 2. of the Theorem.

Strategic Deployment in Graphs Informatica 39 (2015) 237–247 245

Finally, we arrive at v(bt) and T (bl1 , bl2 , . . . , blm) and
would like to end in the leaf bt. By induction on the height
of the trees the tree T (bl1 , bl2 , . . . , blm) can be handled in
the same way. That is, we build a list of collected subtrees
for the tree T (bl1 , bl2 , . . . , blm) itself and recursively visit
the collected subtrees by steps 1. and 2. so that the col-
lected subtree that contains bt is recursively visited last in
step 3. again. 2

The remaining task is to efficiently find the best leaf bt
where the overall optimal strategy ends. The above Lemma
states that we should be able to start the algorithm recur-
sively at the root of a collected subtree T (bl1 , bl2 , . . . , blm)
that contains bt. For vs a list, L, of the collected subtrees
for T is given and for finding an optimal strategy we have
to compute the corresponding lists of collected subtrees for
all trees T (bl1 , bl2 , . . . , blm) in L recursively.

Figure 6 shows an example. In this setting let us for
example consider the case that we would like to compute
an optimal visiting order so that the strategy has to end in
the leaf b2. Since b2 is in T (b2, b3, b4) in the list of vs
in Figure 6 by the above Lemma in step 1. we first visit
the tree T (b6, b7) of dominating edge weight greater than
the dominating edge weight of T (b2, b3, b4). Then we visit
T (b1), T (b5) and T (b0) in step 2. After that in step 3. we
recursively start the algorithm in T (b2, b3, b4). Here at v3

the list of collected sutrees contains T (b4) and T (b2, b3)
and by the above recursive algorithm in step 1. we first
visit T (b4). There is no tree for step 2. and we recursively
enter T (b2, b3) at v5 in step 3. Here for step 1. there is no
subtree and we enter the tree T (b3) in step 2. until finally
we recursively end in T (b2) in step 3. Here the algorithm
ends. Note that in this example b2 is not the overall optimal
final leaf.

If we simply apply the given algorithm for any leaf and
compare the given results (number of agents required) we
requireO(n2 log n) computational time. For efficiency, we
compute the required information in a single step and check
the value for the different leafs successively. It can be
shown that in such a way the best leaf bt and the overall
optimal strategy can be computed in amortized O(n log n)
time.

Finally, we give a proof for Theorem 4 by the fol-
lowing discussion. We would like to compute the
lists of the collected subtrees T (bl1 , bl2 , . . . , blm) recur-
sively. More precisely, for the root vs of a full tree
T with leafs {b1, b2, . . . , bn} we obtain a list, denoted
by T (b1, b2, . . . , bn), of the collected subtrees of T with
respect to the decreasing order of the dominating edge
weights as introduced in Section 3.2.

The elements of the list are pointers to the roots of the
collected subtrees T (bl1 , bl2 , . . . , blm). For any such root
T (bl1 , bl2 , . . . , blm) of a subtree in the list T (b1, b2, . . . , br)
we recursively would like to compute the corresponding
list of collected subtrees recursively; see Figure 6 for an
example.

Additionally, for any considered collected subtree
T (bk1 , bk2 , . . . , bkr) that belongs to the pointer list of

e1

e11e10

v3

b4

1

3

10

3 8

e4

e2

v1

b0 b1

5

2 3

4 9

vs
4

e9e8

v2

b6 b7

5

2 1

1 3

e5

b5

2

9

6

v4

e3 e6

12

e7

72

e13
e12

v5

b2 b3

1

2 1

2 1

T (b0)
4,2 T (b1)

9,8

T (b2, b3, b4)
10,8 =

T (b5)
6,9

T (b6, b7)
12,14 =

T (b2)
2,3 T (b3)

1,1

T (b2, b3)
3,4 =

T (b4)
8,4

T (b6)
1,2 T (b7)

3,6

[T (b7), T (b6)]

[T (b6, b7), T (b2, b3, b4), T (b1), T (b5), T (b0)]

[T (b4), T (b2, b3)]

[T (b2), T (b3)]

T (b0, b1, b2, b3, b4, b5, b6, b7)
0,41 =

T (b5)
7,9 = [T (b5)]

Figure 6: All information required can be computed recursively
from bottom to top in amortized O(n logn) time.

T (bl1 , bl2 , . . . , blm) we store a pair of integers x, y at
the corresponding root of T (bk1 , bk2 , . . . , bkr) ; see Fig-
ure 6. Here x denotes the weight of the dominating edge.
The value y denotes the size of |T (bk1 , bk2 , . . . , bkr)| +
Path), if we recursively start the optimal tree algorithm
in the root T (bl1 , bl2 , . . . , blm); see Algorithm 2. This
means that y denotes the size of the collected sub-
tree and the sum of the weights along the path back
from T (bk1 , bk2 , . . . , bkr) to the root T (bl1 , bl2 , . . . , blm) if
T (bk1 , bk2 , . . . , bkr), if T (bk1 , bk2 , . . . , bkr) is the first en-
try of the list T (bl1 , bl2 , . . . , blm) and therefore has maxi-
mal weight.

The list of subtrees at the root vs of T is denoted by
T (b1, b2, . . . , br)

x,y and obtains the values x := 0 (no in-
coming edge) and y := N (the sum of the overall vertex
weights). We can show that all information can be com-
puted efficiently from bottom to top and finally also allows
us to compute an overall optimal strategy.

For the overall construction of all pointer lists
T (bl1 , bl2 , . . . , blm) we internally make use of Fibonacci
heaps [7]. The corresponding heap for a vertex v always
contains all collected subtrees of the leafs of Tv . The col-
lected subtree list for the vertex v itself might be empty; see
for example that vertex v1 does not root a set of collected
subtree. In the following the list of pointers to collected
subtrees is denoted by [. . .] and the internal heaps are de-
noted by (. . .).

The subtrees in the heap are also given by pointers. But
the heap is sorted by increasing dominating edge weights.
Note, that we have two different structures. Occasionally a
final subtree for a vertex with a list of pointers for the col-
lected subtrees (in decreasing order) and the internal heaps
with a collection of all collected subtrees (in increasing or-

246 Informatica 39 (2015) 237–247 E. Langetepe et al.

der) have the same elements.
With the help of the heaps we successively compute and

store the final collected subtree lists for the vertices. We
start the computations on the leafs of the tree. For a single
leaf bl the heap (T (bl)

x,y) and the subtree T (bl)
x,y rep-

resent exactly the same. The value x of T (bl)
x,y is given

by the edge weight of the leaf. The value y of T (bl)
x,y

will be computed recursively, it is initialized by the vertex
weight of the leaf. For example, in Figure 6 for b7 and b6
we first have T (b6)1,2 and T (b7)3,1, representing both the
heaps and the subtrees.

Let us assume that the heaps for the child nodes of an
internal node v already have been computed and v is a
branching vertex with incoming edge weight we. We have
to add the node weight of v to the value y of one of the sub-
trees in the heap. We simply additionally store the subtree
with greatest weight among the branches. Thus in constant
tim we add the node weight of the branching vertex to the
value y of a subtree with greatest weight. Then we unify
the heaps of the children. They are given in the increasing
order of the dominating edges weights. This can be done
in time proportional to the number of child nodes of v. For
example, at v4 in Figure 6 first we increase the y-element
of the subtree T (b7)3,1 in the heap by the vertex weight 5
of v4 which gives T (b7)3,6. Then we unify (T (b6)1,2) and
(T (b7)3,6) to a heap (T (b6)1,2, T (b7)3,6). For convenience
in the heap we attach the values x and y directly to the
pointer of the subtree.

Now, for branching vertex v by using the new unified
heap we find, delete and collect the subtrees with minimal
incoming edge weight as long as the weights are smaller
than or equal to the weight we. If there is no such tree, we
do not have to build a new collected subtree at this vertex
and also the heap remains unchanged. If there are some
subtrees that have incoming edge weight smaller than or
equal to we the pointers to all these subtrees will build a
new collected subtree T (bl1 , bl2 , . . . , blm) with x-value we
at the node v. Additionally, the pointers to the correspond-
ing subtrees of T (bl1 , bl2 , . . . , blm) can easily be ordered
with increasing weights since we have deleted them out of
the heap starting with the smallest weights. Additionally,
we sum up the values y of the deleted subtrees. Finally, we
have computed the collected subtree T (bl1 , bl2 , . . . , blm)
and its information x, y at node v. At the end a new subtree
is also inserted into the fibonacci heap of the vertex v for
future unions and computations.

For example in Figure 6 for the just computed heap
(T (b6)1,2, T (b7)3,6) at vertex v4 we delete and collect the
subtrees T (b6)1,2 and T (b7)3,6 out of the heap because the
weight we7 = 12 dominates both weights 1 and 3. This
gives a new subtree T (b7, b6)12,8 = [T (b7), T (b6)] at v4

and also a heap (T (b7, b6)12,8).
Note, that sometimes no new subtree is build if no tree is

deleted out of the heap because the weight of the incoming
edge is less than the current weights. Or it might happen
that only a single tree of the heap is collected and gets a new
dominating edge. In this case also no subtree is deleted out

of the heap. We have a single subtree with the same leafs
as before but with a different dominating edge. We do not
build a a collected subtree for the vertex at this moment,
the insertion of such subtrees at the corresponding vertex is
postponed.

For example for the vertex v2 with incoming edge
weight 7 in Figure 6 we have already computed the
heaps (T (b5)6,9) and (T (b6, b7)12,8) of the subtrees. Now
the vertex weight 2 of v2 is added to the y-value of
T (b6, b7)12,8 which gives T (b6, b7)12,10 for this subtree.
Then we unify the heaps to (T (b5)6,9, T (b6, b7)12,10).
Now with respect to the incoming edges weight 7 only the
first tree in the heap is collected to a subtree and this subtree
gives the list for vertex v2. The heap of the vertex v2 now
reads (T (b5)7,9, T (b7, b6)12,10) and the collected subtree is
T (b5)7,9 = [T (b5)].

Finally, we arrive the root vertex vs and all subtrees of
the heap are inserted into the list of collected subtrees for
the root.

The delete operation for the heaps requires amortized
O(logm) time for a heap of size m and subsumes any
other operation. Any delete operation leads to a collection
of subtrees, therefore at most O(n) delete operation will
occur. Altogether all subtrees and its pointer lists and the
values x and y can be computed in amortized O(n log n)
time.

The remaining task is that we use the information of the
subtrees for calculating the optimal visiting order of the
leafs in overall O(n log n) time. Here Algorithm 2 will be
used as a subroutine.

As already mentioned we only have to fix the leaf bt vis-
ited last. We proceed as follows. An optimal strategy ends
in a given collected subtree with some dominating edge
weight we. The strategy visits and explores the remaining
trees in the order of the dominating edges weights.

Let us assume that on the top level the collected sub-
trees are ordered by the weights we1 ≤ we2 ≤ . . . ≤
wej . Therefore by the given information and with Algo-
rithm 2 for any i we can successively compute the num-
ber of additional agents required for any successive order
wei+1 ≤ wei+2 ≤ . . . ≤ wej and by the y-values we can
also compute the number of agents required for the trees of
the weights we1 ≤ we2 ≤ . . . ≤ wei−1

. The number of
agents required for the final tree of weight wei and the best
final leaf stems from recursion. With this informations the
number of agents can be computed. This can be done in
overall linear time O(j) for any i.

The overall number of collected subtrees in the construc-
tion is linear for the following reason. We start with n sub-
trees at the leafs. If this subtree appears again in some list
(not in the heap), either it has been collected together with
some others or it builds a subtree for its own (changing
dominance of a single tree). If it was collected, it will never
appear for its own again on the path to the root. If it is a
single subtree of that node, no other subtree appears in the
list at this node. Thus for the O(n) nodes we have O(n)
collected subtrees in the lists total.

Strategic Deployment in Graphs Informatica 39 (2015) 237–247 247

From i to i + 1 only a constant number of additional
calculations have to be made. By induction this can recur-
sively be done for the subtree dominated by wei as well.
Therefore we can use the given information for computing
the optimal strategy in overall linear time O(n) if the col-
lected subtrees are given recursively.

4 Conclusion
We introduce a novel traversal problem in weighted graphs
that models security or occupation constraints and gives
rise to many further extensions and modifications. The
problem discussed here is NP-hard in general and can be
solved efficiently for trees in Θ(n log n) where some ma-
chinery is necessary. This also gives a 2-approximation for
a general graph by the MST.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Net-

work Flows: Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] Th. Beckmann, R. Klein, D. Kriesel, and
E. Langetepe. Ant-sweep: a decentral strategy
for cooperative cleaning in expanding domains.
In Symposium on Computational Geometry, pages
287–288, 2011.

[3] Bernd Brüggemann, Elmar Langetepe, Andreas
Lenerz, and Dirk Schulz. From a multi-robot global
plan to single-robot actions. In ICINCO (2), pages
419–422, 2012.

[4] V. Chvátal. Linear Programming. W. H. Freeman,
New York, NY, 1983.

[5] M. Dynia, J. Łopuszański, and Ch. Schindelhauer.
Why robots need maps. In SIROCCO ’07: Proc. 14th
Colloq. on Structural Information an Communication
Complexity, LNCS, pages 37–46. Springer, 2007.

[6] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and
A. Pelc. Collective tree exploration. Networks,
43(3):166–177, 2006.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization al-
gorithms. J. ACM, 34:596–615, 1987.

[8] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY, 1979.

[9] Miltos D. Grammatikakis, D. Frank Hsu, Miro
Kraetzl, and Jop F. Sibeyn. Packet routing in fixed-
connection networks: A survey. Journal of Parallel
and Distributed Computing, 54(2):77 – 132, 1998.

[10] Bernhard Korte and Jens Vygen. Combinatorial Op-
timization: Theory and Algorithms. Springer Publish-
ing Company, Incorporated, 4th edition, 2007.

[11] Michail G. Lagoudakis, Evangelos Markakis, David
Kempe, Pinar Keskinocak, Anton Kleywegt, Sven
Koenig, Craig Tovey, Adam Meyerson, and Sonal
Jain. Auction-based multi-robot routing. In Proceed-
ings of Robotics: Science and Systems, Cambridge,
USA, June 2005.

[12] Simone Lehmann. Graphtraversierungen mit
Nebenbedingungen. Masterthesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, 2012.

[13] Britta Peis, Martin Skutella, and Andreas Wiese.
Packet routing: Complexity and algorithms. In
WAOA 2009, number 5893 in LNCS, pages 217–228.
Springer-Verlag, 2009.

[14] David Portugal and Rui P. Rocha. A survey on multi-
robot patrolling algorithms. In Luis M. Camarinha-
Matos, editor, DoCEIS, volume 349 of IFIP Ad-
vances in Information and Communication Technol-
ogy, pages 139–146. Springer, 2011.

[15] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York,
NY, 1985.

[16] Alexander V. Sadovsky, Damek Davis, and Dou-
glas R. Isaacson. Optimal routing and control of
multiple agents moving in a transportation network
and subject to an arrival schedule and separation con-
straints. In No. NASA/TM–2012–216032, 2010.

[17] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M.
Bruckstein. Cooperative cleaners: A study in ant
robotics. The Int. J. Robot. Research, 27:127–151,
2008.

