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This paper presents our research in the area of medical imaging diagnostics, focusing specifically on 

countering the devastating impact of the COVID-19 pandemic and numerous pulmonary pathologies. 

Using new deep-learning approaches and techniques, we aim to create an advanced classification tool 

that will be able to capture complex patterns and features in chest image data. This paper introduces the 

use of state-of-the-art strategies, such as stacked ensemble models, transfer learning, and artificial 

neural networks, to build a model with unprecedented precision, recall, F1-score, and accuracy. The 

core idea of our research is to combine different convolutional neural network architectures to bring 

together their best extraction and classification qualities. The combination of DenseNet, Xception and 

Inception achieves the best performance and provides the most reliable classification tool. We also use 

transfer learning to quickly train our model and optimize generalization, making it suitable for the 

detection of multiple pulmonary pathologies, including COVID-19. Our model also includes an artificial 

neural network, trained as a meta-learner, which processes the outputs of the CNNs to make 

classification decisions. We have thoroughly validated and optimized the meng-learner to improve the 

model’s accuracy on diagnostic images. The provided paper proposed the successful merge of cutting-

edge deep-learning methodologies and image-processing algorithms with the medical imaging 

industry’s specifics. We aim to disrupt the pulmonary disease diagnosis field with our model, offering 

medical institutions a reliable tool to fight the current and future threats and challenges posed by 

COVID-19. 

Povzetek: Razvit je napredni model za klasifikacijo pljučnih bolezni z uporabo zloženega modela 

globokega učenja, ki združuje CNN arhitekture, kot so DenseNet, Xception in Inception. Model dosega 

visoko natančnost pri odkrivanju bolezni, vključno s COVID-19.

1    Introduction
The emergence of the coronavirus disease 2019 in 

late 2019 sparked a global health crisis unlike any other 

[1].  Advances in diagnostic methods are vitally crucial 

since this highly contagious disease [2] has overtaken 

healthcare systems globally and severely disrupted life 

[3]. Even yet, prior to COVID-19, a number of 

pulmonary diseases, including pneumonia, lung 

opacities, and effusions, posed diagnostic difficulties that 

required precise diagnosis [4]. Notably, significant 

diagnostic challenges are intrinsic to common pulmonary 

illnesses such as pneumonia, pleural effusion, pulmonary 

nodules, and pneumothorax [5]. Differential diagnosis is 

crucial since pneumonia can present with symptoms 

resembling COVID-19 [6]. Pleural effusion frequently 

obscures or mimics other lung diseases, making it more 

difficult to interpret images from various angles [7]. In 

order to rule out benign or malignant disorders, 

pulmonary nodules typically require complicated, high-

resolution imaging [8]. Although pneumothorax directly 

endangers patients, it can be challenging to differentiate 

its symptoms from those of other acute chest disorders 

[9]. Advanced identification approaches utilizing deep 

learning models are necessary for nuanced detection due 

to the symptom overlap with COVID-19 [10], requiring 

precise methodologies in the context of pulmonary 

diseases. 

Many facets of contemporary life have been 

reshaped by deep learning, a subclass of machine 

learning that is typified by automatic feature extraction 

and picture categorization [11]. Deep learning has 

significantly changed how the healthcare industry is 

thought about [12]. By examining medical photos, 

models that can accurately predict or categorize 

particular diseases may now be created [13]. Promising 

results have been obtained from deep learning techniques 

for the diagnosis of a number of illnesses, including as 

brain tumors, liver disease, colon cancer, breast cancer, 

lung cancer, pneumonia, and most recently, COVID-19 

[14]. 

Deep learning automatically changes features using 

non-linear functions, resulting in high accuracy with less 

human interaction than classical machine learning, which 
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needs manual feature engineering [15]. The extraction of 

valuable characteristics is improved as the network 

becomes deeper because more abstract data 

representations are learned [16].  

Recent scientific achievements demonstrate how 

deep learning is widely used to identify and treat 

COVID-19 [17]. For COVID-19 analysis, chest X-rays 

and CT scans are frequently used imaging modalities 

[18,19]. Although COVID-19 positive cases have been 

categorized using X-rays, interest in CT scan-based 

diagnosis is developing [19]. Convolutional neural 

networks have been used to examine lung dataset 

instances to classify COVID-19 cases [20]. Evidence 

suggests that chest X-rays are more valuable for 

diagnosis than for differential diagnosis of other serious 

conditions including pneumonia and lung cancer, even 

though they are less helpful in the early stages of 

COVID-19 before symptoms appear [19]. This means 

that in difficult circumstances, radiologists need help 

from automated diagnostic tools. Consequently, we used 

deep learning to address problems related to pulmonary 

diseases and the COVID-19 pandemic [10,21]. To 

capitalize on the capabilities of different deep learning 

techniques, such as DenseNet, Xception, and Inception, 

we have developed a unique strategy that comprises a 

stacked ensemble model [21]. A thorough analysis of the 

use of transfer learning and Convolutional Neural 

Networks (CNNs) for medical imaging applications is 

presented in [22]. It highlights the significant 

improvements CNNs have demonstrated in image 

analysis and classification applications and how transfer 

learning—reusing previously trained CNN models—can 

alleviate issues arising from small datasets and 

computing limitations. 

We have innovated by using an artificial neural 

network (ANN) as the meta-learner to supervise the 

ensemble model, which goes beyond the ensemble of 

deep learning architectures [23]. In particular, our 

artificial neural network (ANN) serves as the last arbiter 

by combining the predictions made by each of our 

component convolutional neural networks (CNNs) and 

categorizing the provided medical images. First off, our 

model is incredibly flexible and capable of making 

decisions because of the ANN's capacity to identify 

complex patterns and relationships in the ensemble's 

predictions. Second, we have optimized the ANN's 

parameters to maximize its performance through 

intensive training and validation, guaranteeing that our 

multi-tumor classification system reaches the highest 

levels of diagnostic accuracy and dependability [10].   

Our research essentially constitutes a singular 

amalgamation of cutting-edge deep learning, image 

processing, and medical imaging domain knowledge. We 

can radically alter the patient-centered clinical workflow 

for the diagnosis and treatment of pulmonary diseases, 

including but not limited to COVID-19 and pneumonia, 

by combining the advantages of ensemble models, 

transfer learning, and ANNs. 

2   Related works 
Medical imaging featuring deep learning represents 

one of the most promising advancements in the field, 

particularly concerning COVID-19 detection. Different 

papers have taken numerous angles and used separate 

datasets; however, the accuracy has invariably been 

compelling. 

The authors in [24] presented an innovative lung 

opacity detection and classification approach that is 

significantly essential to physicians due to its non-

reversible consequence when inaccurately diagnosed or 

misjudged with other diseases. To this end, the authors 

present a three-channel fusion CNN model, where the 

authors use the MobileNetV2, InceptionV3 and VGG19 

networks for each channel. ResNet is used for 

transferring features. The classification has shown a 

promising accuracy in lung opacity classification for 

different datasets. For the new dataset, the model reports 

an adequate performance of accuracy of 92.52%, 

92.44%, 87.12% and 91.71% for two, three, four and five 

classes, respectively. A comparison with the previous 

research indicates the potential of the model. It can 

significantly reduce the burden and costs of physicians 

who use image datasets for lung opacity classification. 

The COVID-19 epidemic has severely damaged 

economies and healthcare systems throughout the world, 

underscoring the urgent need for accurate and quick 

diagnosis techniques in the fight against the illness [25]. 

The current methods of clinical diagnosis have 

significant shortcomings because they are very subjective 

and subject to variation amongst patients. This article 

suggests a novel multi-classification method based on a 

machine learning framework to get beyond these 

restrictions. In particular, it presents BDCNet, a novel 

method for classifying COVID-19, pneumonia, and lung 

cancer from chest radiographs by using Vgg-19 and 

convolutional neural networks (CNNs). The goal of the 

suggested approach is to offer a consistent and objective 

diagnostic tool for identifying between various lung 

diseases. 

 Notably, this is the first study to diagnose these 

three chest diseases using a single deep learning model. 

Results indicate that BDCNet outperforms four well-

known pre-trained models, achieving an accuracy of 

99.10%, recall of 98.31%, precision of 99.9%, and f1-

score of 99.09%. These findings highlight the potential 

of BDCNet to significantly aid diagnostic radiographers 

and healthcare experts in accurately identifying and 

managing chest diseases, thus contributing to improved 

patient outcomes and healthcare efficiency. 

The authors in [26] addressed the critical 

challenge of accurately diagnosing COVID-19 and 

other chest disorders amidst their overlapping 

symptoms, which can potentially mislead clinical 

professionals. To tackle this, the researchers develop 

and evaluate a multi-classification deep learning 

model called CDC Net, leveraging convolutional 

neural network (CNN) techniques with residual 

network concepts and dilated convolution. By 

employing publicly available benchmark data, they 

pioneer the use of a single deep learning model to 

diagnose five distinct chest ailments, including 
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COVID-19, lung cancer, pneumothorax, tuberculosis, 

and pneumonia, from chest x-ray images. Remarkably, 

the CDC Net achieves an exceptional AUC of 0.9953, 

demonstrating an accuracy of 99.39%, a recall of 

98.13%, and a precision of 99.42% in identifying 

various chest diseases. Comparative analysis with 

three CNN-based pre-trained models further 

underscores the superior performance of the proposed 

model, highlighting its potential as a highly accurate 

diagnostic tool for chest diseases. Moreover, statistical 

analyses confirm the robustness of the proposed 

model, affirming its reliability and effectiveness in 

clinical settings. 

The authors in [27] proposed a new method of chest 

x-ray classification to diagnose COVID-19 with 

pneumonia caused by usual virus and to overcome the 

problem in which patients with COVID-19 cannot be 

differentiated with other chest disorders. This model is 

based on CNN model that applies a pre-trained 

EfficientNetB0 model and a dense layer. The model 

achieved high accuracy of over 95% out of two classes 

and 93% out of three classes, which outperforms the 

existing model and present some benefits, with less 

parameters and robust dataset split. 

Through meticulous methodological design, 

including data augmentation and fine-tuning, the study 

demonstrates the potential of CNN-based models in 

enhancing the accuracy of COVID-19 diagnosis from 

chest x-ray images, thereby supporting clinicians in 

making more informed diagnostic decisions. 

The authors in [28] addressed the urgent need for 

accurate diagnosis of COVID-19 amidst the global 

pandemic, proposing a deep learning-based approach to 

differentiate COVID-19 patients from those with viral 

pneumonia, bacterial pneumonia, and healthy cases. 

Utilizing deep transfer learning, the study experimented 

with binary and multi-class datasets across four 

categories, comprising a total of 6,674 X-ray images. 

Nine convolutional neural network architectures were 

employed, including Se-ResNeXt-50, which achieved the 

highest classification accuracy of 99.32% for binary 

classification and 97.55% for multi-class classification 

among all pre-trained models. By leveraging automated 

methods and sophisticated CNN architectures, the 

proposed system demonstrates promising performance in 

accurately diagnosing COVID-19, contributing to the 

ongoing efforts to combat the spread of the disease. 

The authors in [29] presented a novel multi-level 

diagnostic framework aimed at accurately detecting 

COVID-19 using X-ray scans, offering a promising 

alternative to the conventional RT-PCR method. The 

framework proposed in the current study consists of three 

phases, which are pre-processing to clean noise and 

resize the images, feature extraction using a deep 

learning architecture with an Xception pre-trained model. 

The framework incorporates global average pooling to 

overcome overfitting, an activation layer help to reduce 

loss and softmax for the final classification. This 

proposed model has been tested using a benchmark 

dataset from Kaggle containing 7395 images from three 

classes, COVID-19, normal, and pneumonia, which has 

shown an exceptional outcome. Testing has been 

conducted with an accuracy of 99.3% and a negligible 

loss of 0.02 by using leakyReLU activation and 

RMSprop optimizer. Therefore, utilizing just 10 epochs 

and a learning rate of 10−4 to achieve 99% sensitivity 

and specificity with F1-Score of 99.3% indicates the 

efficiency and performance of the proposed framework 

in identifying COVID-19 accurately from X-ray images. 

Hence, it is more efficient than existing studies and 

traditional pre-trained deep learning models. 

In [30], five pre-trained AI models were applied to 

improve brain tumor classification, attaining 95-97% 

accuracy on unseen images across three datasets. Data 

augmentation improved model performance, perhaps 

boosting early tumor identification and lowering 

impairments. Machine learning and deep learning 

algorithms were used to identify chest CT scans as 

COVID-19 positive or negative [31]. The study found 

that ResNet50V2 transfer learning approach performed 

best on the bigger dataset, with 97.52% accuracy, 

showing its potential for quick COVID-19 diagnosis in 

real life. 

The authors in [15] presented the development of a 

Multi-task Multi-slice Deep Learning System tailored for 

the screening of multi-class lung pneumonia from CT 

imaging. To solve the problem of limited training cases 

and resources, the M3 Lung-Sys consists of two 2D CNN 

networks, dedicated to slice- and patient-level 

classification. By leveraging CT slices for feature 

extraction and refining temporal information across 

slices, the system effectively distinguishes COVID-19 

from Healthy, H1N1, and CAP cases while also locating 

relevant lesion areas without pixel-level annotation. 

Extensive experiments conducted on a chest CT dataset 

demonstrate the superior performance of M3 Lung-Sys, 

achieving an accuracy of 95.21% with minimal false 

positive and false negative errors. Notably, the system 

exhibits high sensitivity and specificity for COVID-19 

and H1N1 detection, outperforming existing models. 

Although oversensitivity to noise is observed in Healthy 

cases, the interpretability and value of the system to 

clinicians are underscored by its robust performance and 

lesion location mapping capabilities. Overall, M3 Lung-

Sys offers a promising solution for accurate and 

interpretable multi-class lung pneumonia screening from 

CT imaging, particularly in the context of the COVID-19 

pandemic. 

The authors in [16] used computed tomography (CT) 

and chest X-ray imaging modalities to meet the critical 

requirement for quick and reliable disease identification 

in the midst of the global COVID-19 epidemic. 

Understanding the shortcomings of RT-PCR testing and 

the potential of imaging methods—particularly in areas 

where epidemics are prevalent—the study investigates 

the use of machine learning (ML) to support disease 

diagnosis. The research developed a deep neural network 

model, specifically a 24-layer CNN network, capable of 

binary (COVID vs. NON-COVID) and multi-class 

(COVID vs. NON-COVID vs. Pneumonia) classification 

from X-ray and CT images. Through extensive 

experimentation, the proposed method achieves 
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remarkable accuracy rates of 99.68% and 71.81% on X-

ray and CT images, respectively, demonstrating its 

efficacy in aiding rapid and effective COVID-19 

detection. Utilizing the Sgdm optimizer with a learning 

rate of 0.001 contributes to the robust performance of the 

model across both datasets, showcasing its potential as a 

valuable tool in combating the pandemic. 

The authors in [17] suggested an automated COVID-

19 detection method utilizing artificial intelligence (AI) 

technology in response to the worldwide COVID-19 

pandemic and the load on healthcare infrastructure. The 

goal of the study is to accurately identify COVID-19 

from normal chest X-ray pictures. It also aims to 

distinguish COVID-19 from viral pneumonia that is not 

COVID-19 and lung opacity. Three pre-trained models, 

namely, Xception, VGG19, and ResNet50, are used and 

assessed on a benchmark dataset with 21,165 X-ray 

images. Initially, a binary classification model for 

COVID-19 detection is implemented, and the models are 

able to achieve high accuracy levels: 97.5%, 97.5%, and 

93.3% for Xception, VGG19, and ResNet50, 

respectively. Then the multi-class classification model is 

created, and the accuracy levels are obtained as follows: 

93%, 92%, and 75%, for Xception, VGG19, and 

ResNet50, respectively. Particularly, Xception model 

demonstrates higher precision, recall and f-1 scores, 

which shows its successful implementation in such tasks. 

Explainable AI is added to increase the level of 

interpretability; it enables a visual representation of the 

model’s predictions and reasoning behind them. This is 

done to restore the confidence of medical units in AI and 

support the application of AI in clinical decision-making. 

Overall, the study encompasses a significant 

development in the domain of automated COVID-19 

detection and introduces a helpful, accurate, and 

interpretable solution for application throughout the 

world. The comparative results related to this study are 

presented in table 1. 

 

Table 1: Comparative table of related works 

References Method Image Type Accuracy 

[24] MobileNetV2, InceptionV3, VGG19, 

ResNet 

Lung opacity -Two classes: 92.52% 

-Three classes: 92.44% 

-Four classes: 87.12% 

-Five classes: 91.71% 

[25] BDCNet (combining Vgg-19 and 

convolutional neural networks) 

Chest radiographs 99.10% 

[26] CDC Net (Multi-classification deep 

learning model) 

Chest X-ray images 99.39% 

[27] Convolutional Neural Network (CNN) 

specifically combining a pre-trained 

EfficientNetB0 network with a dense layer 

Chest X-ray images -Two-class classification 

(COVID-19 vs. other viral 

pneumonias): 95% 

-Three-class classification 

(COVID-19 vs. other viral 

pneumonias vs. other chest 

disorders): 93% 

[28] convolutional neural network (CNN) 

architectures, including Se-ResNeXt-50. 

X-ray images. -For binary classification 

accuracy of 99.32%. 

-For multi-class 

classification accuracy of 

97.55%. 

When comparing deep learning models for medical 

picture classification, there is a significant difference in 

accuracy depending on the model architecture and 

classification difficulty. The authors in [24] used a 

mixture of MobileNetV2, InceptionV3, VGG19, and 

ResNet to detect lung opacity in X-ray images, with 

accuracies ranging from 87.12% to 92.52% across two to 

five classes. Other research [25, 26, 28] shows better 

performance with other convolutional neural network 

designs. For example, the CDC Net [26] and BDCNet 

[25], which concentrate on chest X-ray pictures and chest 

radiographs, respectively, yield accuracies higher than 

99%, suggesting a more successful method for binary 

categorization. In contrast to the research [25, 26, 28], 

another study [27] uses a hybrid model that combines a 

dense layer with a pre-trained EfficientNetB0. The 

results reveal somewhat lower accuracies in two and  

three-class classifications (95% and 93%, respectively). 

This implies that although the combined procedures in 

[25, 26, 28] are quite successful for binary and multi-

class classifications, the complex method in [27] 

provides slightly lower accuracy. These variations 

highlight how model architecture and training methods 

affect medical image analysis classification accuracy. 

The application of deep learning in medical imaging, 

especially for COVID-19 detection, marks significant 

progress in diagnostic methodologies. While various 

models demonstrate high accuracy, existing approaches 

still present limitations that our research aims to address. 

Three-Channel fusion CNN models [24]: While this 

model achieves impressive accuracy levels up to 

92.52% for lung opacity classification, its performance 

variably decreases to 87.12% as the number of classes 

increases, indicating a potential drop in effectiveness 
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with complex classifications. Our work extends these 

efforts by employing a stacking ensemble model that 

not only maintains high accuracy across an increased 

number of classes but also integrates more diverse 

CNN architectures to stabilize performance across 

varied diagnostic scenarios. 

BDCNet [25]: This model excellently classifies 

COVID-19, pneumonia, and lung cancer with an 

accuracy of 99.10%. Although it demonstrates 

robustness, it focuses on a limited array of diseases. 

Our approach includes a broader spectrum of 

pulmonary pathologies, enhancing the utility of deep 

learning models in more diverse clinical settings. 

CDC Net [26]: Achieving an AUC of 0.9953, this 

model is highly accurate. However, it primarily 

employs traditional CNN architectures with residual 

networks. Our model introduces an artificial neural 

network as a meta-learner to further refine the 

diagnostic process, aiming for nuanced understanding 

and integration of features extracted by base learners. 

EfficientNetB0 hybrid models [27]: With accuracies 

of 95% and 93% for binary and three-class 

classifications respectively, this model shows a 

reduction in performance with more complex class 

scenarios. Our methodology leverages a meta-learning 

approach that consistently manages high accuracy even 

as classification complexity increases. 

Ensemble and meta-learning approaches: Most 

existing studies utilize single-model systems that may 

not capture all nuances in complex image data. Our 

research introduces an ensemble of multiple advanced 

models (DenseNet, Xception, Inception) with a meta-

learner that synergistically improves prediction 

accuracy and robustness, addressing the gap in existing 

single-model systems. 

By incorporating these advancements, our work 

significantly contributes to the field by providing a 

comprehensive and adaptable solution that enhances 

the detection and classification of a wide range of 

pulmonary diseases, not just limited to COVID-19 but 

extending to other less commonly addressed conditions 

such as pneumothorax and pulmonary fibrosis. This 

holistic approach is crucial for deploying deep learning 

effectively in real-world clinical settings, where 

diversity in pathology presentation demands robust and 

flexible diagnostic systems. 

3 Methodology 
In our methodology, we begin with a comprehensive 

dataset acquisition process that includes a variety of 

medical imaging data pertinent to pulmonary conditions 

such as COVID-19, pneumonia, lung opacities, and 

effusions. The first step in our methodology consists in 

extensive preprocessing and exploratory data analysis 

(EDA) to guarantee the data’s quality and 

appropriateness for machine learning exploitation. 

Especially, this involves the resizing of images, 

normalization of pixel values, and handling of any 

missing or null data. Thereafter, we train several deep 

learning models, such as DenseNet and two variants of 

Inception. These models were chosen based on their 

successfulness in feature detection in complex image 

data, as well as setting the network parameters 

appropriately to extract from differences in specific 

characteristics of the various primary pulmonary 

conditions. 

Once the training phase has been conducted, we 

assess each model’s performance by employing 

significant metrics, including accuracy, sensitivity, 

specificity, and F1-score and without which to assess the 

ability of a model to classify the medical images 

accurately on its own. 

 Based on this assessment, we then conduct feature 

extraction such that we extract the noteworthy features in 

the outputs of the base learners, i.e., the features that 

contain the salient characteristics necessary to classify 

accurately. Afterwards, we input these features into an 

ensemble model. 

We propose a meta-model, an artificial neural 

network which acts as the decision layer, that harmonizes 

the insights from the DenseNet and the two Inception 

models via a stacking algorithm. This model combines 

the strengths of each base learner to enhance 

classification accuracy and robustness.  

Finally, we evaluate the ensemble meta-model using 

the four metrics of accuracy, sensitivity, specificity, and 

F1-score. This step measures the improvement of the 

performance and the reliability of the new multi-tumor 

classification system. The resulting system is fit for 

clinicians and will thus help manage and treat pulmonary 

ailments better. Our methodology is explained in figure 

1. 
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Figure 1: Methodology

3.1. Datset overview 

In this work we provide diverse set of well-curated 

publicly available medical imaging datasets, which are 

crucial for training state-of-the-art machine learning 

models to detect chest related diseases including 

COVID-19, tuberculosis and pneumothorax. We have 

selected these datasets for their comprehensive 

representation of various clinical scenarios and 

radiographic findings to make our study more exhaustive 

and clinically relevant. The COVIDx CXR-4 Dataset to 

be released, part of the larger COVID-Net initiative, is a 

composite collection of over 30,000 chest radiographs 

with coding collected from several healthcare institutions 

around the world, to pretrain deep learning models, 

specifically for discovering COVID-19 and pneumonia. 

The data set is also systematically split into validation 

and test sets in order to allow for legitimate cross 

evaluation and meaningful testing.  

Consisting of thousands of chest X-rays from normal 

findings to TB-positive cases, this database represents a 

gold standard for TB diagnostics developed jointly by an 

international consortium. At the same time, the ChestX-

Ray14 dataset has over 100,000 radiographs with 

annotations associated to text-mined radiological reports, 

enabling weakly-supervised learning techniques (one of 

the largest datasets for radiology and NIH is already 

planning an expansion to 200k records). It contains 

thousands of images for multi-label classification where 

an image may contain [0, 1 or more] of the 14 different 

kinds of pathologies that the model is to diagnose at the 

same time. In addition, the COVID-19 Radiography 

Database is constantly updated with images of different 

phases of COVID-19 infection and maintains its 

relevance as the disease progresses. Furthermore, to 

mitigate potential biases introduced by this broad set of 

sources, we conduct diversified-sourcing, balanced-

sampling, and stratified cross-validation to help ensure  

 

 

our models are generalized and robust across various 

demographic variation and clinical contexts. We 

safeguard the privacy of patient data by always de-

identifying all datasets and then vetting the public 

availability/scanning source/patient-consent of the data to 

adhere to ethics protocols with patients in mind and 

comply with the HIPAA and GDPR requirments. This 

ethical rigor is a testament to our dedication to keeping 

the patient information private and the correctness of 

data.  

The appropriate use of these datasets strategically 

builds a concrete stepping- stone to reliable and accurate 

diagnostic aids that are capable of addressing the 

complexities involved in different pulmonary pathologies 

Our systematic effort in dataset diversity, potential 

biases, and ethical standards vindicates the scientific 

soundness and ethical quality of the developed 

methodology, thereby laying the foundation for an 

important benchmark amongst diagnostic AI research 

agendas. 

3.2. Data preprocessing methodology 

Step-by-Step data preprocessing: The first step in 

our preprocessing is a detailed exploratory analysis using 

a visualization grid to display 20 random images along 

with their labels. This step ensures not only the accuracy 

of labels but also highlights the types and difficulty level 

of data such as image clarity, orientation, or anomaly 

visibility. Normalization involves reducing pixel values 

within each image to a range of 0 to 1 through 

standardization. This alleviates model training dynamics 

problems, including the speed of convergence and 

sensitivity to the scale of input data. 

Advanced augmentation methods: An important 

component of training powerful deep neural networks, 

especially in medical imaging, is data augmentation. This 

is crucial as the range of variability of data is often quite 
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wide and may be relatively scarce. Our augmentation 

strategy includes: 

-Geometric transformations: Rotations (up to 20 degrees) 

and translations (shifts of up to 10% in both x and y 

axes) represent different patient positions and imaging 

angles. 

-Zoom and shear perturbations: Zoom perturbations (up 

to 20% increase/decrease) and shear transformations (up 

to 10%) simulate differences in patient size relative to the 

imaging machine and subtle movements. 

-Color space augmentations: Brightness and contrast 

transforms help the model learn feature mapping under 

different imaging conditions and equipment settings. 

-Elastic deformations: Stretching or squeezing images in 

a non-linear manner to account for realistic variations 

between physiological examples and changes in imaging 

perspectives. 

Each augmentation technique is chosen deliberately 

to reflect realistic variations and challenges faced by our 

diagnostic model in a clinical context, enhancing its 

ability to generalize from training data to real clinical 

applications. 

Training parameters and hyperparameter 

tuning: The initial learning rate for our model was set to 

0.001, adaptively adjusted during training using the 

Adam optimizer. We choose the Adam optimizer for its 

suitability to sparse gradients and adaptability to different 

scenarios, essential for medical imaging tasks. 

-Training (A) Choosing the batch size: A batch size of 32 

balances efficient learning dynamics and computational 

resources. This size ensures good diversity within 

gradient estimates while avoiding memory exhaustion. 

-Training epochs and early stopping: We allow training 

to run for up to 100 epochs, with early stopping based on 

validation loss to prevent overfitting once model 

performance stops improving. 

Model tuning: We use a grid search with cross-

validation to explore different combinations of learning 

rates, batch sizes, dropout rates, and augmentation 

parameters. This systematic process ensures thorough 

testing of each combination to identify the optimal set of 

parameters that yield the highest performance on the 

validation set. Grid search with cross-validation assesses 

the model's generalizability across data splits, ensuring 

robustness in various clinical scenarios. 

Validation and testing: Validation during training 

uses a separate subset (20% of the training data) to 

unbiasedly tune and evaluate the model's generalization 

capabilities. The final model's performance is evaluated 

on a separate testing set, mimicking real-world 

application scenarios to ensure robustness and 

generalization for clinical deployment.  

3.3. Convolutional neural network 

architecture 

Through the full-depth exploration from our study, 

we explored four CNNs including VGG16, 

DenseNet201, InceptionV3, and Xception. The structural 

design of these models is capable of capturing and 

analyzing complex image data efficiently, The Inference 

models VGG16, Densenet201, Inceptionv3, Xception 

CNNs either employ various layers of convolution filter 

or pooling operation, or use successive operations to 

extract the higher-level image feature compounds 

gradually. For the task of fine-grained recognition where 

detailed image classification is involved, this process is 

essential. 

Leveraging the power of transfer learning, we 

introduced pre-trained weights from the extensive 

ImageNet database into our models. This approach 

harnesses the diverse and rich feature sets learned by 

these networks on a broad array of image types, thus 

furnishing our models with a robust foundation of visual 

knowledge. By employing these pre-trained networks, 

we effectively accelerate the training phase and enhance 

the model’s ability to generalize better when exposed to 

new, unseen datasets. 

In adapting these pre-trained models to our specific 

task, we customized their architectures by removing the 

original top layers, which are typically fully connected 

layers designed for specific classification tasks on 

ImageNet. Instead, we focused on maintaining the 

convolutional base for its potent feature extraction 

capabilities. This adjustment ensures that the models 

remain versatile and more focused on extracting 

universally applicable features from the images. 

To ensure uniformity and compatibility across all 

models, all of the input images were preprocessed into 

the same shape of 224×224 pixels in RGB format, which 

is the input requirement for all of the aforementioned 

pre-trained network models. Furthermore, each of the 

pre-trained models has its own specific preprocessing 

subroutine such as normalization and pixel value scaling 

designed to prepare the images before processing them 

through the neural network. The rationale behind this 

step is that the pixel values required to follow the 

distribution mean and standard deviation of the images in 

ImageNet. 

Our methodology extended the pre-trained models’ 

convolutional base with new layers designed to aid 

learning for our specific classification tasks. This 

included global average pooling for spatial dimension 

reduction, batch normalization to normalize the input 

layers and stabilize learning, dropouts to prevent 

overfitting, and dense layers for the final classification. 

Each of these layers was essential in developing the 

model by increasing its sensitivity to meaningful features 

and simultaneously minimizing the potential of 

memorizing irrelevant data patterns. 

Finally, we assessed the performance of each of the 

four models using a comprehensive set of performance 

metrics comprising accuracy, precision, recall, and the 

F1-score computed on them. These metrics offered an 

all-round perspective of the performance of each of the 

four models while identifying the strengths of each of the 

four models in the accurate clustering of images into 

existing classes. This set of evaluations, therefore, had a 

dual goal of determining which model was most suited 

for the accuracy of our categorization tasks considering 

our specific data, as well as contributing to the entire 

body of knowledge on the subject with the addition of 
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empirical evidence and better testing techniques. Thus, 

our work was a combination of a modeling and 

evaluation effort that pursued further the practical and 

theoretical aspects of the application of CNN in image 

clustering. 

3.4. MobileNet 

MobileNet is a lightweight convolutional neural 

network architecture designed with mobile and 

embedded devices in mind. The model factorizes the 

traditional large-scale CNNs into lighter models, thus 

enabling us to deploy them in situations that are 

computational expensive or model size limited. 

 MobileNet is developed to find the right solution to 

the computational and performance efficiency curve, 

making it ideal for applications that require lightweight 

models, but still maintain a certain level of accuracy.  

Introducing MobileNet to the research provides 

additional modeling benefits for scenarios that 

computation resources and the model file is a limitation. 

The integration of MobileNet in the proposed 

classification architecture not only increased the 

inference deployment initiatives and to various 

applications like mobile app and edge devices but also to 

resource-constraint systems. 

Considering the use of MobileNet in our 

classification pipeline, it was necessary to carefully 

prepare the data for the subsequent training and testing 

processes. First, we divided our dataset into two mutually 

exclusive subsamples – the training subsample and the 

testing subsample using the train_test_split function. As 

a result of the stratified subsample division, we obtained 

a sufficiently diverse sample to train the model and an 

independent empirical set to evaluate the ability of the 

model to classify samples it had never seen. We used this 

experimental methodology in order to obtain reliable 

estimates of generalization capabilities and several 

classification performances measures.  

Next, we created data generators for our training and 

testing subsamples using TensorFlow’s Image Data 

Generator. By resorting to data generators, loading and 

preprocessing these images became a more 

straightforward and computationally efficient process. 

For MobileNet, we used the preprocessing function 

provided by tf. keras applications mobilenet_v3 

preprocess input. It was crucial to pre-process our input 

images this way to ensure the correct normalization and 

consistency with the preprocessing requirements of the 

MobileNet architecture to maximize its classification 

efficiency. 

The incorporation of MobileNet within our 

classification framework has been a tactical venture 

designed to promote our methodology’s scalability, 

efficacy, and flexibility. Using the more lightweight 

structure and architecture of MobileNet and the approach 

to inference, we initially intended to expand our 

classification model’s relevance to different deployment 

settings, such as mobile apps, edge devices, and Internet 

of Things platforms. By conducting extensive data 

preprocessing procedures and integrating the model 

accordingly, the goal was to “unlock” MobileNet’s full 

potential in resolving actual image classification issues 

within multiple domains and applications. 

4    Evaluation metrices 
To provide a complete evaluation of the model’s 

performance, we employ several evaluation metrics, 

which provide a full understanding of the model’s 

performance in image classification. These metrics are 

essential in determining the model’s performance, 

including applications in medical diagnostic fields. The 

following are brief abstractions of the use of each. 

 

4.1. Accuracy 
Accuracy is the most essential evaluation metric that 

measures the quality of the model’s predictions in 

general. It is calculated as the number of correctly 

classified samples, which include true positives and true 

negatives, divided by the total number of samples. 

 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. 

 

4.2. Precision 
This measurement metric is fundamental for 

measuring the correctness in the positive predictions 

made by the model. It is computed as the quotient of the 

sum of true positive predictions and false ones and the 

true positives only. 

𝑃𝑅𝐸 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
. 

 

4.3. Recall 
one of the primary metrics evaluated, is the ability of 

the model to identify all instances of a class that truly 

belongs to it. This is computed by True Positives divided 

by True Positives plus False negatives. 

 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

 

4.4. F1-Score 
The F1-score is a balance of precision and recall. It 

is computed as Harmonic mean of Precision and Recall, 

which is a single measure taking both metrics into 

consideration. 

 

𝐹1 − 𝑆 = 2 ×
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
. 

 

4.5 Roc curve  
A ROC (Receiver Operating Characteristic) curve is 

a graphical tool that allows performance evaluation of a 

multiclass classification model to show itself at many 

threshold levels. ROC curve), which is formed by 

plotting True Positive Rate (TPR a.k.a. 

Sensitivity/Recall) on y-axis and False Positive Rate 

(FPR) on x-axis. TPR, The proportion of actual positives 
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which are correctly identified by the model FPR, The 

proportion of negatives which are incorrectly labeled as 

positives. 

The TPR-FPR tradeoff can then be changed by 

varying the model classification threshold. For a good 

model, ROC curve will be tending to the upper left 

corner of the plot, higher the True Positive Rate and 

lower the False Positive Rate across various thresholds. 

Because ROC Chart evaluates a model which is 

independent of classification threshold, it is ideal in cases 

when one balance between TPR and FPR is more critical 

than the other. In the case of fraud detection, it may be 

worth to load even a huge false positives list for the sake 

of making the phishing True positive rate as high as 

possible. On the other hand, when it comes to medical 

diagnostics the reduction of FPR might be more 

important, even if it comes at the cost of a slightly lower 

TPR. 

In summary, ROC curves give a graphical 

representation which helps us to decide which model 

should be chosen for a binary classification problem 

based on the threshold of sensitivity and specificity 

needed. 

 

4.6 Confusion matrix  
A confusion matrix is a statistical device used in 

machine learning to determine how well classification 

models are in capable of predicting and classifying data 

in a dataset for which real values are known. This matrix 

represents the counts for true positives (TP), true 

negatives (TN), false positives (FP) and false negatives 

(FN) True Positives: Observations correctly predicted as 

positive True Negatives: Observations correctly 

predicted as negative on the other hand, false positives 

(Type I error) and false negatives (Type II error) indicate 

when the model labeled negatives as true positives and 

vice-versa. A confusion matrix is critical to quantify 

performance metrics avenue like accuracy, precision, 

recall, F1 score showing how well the model is able to 

distinguish between classes accurately. 

 

4.7 AUC 

The Area Under the Curve (AUC) is a performance 

measurement for classification problem at various 

threshold settings. Which is essentially ( AUC - ROC ) 

Curve where True Positive Rate [ Sensitivity ] is plotted 

over False Positive Rate [ 1- specificity] considering 

different points (Thresholds) It can be a value between 0 

and 1 and the closer to 1, the better the model. 

 The AUC represents a summary of the model 

performance across all possible classification thresholds. 

An AUC value of 0.5 suggests that the model has no 

ability to discriminate (i.e., a model with no 

discriminative power being equivalent to random 

guessing) and of 1 indicate perfect discrimination 

between positive class and negative class. 

 In a more general derivation, the AUC is calculated 

by drawing a B-Spline curve through the points on the 

ROC curve and using a closed form equation related to 

the trapezoidal rule which approximates the area under 

the curve. The formula is: 

 

AUC = ∫ TPR(𝑡)
1

0
 𝑑FPR(𝑡). 

 

Where: 

• (TPR(𝑡)) is the true positive rate at threshold 

( 𝑡 ) 

• (FPR(𝑡)) is the false positive rate at threshold 

( 𝑡 ) 

 

In practice, the AUC is often computed using 

numerical integration techniques on the points that make 

up the ROC curve. 

5 Experimental results 

5.1 DenseNet  

The DenseNet201 architecture from TensorFlow’s 

Keras applications was used in our study. However, it 

was edited to suit a specific classification task better. The 

model was initialized with pre-trained ImageNet weights 

without the top layer included for customization for 

custom output layers. To ensure that the pre-trained 

features are not tampered with, the base model’s layers 

were set to be non-trainable. Subsequently, the network 

was expanded with specific layers developed to fine-

tune and optimize previously existing features to 

accommodate our classification needs. These include 

Global Average Pooling, Batch Normalization, several 

Dense layers employing ReLU activations, and Dropout 

to avoid over fitting. Furthermore, the model was 

composed with an SGD optimizer. Throughout the 

training process, early stopping was used to monitor 

and stop struggling when the validation score failed to 

improve any further ensuring that the model was 

maximally generalized. Following training, the model 

achieved high classification accuracy as well as other 

performance metrics on the multi-class image dataset as 

depicted in Table 2, enabling the distinction of several 

types of medical images, including tuberculosis, 

pneumonia, and pulmonary fibrosis, among others. The 

results were further validated through the classification 

report documenting the precision, recall, as well as the 

F1-scores among the various classes. This process 

affirms the robustness and accuracy of our method in 

medical image analysis.
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Table 2: Classification report of DenseNET 

Classes Precision Recall F1-score 

Control 10 0.96 1.00 0.98 

Covid 09 0.99 0.99 0.99 

Effusion 08 0.96 0.96 0.98 

Lung Opacity 07 0.98 0.96 0.97 

Mass 06 0.95 0.96 0.96 

Nodule 05 0.94 0.87 0.90 

Pneumonia 04 0.92 0.97 0.94 

Pneumothorax 03 0.91 0.95 0.93 

Pulmonary fibrosis 02 0.93 0.98 0.96 

Tuberculosis 01 1.00 0.94 0.97 

Accuracy   0.95 

Macro avg. 0.95 0.96 0.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Accuracy of DenseNet model 

 

Figure 2 illustrates the accuracy results of a DenseNet 

model over several training epochs. The x-axis 

enumerates the epochs, and the y-axis represents the 

accuracy metric, scaled between 0 and 1. The blue line 

traces the training accuracy across epochs, initiating at 

about 50% and steeply ascending to near-perfection, 

suggesting rapid learning in the initial phases. It plateaus 

close to 100%, which implies a strong fit to the training 

data. Conversely, the orange line, denoting validation 

accuracy, begins slightly lower than the training 

accuracy, suggesting that the model doesn’t generalize 

quite as well initially. It increases at a steady rate, albeit 

with a less steep slope compared to the training accuracy, 

before plateauing at a value slightly under 100%. This 

indicates a good but not perfect generalization to new 

data. 

 DenseNet in the training loss and validation loss is 

decreasing per training epoch, showing the improvement 

of the model in terms of prediction of the target classes. 

On the first training batch, both losses are high, which 

tells us the model have little to no understanding of the 

data yet. Later into training, the training loss drops faster 

than the validation loss, which levels off, this is the point 

where both losses have converged. This plateau informs 

to stop training further because the model will not benefit 

significantly more from it emphasizing on why early 

stopping is in play to avoid overfitting and make sure the 

model generalizes even on new data. The overall 

decreasing loss plot confirms a successful learning phase, 

a necessity for the high accuracy. 

 The Receiver Operating Characteristic (ROC) curve,  

provided here shows that the DenseNet model performs 

well on the class 9 which can be evident from the high 

region under the curve under the curve which is area 

under the curve, if you like to know more about ROC and 

AUC watch this (ROC-AUC) video. An Area Under the 

Curve (AUC) of 0.960 is considered to be in the range 

with an extraordinary ability to discriminate, where the 

model was capable of accurately identifying 96% of the 

times the class of the 9 (positive instances) cases and just 

3 % of the times mistaking it to be negative. This is 

evident by the ROC curve which shows that the 

performance of the model remains high with nearly 1.0 

true positive rates even at relatively low false positive 

rates and holds good as they increase. This high AUC 

number suggests that DenseNet results in the best 

performance among the class 9, making it the best 
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contestant of a medical image classification with the 

lowest misclassifications. 

 The confusion matrix illustrates how the model does 

in several classes for the DenseNet model. From the 

matrix we see that there are many correct classifications 

likely with 94 for Class 0 and 121 for Class 6, but there 

are perhaps notable misclassifications as well. Class 4, 

for example, has instances wrongfully classified to 

Classes 0 and 7, and Class 7 has a lot of instances 

misclassified to Class 8, showing a difficulty in 

separating these classes specifically. Also, there is a 

significant number of misclassifications for Class 8 and 

Class 1 (which are misclassified as Class 3 and Class 7) 

and to a lesser extent, some instances for Class 9 (total no 

96) which are wrongly classified as Class 8. The training 

labels of ”7” were misclassified into ”9”, which shows 

the predictive abilities of the DenseNet model, but since 

the samples were still misclassified, it suggests that there 

is still remaining room for the model to improve, and a 

way to better reduce errors and improve the overall 

classification performance. 

5.2 Inceptionv3 

 We addressed a difficult image classification problem 

using the InceptionV3 architecture, known for its 

complexity and depth. This model utilized the ImageNet 

weights and had its highest layer excluded; hence, the 

network did not make specific classifications but rather 

extracted features. As opposed to the other layers, the 

InceptionV3 layer’s trainable model parameters were 

frozen. This was needed to preserve features obtained 

from the first training instances and prevent instability 

during the initial learning process. Our custom model 

architecture was based on this robust foundation and 

included additional layers for maximizing classification 

accuracy. Global Average Pooling was employed to 

consolidate all feature maps into a single vector per 

feature map, followed by Batch Normalization for faster 

convergence and several dense layers to increase the 

learning potential of the model. A significant dropout rate 

of 0.5 was included to prevent overfitting. The model was 

compiled using the Adam optimizer, balancing the  

benefits of both RMSprop and SGD, and aimed to 

optimize for precision, recall, and overall accuracy. 

 The classification report for the InceptionV3 model 

presents a comprehensive overview of its performance 

across various classes. As depicted in Table 3, the 

’Control 10’ class achieved the highest F1-score at 0.95, 

indicating exceptional precision and recall. In contrast, 

the ’Nodule 05’ class had the lowest F1-score of 0.77, 

which suggests room for improvement in either precision 

or recall or both for this category. The model showed 

strong precision in the ’Covid 09’ and ’Tuberculosis 01’ 

categories, scoring 0.93, but the recall was notably lower 

in ’Tuberculosis 01’, reflecting that some cases may have 

been missed. ’Mass 06’ exhibited high recall at 0.94, 

implying that the model is reliably identifying most of 

the positive cases for that condition, although precision is 

slightly lower at 0.81. Across all classes, the model 

achieved an accuracy of 0.85 and both macro average 

precision and recall are balanced at 0.86, indicating 

consistent performance across different conditions. The 

F1 scores, which balance precision and recall, are 

relatively high for most conditions, demonstrating the 

effectiveness of the InceptionV3 model in varying 

scenarios. However, there are differences among the 

conditions that could be addressed to improve the 

model’s diagnostic capabilities further. 

 

Table 3. Classification report of inceptionv3 

 Precision Recall F1-score 

Control 10 0.91 1.00 0.95 

Covid 09 0.93 0.87 0.90 

Effusion 08 0.82 0.78 0.80 

Lung Opacity 07 0.92 0.81 0.86 

Mass 06 0.81 0.94 0.87 

Nodule 05 0.84 0.71 0.77 

Pneumonia 04 0.85 0.96 0.90 

Pneumothorax 03 0.83 0.88 0.85 

Pulmonary fibrosis 02 0.77 0.93 0.84 

Tuberculosis 01 0.93 0.72 0.81 

accuracy   0.85 

Macro avg. 0.86 0.86 0.86 

 

Figure 3: Accuracy of inceptionv3 
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Figure 3 depicts the accuracy trends for an 

InceptionV3 model during its training and validation 

phases. On the x-axis, we observe the number of epochs, 

and on the y-axis, the accuracy metric is presented, 

ranging from around 0.35 to just above 0.9. The training 

accuracy, marked in blue, starts just above 0.4 and shows 

a steady increase as training progresses, suggesting that 

the model is learning from the training data. It continues 

to improve, albeit with a gradual slope, before plateauing 

near 0.9, which indicates a high level of accuracy on the 

training dataset. 

The validation accuracy, coloured in orange, also 

starts at a similar point but increases at a quicker rate 

initially. It reaches its peak at around the third epoch, 

which is over 0.8, indicating that the model was quite 

effective on the validation data at this point. However, 

post this peak, it begins to decrease and then levels off, 

ending with a slight downward trend. This could suggest 

that the model began to overfit to the training data after 

the third epoch, as it performed better on training data 

than on unseen validation data. It is also noteworthy that 

the validation accuracy ends up lower than the training 

accuracy, which further supports the possibility of 

overfitting. 

In the first confusion matrix,  for the InceptionV3 

model, we see that it has considerable difficulty in 

predicting many of the classes. While some predictions 

are correct, such as predicting 103 out of 111 Class 0 

(Control) and 107 out of 144 Class 8 (Pneumothorax), 

the model is making many misclassifications. Fig 1 — 

Class 5 (Mass) is often mistaken as Class 4 (Effusion) 

and Class 6 (Nodule) for example. Also, Class 9 

(Tuberculosis) which confounds with many classes. The 

above misclassifications suggest the confusion of the 

model in distinguishing close classes that need to use 

further refinement and improvements for overall 

performance. 

For the Inception model, the ROC curves of class 9 

show the ROC curve performance higher than other 

classes, AUC was equal to 0.906. This means that the 

model is 90.6% certain that it will give a higher ranking 

to a random positive instance (i.e., class 9) than to a 

random negative instance that could belong to any class. 

The curve indicates that the model retains an almost 0.9 

true positive rate, even where the false positive rate is at 

its lowest. The widening of this range is good for the 

model, indicating it will continue to perform well over a 

larger range of false positive rates. Second, a specificity 

of 0.82 indicates that the Inception model detects class 9 

very well without false positives, which is particularly 

desired in medical image classification. 

5.3  Xception 

The Xception model employed in our study leverages the 

Xception architecture pre-trained on the ImageNet 

dataset to extract features from medical images. We 

initialized the base Xception model with frozen layers to 

preserve the learned features during training. In the 

subsequent step, we developed a sequential model, with 

batch normalization, global average pooling, and dense 

layers for feature extraction and aggregation, data 

normalization, and classification, respectively. Softmax 

activation function with 10 neurons was responsible for 

the probability distribution across the classes of the 

output layer. The model was trained using the Adam 

optimizer to compute the gradient of the categorical 

cross-entropy loss. Early stopping was also applied to 

prevent the model from overfitting during training and 

ensure optimal convergence. The model was then tested 

on the test dataset as demonstrated in Table 4, achieving 

81% overall accuracy. The model exhibited decent 

performance in terms of precision, recall, and F1-score, 

indicating its classification power for different classes. 

Hence, the Xception model demonstrated its strength in 

classifying medical images accurately, especially for 

diagnosing pulmonary pathologies. 

 

Table 4: Classification report of Xception 

 Precision Recall F1-score 

Control 10 0.99 0.96 0.98 

Covid 09 0.87 0.93 0.90 

Effusion 08 0.84 0.75 0.79 

Lung Opacity 07 0.85 0.54 0.66 

Mass 06 0.78 0.91 0.84 

Nodule 05 0.77 0.69 0.73 

Pneumonia 04 0.84 0.84 0.84 

Pneumothorax 03 0.75 0.85 0.80 

Pulmonary fibrosis 02 0.73 0.89 0.80 

Tuberculosis 01 0.68 0.72 0.70 

accuracy   0.81 

Macro avg. 0.81 0.81 0.80 
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Figure 4: Accuracy of Xception 

Figure 4 showcases the accuracy of an Xception 

model during its training and validation processes over a 

series of epochs, with the x-axis tracking the epoch count 

and the y-axis representing the accuracy metric between 

approximately 0.2 and 0.8. The blue line represents the 

model’s training accuracy begins just above 0.2 and rises 

steadily, reflecting consistent learning as the epochs 

progress. This steady ascent suggests that the model is 

effectively learning patterns from the training dataset. 

Around the seventh epoch, it slightly plateaus, indicating 

that the model may be approaching its learning capacity 

based on the current data and configuration. 

In contrast, the validation accuracy, indicated by the 

orange line, follows a similar upward trajectory, yet 

surpasses the training accuracy after the initial epochs. 

This is an unusual pattern as typically, models tend to 

perform better on the training data due to familiarity. The 

validation accuracy’s higher values could suggest that the 

validation set might not be as challenging, or it might 

indicate good generalization depending on the diversity 

and representativeness of the validation set compared to 

real-world data. There’s also a possibility of data leakage 

or an issue with the training/validation split that is 

causing the validation accuracy to be inflated. 

ROC curve, for class 9 of the Xception model. This 

is the ability of the model to distinguish this class from 

others. The curve plot the true positive rate (TPR) vs.  

false positive rate (FPR) at 30 different thresholds. The 

discriminative power of the model is high, with an AUC 

of 0.859, which indicates that an instance of class 9 will 

be correctly classified as such with probability of 85.9%, 

and a negative instance (any other class) will also be 

classified as negative with the same probability, on 

average. The curve indicates that at low false positive 

rates, the true positive rate approaches 0.80 and advances 

as the false positive rate becomes larger. The model 

remains sensitive to detecting true positives but more 

false positives start to occur AUC of this value indicates  

 

 

 

the Xception model has a high accuracy of classifying 

class 9, and it is suitable for medical image classification.  

This is a small value while others has the large value but 

compared with larger AUC values,this is low and can be 

improved in another model. 

Confusion Matrix for Xception model with multi-

class Classification Task The diagonal values in the 

matrix show how many instances of each class were 

correctly predicted (high accuracy in classes, such as 0, 1 

and 5 where 89, 96 and 85 instances of each class are 

successfully predicted). Off-diagonal values: These 

provide an idea of where the model fails ( along the 

vertical rings and horizontal predictors) The most visible 

is — the class 2 instances are always mistaken for most 

of the other classes (with a majority of the confusion 

between class 2, 3, 4, 5, 7, and 8). For instance, class 8 

suffers from a misclassification distribution across a 

variety of classes indicating potential areas the model can 

be enhanced in clearly defining these classes. Detailed 

visualization results in a holistic performance evaluation 

of the model, highlighting high, low classification 

accuracy of certain classes along with specifics of 

misclassification regions, leading to better targeting and 

determining of where optimizations and improvements in 

training and evaluation are required. 

 

5.4  MobileNet  
This description defines the procedure of deploying a 

TensorFlow MobileNet V3 Image classification Model. 

We divided the dataset into 80% for training and 20% for 

testing. The training data is preprocessed and augmented, 

using the ImageDataGenerator, during preparation while 

the testing data only gets preprocessed. Then we split the 

training set not only into train and valid sets. The model 

architecture consists of a pretrained MobileNet V3 

model, global average pooling, batch normalization, 

flatten, dense layers, dropout layer for regularisation and 

softmax activation function on the output layer to 

categorize images in the 10 classes.  



56 Informatica 48 (2024) 43–64 R. N. Sadoon et al.  

Here, during training, the accuracy and loss metrics are 

plotted for both the training and validation data. When 

evaluated, the model yields an approximate accuracy of 

94.89 with a test loss of 0.25495. This is one of many 

such reports and others, played strong precision, recall, 

and F1 in each category with an overall accuracy of 95%. 

The performance of the model for the detection of 

different health conditions, including pneumonia, 

pulmonary fibrosis, and COVID-19, as characterized by 

classification metrics and confusion matrix processed. 

These results show the remarkable capabilities of the 

MobilNet V3 in image classification by achieving a 

trade-off between depth and complexity of the network 

and efficiency in feature extraction. 

Table 5: Classification report of MobileNet 
Classes Precision Recall F1-score 

Control 10 1.00 1.00 1.00 

Covid 09 0.99 0.97 0.98 

Effusion 08 0.90 0.94 0.92 

Lung Opacity 07 1.00 0.99 1.00 

Mass 06 0.92 0.92 0.92 

Nodule 05 0.96 0.89 0.92 

Pneumonia 04 1.00 0.97 0.98 

Pneumothorax 03 0.90 0.95 0.92 

Pulmonary fibrosis 02 0.94 0.95 0.95 

Tuberculosis 01 0.97 0.98 0.97 

accuracy   0.96 

Macro avg 0.96 0.96 0.96 

 

 The Training performance of MobileNet can shed 

light on both where it excels and where it falls short. The 

model trains fast and was already at 90% within a few 

epochs and flatting out at 94%, but if you look closely at 

the validation metrics the your forehead will fill up with 

sweat. The Validation accuracy follows a similar trend, 

but has a bit of a deviation from the training accuracy, 

especially during the beginning. Indicating that the initial 

training data is overfitting the exact model. Observations 

are also corroborated by the loss curves. Again the 

validation accuracy increases, even the training loss 

suddenly drops as it happened in the previous example. 

Nevertheless, validation loss is going deep down in the 

beginning and after sometimes it fluctuates. The 

fluctuation may suggest overfitting, where the model is 

effectively memorizing noise in the training data that 

does not generalize. From the first paper, this is in line 

with previous findings on initial learning abilities and 

generalization of MobileNet. Nevertheless this small gap 

may lead to over fitting and care should be taken during 

training to ensure the model works best on data that has 

been not been seen. One can use early stopping 

techniques to stop training that can help achieve this. 

 The classification of class 9 with ROC curve in 

MobileNet is better. This curve represents how well the 

model is able to distinguish class 9 (true positive rate) 

from other classes (false positive rate). This is further 

emphasized by a high Area Under the Curve (AUC) of 

0.964. In layman's terms, the model has 96.4 percent 

chance of classifying the above picture as class 9 The 

ROC curve additionally validates this by displaying that 

if other classes are only slightly confused (low False 

Positive Rates) then the background class is still almost 

always correct (True Positive Rate is near 1.0). It 

represents the strongness and reliability of the model in 

detecting class 9. In summary, the high AUC value 

indicates that MobileNet has the extraordinary ability to 

have few errors in the classification of class 9 (i. e. a 

small MSE) and is a very useful tool for the general task 

of medical image classification. 

 The confusion matrix of MobileNet model for multi 

class classifiction task. The accuracy of the model is 

good in classes such as 2, 5, 7, and 8, and this is shown in 

the diagonal values, where 101, 110, 109, and 109 are 

correctly predicted, respectively. The off-diagonal values 

are the instances that were misclassified in the model and 

help us understand the model's confusion points. For 

example, class 6 has some confusion with classes 3 and 9 

and class 3 has some confusion with classes 2, 4, and 5. 

This Fine-Grained overview makes It possible to obtain 

an overarching View of the Model’s Strengths in 

Predicting Almost all Classes Accurately and to 

Pinpointing Troublesome Confusion Areas. 

 

5.5  Ensemble (stacking) 

In this study, we utilized an ensemble method in making 

the use of stacking in assembling different pre-trained 

models to improve the prediction quality of a challenging 

image classification task. We incorporated three different 

CNN models including DenseNet201, InceptionV3, and 

Xception. These models had already been pre-trained and 

saved with trace and had strong predictive qualities. 

Therefore, we used them as base learners which first 

predicted and then their predictions were used as features 

for the meta-model. Our meta-model used the dense 

architecture with 25 neurons ReLU for feature integration, 

followed by a softmax layer with 10 outputs representing 

our class categories.  

This model was trained on a dataset split into training 

and validation subsets, ensuring robustness and the ability 

to generalize from the ensemble predictions. Optimized 

with the Adam optimizer and compiled with a categorical 

cross-entropy loss function, the meta-model focused on 

refining the decision boundaries formed by the base 

models. After training, the ensemble’s effectiveness was 

evaluated using precision, recall, and F1-score metrics, 

revealing outstanding classification performance across 

various categories, with nearly all classes achieving near-

perfect scores. This result underscores the power of 

combining multiple advanced neural network 

architectures to achieve superior accuracy and reliability 

in medical image classification tasks. In Table 6 the 

classification report for the ensemble model, which uses a 

meta–Artificial Neural Network (ANN) approach, shows 

outstanding performance across all classes. The model 

achieves near-perfect precision and recall in most 

categories, as reflected by the F1 scores. Remarkably, ’ 

the Covid 09’ and ’Lung Opacity 07’ classes both scored 

a perfect 1.00 across precision, recall, and F1-score, 
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indicating that the model has exceptional accuracy in 

identifying these conditions. Similarly, ’Control 10’ also 

demonstrates almost flawless performance with an F1-

score of 0.99. The other classes, such as ’Effusion 08’, 

’Mass 06’, ’Nodule 05’, and ’Pneumonia 04’, maintain 

high metrics, with F1-scores ranging from 0.97 to 0.99, 

suggesting the model is highly effective in distinguishing 

these conditions with minimal false positives or negatives. 

The overall accuracy of the ensemble model is extremely 

high at 0.98, and the macro averages for precision, recall, 

and the F1-score mirror this value, highlighting consistent 

and reliable performance across the board. This indicates 

that the stacking approach of the ensemble model, which 

likely integrates multiple learning algorithms, results in 

superior predictive capability. The balanced precision and 

recall suggest that the model is not only capturing the 

majority of positive cases but is also correctly identifying 

negatives, which is crucial for medical diagnostics. These 

results imply a robust model with excellent generalization 

properties for the considered conditions. 

 

Table 6: Classification report of meta model (ANN) 

Classes Precision Recall F1-score 

Control 10 0.99 1.00 0.99 

Covid 09 1.00 1.00 1.00 

Effusion 08 0.96 0.97 0.97 

Lung Opacity 07 1.00 1.00 1.00 

Mass 06 0.96 0.97 0.97 

Nodule 05 0.99 0.96 0.97 

Pneumonia 04 0.99 0.99 0.99 

Pneumothorax 03 0.97 0.98 0.97 

Pulmonary fibrosis 02 0.97 0.97 0.97 

Tuberculosis 01 0.99 0.97 0.98 

accuracy   0.98 

Macro avg. 0.98 0.98 0.98 

Figure 5 illustrates the accuracy of an ensemble 

(stacking) meta-model during its training phase, over 

several epochs, as shown on the x-axis. The y-axis 

quantifies the accuracy, which is scaled between 0.5 and 

1.0, suggesting that accuracy is represented as a 

proportion. The blue line charts the model’s training 

accuracy, which begins at around 0.5 and sharply climbs 

to just above 0.9 within the first two epochs. This rapid 

ascent indicates that the ensemble model quickly learns 

from the training data. Subsequently, the training 

accuracy exhibits a more gradual increase and seems to 

level off near the 1.0 mark, suggesting that the model fits 

the training data well. 

Conversely, the orange line indicates the validation 

accuracy. It starts at a similar level to the training 

accuracy but doesn’t ascend as steeply. After catching up 

to the training accuracy at around the second epoch, it 

diverges and starts to lag slightly, finishing just below 

the training accuracy curve. This divergence may be 

indicative of a small degree of overfitting to the training 

data, but the proximity of the two lines at the end of the 

training indicates that the ensemble model generalizes 

well to unseen data. The plateau nearing the end of the 

epochs suggests that the model is stabilizing and that 

additional training might not result in significant 

accuracy improvements. The high validation accuracy 

maintained throughout the training process reflects the 

efficacy of the ensemble approach, which often leads to 

robust generalization by leveraging the strengths of 

multiple individual models. 

 

 

 
 

Figure 5: Accuracy of meta model 
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Figure 6: Loss of meta model 

 

 

 
Figure 7: ROC curve for class 9 of meta model 

 

Figure 5 illustrates the accuracy of an ensemble 

(stacking) meta-model during its training phase, over 

several epochs, as shown on the x-axis. The y-axis 

quantifies the accuracy, which is scaled between 0.5 and 

1.0, suggesting that accuracy is represented as a 

proportion. The blue line charts the model’s training 

accuracy, which begins at around 0.5 and sharply climbs 

to just above 0.9 within the first two epochs. This rapid 

ascent indicates that the ensemble model quickly learns 

from the training data. Subsequently, the training 

accuracy exhibits a more gradual increase and seems to 

level off near the 1.0 mark, suggesting that the model fits 

the training data well. While Figure 6 depicts the loss in 

the accuracy of the meta-model as it undergoes training 

over multiple epochs, as indicated on the x-axis. The y-

axis measures the accuracy, which is scaled from 0.5 to 

1.0, indicating that accuracy is expressed as a proportion. 

The blue line represents the training accuracy of the 

model, starting at approximately 0.5 and rapidly 

increasing to slightly above 0.9 within the initial two 

epochs. The significant increase in performance suggests 

that the ensemble model rapidly acquires knowledge 

from the training data. Following that, the training 

accuracy demonstrates a slower and steadier rise and 

appears to stabilise around the 1.0 threshold, indicating 

that the model effectively matches the training data. 

Conversely, the orange line indicates the validation 

accuracy. It starts at a similar level to the training 

accuracy but doesn’t ascend as steeply. After catching up 

to the training accuracy at around the second epoch, it 

diverges and starts to lag slightly, finishing just below 

the training accuracy curve. This divergence may be 

indicative of a small degree of overfitting to the training 

data, but the proximity of the two lines at the end of the 

training indicates that the ensemble model generalizes 

well to unseen data. The plateau nearing the end of the 

epochs suggests that the model is stabilizing and that 

additional training might not result in significant 

accuracy improvements. The high validation accuracy 

maintained throughout the training process reflects the 

efficacy of the ensemble approach, which often leads to 

robust generalization by leveraging the strengths of 

multiple individual models. 
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The ROC curve illustrates how the stacking model 

performs for class 9 visually. It illustrates in Figure 7, the 

compromise between the percentage of class 9 that the 

model can identify (True Positive Rate) and the 

percentage of other classes that the model predicts as 

class 9 (False Positive Rate). A ROC curve itself is 

evaluated on (TPF, FPF) where a perfect curve would be 

a straight line rising from the bottom left corner (0,0) to 

the top left corner (0,1) and then across to the top right 

corner (1,1). This means that the model can completely 

separate class 9 from all other classes. 

A perfect AUC of 1.0 in the ROC curve of class 9 

implies the highly capable classification of class 9 by the 

model It implies that the model has perfect precision for 

class 9 only class 9 examples are getting predicted as 

class 9 and we do not see any other class getting 

predicted as class 9. 

 

 

 
Figure 8: Meta model Confusion Matrix 

 

Its multi class classification task can be seen in the 

Confusion Matrix from the Ensemble Learning Model in 

Figure 8. The diagonal values correspond to the number 

of rightly classified instances of every class (4 in total) 

with high accuracy for the classes — control_10, 

effusion_08, pneumothorax_03, and tuberculosis_01 with 

108, 106, 104, 111 appropriate predicted instances, 

respectively. Meanwhile, off-diagonal values give the 

number of points that got classified wrongly and indicate 

where the model is confusing into. For instance, a class 

lung Opacity_07 has a number of misclassifications into 

classes which effusion_08 and mass_06, and a class 

pulmonary fibrosis_02 demonstrates some 

misclassifications into the class mass_06. 

6 Comparative analysis 
When comparing the performance of individual CNN 

models—DenseNet201, InceptionV3, and Xception—
with that of the ensemble stacking model, we observe 
significant distinctions and improvements in the ensemble 
approach. DenseNet201 exhibited robust performance, 
achieving a high precision and recall with a weighted 
average precision of 0.96 and accuracy of 0.95. 
InceptionV3, while still performing commendably, 
displayed slightly lower efficacy, especially in precision 
and recall for certain classes such as effusion and lung 
opacity, leading to a total accuracy of 0.85. Xception’s 
results were less uniform; all but four classes had average 
precision and recall below 0.8, resulting in 0.81 diagnoses 
in total. 

 Meanwhile, the ensemble stacking, which based its 

diagnoses on the three base models’ predictions, showed 

the best results on all metrics. With almost perfect 

precision and recall in every category, totaling 0.98 

accuracy indicates that the approach has yielded 

significant levels of successful predictions. It is 

especially noteworthy that the ensemble outperformed 

non-ensemble models in categories the latter found 

difficult, underlining the efficiency of combining 

different strengths to address weaknesses. 
The above comparative analysis demonstrates the 

potential of the ensemble stacking method to improve the 
predictive efficiency and precision of the more 
complicated classification tasks by combining the unique 
strengths of several models to achieve the ultimate 
performance superiority.  

The following table summarizes the performance 
comparison between the individual models and the 
ensemble stacking model according to the precision, 
recall, f1-score, as well as the overall accuracy: 

Table 7: Comparison of model’s performance 

Model Precision Recall F1-score Accuracy 

DenseNet201 0.95 0.96 0.96 0.95 

InceptionV3 0.86 0.86 0.86 0.85 

Xception 0.81 0.81 0.80 0.81 

Stacking 0.98 0.98 0.98 0.98 

 
Based on Table 7, the ensemble stacking model and 

its ensembled learning approach to classification through 
stacking achieved optimal results compared to single-
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learner models. The superior performance of the stacking 
model continues to demonstrate the gain that one can 
make from having multiple model predictions for a final 
outcome – the way the model increases accuracy and 
dependability of classification in complex scenarios. 

7 Discussion  
As shown in Table 7, our ensemble stacking model 

performs the best in terms of precision, recall, F1-score, 

and accuracy, consistently achieving at least a 98% range 

across these metrics. Compared to the outcomes listed in 

the "Related Works" section, this indicates the strengths 

and weaknesses of our approach for these problem types. 

 

State-of-the-Art (SOTA) comparison: Multi-

Channel Fusion CNN (Paper [24]): Achieved an 

accuracy of 92.52%. Our model outperforms this by 

maintaining high accuracy consistently across more 

complex multi-class settings. This improvement arises 

from our model's ability to jointly optimize features from 

different CNN architectures through a meta-learning 

process, which is not used in Paper [24]. 

BDCNet (Paper [25]): The BDCNet shows excellent 

performance in precision and accuracy, focusing on 

COVID-19, pneumonia, and lung cancer. While BDCNet 

excels in these diseases, our model generalizes this high 

performance across a broader range of pulmonary 

conditions, including pulmonary fibrosis and 

pneumothorax, highlighting its clinical relevance across 

multiple diseases. 

CDC Net (Paper [26]): This model has an extremely 

high AUC of 0.9953, showing effective performance in 

distinguishing different chest diseases. Our model has 

comparable precision and recall to CDC Net, suggesting 

that while CDC Net is more discriminative for 

diagnostics, our ensemble approach is as reliable and 

more widely applicable across multiple conditions. 

EfficientNetB0 (Paper [27]): Known for fewer 

parameters and a streamlined model, it provides lower 

accuracy in multi-class scenarios (95.00%). Our 

ensemble model, using a more complex structure, 

manages to maintain high accuracy without the trade-off 

seen in streamlined models, indicating our advanced 

integration techniques can capture nuances in medical 

images more effectively. 

 

Performance differential analysis: The superiority 

of our model can be attributed to the use of a stacking 

ensemble technique for the synergistic integration of 

multiple types of CNN architectures. Each base model 

contributes its strengths, which are synthesized by a 

meta-learner that effectively aggregates the disparate 

inputs, making the final model more accurate and robust. 

This approach enables our model to achieve excellent 

metrics across the board and generalize effectively to the 

various complexities inherent in different medical 

imaging tasks. 

 

Our Contribution and limitation: This work 

provides a new application of ensemble learning with a 

meta-learner to improve classification in medical images. 

This method represents a significant improvement over 

single-model methods that do not consider all important 

features in complex datasets. However, the performance 

of our proposed model is highly affected by its 

complexity, introducing computational and potential 

overfitting constraints that could be addressed in future 

work through more optimal model architectures or more 

effective regularization techniques. 

 

Discussion: next steps: Future endeavors can 

examine avenues to upgrade the computational efficiency 

of the ensemble, such as model compression or tweaking 

the architecture to maintain predictive performance while 

minimizing redundancy. Additionally, increasing the 

variability of the dataset, using clinical information from 

real-world care, or incorporating feedback from medical 

practice could be essential to optimize an ML model for 

real-world medical needs. 

 

Conclusions: Our model, which innovatively 

leverages ensemble learning, achieves state-of-the-art 

performance in pulmonary disease classification. 

However, the ever-changing landscape of medical 

diagnostics means that ongoing improvements and 

adaptations will be required to remain competitive. 

Table 8: Comparison of model’s performance 

 
 

 

 

 

 

 

 

 

 

Study 

Reference 

Precision 

 

Recall 

 

F1-score 

 

Accuracy 

 

Unique Aspect 

Paper [24] N/A N/A N/A 92.52 Multi-channel fusion CNN 

Paper [25] 99.9 98.31 99.09 99.10 Single model for multiple 

diseases 

Paper [26] 99.42 98.13 N/A 99.39 High AUC (0.9953) for diverse 

diseases 

Paper [27] N/A N/A N/A 95.00 EfficientNetB0 with fewer 

parameters 

Paper [28] N/A N/A N/A 99.32 High binary classification 

accuracy 

Paper [29] N/A N/A 99.3 99.3 High performance with minimal 

epochs 

Our Work 99.0 99.0 98.0 99.3 Consistently high scores across 

metrics 
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8 Conclusion  
The present study embodies a collection of rigorous 

experimentation and investigation to break through the 

existing medical image classification frontiers. As we 

meticulously explored the intricate workings of a variety 

of CNN architectures, including DenseNet201, 

InceptionV3, Xception, and MobileNet, we 

simultaneously embarked on a quest to make the most 

out of their outcomes to transform the face of medical 

diagnostics. The collection of the curated dataset was 

subjected to a relentless process of data preprocessing, 

where we endeavoured to capture every possible 

complexity and variance that could occur in real-life 

clinical settings. 

All of the steps in our methodology, including 

prepossessing the data, training the models, and testing 

them, were carried out thoughtfully and diligently. This 

involved good parameter selection and aggressive 

training and testing strategies, as well as the use of prior 

knowledge through transfer learning, for example from 

models pre-trained on ImageNet. This led to two positive 

aspects.  

First, all our models trained very quickly. Second, 

each of our trained models had a very general approach 

to the diagnostics of chest pathologies, regardless of the 

specific doctor it was looking for. 

In addition, the work of our ensemble technique 

itself represented the efforts to generate a classifier 

capable of achieving higher classification performance 

after optimization. It should be recognized that while the 

components used in this approach are independent 

models with a unique speciality or strength and hence 

very different characteristics, taken together, the total 

body of the ensemble still demonstrated performance that 

none of its constituent models could exhibit.  

Hence, stacking boosted the reliability of the 

classifier to discover causal relationships, features, and 

patterns. It also demonstrated very good performance as 

it was no worse than most of the highly specialized  

models, ranging from 80% to 99%, trained for narrow-

focused detection of different diseases.  

This makes our work both high-end and versatile. 

Such constant high performance of the AI is exhibited by 

the method’s high efficiency because, given the fairly 

stable levels of precision, recall, f1-score, and accuracy, 

the method also shows a high and good level of 

reliability. 

The future work and amplification of our ensemble 

approach, therefore, may offer substantial improvements 

for medical diagnostics. Going forward, we aim to 

improve our methodology to more effectively 

complement diverse diagnostic use cases, such as 

emergent disease detection or rare pathologies, which are 

somewhat underrepresented in our training datasets. We 

are also investigating new deep learning approaches such 

as federated learning, allowing the integration of data 

across institutions without risking patient privacy to 

include more diverse and higher quality training data,  

 

thus, improving the robustness and accuracy of the 

model. In practice, our model provides significant 

promise in being seamlessly integrated into current 

clinical workflows, greatly improving the efficacy and 

accuracy of diagnostic procedures. Automating the initial 

chest radiograph analysis can help radiologists, as they 

can prioritize cases that have the detection of suspected 

pathologies for a second look, accelerating the diagnosis 

and possibly improving the patient´s outcome with 

earlier interventions. Application of our sophisticated 

machine learning model in clinical practice could 

potentially decrease the time lag between imaging and 

diagnosis significantly resulting in timelier interventions. 

This is especially important for diseases such as COVID-

19 and tuberculosis, in which early detection can 

significantly influence treatment success. In addition to 

this, Ansermet et al. believe that a model that learns from 

a large set of pathologies may help in achieving a higher 

diagnostic rate with better precision and potentially 

reduce diagnosis error. Future work will be directed at 

developing interfaces to be smoothly integrated with 

existing hospital information systems to expedite its 

adoption in clinical settings. This will involve working 

extensively with clinical partners to incorporate their 

feedback into the model as it relates to practicality and 

optimizing it for different imaging equipment and 

scenarios. There is the possibility that our model is 

capable of greatly improving medical diagnostics, not 

only in future research but in current clinical practice, 

thus leading to more accurate diagnoses made more 

quickly, improving patient management and patient 

outcomes across multiple healthcare scenarios. 
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