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Abstract

In [8] Markov interval maps were introduced and it was shown that
any two inverse limits with Markov interval bonding maps with the same
pattern were homeomorphic.

In this article we introduce generalized Markov interval functions,
which are a generalization of Markov interval maps to set-valued func-
tions, and show that any two generalized inverse limits with generalized
Markov interval bonding functions with the same pattern are homeo-
morphic.

1 Introduction

In [8] Markov interval maps are defined as follows. Interval self-maps on I =

[a0, am] are Markov with respect to A = {a0, a1, . . . , am}, if

1. a0 < a1 < . . . < am,

2. f(A) ⊆ A,

3. f is injective on every component of I\A.
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Generalized inverse limits with generalized Markov interval functions 2

Two interval self-maps, f and g, are Markov with the same pattern if f is
Markov with respect to A = {a0, a1, . . . , am}, g is Markov with respect to
B = {b0, b1, . . . , bm}, and f(aj) = ak if and only if g(bj) = bk.

The main theorem in [8] says that any two Markov interval maps with the
same pattern have homeomorphic inverse limits:

Theorem 1.1. Let {fn}∞n=0 be a sequence of surjective maps from I = [a0, am]

to I, which are all Markov interval maps with respect to A = {a0, a1, . . . , am}

and let {gn}∞n=0 be a sequence of surjective maps from J = [b0, bm] to J , which
are all Markov interval maps with respect to B = {b0, b1, . . . , bm}. If for each
n, fn and gn are Markov interval maps with the same pattern, then (I, fn) is
homeomorphic to (J, gn).

In this paper we introduce generalized Markov interval functions, which
generalize Markov interval maps from [8] (in such a way that every Markov
interval map is naturally interpreted as a generalized Markov interval function).
In this generalization we allow a generalized Markov interval function to be non
single-valued only on points in A, and include a condition that provides the
injectivity of f on every component of I\A. The definition of two generalized
Markov interval functions with the same pattern will generalize the definition
of two Markov interval maps with the same pattern (as it is defined in [8]). We
prove the following theorem, which is a generalization of Theorem 1.1, as the
main result of the paper:

Theorem 1.2. Let {fn}∞n=0 be a sequence of u.s.c. functions from I = [a0, am]

to 2I with surjective graphs, which are all generalized Markov interval func-
tions with respect to A = {a0, a1, . . . , am} and let {gn}

∞
n=0 be a sequence of

u.s.c. functions from J = [b0, bm] to 2J with surjective graphs, which are all
generalized Markov interval functions with respect to B = {b0, b1, . . . , bm}. If
for each n, fn and gn are generalized Markov interval functions with the same
pattern, then (I, fn) is homeomorphic to (J, gn).

Since techniques we used in the proof of Theorem 1.2 are quite different
from the ones used in [8], our proof can serve as an alternative proof of Holte’s
result.

2 Definitions and notation

A map is a continuous function. In the case where X = Y = R, a ∈ R, and
f : X → Y a map, we use lim

x↓a
f(x) to denote the right-hand limit and lim

x↑a
f(x)Pr
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Generalized inverse limits with generalized Markov interval functions 3

to denote the left-hand limit of a function f at the point a ∈ R. A detailed
introduction of such limits can bee found in [21, p. 83–95].

Let X be a compact metric space, then 2X denotes the set of all nonempty
closed subsets of X.

If f : X → 2Y is a function, then the graph of f , Γ(f), is defined as
Γ(f) = {(x, y) ∈ X × Y | y ∈ f(x)}.

A function f : X → 2Y has a surjective graph, if for each y ∈ Y there is an
x ∈ X, such that y ∈ f(x).

Let f : X → 2Y be a function. If for each open set V ⊆ Y , the set
{x ∈ X | f(x) ⊆ V } is open in X, then f is an upper semicontinuous function
(abbreviated u.s.c.) from X to 2Y .

The following is a well-known characterization of u.s.c. functions between
metric compacta (for example, see [10, p. 120, Theorem 2.1]).

Theorem 2.1. Let X and Y be compact metric spaces and f : X → 2Y a
function. Then f is u.s.c. if and only if its graph Γ(f) is closed in X × Y .

Note that for any continuous function f : X → Y , where X and Y are
compact metric spaces, the graph of f is a closed subset of X × Y . Therefore
the function F : X → 2Y , defined by F (x) = {f(x)}, is an u.s.c. function, since
Γ(F ) = Γ(f). Also if F : X → 2Y is an u.s.c. function such that F (x) = {yx}

for each x ∈ X, then the function f : X → Y , defined by f(x) = yx, is
continuous. Such functions F will be addressed as single-valued functions. In
the paper we frequently deal with such u.s.c. functions. Understanding them as
mappings will simplify the notation and make the proof more reader-friendly.
That is why in this case we write y = F (x) instead of y ∈ F (x).

Let A be a subset of X and let f : X → 2Y be a function. The restriction

of f on the set A, f |A, is the function from A to 2Y such that f |A(x) = f(x)

for every x ∈ A.
A sequence {Xk, fk}

∞
k=0 of compact metric spaces Xk and u.s.c. functions

fk : Xk+1 → 2Xk , is an inverse sequence with u.s.c. bonding functions.
The inverse limit of an inverse sequence {Xk, fk}

∞
k=0 with u.s.c. bonding

functions is defined as the subspace of
∏∞

k=0 Xk of all points (x0, x1, x2, . . .),
such that xk ∈ fk(xk+1) for each k. The inverse limit of an inverse sequence
{Xk, fk}

∞
k=0 is denoted by (Xk, fk).

In this paper we deal only with the case when for each k, Xk is a closed
interval I and fk : I → 2I . So, we denote the inverse limit simply by (I, fk).

The notion of inverse limits of inverse sequences with upper semi-continuous
bonding functions (also known as generalized inverse limits) was introduced byPr

ep
ri

n
t 

se
ri

es
, I

M
FM

, I
S

S
N

 2
23

2-
20

94
, n

o.
 1

18
7,

 M
ay

 1
7,

 2
01

3



Generalized inverse limits with generalized Markov interval functions 4

Mahavier in [15] and later by Ingram and Mahavier in [10]. Since then, inverse
limits have appeared in many papers, such as [1, 2, 3, 4, 6, 9, 11, 12, 13, 17,
18, 19, 20, 22].

3 Proof of Theorem 1.2

In this section we introduce the notion of generalized Markov interval functions
and prove Theorem 1.2.

Definition 3.1. Let a0, am ∈ R, a0 < am. We say that an u.s.c. function f

from I = [a0, am] to 2I is a generalized Markov interval function with respect

to A, where A = {a0, a1, . . . , am} is a subset of R, if

1. a0 < a1 < . . . < am,

2. the restriction of f on every component of I\A is an injective single-
valued function,

3. for each j = 0, 1, . . . ,m, the image f(aj) is an interval (possibly degen-
erated)

[

ar1(j), ar2(j)
]

where ar1(j), ar2(j) ∈ A (ar1(j) ≤ ar2(j)),

4. for each j = 0, 1, . . . ,m− 1: lim
x↑aj+1

f(x), lim
x↓aj

f(x) ∈ A.

Obviously, f can be single-valued on some points aj in A. In this case
r1(j) = r2(j) for some 0 ≤ j ≤ m and f(aj) = {ar1(j)}. Additionally, taking
into account property 4. above, we see that:

1. if 0 < j < m, then lim
x↑aj

f(x) = lim
x↓aj

f(x) = ar1(j) = ar2(j),

2. if j = 0, lim
x↓aj

f(x) = ar1(j) = ar2(j),

3. if j = m, lim
x↑aj

f(x) = ar1(j) = ar2(j).

Definition 3.2. Let A = {a0, a1, . . . , am} and B = {b0, b1, . . . , bm}, where
a0 < a1 < . . . < am and b0 < b1 < . . . < bm. Then we say that (a, b) ∈ A × B

is a pair of similar points (with respect to A and B), if a = ai and b = bi for
some i = 0, 1, . . . ,m.

In the following definition we define when two generalized Markov interval
functions follow the same pattern.
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Generalized inverse limits with generalized Markov interval functions 5

Figure 1: A generalized Markov function

Definition 3.3. Let f : I = [a0, am] → 2I be a generalized Markov interval
function with respect to A = {a0, a1, . . . , am} and let g : J = [b0, bm] → 2J be
a generalized Markov interval function with respect to B = {b0, b1, . . . , bm}.

We say that f and g are generalized Markov interval function with the same

pattern if i) and ii) hold true:

i) for every j = 0, 1, . . . ,m: f(aj) =
[

ar1(j), ar2(j)
]

if and only if g(bj) =
[

br1(j), br2(j)
]

,

ii) for every j = 0, 1, . . . ,m− 1: ( lim
x↑aj+1

f(x), lim
y↑bj+1

g(y)) and

(lim
x↓aj

f(x), lim
y↓bj

g(y)) are pairs of similar points.

Finally we prove Theorem 1.2.

Proof. Since we have different functions fk, gk, we introduce functions rk1 , r
k
2 :

{0, 1, . . . ,m} → {0, 1, . . . ,m} serving as r1, r2 from Definition 3.1, i.e. such
that fk(aj) = [ark

1
(j), ark

2
(j)] for each j = 0, 1, . . . ,m and each k = 0, 1, 2, . . ..

According to Definition 3.3 the same functions rk1 , r
k
2 are also used for gk, i.e.

gk(bj) = [brk
1
(j), brk

2
(j)].

For each j = 0, 1, . . . m − 1 we define the subinterval Ij = [aj, aj+1] ⊆ I =

[a0, am], and the subinterval Jj = [bj, bj+1] ⊆ J = [b0, bm]. We also define aPr
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Generalized inverse limits with generalized Markov interval functions 6

piecewise linear mapping h : I → J such that h(aj) = bj for all j = 0, 1, . . . ,m

by

h(x) =



















b1−b0
a1−a0

(x− a0) + b0; if x ∈ I0,
b2−b1
a2−a1

(x− a1) + b1; if x ∈ I1,
...
bm−bm−1

am−am−1
(x− am−1) + bm−1; if x ∈ Im−1.

The mapping h : I → J is obviously continuous, monotone and surjective,
therefore it is a homeomorphism.

Let x = (x0, x1, x2, . . .) be any element of (I, fn). We show first that there
is a uniquely determined point y = (y0, y1, y2, . . .) in (J, gn), where y0 = h(x0),
such that for all i = 0, 1, 2, . . ., I(i) and II(i) hold true. Here for each i, I(i)
and II(i) are defined as the following statements:

I(i) . . . xi ∈ Int(Ij) if and only if yi ∈ Int(Jj), for each j = 0, 1, . . . ,m− 1,

II(i) . . . xi = aj if and only if yi = bj, for each j = 0, 1, . . . ,m.

To determine the point y we construct inductively the coordinates yi of y
as follows.

First we construct y0 as y0 = h(x0). It follows from the definition of h that
I(0) and II(0) hold true.

Suppose we have already constructed y0, y1, y2, . . . , yk such that I(i) and
II(i) hold true for each i = 0, 1, . . . , k, and yi−1 ∈ gi−1(yi) hold true for each
i = 1, 2, . . . , k.

Now we construct yk+1 such that I(k + 1), II(k + 1), and yk ∈ gk(yk+1).
We consider the following two possible cases.

1. xk+1 = aj for some j = 0, 1, . . . ,m. In this case we define yk+1 = bj. Obvi-
ously, I(k+1) and II(k+1) hold true. Next we show that yk ∈ gk(yk+1).
Since xk ∈ fk(xk+1) = fk(aj) = [ark

1
(j), ark

2
(j)] for some ark

1
(j), ark

2
(j) ∈ A,

and since gk and fk have the same pattern, it follows that gk(yk+1) =

gk(bj) = [brk
1
(j), brk

2
(j)].

If ark
1
(j) 6= ark

2
(j), then fix an integer `0 such that xk ∈ I`0 ⊆ [ark

1
(j), ark

2
(j)].

Then yk ∈ J`0 ⊆ [brk
1
(j), brk

2
(j)] = gk(yk+1). If ark

1
(j) = ark

2
(j), then xk =

ark
1
(j). It follows from the induction assumption II(k) that yk = brk

1
(j)

and therefore yk ∈ [brk
1
(j), brk

2
(j)] = gk(yk+1).

2. xk+1 ∈ Int(Ij) for some j = 0, 1, . . . ,m− 1. In this case, since fk|Int(Ij) is
single-valued,

xk = fk(xk+1) = fk|Int(Ij)(xk+1) ∈ fk(IntIj) = (a`1 , a`2),
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Generalized inverse limits with generalized Markov interval functions 7

for some a`1 , a`2 ∈ A (where {a`1 , a`2} = {lim
x↓aj

f(x), lim
x↑aj+1

f(x)}). There-

fore yk ∈ (b`1 , b`2) = gk(IntJj) since fk and gk follow the same pattern.
We choose yk+1 ∈ Int(Jj) such that yk = gk|Int(Jj)(yk+1). Such a point
yk+1 exists and is uniquely determined since gk|Int(Jj) : Int(Jj) → (b`1 , b`2)

is bijective.

Next we show, that if we fix y0 = h(x0), there is exactly one point y =

(y0, y1, y2, . . .) in (J, gn), such that for each nonnegative integer i, I(i) and II(i)

hold true. Suppose that y = (y0, y1, y2, . . .) and y′ = (y0, y
′
1, y

′
2, . . .) ∈ (J, gn)

are two such points. We show using the induction on i that yi = y′i for any
i, hence it follows that y = y′. Suppose that for each k = 0, 1, 2, . . . , i − 1,
yk = y′k. We prove that yi = y′i. We examine the following two cases.

1. For some j = 0, 1, 2, . . . m−1, xi ∈ Int(Ij). Then yi, y
′
i are both in Int(Jj)

by I(i).

Since yi−1 = y′i−1, it follows that gi−1|Int(Jj)(yi) = gi−1(yi) = yi−1 =

y′i−1 = gi−1(y
′
i) = gi−1|Int(Jj)(y

′
i). Since gi−1|Int(Jj) is one-to-one, it follows

that yi = y′i.

2. For each j = 0, 1, 2, . . . m − 1, xi /∈ Int(Ij). This means that xi = aj for
some j = 0, 1, . . . ,m. In this case yi = bj = y′i by II(i).

Next we define a function H : (I, fn) → (J, gn) and prove that it is a
homeomorphism.

For each (x0, x1, x2, . . .) ∈ (I, fn) we define H(x0, x1, x2, . . .) to be the
unique point (y0, y1, y2, . . .) in (J, gn) such that y0 = h(x0) and for each
i = 0, 1, 2, . . ., I(i) and II(i) hold true.

We have already seen that H is well defined. Next we show that H is
continuous, by proving that for any sequence {xi}∞i=0 in (I, fn) converging to
x ∈ (I, fn), the sequence {yi}∞i=0, where yi = H(xi) for each i, is convergent
and its limit equals H(x).

(I, fn) and (J, gn) are both compact metric spaces since I and J are compact
(for details see [10]).

Let {xi}∞i=0 be a convergent sequence of elements in (I, fn), where xi =

(xi
0, x

i
1, x

i
2, . . .) for all i = 0, 1, . . .. Let x = (x0, x1, x2, . . .) be the limit of this

sequence. This means that xj is the limit of the sequence {xi
j}

∞
i=0 for each j.

Let s = (s0, s1, s2, . . .) ∈ (J, gn) be any accumulation point of the sequence
{yi}∞i=0. Let ki be a strictly increasing sequence of nonnegative integers such
that lim

i→∞
yki = s.Pr
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Generalized inverse limits with generalized Markov interval functions 8

(xk0
0 , xk0

1 , xk0
2 , . . .) ∈ (I, fn)

(xk1
0 , xk1

1 , xk1
2 , . . .) ∈ (I, fn)

(xk2
0 , xk2

1 , xk2
2 , . . .) ∈ (I, fn)

(yk00 , yk01 , yk02 , . . .) ∈ (J, gn)

(yk10 , yk11 , yk12 , . . .) ∈ (J, gn)

(yk20 , yk21 , yk22 , . . .) ∈ (J, gn)

(x0, x1, x2, . . .) ∈ (I, fn)

(s0, s1, s2, . . .) ∈ (J, gn)

(y0, y1, y2, . . .) ∈ (J, gn)

H

H

H

H

i → ∞
i → ∞

Let y = (y0, y1, . . .) = H(x). We prove that s = y.
One can easily see, that

s0 = lim
i→∞

yki0 = lim
i→∞

h(xki
0 ) = h( lim

i→∞
xki
0 ) = h(x0) = y0.

Suppose we have already shown that yk = sk for each k = 0, 1, 2, . . . , `− 1. We
show that y` = s` by distinguishing the following cases.

1. s` ∈ Int(Jj) for some 0 ≤ j ≤ m − 1. The point s` is the limit of the
sequence {yki` }∞i=0. This means that there exists a nonnegative integer i0
such that yki` ∈ Int(Jj), for all i ≥ i0. Therefore xki

` ∈ Int(Ij), for all
i ≥ i0 by I(`). Since x` = lim

i→∞
xki
` , it follows that x` ∈ Ij. We consider

the following two subcases.

(a) If x` ∈ Int(Ij), then y` ∈ Int(Jj) by I(`). Then

g`−1|Int(Jj)(y`) = y`−1 = s`−1 = g`−1|Int(Jj)(s`)

and since g`−1|Int(Jj) is single-valued and one-to-one, y` = s` follows.

(b) If x` ∈ A, then x` = aj or x` = aj+1 (recall that x` ∈ Ij). Without
loss of generality, assume that x` = aj. It follows from

i. lim
i→∞

xki
` = aj, and aj is the left-hand endpoint of Ij,

ii. for all i ≥ i0, x
ki
` ∈ Int(Ij) and f`−1 is single-valued on Int(Ij),

that

x`−1 = lim
i→∞

xki
`−1

ii.
= lim

i→∞
f`−1((x

ki
` ))

i.
= lim

t↓aj
f`−1(t) = ar

where ar ∈ [ar`−1

1
(j), ar`−1

2
(j)] = f`−1(aj) (recall that f`−1 is a gen-

eralized Markov function with respect to A). Therefore, x`−1 = ar

and by definition of H, it follows that y`−1 = br. We also know that
(lim
t↓aj

f`−1(t), lim
t↓bj

g`−1(t)) is a pair of similar points since f`−1 and g`−1

follow the same pattern and therefore lim
t↓bj

g`−1(t) = br.Pr
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Generalized inverse limits with generalized Markov interval functions 9

Using the fact that g`−1 is one-to-one on Int(Jj) and that s` ∈

Int(Jj), we conclude that

s`−1 = g`−1(s`) 6= lim
t↓bj

g`−1(t) = br = y`−1.

Therefore y`−1 6= s`−1 which contradicts the inductive assumption.

2. s` = bj for some 0 ≤ j ≤ m.
If there exists a nonnegative integer i1 such that yki` = bj, for all i ≥ i1,
then by II(`), xki

` = aj holds true for all i ≥ i1. This means that x` = aj,
since it is the limit of the sequence {xki

` }
∞
i=0. Therefore, y` = bj = s`.

If such an integer i1 does not exist, then we consider the following two
possible cases:

(a) 0 < j < m. We chose a strictly increasing sequence of positive
integers ni, such that

- {y
kni

` }∞i=0 is a subsequence of {yki` }∞i=0,

- y
kni

` 6= bj for all i,

- y
kni

` ∈ Int(Jj−1) for all i or y
kni

` ∈ Int(Jj) for all i.

Assume without any loss of generality that y
kni

` ∈ Int(Jj) for all
i. Recall that lim

i→∞
y
kni

` = s` = bj and that by I(`), xkni

` ∈ Int(Ij)
for all i. This means that x` ∈ Ij and we distinguish the following
possibilities:

i. If x` ∈ A, then either x` = aj or x` = aj+1. One can see, using
similar arguments as in 1.(b), that

s`−1 = lim
i→∞

y
kni

`−1 = lim
i→∞

g`−1(y
kni

` ) = lim
t↓bj

g`−1(t) = br

where br ∈ [br`−1

1
(j), br`−1

2
(j)] = g`−1(bj). By inductive assumption

y`−1 = s`−1 = br. By definition of H, it follows that x`−1 = ar.
Since f`−1 and g`−1 follow the same pattern, it follows that
x`−1 = ar = lim

t↓aj
f`−1(t) 6= lim

t↑aj+1

f`−1(t) since f`−1 is one-to-one

on Int(Ij). Therefore, x` cannot equal to aj+1, hence x` = aj.
By definition of H, it follows that y` = bj = s`.

ii. If x` ∈ Int(Ij), then

x`−1 = lim
i→∞

x
kni

`−1 = lim
i→∞

f`−1(x
kni

` ) 6= lim
t↓aj

f`−1(t)

since f`−1 is single-valued and injective on Int(Ij). Using the
same arguments as in i. we conclude that also in this case
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Generalized inverse limits with generalized Markov interval functions 10

s`−1 = br where br ∈ [br`−1

1
(j), br`−1

2
(j)] = g`−1(bj). Since f`−1

and g`−1 follow the same pattern, lim
t↓aj

f`−1(t) = ar follows from

lim
t↓bj

g`−1(t) = br. Therefore x`−1 6= ar. It follows that y`−1 6=

br = s`−1, which contradicts our inductive assumption.

(b) j = 0 or j = m. Assume without any loss of generality that j = 0.
We chose a strictly increasing sequence of positive integers ni, such
that

- {y
kni

` }∞i=0 is a subsequence of {yki` }∞i=0,

- y
kni

` 6= bj for all i,

- y
kni

` ∈ Int(J0) for all i.

The rest of the proof is similar to the proof of (a), replacing j with
0.

We can define H−1 : (J, gn) → (I, fn) in the same fashion as we did with
H. Every element (y0, y1, . . .) of (J, gn) has the unique image (x0, x1, . . .) in
(I, fn), such that x0 = h−1(y0) and for each i = 0, 1, 2, . . ., I(i) and II(i) hold
true. Therefore H is a homeomorphism.

We conclude the paper with the following corollary that easily follows from
Theorem 1.2.

Corollary 3.4. Let f : I = [a0, am] → 2I be a generalized Markov interval
function with respect to A = {a0, a1, . . . , am} with a surjective graph and
g : J = [b0, bm] → 2J be a generalized Markov interval function with respect
to B = {b0, b1, . . . , bm} with a surjective graph. If f and g are generalized
Markov interval functions with the same pattern, then (I, f) is homeomorphic
to (J, g).
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