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Abstract

Let (G, w) be a network, that is, a graph G = (V (G), E(G)) together with
the weight function w : E(G) → R

+. The Szeged index Sz(G, w) of the net-
work (G, w) is introduced and proved that Sz(G, w) ≥ W (G, w) holds for any
connected network where W (G, w) is the Wiener index of (G, w). Moreover,
equality holds if and only if (G, w) is a block network in which w is constant on
each of its blocks. Analogous result holds for vertex-weighted graphs as well.
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1 Introduction

The Wiener index of a graph is the most famous and one of the most studied
topological indices in mathematical chemistry. It was introduced back in 1947 but
is nevertheless still a very active research topic, cf. [14, 15, 17, 18, 19].

The Szeged index of a graph was introduced in [8] and has received a lot of
attention immediately after its introduction, cf. [4]. After that, a period of not so
intensive research followed, but in the last years we are faced with a big revival of
the interest for this index. Let us mention only a couple of recent developments.
A conjecture from [10] led to a proof that the graphs G for which the Szeged in-

dex equals |E(G)|·|V (G)|2

4 are precisely connected, bipartite, distance-balanced graphs.
(See [7] for distance-balanced graphs.) This result was independently obtained in [1]
and in [6]. Pisanski and Randić [16] proposed to use the Szeged index (combined
with the revised Szeged index) as a measure of bipartivity of a graph, see also [20].
For more recent results on the Szeged index we refer to [2, 5, 9, 14].
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A network (G,w) is a graph G = (V (G), E(G)) together with the weight function
w : E(G) → R

+. In this paper we consider the Wiener index and the Szeged index on
networks (alias edge-weighted graphs). This seems to be a very natural framework,
the weight of an edge could, for instance, measure the Euclidean distance between
atoms in a molecular graph. However, this line of research seems not to be (widely)
studied earlier, in particular, as far as we know, the Szeged index of a network (G,w),
that we define as

Sz(G,w) =
∑

e=uv

w(e)nu(e)nv(e) ,

has not yet been defined on networks. (See below for the definition of nu(e).) In
this paper we compare the Szeged index of a network (G,w) with its Wiener index
W (G,w) and prove the following:

Theorem 1 Let (G,w) be a connected network. Then

Sz(G,w) ≥ W (G,w) .

Moreover, equality holds if and only if (G,w) is a block network in which w is

constant on each of its blocks.

In the special case of graphs (that is, for networks in which w ≡ 1), the inequality
part of Theorem 1 was proved in [13], see also [11], while the equality part was
established in [3].

In the rest of the section we give definitions and concepts needed here. Then,
is Section 2, a proof of Theorem 1 is given. In the concluding section we give
some remarks on the theorem and observe that an analogous result holds for vertex-
weighted graphs.

Let (G,w) be a connected network. The distance between vertices u and v of
(G,w) is denoted by d(u, v) and it is defined as the minimum sum of the weights
of edges over all u, v-paths. The Wiener index W (G,w) is the sum of the distances
between all unordered pairs of vertices of (G,w). Every edge e = uv ∈ E(G) induces
the partition of the vertex set V (G) of (G,w) into V (G) = Nu(e)

⋃

Nv(e)
⋃

N0(e)
that

Nu(e) = {x ∈ V (G) | d(x, u) < d(x, v)},

Nv(e) = {x ∈ V (G) | d(x, u) > d(x, v)},

N0(e) = {x ∈ V (G) | d(x, u) = d(x, v)}.

Set nu(e) = |Nu(e)| and nv(e) = |Nv(e)|.
Finally, a block of a network is its maximal (with respect to inclusion) biconnected

subnetwork. A network is called a block network if all of its blocks are complete.
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2 Proof of Theorem 1

Let |V (G)| = n and |E(G)| = m. Select shortest paths P1, P2, . . . , P(n

2
) in (G,w)

such that for every pair of vertices a, b ∈ V (G), a 6= b, there exists a unique shortest
a, b-path in the list. Let e1, . . . , em be an ordered list of edges of (G,w). Then define
the path-edge matrix D = [dij ] of dimension

(

n
2

)

× m as follows:

dij =

{

w(ej); ej ∈ E(Pi) ,
0; ej 6∈ E(Pi) .

It is clear that the summation of the entries of the ith row of D is the length of the
path Pi. Thus, the summation of all the entries of D is W (G,w).

Suppose that P is a shortest a, b-path containing the edge ej = uv. Traverse
the path P from the source vertex a to the destination vertex b. If we traverse the
vertex u before v, then d(a, v) = d(a, u) + d(u, v). This implies that a ∈ Nu(ej) and
b ∈ Nv(ej). It means that the number of non-zero entries in the jth column of D
is at most nu(ej)nv(ej) and consequently, the summation of the entries of the jth

column of D is at most w(ej)nu(ej)nv(ej). It follows that Sz(G,w) ≥ W (G,w).
It also follows from the above double counting that Sz(G,w) = W (G,w) if and

only if for every 1 ≤ j ≤ m, the summation of the jth column is w(ej)nu(ej)nv(ej).
This is in turn true if and only if the following conditions are fulfilled:

(1) Any two vertices of (G,w) are connected by a unique shortest path.

(2) For every edge e = uv of (G,w) and every vertices a ∈ Nu(e) and b ∈ Nv(e),
the shortest a, b-path contains e.

To complete the proof we will show that (G,w) is a block network and w is
constant on each of its blocks if and only if conditions (1) and (2) hold. If (G,w) is
a block network with w constant on blocks, (1) and (2) clearly holds. To prove the
converse assume in the rest that (G,w) is an arbitrary network for which (1) and
(2) hold.

Note first that the conditions imply that if uv is an edge, then the unique shortest
u, v-path is the edge uv itself. It follows that if e = uv and f = ab are two edges of
G such that a ∈ Nu(e), then b /∈ Nv(e).

Let e = uv and let P1 : u, t1, t2, . . . , tk, z be the shortest u, z-path, such that
ti ∈ Nu(e), 1 ≤ i ≤ k, and z ∈ N0(e). Let P2 : v,w1, w2, ..., wr , yr+1, . . . , ys = z be
the shortest v, z-path, where wi ∈ Nv(e), 1 ≤ i ≤ r, and yi ∈ N0(e), r + 1 ≤ i ≤ s.
Set also f = tkz and g = wryr+1. The situation is shown in Fig. 1.

Claim 1: The edges e, f and g form a triangle and w(e) = w(f) = w(g).
Since P1 is a shortest path, u ∈ Ntk(f). Therefore either v ∈ Ntk(f) or v ∈

N0(f). Suppose v ∈ Ntk(f). Then since z ∈ Nz(f), the shortest v, z-path does
not pass f which is not possible by condition (2). Therefore v ∈ N0(f). By a
similar argument it follows that if x ∈ Nv(e) then x ∈ N0(f). We conclude that
Nv(e) ⊂ N0(f). Using a similar argument for the edge g, we also get Nu(e) ⊂ N0(g).
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Figure 1: Situation from the proof

Since wr ∈ N0(f) we have d(tk, wr) = w(g) + d(ys, yr+1). Moreover, as tk ∈ N0(g)
we have d(tk, wr) = w(f) + d(ys, yr+1), Therefore w(f) = w(g).

We next prove that wr = v and tk = u. Since Nv(e) ⊂ N0(f) and P2 is a shortest
path, the computation

d(tk, wr−1) = d(z,wr−1)

= d(z, yr+1) + w(g) + d(wr, wr−1)

= d(tk, wr) + d(wr, wr−1)

> d(tk, wr−1)

gives a contradiction. Thus v = wr. By a similar argument tk = u. On the
other hand, we have w(f) = w(g). Then d(u, z) = d(v, yr+1). But we also have
d(u, z) = d(v, z) = d(v, yr+1)+d(z, yr+1) = d(v, z)+d(z, yr+1). Hence z = ys = yr+1.

We conclude that the edges e, f , and g form a triangle in G and since v ∈ N0(f)
we have w(e) = w(f) = w(g).

Claim 2: There is no vertex w ∈ Nv(e), w 6= v, such that w is adjacent to some
vertex in N0(e).

Suppose on the contrary that there is a vertex w 6= v adjacent to z′ ∈ N0(e).
Set ℓ = wz′. Since the shortest u,w-path passes e, we infer that u ∈ N0(ℓ). So, if
w(e) = α and d(v,w) = β then d(z′, u) = α + β. Let z ∈ N0(e) be the last vertex of
path P : z′, ..., z, u. We proved before that z is adjacent to v and w(uz) = w(vz) = α,
hence d(z, z′) = β. On the other hand, v ∈ Nw(ℓ). Indeed, if v /∈ Nw(ℓ) then the
shortest v, z′-path is of length at most β. On the other side, the distance between
u and z′ is α + β, so d(v, z′) > β, a contradiction. Similarly, z ∈ Nz′(ℓ). But the
shortest v, z-path does not pass ℓ, a contradiction with condition (2).

Claim 3: If z, z′ ∈ N0(e) are adjacent to u and v, then z and z′ are adjacent.

4

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

5,
 A

pr
il 

12
, 2

01
2



Suppose z and z′ are not adjacent. By Claim 1 we know that w(uv) = w(uz) =
w(vz) = w(uz′) = w(vz′) = α. The two distinct paths z, u, z′ and z, v, z′ have
the same length 2α. By condition (1), there exists a (unique) shortest z, z′-path
L : z, z1, . . . , zn = z′ such that the length of L is less than 2α. By Claim 2, V (L) ⊆
N0(e). We now claim that d(z, z′) = α. For this sake we show that z ∈ N0(vz′). If
z ∈ Nv(vz′) (or z ∈ Nz′(vz′)), then the shortest z, z′-path (z, v-path) does not pass
the edge vz′, a contradiction. Therefore z ∈ N0(vz′) and hence d(z, z′) = d(v, z′) =
α. If z1 = z′ nothing is to be proved. Suppose z 6= z′, then by a similar argument
as above we see that u, v ∈ N0(zn−1z

′). Thus d(zn−1, u) = d(zn−1, v) = α. On the
other hand, zn−1 ∈ Nz′(vz′) and v ∈ Nv(vz′), but the shortest v, zn−1-path does not
contain the edge vz′, a contradiction. Therefore, z and z′ are adjacent.

From Claims 1, 2, and 3 we conclude that (G,w) is a block network and w is
constant on each of its blocks.

3 Concluding remarks

Consider the network (K3, w), where V (K3) = {x, y, z} and w(xy) = w(yz) = 2 and
w(xz) = 3. Note first that condition (1) from the previous section holds on (K3, w).
On the other hand, let e = xy, then z ∈ Ny(e) and (clearly) x ∈ Nx(e), but the
shortest x, z-path does not contain the edge e. So condition (2) does not hold. And
indeed, W (K3, w) = 7 6= 11 = Sz(K3, w).

Suppose now that (G,wV ) is a vertex-weighted graph, that is, the graph G
together with a weight function wV : V (G) → R

+. In this case, the Wiener index
W (G,wV ) of (G,wV ) is the sum, over all unordered pairs of vertices, of products of
weights of the vertices and their distance [12], that is,

W (G,wV ) =
1

2

∑

u 6=v

wV (u)wV (v)d(u, v) .

Let e = uv be an edge of (G,wV ), then define nu(e) =
∑

t∈Nu(e) wV (t) and set

Sz(G,wV ) =
∑

e=uv

nu(e)nv(e) .

Theorem 2 Let (G,wV ) be a vertex-weighted graph. Then Sz(G,wV ) = W (G,wV )
if and only if every block of (G,wV ) is a complete.

Proof. Similarly as in the beginning of the proof of Theorem 1, select shortest paths
P1, P2, . . . , P(n

2
) in (G,wV ). Let Pi from this list be a shortest a, b-path, then we will

denote it Pi(a, b). Define the path-edge matrix E = [eij ] as follow:

eij =

{

wV (a)wV (b); ej ∈ E(Pi(a, b)) ,
0 ej 6∈ E(Pi(a, b)) .

It is clear that the summation of the entries of the ith row of E is wV (a)wV (b)d(a, b).
Thus, the summation of the entries of E is W (G,wV ). It is easy to see that the
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summation of the entries of the jth column of E is at most nu(ej)nv(ej), where
ej = uv. It follows that Sz(G,wV ) ≥ W (G,wV ). So, equality holds if and only if
the conditions (1) and (2) are fulfilled. Clearly, these conditions are equivalent to
the condition that every block of (G,wV ) is complete. �
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