NEURAL NETS: SURVEY AND APPLICATION

TO WAVEFORM PROCESSING

Keywords: neural nets, waveform processing .
Abstract

This paper surveys Artificial Neural Nets as essential tools
for pattern recognition. The author concentrates on the characteris-
tics of well-known types of currently exploited neural nets and
implementation of a multilayer perceptron. Aspects, specification,
and comparison of various types of neural nets will be presented, as
well.

Furthermore, a decision-supporting system for neurological -

diagnosis will be described. The actual input to our system is an
evoked potential waveform. It is analyzed by a syntax pattern
recognition algorithm based on a regular attributed grammar, Its
semantic functions return a list of numerical- features. The second
step of the waveform processing includes a two-layer perceptron
which processes the above list of numerical features. The rules of
thumb for optimal adjustment of perceptron s parameters will be
discussed, too.

1. Pattern Recognition: A Survey

‘Pattern recognition is one of the oldest and most widely
investigated areas of anificial intelligence (AI). Although some
researchers do not recognize pattern recognition as a part of Al,
there are some others (including the author of the paper) who accept
Minsky’s definition of Al as 'the science of making machines do
things that would require intelligence if doné by men’ and consider
artificial intelligence as a 'club’ of several theoretical and experi-
mental disciplines, including pattern recognition.- Pattern recognition
as a discipline has been thoroughly described, analyzed, and sur-
veyed in a great number of books and monographs. For examples
the reader might look at e.g. [Du73], [Fu82), [Tou74], [Wa85), or
[Bru80).
terminology.

The principal function of a pattern recognition system is to
make a decision concerning the class membership of .the patterns
received as input. Patrerns are facts, observable statements, situa-

" tions, events, or objects of any type that are to be recognized. The
patterns are grouped into two or more sets, so-called classes,
according to the -given problem. Any such system (usually a
computer) cannot, of course, observe real-world objects, since it is
only able to read in-the data of its world, i.e. numbers and sym-
bols. Therefore, before the actual classification, we have to repres-
ent patterns by a suitable formal description. There are in fact two
distinct possibilities for pattern representation:

(a) numerical (statistical) description: a pattern is represented by a
sequence of numbers, called features;

(b) symbolic description: a pattern is described either by a string of
(terminal) symbols, or by more general structurcs such as
relational structures, semantic nets, frames, formulas of\predicate
calculus, etc.

Nevertheless, in this section we present the necessary

INFORMATICA 1/91

lvan Bruha

Dept. Computer Science and Systems,
McMaster University, Hamilton, Ont.
Canada L8S4K1

Perceptrons and other neural nets we discuss in this paper
have strictly numerical character; therefore, we. will focus on the
numerical approach only. A pattern is represented by so-called
feature vector

X=[X,X3, e, XyN]

of numbers, called features. The number of features is usually
fixed, and therefore all feature vectors form an N-dimensional space,
called the feature space.

Let a pattern recognition problem comprise R classes; the
r-th class will be designated by the symbol z ,r=1,.,R. Then,
a pattern recognition system with numerical representation of
patterns (called nwmerical classifier) is a device with N inputs
(one for each feature) and one output, which classifies an input
feature vector x  to one of the given classes, i.e. it yields one of
the symbols z, . The relation between its input and output is
called decision rule and can be written as the following function .

z = d(x)

~ The feature space is divided by the decision rule into R
disjoint subsets R, (called decision regions) where R, contains
the features x such that z = d(x) . The boundaries between
decision regions are called decision boundaries. Their ad;ustmcnt
is the principle problem of a classifier dcs:gn

There are several ways of describing decision boundaries.
Among them, a most general approach uses so-called discriminant
(or decision) functions. The R discriminant functions g(x) have
to be selected so that

gX)>gx) , r=1L.R,r#s

for all x € R, . Consequently, the decision boundary between
adjacent regions R, and R, is defined by the equation

g(x) - gx) =0

The decision rule for a classifier with discriminant functions

thus has the form: for a given x compute all g(x),r =
1,.,R and classify x to the class 1z for which
g,(x) = max gx) : S

see Fig. 1.

The most common type of a numerical class1ﬁer is the one
with linear drscnmmant functions: -



28

maximum

Fig. 1. Classifier with discriminant functions

N
gx)= ¥ wx, , r=1.R 2)
n=0
where w,,n=01.,N,r=1.,R, are so-called weights, and
xg = 1 . This latter condition allows wg, to be interpreted as a
threshold of the discriminant function. The structure of a linear
classifier is illustrated in Fig. 2. Decision boundaries formed by a
linear classifier are parts of hyperplanes (see Fig. 3).

The problem of finding decision boundaries is thus reduced
to that of finding optimal values for all the weights of the linear
classifier. One possible and often used way of a classifier adjust-
ment is to utlize a learning (training) process. In such a case, a
teacher (a designer of the classifier) has to collect a reasonable set
(training set) of typical, representative examples (training patterns)
including the correct class membership of each training pattern
(desired class). During the learning process, training patterns with
their desired classes are presented (usvally many times) by the
teacher to the classifier which performs as a student, i.e. it modifies
(utilizing the information involved in the training set) its weights
according to an appropriate leaming algorithm. Among a large
collection of learning algorithms for linear classifiers, we introduce
the simplest one, called Rosenblatt’s algorithm (also known as
perceptron algorithm, fixed-increment, delta, or LMSE algorithm):

1. Initialize weight vectors

W= [ Wor, Wip e

y W]l . T= LR

arbitrarily,

2. For each training pattern

X = [ Xg Xy sy Xy ] (Where we

added x, =1 for a convenience) with its desired class Z =
z, do: :

2.1.
2.2,

.then change the weights vectors as follows ( ¢

Compute g(x) , r = 1,...,R according to (2).

If the equation (1) is satisfied, i.e. the patern x is
correctly classified, do nothing. However, if

g,(x) < g(x) for some r 3)

is a
positive constant):

W, += € X

w,-=cx forall r satisfying (3)

(where A += B means: add B to A ; similarly -=
relates to a decrement).

3. If the weights were modified for at least one training pattern,
return to the step 2, i.e. repeat the training for the entire

training set.

If not, save the weights and terminate the

learning process.

Fig. 2. Linear classifier

maximum




Fig. 3. Decision boundaries of a linear classifier

A simple model of a learning linear classifier was developed
by Widrow and Hoff [Wid60]. - Their adaline (adaptive linear
neuron) is able to recognize R =2 classes only (using a single
discriminant function) where features can be only equal to +1 or -1,
but otherwise its structure and learning is equivalent to those
presented above. Adaline has found many useful application in
technical areas.

2. Rosenblatt’s Perceptron

Development, investigation, and theory of neural nets is not
a new discipline at all. The first attempts to mode] the behaviour
of biological nerve cells were realized in 1940’s. Their results
encouraged the foundation of cybernetics, a discipline (or a ’club’
of disciplines), which attempted to combine concepts from biology,
psychology, engineering, and mathematics. Nevertheless, more
serious research and experimentation with neural nets started in the
1960°s with the publication of Rosenblatt’s book [Ros61].

Rosenblatt developed a cognitive model of the brain, which
was called the percepmon. lts structure is shown in Fig. 4. It is
very similar to a linear classifier (Fig. 2); however, the features are
not input ditectly to its weights, but instead are preprocessed by a
so-called ®-processor which is represented by M  functions
V(X)) = Op(xy,..xy) ,m=1,..,M . The ®-processor transforms the
original features to the new ones x), , m = 1,.,M, which are
then processed by a linear classifier. Hence, the discriminant
functions of Rosenblatt’s perceptron are

8X) = Wo + Wy, By(X) 4.t Wy Dy(x) L T= LR (4)

Conseq'uentl)./, the decision boundaries of the original feawre space
need not be just hyperplanes but may consist of more general shapes
that are transformed by the &®-processor to linear ones. Another

difference between the perceptron and a linear classifier is that both
original and néw features of the perceptron can only equal to 0 or
1. Rosenblatt’s algorithm is used for the training.

The functions of the ®-processor can be of any shape, but the
following cases are the most interesting ones:

- The ®-processor consists of quadratic functions; thus decision
boundaries are quadratic surfaces.

- The functions are boolean ones; the case with randomly arranged
connections (bonds) and boolean gates was extensively studied by
Rosenblatt’s group since they had expected that this would be the
best model of the brain.

- If the ®-processor is an identity (or is eliminated) we get the
*standard’ linear classifier or the Widrow’s adaline.

The perceptron is a technical ‘model for the following
hypothesis of a nerve system’s performance. This hypothesis states
that the nerve system of a living organism is more less chaotically
(randomly) organized when it arises. Its organization takes place
during the life of the organism as a consequence of its adaptation
to its environment and learning. The system creates suitable bonds
{connections) within its ®-processor and modifies its weights.  As a
metaphor one could say that a living organism is a general computer
whose program is formed during its life. After the program has
been created (the system has leamed), a negligible amount of
computer hardware is utilized; this is the cost of the versatility of
the computer.

Perceptrons were applied to solve many problems in many
technical disciplines. In some cases they were 100% successful, in
others, however, they did not yield satisfactory results. The fundam-
ental disadvantage of a perceptron consists in its low ability to .
generalize acquired knowledge; that is the principle difference
between perceptrons and living organisms. For instance, a percept-

" ron trained to recognize squares and circles at a certain place on its

input retinal matrix, is not able to satisfactorily recognize the same
squares and circles situated at another place on the matrix. Precise
theoretical investigation of perceptron’s limitations were presented
by Minsky and Papert [Min69]. ° Analysis of the perceptron’s
behaviour revealed that the above hypothesis is not quite correct.
Some bonds already seem to be determined when the organism
arises, i.e. in our metaphorical example, the designer of a computer
does not propose only its hardware, but also some parts of its
software as well. In spite of these limitations, the perceptron became
one of the fundamental models of neural nets, has had many
technical applications, and, at present, has successful successors.

/
X X4
#1 94
X
MAXIMUM |——= Z
Pu v 9r
7
XM

Fig. 4. Perceptron. g, to gz are linear disuriminant functions



3. Neural Nets
3.L i’aradigm of Connectionism_

Minsky and Papert’s criticism of perceptrons strongly dirqi-
nished interest in their investigation, and consequently research in
the field of perceptrons, their applications, and generalization was
neglected for many years. Moreover, research activities il:x 1979’5
were focused on symbolic approaches and knowledge—mtcr}sxve
modelling. However, a few research centres continued to investigate
the neural (or connectionist) approach and parallel processing
systems, especially in computer vision; see e.g. Hough, Duda and
Hart [Du72], Grossberg (Gro78], Anderson [And72], Kohonen
[Koh77], and others (more references are in {Lip87], [Mat87],
{Om87)).

After more than a decade of intensive research, however, the
apparent limitations of the knowledge-based and symbolic approach-
es to artificial intelligence have been realized, returning the interest
of Al researchers to neural net modelling. Consider just the follow-
ing. The standard serial von Neumann computers are excellent in
multiplication; they can multiply two large numbers in a fragment
of one microsecond, but - even in late 80’s - any computer with the
best available knowledge base and the best available algorithm needs
hours to recognize objects in a picture. That is evidently one of the
reasons for the recent explosion of interest in parallel distributed
processing and neural network models. Neural nets have exhibited
promising results for a number of problems such as pattern recogni-
tion, speech processing, computer vision, association etc. (see e.g.
Kohonen [Koh84], Sejnowski and Rosenberg [Sej86], Hopfield and
Tank [Hop86], Rummelthart and McCleliand {Ru86a}, Hinton and
Sejnowski [Hin86], Carpenter and Grossberg [Car86], etc.). A fair
survey of types of neural nets and related problems can be found in
[Grog8), [Lip871, (Sim90].

The paradigm of connectionism can be specified as follows:
Intelligence is an emergent property of a large parallel net of
simple uniform nodes. Indeed, although there are various types of
neural nets, they all attempt to get fast and perfect behaviour by
massive interconnections among their elementary units (nodes), and
by exploring promising cases (hypotheses) simultaneously, in
parallel. An elementary unit (node) usually has a large number of
inputs, either from the environment that is to be processed or from
the outputs of other nodes. The input signals to a unit are usually
weighted and their sum is processed by a nonlinearity whose output
is either a binary number ( O or 1 ) or a real number in a certain
interval. The weights of nodes are usually adjustable by a leaming
(training) algorithm.

In the following, we will discuss all relevant aspects of
neural nets and their specifications. We will then survey a few
famous types of neural nets, and focus on the multilayer perceptron,
one of the best models for the pattern recognition purposes (particul-
arly, it is the best model for our task of doing waveform analysis).

3.2. Aspects of Neural Nets

Hecht-Nielson [He88] defines a neural network as a parallel,
distributed information processing structure consisting of processing
elements interconnected together with connections; each processing
element has a local memory, a single output, and carries out
localized information processing operations. Another definition can
be found in [Sim90]: a neural net is a nonlinear directed graph with
weighted edges that is able to store pattemns by changing the edge
weights, and is able 1o recall patterns from incomplete and unknown
data. '

30

Particularly, the latter definition reflects not only the internal
structure of a neural net, but also the procedures (actions) that are
carried out by the net. Now, following the paradigm of connection-
ism and the above definitions, we can observe the following aspects
of any artificial neural net.

(1)

Set of processing elements (neurons, units, nodes)

A neural net consists of a large numbers of simple elements
(neurons, units, nodes) of the same type. Each neuron n has its
activity (state, output) x, . It is either a real number, usually from
the close interval < 0; 1>, or an integer from the set { 0,1,..,.K ],
or a binary number 0, 1, or +1, -1 .

(2)  Topology of neural ‘nets

Neurons are connected within a net by means of a large
number of connections (synapses). Each connection is accompanied
by a certain strength or weight. Therefore, the topology of a neural
network is characterized by connections, their weights, and so-called
interconnection schemes. We will briefly discuss each of these
factors.

(a) Connections (synap.\'es). Neurons of a net are connected
together by oriented synapses. We can observe a neural net as a
graph with oriented edges. There are several types of connections
(graphs), among them the most typical ones are:

+ total connection: each node is connected with all nodes;

+ uniformm local connecton: each neuron is connected with its
neighbours only;

+ layered networks: neurons are grouped into layers which are
ordered; neurons can be connected to neurons of the same layer,
those of the next ‘higher’ layer, or any ‘higher’ layer, or 'lower’
layer etc.; some of the possible layered types are on Fig. 5.

(b) Weights (connection strengths). If the neuron m is
connected to the neuron n, then the corresponding connection
(synapsis) has a certain strength or weight w,,, . A weight is usually
characterised by a real number from a certain interval. All weights
of a neural net form a matrix w = [w,,] which is called (long-
term) memory of the net.-

, Weights can be either positive numbers (in such a case the
connection is called excitatory), or negative (inhibitory connection).
If a weight has zero value, then we have to distinguish either staric
zero (there exists no connection between the two nodes at all) or
dynamic zero (the initial zero value of the weight has not been
modified yet).

If w,, = w,, for all connections, then the neural net is
called symmetrical. If w,, * w,, = 0 for all connections, then we
have one-way connection network. Otherwise, the net is of a general
asymmetrical type.

(c) Interconnection schemes. We distinguish feedforward and
fecdback schemes. If information (signals) flows in one direction
only, the net exhibits so-called feedforward scheme. If information
flows in either direction and/or information flows recursively the net
has the feedback scheme. Most feedback systems exploit recursive
information flow with the following stopping condition: the infor-
mation flows until the output of the network ceases to change.

(3)

Environment

A neural net is working in a certain environment, processes
environmental stimuli and returns its responses (output signals). The
nodes which are directly connected to the environment (i.e. they
process the environmental inputs, stimuli) are called inpwt nodes.
The nodes whose outputs (activities) are returned to the environment
are called outpur nodes. Other nodes (i.e. those whose inputs and/or
output are not directly connected to the environment) are called
hidden ones; see Fig. 6.

Consequently, we can characterize a neural net as a system
with the mapping b = S(a) where a is a vector of all environ-
mental inputs, b a vector of outputs (activities) of all output nodes
(i.e. the response of the neural system to the given environmental
input).



elolelen)

OXON©, 4 OOOO% ’

0000

O
O
O

OO0

31

Fig. 5. Layered networks

(4) Time

A neural network can work either in continuous or discrete
time. The neural systems we will present here are working in
discrete time only. However, most of them have comresponding
continuous variant.

(5)  Rule of activity

A detailed structure of a node (neuron) is on Fig. 7. The
neuron n has N inputs ay, a,,..., @y , which are either outputs of
some neurons or environmental inputs (stimuli). All inputs are
weighted by weights wy,, wq,,..., Wy, , summed, and led through a
nonlinearity functon (or threshold function) f. The common types
of the threshold function are also shown on Fig. 7. A neuron
usually has a threshold which symbolizes the level of the summed
input signals above which the neuron is 'activated’. To simplify the
formula for the neuron's output we consider its threshold as a
weight wy, and formally introduce the 0-th input a, identically equal
to 1. Hence, the output (state, activity) of the neuron n is

N
Xa =f ( 2 Wmn an )
m=0
To incorporate discrete time we should write rather
() = £ (Z Wan 6n(0)

which indicates that the input signals at time t form the output for
time t+1 .- :

The neuron can process its own output x, as one of its
inputs, i.e. a feedback loop can be incorporated. Fig. 7 depicts this
situation by means of the dotted connection with the weight wy, .

(6)  Learning

Learning is characterized by any change of neural net’s
memory w (i.e. matrix of all its weights). Methods of leaming can
be classified along several different dimensions. However, the
presence or absence of a teacher seems to be a most important
attribute. We will thus distinguish two types of leamning for neural
systems: supervised learning (with a teacher) and unsupervised one
(without a teacher).

Supervised learning consists in that the teacher supplies so-
called training set of typical exemplars (representatives, prototypes,
etalons) ‘aj, @ ..., 8g with the desired output behaviour of the net.
One of the simplest, but commonly used method of supervised
learning is so-called error-correction learning (or Widrow-Hoff, or
delta). A change of the weight w, between the neuron m and n is
done by the formula ‘

Awpn =Nx, X, - x)

where x,, is the input from the neuron m , x, is the actual output of
the neuron n , X, is the desired output of the neuron n , provided
by the teacher, and n is a parameter, called learning rate. The
Rosenblatt’s algorithm, discussed in Section 1, is a generalization of
the above.

The simplest method of unsupervised learning (without a
teacher) is Hebbian learning. A change of the weight w_, between
the neuron m and n is done by the formula

AWpn =N Xy X,

When studying learning algorithms we should also distinguish
competitive and cooperative learning. The comperitive learning uses

Neural Net

(igfnu{m)

|

output

(layer)

(layers)

Fig. 6. A neural net in an environment



output of another neuron
or environmental input {stimuls)

32

threshold won

hard limiter

0

linear threshold

sigmoid

Fig. 7. Rule of activity and threshold functions

neighbour-inhibiting strategy, i.e. activities of all neighbour neurons
of a given neuron are lessened, and the activity of the given neuron
is increased. One simple competitive learmning method is called
winner-take-all, we will discuss it in the Section 3.5. The cooperar-
ive leamning, on the other hand, uses neighbour-exciting strategy, i.e.
activities of all neighbours including the given neuron are reinforced.

(7) Mapping mechanism

A neural network can be observed as a certain type of an
associative memory. We distinguish two types of associativity:

» autoassociative neural net: its memory w stores input patterns
(environmental stimuli) ay, a,, ..., ag ;

» heteroassociative neural net: its memory w stores input as well
as output pattern pairs (a;, by), ..., (ag, byg) .

(8} Rule for changing topology

This optional attribute grants a neural net to modify its
topology, which is usually done by adding new connections between
existing nodes, or even by creating a new node and its new connect-
ions to existing nodes. Carpenter-Grossberg classifier (Section 3.6)
is one example of the neural net which is able to modify its
topology.

3.3. Specification of neural nets '

We observe from the above aspects of neural nets that there
exist two (or three) interacting dynamic regimes: activities (outputs)
of nodes are changed, the weights (connection strengths) are adjust-
ed, and, optionally, the net’s topology is modified. Since the weight
adjustments and topology modifications are usually much slower
processes than the activity changes, we can specify the above
processes scparately.

(1)

+ the space X of state vectors X = [ X3, X5, ..., Xy ], where x, is
the state (activity, output) of the neuron n , n=1,2,...N ;
+ the activity function

x(t+1) = F(x(1), w(t))

which determines the state vector for the time t+1 if the state
vector and the net’s memory are given for the time t;
+ the energy function E(x) .

Active regime is specified by

Its motion consists in that, for given external (environmental) input
a, the state vector is initialized to

x(0) = a

for input nodes,
x(0) = 0 (or a random vector),

otherwise

and the net is trying to find a stable state x(t") for which the energy
function E reaches its minimum (so-called stability of the net). The
over-all output (i.e. the response of the neural network to the given
environmental input) is

b = x(t") for output nodes.

A typical active regime is called nearest-neighbour one: for
a given unknown input pattern a , it finds the stored input pattern
(exemplar, etalon) a, which most closely matches a , see Section 3.4
for details.

(2)

+ the space W of the weight matrices w = [ w,, ]
+ the training function (learning algorithm)
A w = G(w,a)
which determines how the weight mawrix w is changed according

to the training example a ;
+ the error function J(w) .

Training (learning) regime is specified by

Its motion consists in that, for a given training set of training
examples a,, a,,.., ax and w(0) = 0 (or random), it finds an
optimal weight matrix w* for which the error function reaches its
minimum (so-called convergence of learning).

(3)  Optional configuration regime could be considered as a
special type of the training regime. If the modification of the weight
matrix is not efficient for some reasons then the configuration
(topology) of the network could be optionally changed: either new
connections are added or new nodes are incorporated to the existing
network. Specification of such a regime is not, however, so uniform
as that of the other regimes. We have to specify first of all the
conditions under which the training mode has to be replaced by the
configuration regime. Second, rules for adding new connections
and/or nodes and their connections have to be specified as functions
of existing topology and training examples.



33

Fig. 8. Hopfield net

3.4. Hopfield net

The Hopfield net [Hop82] (see Fig. 8) is a single-layer,
symmetric neural network, with the feedback scheme, working in
discrete time. It uses the nearest neighbour active regime and
Hebbian algorithm for (unsupervised) leaming. It is a simple but
very efficient network exhibiting the autoassociative mapping
mechanism. Therefore, it is also called autocorrelator, or just
autoassociative memory. Its input is binary only.

Training (leaning) of the Hopfield net looks as follows.
Given R training examples a, = [ 4, .., @,y ], r=1,...,R, which are
to be stored in the memory of the network, the weight from the
node m to n is simply given by

R
Wy = E,l &G @y v ma=1. N, r=1_R

However, if we prefer sequential formulas for (incremental) learning
we can simply derive Hebbian learning algorithm:

Won(0) = 0

Awmn - ar.m arn

for the r-th example on the input, r=1,...R

In the active regime, an unknown (new) pattern a = [q,,...,ay]
is imposed onto the net's input at time (O and the node states

(outputs) are changed in the feedback scheme according to the
following formula (Fig. 8):

x(0) = a

N
B = (2 Wy Xp®) 0= LN

until the states (outputs) no longer change on successive iterations
(i.e. stopping condition of the active regime is reached). The pattem
x(t") specified by the node outputs after the stability is achieved
represents the exemplar a, which best matches the unknown pattem
x (i.e. the nearest-neighbour active regime).

The energy function E(x) used for the Hopfield néx is the
Lyapunov function

E(X) = - 2X wp, X, X,
m,n

It reflects a disharmony (chaos) of the system. Learning can be
portrayed as a decrease of. the energy function, i.e. ’relaxation’ of
the system. Stability and capacity (i.e. number of exemplars stored
in the network) is discussed e.g. in [Sim90)]. {Lip87] states that R
< 0.15 N . Here we just mention that local minima of the energy
function are either the right ones (i.e. correspond to stored exempl-
ars), or spurious ones, so-called phantoms, If a phaniom ¢ is
identified then it can be 'unlearned’ by

Awm='b(pm(pn

where b is a positive constant.

3.5. Hamming net

The Hamming net (Fig. 9) is a two-layer neural network,
with the feedback scheme, working in discrete time. Its input is
binary only. Learning regime of the Hamming net is very simple,
because it is in fact done by these assignment statements for the
weights of the first layer:

pick-up

maximum
(winner-
take-all)

calculates
Hamming
distance

Fig. 9. Hamming net



Wy =nby » T=1L.R, n= L...N
Wo = % N

where @, = [ @ o @n } - 1=1R, are training examples. The
second layer has predefined weights, see Fig. 9.

In the active regime, an unknown pattern a = [ ay ,..., ay ]
is imposed onto the net’s input layer and is propagated through the
first layer. The outputs of the first-layer nodes are (see Fig. 9):

N
5=f(Z wga,) , 1=1.R
8=0

where f is the linear-threshold nonlinearity. The first layer in fact
calculates Hamming distance for each training example stored in the
network, which is defined as a number of (binary) features of the
input pattern a which do not match the corresponding components
(features) of the stored example a, .

The second layer of the Hamming net depicts the winner-
take-all technique which picks up the maximum value among its
inputs x, ,.., xz . This is done in a feedback regime according to
the following iterative formulas:

»0O=x , r=1.R
Y+ =f(y0) - € 51 y,()

where 0 < € < /R is a priori given constant. The above formula
is executed until the outputs y, no longer change. At that time only
one output is positive and the others are zero. This positive output
indicates the 'winner’; it is the training example which is the closest
to the input pattern a , i.e. whose Hamming distance to the input
pattern is minimum. If the Hamming net is used for classification
then the input pattern will be classified to the class of the winner.
Other atrributes are discussed e.g. in [Lip87].

3.6. Carpenter-Grossberg classifier

The Carpenter-Grossberg classifier [Car86) (Fig. 10) is a
two-layer neural network, with the feedback regime, working in a
discrete time. It uses the nearest neighbour active regime and
competitive unsupervised learning. Its input is binary only. This net
achieves a clustering algorithm which is similar to the traditional
sequential leader clustering algorithms (see e.g. [Har75]).

As we can see on Fig. 10, the network consists of both
"bottom-up’ connections with weights w,, and 'top-down’ connect-
ions with weights w}, . The net of ’bottom-up’ connections is
equivalent to the Hamming net (section 3.5), the 'top-down’ connec-
tions propagate so-called matching exemplar to the input nodes
where it is compared with the input pattern. In the following we
will give a flow-chart of the entire procedure. Let there be N input
nodes and R output nodes. Assume the all weights have been
adjusted according to previous learning sweeps. Let a new input
pattern be a = [ a; ..., ay ] . Then its processing by the Carpenter-
Grossberg classifier is outlined as follows:

1. Present an unknown input pattern a = { g, ..., gy ] to the
input nodes. Let the set of allowable winners comprise all output
nodes.

2. Send signals through w,, to these output nodes y, which are
members of the set of allowable winners. :

3. Find y, with the maximum value among y, , r=1,..,R, using
the winner-take-all strategy (equivalent to the Hamming net).

4, The winning output node y, sends the top-down signal along
the weights w}, back to the input nodes, forming the matching
excmplar 8’ = [ wy @y ..., Winay ] .

5. The input pattern is compared with the matching exemplar by
so-called vigilance
_ lal
P=rat

where the norm lal of the pattern & equals to the sum of its compo-
nents (features) a, .

51. If p 2 pya, » Where p,,, is a vigilance threshold (a number
between 0 and 1 ), then the winning node y, represents the proper
class of the given input pattern a , and a is merged into this class,
i.e. all w,, and wi, of the winning matching exemplar are modified:

wip(t+1) = wi () a,

and the learning sweep for the given input pattern is terminated.

5.2. However, if p < p,. then the winning node y, does not
represent the proper class of the input pattern a , and y, is removed
from the set of allowable winners, If there are still some allowable
winners, go to Step 2. Otherwise the pattern a forms a new class,
i.e. a new node yg,; is created and a is encoded to it.

2. layer
/
Wor v
1. layer

Fig. 10. Carpenter-Grossberg classifier



With no noise, the vigilance threshold can be set such that
two patterns which are most similar are considered different. In
noise, however, this level may be too high and the number of new
stored exemplars can rapidly grow. One possibility is changing
vigilance threshold during training, see e.g. [Car86].

3.7. Kohonen’s self-organizing feature maps

The Kohonen's self-organizing feature map [Koh84] is a one-
layer neural network with the feedforward scheme, working in
discrete time. It exploits the nearest-neighbour active regime and
cooperative learning. Its behaviour is similar to K-means clustering

algorithm. It incorporates a kind of space topology (Fig. 11), since |

all its nodes are organized into a two-dimensional array. Particularly,
neighbourhood of a node is ‘taking into consideration.

Training (learning) of Kohonen's feature map looks as
follows. Let there be R nodes in the two-dimensional topology, and
each pattern have N features. For a training example a = [a;,...,ay]
the following distances between a and the weight vectors w, for
cach node are computed

N
d=1a-wl= zl @, - wy)? , r=1.R

o=
Then the output s with minimum distance is selected among
r=1,...,R . Afterwards, the weights of this winner and its neighbours
are updated:

Wolt+1) = W) + N @, - we () for r € N(1)
where Ny(t) is the neighbourhood of the node s at timé t, )
is the leamning rate at time t . The other weights are not modified.
The important fact is that both the size of any neighbourhood and
the learning rate decrease in time. E.g. if the node s is a winner
for the time t then the weights of all 25 nodes in its neighbour-
hood (including the winner itself) are modified at the time t, only
9 nodes at the time t+1 , and just the winner itself at time t+2 ,
see Fig. 11 : :

After enough training pauerns have been presented, the
weights will specify cluster or pattern (vector) centers that sample
the feature space such that the density function of the pattern centers

~tends to approximate the probability density function of the training
patterns. The weights will be organized such that topologically close
nodes are sensitive to the input patterns that are physically similar.

. The algorithm performs relatively well in noise. Other aspects as
well as areas of applications can be found in [Sim90].

35

3.8. Boltzmann machine

The Boltzmann machine [Hin86]) is a two-layer network with
feedforward schéme and binary inputs, working in discrete time. It
exploits the nearest-neighbour active regime and a combination of
Hebbian learning and stochastic learning.

The entire principle of the Boltzmann machine is described
in detail e.g. in [Sim90). Here we highlight the idea of stochastic
learning only. A learning sweep looks as follows:

1. Add a new training example to the network by applying the
Hebbian learning formula,

2.  Make a random weight change.

3. Determine the change of energy function AE after the weight

was randomly changed. ’

If AE < 0 then keep the change.

If AE > 0 select a random number p and calculate
P = e 2ET®

4a.
4b.

where T(t) is the temperature of the Boltzmann process. If
p < P then accept the weight change; otherwise return to the
original value.

We can observe that larger T(t) causes the random weight
change would be accepted more likely. The temperature  T(t)
decreases in time according to

T() = T, / (1 + log ©)

The authors of this method have proven that the random character
of the weight change allows to escape local energy minima and
reach thus the absolute minimum of the energy function,

3.9. Multilayer perceptron

As we have already mentioned, a linear classifier, i.e.
Rosenblatt’s perceptron without its ®-processor (or: a single-layer
perceptron, in the neural net terminology) can only create linear
decision boundaries (Fig. 12a). A two-layer perceptron can form
convex decision boundaries (see Fig. 12b) while a three-layer one
can generate boundaries of any shape (Fig. 12c) [Lip87). This means
that no more than three layers are required because a three-layer
perceptron can generate arbitrarily complex decision regions.

) The structure of a three-layer perceptron is shown in Fig.
12c; it has two hidden layers and one output layer, A two-layer

[ L L

7

s 4 L L L

/
/

L /S 7L S L L LS

VY

Fig. 11. Kohonen's self-organizing feature map

attime t:
N, @

N, (t+1)
N, (1+2)

neighbours of node r



36

perceptron has only one hidden layer and, of course, one output
layer (Fig. 12b). Thanks to the hidden layer(s), the multilayer
perceptrons overcome many limitations found in a single-layer
perceptron. However, they were not generally used in the past
because effective Jearning algorithms that would adjust their weights
in an optimal way were not available. Three years ago, the so-
called back propagation learning algorithm for multilayer perceptrons
was discovered {Ru86b). Although it cannot be proven that this
learning algorithm generally converges (as with the single-layer
perceptron), it has been proven to be useful and efficient for many
pattern recognition problems.

Since the structure and the back propagation learning algo-
rithm are almost identical for two- and three-layer perceptron, we
will only describe the structure and behaviour of the latter. An input
pattern of a multilayer perceptron is represented by a N-dimensional
feature vector

x =[x . ,xy]
where x, , n = 1,.,N are features, i.c. numbers in the range 0
o 1.

The feature vector is input to each of M nodes of the first
hidden layer so that the linear weighted sum of all features is
computed and the sigmoid nonlinearity

0 =17e
converts it to an output x} , m = 1,.,M , that is thus between 0
and 1. Hence (see Fig. 12¢)

N
Xa=f( 2 w@x) . m=l.M (5)

{a) w
nr
X Y1
X
Yr
(b) m (2
wmr
) nm x’ y1
X
X M yR
© (1) @ (3)

where f is the above nonlinearity, w,» is the weight connect-
ing the n-th input to the m-th node of the first hidden layer, x, =

1 allows the weight wg§ to be considered as a threshold of
the m-th hidden node.

In the same way, the second hidden layer has H nodes and
the output xj of the h-th node of the second hidden layer is

M
x5 =f( XHFO w@x) ., h=1,.H 6)
where w2 is the weight connecting the m-th node of the first
hidden layer to the h-th node of the second hidden layer, xj = 1
processes the weights w@ as thresholds.

Similarly, the output layer has R nodes and the outputs xj,
of the second hidden layer are linearly weighted and the sum is
converted by the sigmoid nonlinearity. The output signal of the r-th
output node is thus

H
Y=f(Z Waxi) , r=1.R @

where  w)} is the weight connecting the h-th node of the second
hidden layer to the r-th output node, x% = 1  processes the
weights  wg  as thresholds.

The multilayer perceptron, when used for classification, can
classify input pattems to R classes 2z ,r = 1,..,R. The
discriminant functions are given by formulas (7) and the decision
rule of the classifier is equivalent to (1): the pattern (more precisely,
its feature vector) x is classified to the class 2z, iff the output
Yy, is the maximum among y,,r=1,.R .

Fig. 12. Structure and shape of decision regions for (a) single-layer perceptron, (b) two-layer
perceptron, (c) three-layer perceptron. The arrows depict weights, a circle represents the sum

including nonlinearity



Since we want the multilayer perceptron to have the optimal
classification performance we have to adjust its weights according
to a criterion. As in case of a single-layer perceptron, one possible
and commonly used way of such an optimal adjustment is to use a
learning (training) process. As we have already stated one of the
popular learning algorithm for multilayer perceptrons is the back
propagation training algorithm. It propagates an output error signal
back through the network and modifies its weights accordingly.

The error signal is defined as

R .

_eps= X (y,-Y, ) : ®)
=1

where Y, is the desired output of the r-th output node.

For the purposes of classification, if a training panem X

belongs to the desired class Z =z, then
Y, =1 &)
Y. =0 for r#s

Hence, the error signal for the training pattern x  of the (desired)
“class Z =2z is

eps= % yl+(1-y, ) (10)

Training patterns are presented several times to the training
algorithm until the error signal for all training patterns is less than
an a priori given maximum epsmax . This maximum must be
below 0.5, since it is the error signal value of the worst case: if
e.g. a training pattern belongs to  Z = z; and if

y1y=05 , y,=05, y,=0 for r# 1,2
then

eps = 0.52 + (1 - 0.5 =05

The flow chart of the back propagation algoﬁthm is given
below (written in the same fashion as Rosenblatt’s learning algo-
rithm):

1. Inidalize all weights to random values in the range -Winit
to +Winit where Winit is a parameter of the learning
algorithm that shrinks or expands the range of the initial
values of weights.

2, Set

3. For each training pattern
class Z = z, -do:

Number_of_learning sweeps to 0. |

X =[xy ,.., xy] with its desired

3.1, Compute y,,r=1,.R for the given pattern accord-
ing to (5) to (7).

3.2. Compute the error signal eps according to (8) and (9).

3.3. If eps > epsmax (a given maximum) then modify the
weights as follows: compute

8;3) =y, (1-y) Y,-y) » r=1.R
and change the weights of the output layer:
w2 4=1 & x%, h=0l..H , (12)

where 1 is the learning rate (gain term), another
parameter of the leaming algorithm.

an

r=1,.,R

Similarly, change th% weights of the second hidden layer:

& = x} (1x}) El & Wi (13)
=
wi +=n 80 x m=01.M , h=1..H (14
and those of the first hidden layer:
H
B =X (1xp) 2 87w as)

wid+=18"x, , n=01.N ,

m=1,.,M (16)

.37

4, If we have modified the weights for at least one training
pauern, increment Number_of_learning_sweeps by 1 and
return to the step 3, i.e. repeat the training for the entire
training set.

If not, save all weights, print Number_of_leaming_sweeps
and terminate the learning process.

Convergence is sometimes faster and the danger of oscillation
is diminished if a so-called momentum term a is added to the
formulas for changing weights [Lip87].

The two-layer perceptron has just one hidden layer with
weights w and the output layer with weights w@ . Otherwise,
the structure is identical to the three-layer percepwron, and the
formulas (11) to (16) have to be slightly changed.

4. Application: waveform processing
4.1. Introduction

Multilayer perceptrons have found many useful and efficient
applications in pattern recognition. Our research group is using a
multilayer perceptron as one component of a larger decision-support-
ing system for neurological diagnoses. The actual input to our
system is an evoked potential waveform. It is processed by these
subsystems [Bru88], [Bru89] (see Fig. 13 for illustration):

()] Filter preprocessing. The evoked potential waveform is
preprocessed by a digital filter. This eliminates noise and allows the
use of simple recognition grammars in the syntax analysis stage.

2) Extracting a string of symbols. The potential waveform is
segmented and each segment is described by one (terminal) symbol.
Thus, the entire input waveform is formally described by a string of
(terminal) symbols [Mad86).

3) Syntax analysis. An attributed regular grammar with seman-
tic functions [Fu82] is used for the syntactic analysis of an input
waveform represented by a string of symbols. It recognizes the start
of the relevant waveform as well as each peak of the waveform.
It returns through its semantic functions the latency of the beginning
of the relevant waveform, number of hills, and the peak latency of
each hill found (see [Bru88) for details).

(4) Numerical classification. The features extracted by the
attributed grammar are further processed by a two-layer perceptron
that classifies the given input waveforms (using the above features)
into ‘two classes: normal and abnormal. Note the semantic funct-
ions of our attributed grammar form an interface between strictly
syntax subsystem (a grammar) and strictly numerical processing (a
multilayer perceptron).

(5)  The knowledge-based subsystem. We analyze methods of
incorporating a knowledge-based subsystem into our decision-
supporting system in order to obtain more reliable results. The need
for such a knowledge-intensive device is discussed in the conclusion
of this paper.

After analyzing a large number of experiments that have been
conducted to obtain the performance characteristics of a multilayer
perceptron, we have found out that the three-layer perceptron is
quite unstable for this recognition task. Therefore, we have focused

on a two-layer perceptron. Similar conclusion can be found in e.g.
[Wie87)].

The training method used in our experiments is the back
propagation training algorithm. By analyzing the above algorithm
one can easily discover that the following five parameters strongly
affect both leammg and classification performance of the multilayer
perceptron:



) Jhu i
o
: ¥
4
1
b) 4 \—~
)
d) 11 145 27 39

46.5

xut 1l Wy df Wt d et et et d

54 70.5 89

Fig. 13. Waveform processing: (a) evoked potential waveform, (b) filtered data, (c) string
of symbols (4 upward slope, d downward slope, f flat line, x imrelevant data), (d) list of

features

- the range of initial weights Winit ,

- the learning rate (gain term) eta ,

- the momentum term alpha ,

- the maximum allowed value of the error signal eps ,
- the number of hidden nodes M .

However, there is no formal method for obtaining optimal values of
the above parameters. Therefore, we have carried out a large number
of experiments, analyzed them, and obtained a few heuristics
(thumb-rules) for optimal adjustments of the above parameters. The
following sections discuss both experiments and the heuristics
obtained.

number of

marning sweeps

500

400 |

300

200

100

o i 1 (| il L 1 1 1 .
V] 0.6 1 1.6 2 26 .3 3.6 4 4.5
leaming rate eta

-_— !{_Ipll =02 —— Wit » O.l5 ~¥—  Winit = 1- '
—&—' Wit = 2 ¥ Winlt = 3

Fig. 14. Number of learning sweeps versus the learning rate (gain
term) eta and the initial weight range Winit (M =9, eps =
0.30 , alpha =0 )

4.2. Optimal adjustment of parameters: experiments

A two-layer perceptron emulator used in the experiments has
been implemented in C because of its portability and flexibility. The
emulator has been tested under BSD 4.3, SunOS, and DOS using
MS-DOS Microsoft C and Turbo C.

We have used a training set of 50 evoked potentials {training
patterns) of normals (class 2; ) and 50 potentials of abnormals
(class z, ) for training the two-layer perceptron. Additional set of
40 patterns with unknown classes has been used for testing. The
number of features (inputs) has always been N 4 , and the
number of classes R = 2. We have chosen the maximum error
signal eps = 0.3 for most experiments since it corresponds to the
reasonable difference of 0.4 between the actual output (y,) and the
desired one (Y,) which has been accepted in many experiments (see
c.g. [Bur88], [Bru89]); if a training pattern belongs to the class say
z, then we allow

yl = 0.6 sy Y2 = 0.4
thus approximately

eps = (1 - 0.6)* + 0.4% = 0.3

We have executed a large number of experiments for various
sets of parameters. The efficiency of the learning algorithm has been
symbolized by the following factors [Bur88):

1. the number of learning sweeps,
2. the accuracy in classifying unknown (testing) patterns, measured
as percentage of correct classifications.

Following the Kolmogorov's mapping theorem and its
interpretation to the neural nets (He87], we have set the number of
hidden nodes to

M=2*N+1=9

Afterwards, we have carried out four sets of experiments, running
the back propagation algorithm for the given set of 100 training
patterns (SO normals and 50 abnormals). To achieve comparable
statistical results, we have made 200 runs for each configuration.



The first set of our experiments has been run to find optimal
values of the leamning rate eta . Therefore, we have run the back
propagation algorithm for the two-layer percepwon with eps = 0.30,
M = 9, alpha = 0, for various leaming rates (gain terms) eta
(from 0.5 to 4.0 ) and various initial weight range Winit (from
0.2 to 3.0). The results are in Fig. 14. We observe that the
learning algorithm has required larger number of leamning sweeps
for smaller values of eta , since less information is learned during
cach sweep. .The performance has not changed substantially for
learning rate eta between 2.5 and 4.0 . It is also seen that the
larger the range of initial weights, the faster the training is complet-
ed. :

Therefore, we have chosen Winit = 3.0 and eta = 2.5, 3.0,
4.0 as promising values for the second set of experiments that were
to reveal an optimal number of hidden nodes M . Again, eps =
0.30, alpha = 0, but the number of hidden nodes has been changed
from 4 to 25. The results are in Fig. 15a and 15b. The figures
indicate that the number M =9 chosen according to Kolmogorov's
mapping theorem yields the optimal performance for the number of
learning sweeps only. On the other hand, the accuracy of classify-
ing unknown patterns (evoked potential waveforms) is satisfactory
for M > 9. Therefore, we conclude that the number obiained by
Koimogorov's theorem should be considered as the lower bound of
the recommended number of hidden nodes.

The objective of the third set of experiments has been to
confirm the previous two tests that Winit equal 3.0 was an
optimal parameter. We have set eps = 0.30 , eta = 4.0, alpha =
0, M has been changed from 7 to 16 . The results are present-
ed in Fig. 16a and 16b; they confirm the predicted optimal value for
Winit as well as the above thumb-rule for M .

The miomentum term alpha may speed up the convergence
of the back propagation learning algorithm. It is expected to smooth
the weight changes during the learning. Therefore, we have run the
last set of experiments in order to observe the effect of the moment-
um term to the perceptron’s performance. The results are in Fig.
17a and 17b. Fig. 17a indicates that as the value of the momentum
factor increases, the optimal value for the learning rate (gain term)

number of leamning sweeps

A

150
“y -
10
12 4
10
m -
L
0 -
N o
50
0
L]

X llllTlllllll‘llllll:_l
4 6 8 W VW M ® W W 2 A
number of hidden nodes M
o sas25 o otaed0 X etas a0

Fig. 15a. Number of learning sweeps versus number .of hidden  Fig 15b.

nodes M (eta =25, 3.0, 40, Winit =3,

eps = 0.30 , alpha =
0) . .

39

decreases. However, the accuracy of classification decreases with
larger momentum factor (Fig. 17b).

We have run the same set of experiments for a three-layer
perceptron for the same learning rates, initial weights range, and
maximum error signal. As for the number M of nodes in the first
hidden layer, we have again incorporated Kolmogorov's theorem,
and have followed the advice [6) that there should be more than
three times as many nodes in the second hidden layer as in the first
one, ie. H >= 3 * M, However, we have discovered that the
back propagation learning algorithm does not converge over a great

number of runs, and the weights oscillate, especially in the second
hidden layer.

4.3. Optimal Adjustment of Parameters: Heuristics A

This section discusses the heuristics (thumb-rules) for optimal
adjustment of multilayer perceptron’s parameters we have observed
after analyzing the results of our experiments.

+ The initial weight range Winit should be a larger value, greater
than 1.0 . Our recommendation is Winit = 3.0 .

+ The learning rate (gain term) eta should be a larger value,
greater than 1.0 . Intuitively, a larger momentum term together
with a larger learning rate would speed up the learning and avoid
the oscillation. However, our experiments have revealed that the
optimal leaming rate for minimum number of leaming sweeps
becomes smaller for larger momentum factor. Qur recommenda-
tion is to choose eta between 1.0 and 4.0 and alpha = 0
as a starting point. If the learning does not converge, one should
increase alpha and decrease eta .

The number obtained by Kolmogorov’s theorem should be
considered as the lower bound of the recommended number of
hidden nodes. However, [Guy89] introduces another thumb-rule
for an optimal number of hidden nodes:

M=(N+R)/2

% of corract classifications

%

»s 4
»
n rvVrry{yyrovrrryrryoorrrrrr
4 6 8 10 1’ " 6 W W 2 M
number of hidden nodes ™
o atu;z.s X eta=40

9 eta=d0

Percent correct recognitions versus number of hidden
nodes M (eta =235, 3.0, 4.0, Winit = 3, eps = 030, alpha =

0)



number of
lsarning sweeps
120
100
80
60
40
20 4 i 1 1 L
0 1 2 a 4 & 8
initlal welght range Winit
—— Ma7 —t— Ma38 ¥~ Me9 ~8- Ma16
Fig. 16a. Number of leaming sweeps versus initial weight range
Winit and the number of hidden nodes M (eta = 40, eps =
030, alpha=0)
# Of Learning Sweeps
280
200}
160}
100}
50
0
0 6
Gain Term
Momentum Faotor
—— MF « 0.8 —— MF = 0.6 —¥— MF = 0.7
~&- 'MF « 0.9 —~¥= MF = 1.0 =0~ MF « 0.0

Fig. 17a. Number of leaming sweeps versus learning rate (gain
term) eta and momentum factor alpha (M =9, Winit = 3,
eps = 0.30)

40

% of correct
classifications

87

8e

86

84

83

82

81

80 1 1 1 I ]
3 4

initiat welght range Winit

—_— Ma? —t= Ma38 ¥ M9 8- M. 16

Fig. 16b. Percent comrect recognitions versus initial weight range
Winit and the number of hidden nodes M (eta = 40, eps =
030, alpha=0)

0 % Of Correct Classlfication

o}

85
80
75
70 1 1 1 1 [l 1 Il F 1

0 05 1 1.6 2 25 3 35 4 45 b

Gain Term
Momaentum Factor
—— MF = 0.3 —+—= MF = 0.6 —#*— MF = 0.7
-8~ MF » 0.8 ~»~ MF » 1.0 -0~ MF = 0.0

Fig. 17b. Percent correct recognitions versus learning rate {(gain
term) eta and momenwm factor alpha (M =9, Winit =3,
eps = 0.30 )



where N is the number of features (input nodes) of the percept-
ron, R is the number of output nodes (i.e. classes in a classifi-
cation problem). Qur recommendation is to try Kolmogorov’s
mapping theorem for smaller number (units) of features, and the
above formula for larger number (tens) of features'.

Let us summarize the entire procedure of finding optimal
values of the parameters:

(1) ©  The user of a multilayer perceptron should firstly select a
relatively small subset of representative training examples (patterns).
The error signal should be set to a larger value (less than 0.5 ), say
eps = 0.49 . The first hearistic should be applied for the initial
weight range.

2) Followmg the second and the third heuristics, the user should
run a few expenments (using the above small representative set of
training patterns) in order to find the optimal values of eta , alpha
and M.

(3) As our experiments have revealed, the above optimal values
can be afterwards used for the entire training set, with the error
signal set to e.g. eps = 0.30 , which will guarantee more precise
results of learning.

5. Conclusion: the need for a knowledge-based
subsystem

This paper surveys the fundamental tools for pattern recogni-
tion: perceptrons and neural nets. We have exhibited that neural nets
are powerful tools for image, speech, and waveform processing, as
well as general recognition systems. The greatest potential of neural
nets is in the high-speed processing that can be achieved by means
of parallel VLSI implementations. Massively parallel hardware is
evidently one of the reasons why so many researchers are investigat-
ing this field so broadly at present.
analyzing new types of neural net structures and their learning (or
self-learning) algorithms. Thus after twenty years the enthusiasm of
artificial intelligence research and development has returned to
connectionism. Nevertheless, we should bear in mind that the

marvellous powers of the brain emerge not from any single, uni--

formly structured connectionist network but from highly evolved
arrangements of smaller, specialized networks which are intercon-
nected in very specific ways [Min88].

Furthermore, the paper introduces our decision-supporting
system for neurological diagnoses comprised of several subsystems,
with all but last one having been developed, implemented, and
thoroughly tested. Using attributed grammars in our recognition
system seems to be quite adequate because they provide a simple
way of expressing semantic results of the syntactic recognition. The
features extracted by the attributed grammar are further processed by
a multilayer perceptron. A large number of experiments have
revealed that the three-layer perceptron is quite unstable. Therefore,
we have focused on the two-layer perceptron, and indicated four
parameters of the learning algorithm.that have to be adjusted by the
user. We have found that the ranges of these parameters depend on

the classification problem. Thumb-rules have been derived from
these results.

After considerable experience with combined syntax and
neural net classification, we have found that 'well-behaved' wave-
form processing reaches acceptable rates of correct classification.
By ’well-behaved’, we mean waveforms whose peaks are identifiable
after the initial filter processing. However, there are quite a few
clinical cases which are not 'well-behaved’. For example, the even
peaks of waveforms may be difficult to detect even in some normal
subjects [Chi83). Therefore, we have decided to incorporate a

! based on results of experiments done with another set of real data [Ho89)

Current resean:h' is aimed at.

41

knowledge-based subsystem to our decision-supporting system, since
our present combined syntax and neural net system would not be
able to handle such situations in an elegant way. The knowledge—
based subsystem will be able:

(a) to handle ’non-well-behaved’ data as mentioned above,

(b) to combine different modalities of evoked potential waveforms
(to improve its behaviour the system will have to process and
analyze three or more separate types of evoked potential
waveforms),

(c) to incorporate other clinical mformauon (for a complete diag-
nostic system, rules for incorporating other patient related factors
such as age, sex, etc. will have to be developed).

There are three possible ways of incorporating a knowledge-
based subsystem into our decision-supporting system:

@) A knowledge-based system as a ’high-level’ processing
subsystemn can be placed at the end of the ‘entire evoked potential
processing. In this traditional case, the knowledge-based subsystem
does not influence the 'low-level’ processing at all. However, this
configuration fails if the feature list represents a 'non-well-behaved’
situation (pattern) which would be processed by the neural net in an
improper fashion and should, therefore, be recognized in advance by
the knowledge-based subsystem.

(i) A knowledge-based subsystem can be placed before the
neural net, recognize 'non-well-behaved’ cases (patterns) and process
them separately; the 'well-behaved’ cases could be directly processed
by the neural net. We are going to investigate this promising
configuration thoroughly but its success will depend on the know-
ledge acquisition, i.e. co-operation with human experts in the field
of neurology. As for the knowledge reprcsentauon we are going
to use a rule-based model with uncertainties, the expert system
environment called McESE {Fr89].

(iii) A knowledge-based subsystem can co-operate with the neural
net so that it can call the multilayer perceptron and continue the
processing according to its results. This feed-back loop configura-
tion seems to be the most promising model. However, we cannot
directly use the conventional representation of knowledge as a set
of production rules, which is the case in the model (ii), since the
rule-based .system has to modify its inference process accordmg to
the results of the neural net.

References

(And72} J. Anderson, "A simple neural network generating an interactive memory”,
Math, Biosciences, 14, pp. 197-220, 1972

[Bru80) L. Bruha, J. Jelinek, Z. Kotek, Adaptive and Learning Systems, SNTL
Praguey 1980 (In Czech)

(Bru88) I. Bruha and G.P. Madhavan, "Use of attributed grammars for patiem
recognition of evoked potentials”, IEEE Trans. System, Man and Cyber.,
Dec. 1988

(Bru89) 1. Bruha and G.P. Madhavan, "Combined syntax - neural net method for
pattern recognition of evoked potentials”, Proc. Intemational Conference
Computing and Information, North Holland, May 1989

[Bur88} DJ. Burr, "Experiments on neural net recognition of spoken and writien
text”, [EEE Trans. Acoustics Speech Signal Proc., Vol. 36, No. 7, pp.
1162-8, July 1988

[Car86) G.A. Carpenter and S. Grossberg, "Neural dynamics of category learning
and recognition: attention, memory consolidation, and amnesia®, in: J.
Davis, R. Newburgh, and E. Wegman (eds.), Brain Structure, Learning,
and Memory, 1986

[Chi83) K.H. Chiappa, "Evoked potentials in clinical medicine", Raven Press, New
York, 1983

{Du72] R.O. Duda and P.E. Hart, "Use of Hough transformation to detect lines

and curves in pictures”, Communicalions of the ACM, 15, 1972

[Du73] R.O. Duda and P.E. Han Pattern Clmslﬁcauon and Scene Analysis,

Wiley, New York, 1973 - .



42

[Fr89] F. Franek and 1. Bruha, "McESE - McMaster Expert System Environ-
ment”, International Conference Computing and Information, North

Holland, May 1989

(Pu82} K.S. Fu, "Syntactic Pattem Recognition and Applications”, Prentice-Hall,
New Jersey, 1982

[Gro78] S. Grossberg, "Adaptive pattern classification and universal recording:
parallel development and coding of neural feature detectors”, 3rd European
Conference Cybernetics and Systems Research, Haistead Press, 1978

{Gro88] S. Grossberg, "Nonlincar neural networks: principles, mechanisms, and
architectures”, Neural Networks, Vol. 1, pp. 17-61, 1988

{Guy89]1. Guyon, "Neural Network Systems", Proc. of INME Symposium,
Lausanne, Sept. 1989

[Har75) J.A. Hartigan, Clustering Algorithms. John Wiley, New York, 1975

[He87] R. Hecht-Nielsen, "Kolmogorov's mapping neural network existence
tb;omm". IEEE Intemational Conference Neural Networks, San Diego,
1987

[He88) R. Hecht-Nielson, “Applications of counterpropagation networks”, Neural
Networks, 1, pp. 131-140, 1988

{Hin86) G.E. Hinton and T.J. Sejnowski, "Learning and releaming in Bolizmann
* machines”, in {Ru86a)

[Ho89] R. Ho, "A Neural Network System for Recognition of Evoked Potentials™,
M.Sc. Thesis, Dept. Computer Science and Systems, McMaster Univ.,
1989

[Hop82} 1.J. Hopfield, "Neural networks and physical systems with emergent
collective computational abilities”, Proc. National Academy of Sciences,
79, 2554-8, 1982

[Hop86] JJ. Hopfield and DW Tank, "Computing with Neural Circuits: a model”,
Science, Vol. 233, pp. 625-633, 1986

[Koh77] T. Kohonen, Associate memory - a system theoretical approach, Springer
Verlag, New York, 1977

[Koh84] T. Kohonen, Self-organization and associative memory, Springer Verlag,
Berlin, 1984

[Lip87] R.P. Lippman, "An inwoduction to computing with neural neis”, [EEE
ASSP magazine, pp. 4-22, April 1987

{Mad86)G.P. Madhavan, H. de Bruin, A.R.M. Upton, M.E. Jemigan, "Classifica-
tion of Brain-stem Auditory Evoked Potential by Symtactic Methods",
Electroencephalography and Clinical Neurophysiology, 65, 289-296, 1986

{Mat87] CJ. Matheus and W E. Hohensee, "Leaming in artificial neural sysiems®,
Techn. Report 87-1394, Dept. Computer Science, Univ. Illinois, Dec. 1987

[Min69] M. Minsky and S. Papert, The perceptrons, MIT Press, 1969

[Min88] M. Minsky and S. Papert, The perceptrons: expanded edition, MIT Press,
1988

[Om87] S.M. Omohundro, "Efficient algorithms with neural network behaviour”,
Techn. Report 87-1331, Dept. Computer Science, Univ. Illinois, Dec, 1987

[Rosé61] R%Rosenblau. Principles of neurodynamics, Spartan Books, Washington,
1961

{Ru86a] D.E. Rummelhart and J.L. McClelland, Parallel distributed processing:
exploration in the microstructure of cognition, MIT Press, 1986

{RuB6b] D.E. Rummelhart, G.E. Hinton, and RJ. Williams, "Leaming internal
representation by error propagation”, in {Ru86a}

[Sej86) T. Sejnowski and C.R. Rosenberg, "NETtalk: a parallel network that
learns to read aloud”, Johns Hopkins Univ., Techn, Report EECS-86/01,
1986

[Sim90) P.K. Simpson, Antificial Neural Systems. Pergamon Press, 1990

[Tou74] J.T. Tou and R.C. Gonzalez, Patiemn Recognition Principles, Addison-
Wesley, London, 1974

[WaB5) S. Watanabe, Pattem Recognition: Human and Mechanical, Wiley, New
York, 1985

[Wid60] B. Widrow and M.E. Hoff, "Adaptive switching circuits”, IRE WESCON
Convention Record, Part 4, pp. 96-104, 1960

[WieB7] A. Wicland, R. Leighton, "Geometric analysis of neural network capabili-
ties”, IEEE International Conference Neural Networks, San Diego, 1987

Nevronske mreie - pregled in uporaba v procesiranju signalov

V prispevku je podan pregled umetnih nevronskih mreZ kot bistvenih orodij
vzorcev. Avtorjeva pozornost gre predvsem
uporabljanih
S0
razliénih vrst nevronskih mreZ. Opisan je tudi sistem za
diagnostiko.
analizira
razpoznavanje vzorcev. Algoritem temelji na atributni regularni gramatiki
semantiéne funkcije fzradunajo seznam njegovih
vkljuduje .dvonivejski

razpoznavanje

znanih tipov
veénivojskega

primerjave
pri odlocéanju
evociranega

trenutno
perceptrona. Podane
nevroloSko
ki

za
potenciala, ga.
njegove
Druga faza
procesira omenjene

procesiranja signala

numeriéne

Znadéilke.

2a
znaéilnostim dobro
in implementacijr
razliéni vidiki in
podporo
sistem Jje signal

zZa sintakticno
in
znacilk.

ki
tudi

nevronskih mreZ
specifikacije,

Vhod v ta
algoritem

numericénih
perceptron,
namenili

Nekaj besed bomo

empiriénim pravilom za optimalno nastavitev parametrov pri perceptronu.



