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Abstract 

This paper surveys Artificial Neural Nets as essential tools 
for pattern recognition. The author concentrates on the characteris-
tics of welI-known types of currently exploited neural nets and 
implementation of a multilayer perceptron. Aspects, specification, 
and comparison of various types of neural nets will be presented, as 
well. 

Furthermore, a decision-supporting system for neurological 
diagnosis will be described. The actual input to our system is an 
evoked potential vvaveform. It is analy2ed by a syntax pattern 
recognition algorithm based on a regular attributed grammar. Its 
semantic functions retum a list of numerical features. The second 
step of the vvaveform processing includes a two-layer perceptron 
which processes the above list of numerical features. The rules of 
thumb for optimal adjustment of perceptron's parameters will be 
discussed, too. 

Perceptrons and other neural nets we discuss in this paper 
have strictly numerical character, therefore, we will focus on the 
numerical approach only. A pattem is represented by so-called 
feature vector 

X = [ X, . X N } 

of numbers, called features. The number of features is usually 
fixed, and therefore ali feature vectors form an N-dimensional space, 
called the feature space. 

Let a pattem recognition problem comprise R classes; the 
r-th class will be designated by the symbol ẑ  , r = 1 R . Then, 
a pattern recognition system with numerical representation of 
pattems (called numerical classifler) is a device with N inputs 
(one for each feature) and one output, which classifies an input 
feature vector x to one of the given classes, i.e. it yields one of 
the symbols z, . The relation between its input and output is 
called decision rule and can be written as the following function 

1. Pattern Recognition: A Survey z = d(x) 

Pattem recognition is one of the oldest and most widely 
investigated areas of artificial intelligence (Al). Although some 
researchers do not recognize pattem recognition as a part of Al, 
there are some others (including the author of the paper) who accept 
Minsky's definition of Al as 'the science of making machines do 
things that would require intelligence if done by men* and consider 
artificial intelligence as a 'club' of several theoretical and experi-
mental disciplines, including pattern recognition. Pattern recognition 
as a discipline has been thoroughly described, analyzed, and sur-
veyed in a great number of books and monographs. For examples 
the reader might look at e.g. [Du73], [Fu82], [Tou74], [Wa85], or 
[Bru80]. Nevertheless, in this section we present the necessary 
terminology. 

The principal function of a pattern recognition system is to 
make a decision concerning the class membership of the pattems 
received as input. Patterns are facts, observable statements, situa-
tions, events, or objects of any type that are to be recognized. The 
pattems are grouped into two or more sets, so-called classes, 
according to the given problem. Any such system (usually a 
Computer) cannot, of course, observe real-world objects, since it is 
only able to read in the data of its world, i.e. numbers and sym-
bols. Therefore, before the actual classification, we have to repres-
ent pattems by a suitable formal description. There are in fact two 
distinct possibilities for pattem representation; 

(a) numerical (stadstical) description: a pattern is represented by a 
sequence of numbers, called features; 

(b) symbolic description: a pattem is described either by a string of 
(terminal) symbols, or by more general structurcs such as 
relarional structures, semantic nets, frames, formulas ofvpredicate 
calculus, etc. 

The feature space is divided by the decision rule into R 
disjoint subsets V?, (called decision regions) where R^ contains 
the features x such that z, = d(x) . The boundaries between 
decision regions are called decision boundaries. Their adjustment 
is the principle problem of a classifier design. 

There are several ways of describing decision boundaries. 
Among them, a most general approach ušes so-called discriminant 
(or decision) functions. The R discriminant functions gj(x) have 
to be selected so that 

g.(x) > g,(x) . r = 1 R , r |t s 

for ali X e W, . Consequently, the decision boundary between 
adjacent regions R, and /?, is defined by the equauon 

g,(x)-g.(x) = 0 

The decision mle for a classifier with discriminant functions 
tiius has the form: for a given x compute ali g,(x) , r = 
1,...,R and classify x to the class z, for which 

g,(x) = max g,(x) 

see Fig. 1. 

(1) 

The most common type of a numerical classifier is the one 
with linear discriminant functions: 
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Fig. 1. Classifier with discriminant functions 

gr(x) = I w , ^ , r = 1 R 
0=0 

(2) 

where w„ , n = 0,1,...,N , r = 1,...,R , are so-called weights, and 
Xo = 1 . This laner condition allows Wo, to bc interpreted as a 
threshold of the discriminant function. The structure of a linear 
classifier is illustrated in Fig. 2. Decision. boundaries formed by a 
linear classifier are parts of hyperplanes (see Fig. 3). 

The problem of iinding decision boundaries is thus reduced 
to that of finding optimal values for ali the wcightš of the linear 
classifier. One possible and often used way of a classifier adjust-
ment is to utilize a learning (training) process. In such a čase, a 
teacher (a designer of the classifier) has to collect a rcasonable set 
(training set) of typical, representative examples (training patterns) 
including the correct class membership of each training pattem 
{desired class). During the leaming process, training pattems with 
their desired classes are presented (usually many times) by the 
teacher to the classifier which performs as a stiident, i.e. it modifies 
(utilizing the Information involved in the training set) its vveights 
according to an appropriate leaming algorithm. Among a large 
coUection of leaming algorithms for linear classifiers, we introduce 
the simplest one, called Rosenblatfs algorithm (also known as 
perceptron algorithm, fixed-increment, delta, or LMSE algorithm): 

Inidalize weight vectors 
"r = [ Wo, , w„ W N J . r = 1 R 
arbitrarily. 
For each training pattem x = [ Xo, x, ,..., Xf( ] (where we 
added Xo = 1 for a convcnience) with its desired class Z = 
2, do: 

2.1. Corapute g,(x) , r = 1,...,R according to (2). 
2.2. If the equation (1) is satisfied, i.e. the pattem x is 

correctly classified, do nothing. However, if 
6,(x) < gr(x) for some r (3) 
then change the vveights vectors as fol!ows ( c is a 
positive constant): 
w, += c X 
w, -= c X for ali r satisfying (3) 
(where A += B means: add B to A ; similarly -= 
relates to a decrement). 

If the vveights were modified for at least one training pattem, 
retum to the step 2, i.e. repeat the training for the entire 
training set. If not, save the weights and terminale the 
leaming process. 

/X1 

'XN O. 

Fig. 2. Linear classifier 
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Fig. 3. Decision boundaries of a linear classifier 

A sitnple model of a learning linear classifier was developed 
by Widrow and Hoff [Wid60]. Their adaline (adaptive linear 
neuron) is able to recognize R = 2 classes only (using a single 
discriminant function) where features can be only equal to +1 or -1 , 
but otherwise its stmcture and learning is equiva]ent to those 
presented above. Adaline has found many useful application in 
technical areas. 

2. Rosenblatfs Perceptron 

Development, investigation, and theory of neural nets is not 
a new discipline at ali. The first anempts to model the behaviour 
of biological nerve cells were realized in 1940's. Their results 
encouraged the foundation of cybemetics, a discipline (or a 'club' 
of disciplines), which attempted to combine concepts from biology, 
psychology, engineering, and tnathemadcs. Nevcrtheless, more 
serious research and experimentarion with neural nets started in the 
1960's with the publicarion of Rosenblatt's book [Ros61]. 

Rosenblatt developed a cognitive model of the brain, which 
was called the perceptron. Its stmcture is shown in Fig. 4. It is 
very sirailar to a linear classifier (Fig. 2); hovvever, the features are 
not input difectly to its weights, but instead are preprocessed by a 
so-called <I>-processor which is represented by M functions 
*''ni(*) = l̂ mC"!—•.XN) . m = l,...M . Thc <&-processor transforms the 
original features to the new ones x'„ , m = 1,...,M , which are 
then processed by a linear classifier. Hence, the discriminant 
functions of Rosenblatt's perceptron are 

g/x) = Wo, + w,, <I),(x) +...+ WM, <I>M(X) , r = 1 R (4) 

Consequently, the decision boundaries of the original feature space 
need not be just hyperplanes but may consist of more general shapes 
that are transfonned by the <I>-processor to linear ones. Another 

difference between the perceptron and a linear classifier is that both 
original and new features of the perceptron can only equal to O or 
1 . Rosenblatt's algorithm is used for the training. 

The functions of the (t>-processor can be of any shape, but the 
follovving cases are the most interesting ones: 
- The <I>-processor consists of quadratic funcdons; thus decision 

boundaries are quadratic surfaces. 
- The functions are boolean ones; the čase with randomly arranged 

connecrions (bonds) and boolean gates was extensively studied by 
Rosenblatt's group since they had expected that this would be the 
best model of the brain. 

- If the <I)-processor is an identity (or is eliminated) we get the 
'standard' linear classifier or the Widrow's adaline. 

The perceptron is a technical model for the foUovving 
hypothesis of a nerve system's performance. This hypothesis States 
that the nerve system of a living organism is more less chaotically 
(randomly) organized when it arises. Its organization takcs plače 
during the life of the organism as a consequence of its adaptadon 
to its environment and learning. The system creates suitable bonds 
(connecrions) within its <l>-processor and modifies its weights. As a 
metaphor one could say that a living organism is a general computer 
whose program is formed during its life. After the program has 
been created (the system has leamed), a negligible amount of 
computer hardware is utilized; this is the cost of the versatility of 
the computer. 

Perceptrons were applied to solve many problems in many 
technical disciplines. In some cases they were 100% successful, in 
others, hovvever, they did not yield satisfactory results. The fundam-
ental disadvantage of a perceptron consists in its low ability to 
generalize acquired, knowledge; that is the principle difference 
between perceptrons and living organisms. For instance, a percept­
ron trained to recognize squares and circles at a certain plače on its 
input rednal matrix, is not able to satisfactorily recognize the same 
squares and circles situated at another plače on the matrix. Precise 
theoretical investigation of perceptron's Umitations were presented 
by Minsky and Papert [Min69]. 'Analysis of the pereeptron's 
behaviour revealed that die above hypothesis is not quite correct. 
Some bonds already seem to be determined when the organism 
arises, i.e. in our metaphorical example, the dcsigner of a computer 
does not propose only its hardvvare, but also some parts of its 
software as well. In spite of these Umitations, the perceptron became 
one of the fundannenta] models of neural nets, has had many 
technical applications, and, at present, has successful successors. 
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Fig. 4. Herceptron. g, to g^ are linear discriminant functions 



30 

3. Neural Nets 

3.1. Paradigm of Connectionism 

Particularly, the latter definicion reflects not only the intemal 
structure of a neural net, but also the procedures (actions) that are 
carried out by the net. Now, following the paradigm of connection­
ism and the above definitions, we can observe the follovving aspects 
of any artificial neural net. 

Minsky and Papert's criticism of perceptrons strongIy dimi-
nished interest in their investigation, and consequently research in 
the field of perceptrons, their applications, and generalization was 
neglected for many years. Moreover, research activities in 1970's 
were focused on symbolic approaches and knowledge-intcnsive 
modelling. However, a few research centres continued to investigate 
the neural (or connectionist) approach and parallel processing 
systems, especially in computer vision; see e.g. Hough, Duda and 
Han fDu721, Grossberg [Gro78], Anderson [And72], Kohonen 
[Koh77], and others (more references are in [Lip87], [Mat87], 
[Om87]). 

After more than a decade of intcnsive research, however, the 
apparent limitadons of the knowledge-based and symbolic approach­
es to artificial intelligence have been realized, retuming the interest 
of Al researchers to neural net modelling. Consider just the follovv­
ing. The standard serial von Neumann computers are excellent in 
multiplicarion; they can muldply two large nmnbers in a fragment 
of one microsecond, but - even in late 80's - any computer with the 
best available knovvledge base and the best available algorithm needs 
hours to recognize objects in a picture. That is evidendy one of the 
reasons for the recent explosion of interest in parallel distributed 
processing and neural network models. Neural nets have exhibited 
promising results for a number of problems such as pattem recogni-
tion, speech processing, computer vision, associadon etc. (see e.g. 
Kohonen [Koh84], Sejnovvski and Rosenberg [Sej86], Hopfield arid 
Tank [Hop86], Rummelhart and McClelland [Ru86a], ffimon and 
Sejnovvski [Hin86], Carpenter and Grossbcrg [Car86], etc). A fair 
survey of types of neural nets and related problems can be found in 
[G1088], [Lip87], [Sim90]. 

The paradigm of connectionism can be specified as follows: 
Intelligence ii an emergent property of a large parallel net of 
simple uniform nodes. Indeed, although there are various types of 
neural nets, they ali aitempt to get fast and perfect behaviour by 
raassive intcrconnections among their elementary units (nodes), and 
by exploring promising cases (hypotheses) simultaneously, in 
parallel. An elementary unit (node) usually has a large number of 
inputs, either from the environment that is to be processed or from 
the outputs of other nodes. The input signals to a unit are usually 
weighted and their sum is processed by a nonlinearity whose output 
is either a binary number ( O or 1 ) or a real number in a certain 
interval. The vveights of nodes are usually adjustable by a leaming 
(training) algorithm. 

In the follovving, we will discuss ali relevant aspects of 
neural nets and their specifications. We will then survey a fcw 
famous types of neural nets, and focus on the muldlayer perceptron, 
one of the best models for the pattem recognidon purposes (particul-
arly, it is the best model for our task of doing waveform analysis). 

(1) Set of processing elements (neurons, units, nodes) 
A neural net consists of a large numbers of simple elements 

(neurons, units, nodes) of the same type. Each neuron n has its 
activity. (state, output) j:„ . It is either a real number, usually from 
the close interval < 0; 1> , or an integer from the set { 0,1,...,K ) , 
or a binary number O, 1, or +1, -1 . 

(2) Topology of neural nets 
Neurons are connected withtn a net by means of a large 

number of connections (synapses}. Each connecdon is accompanied 
by a certain strength or weight. Therefore, the topology of a neural 
network is characterized by connections, their vveights, and so-called 
interconnection schemes. We vvill bri6fly discuss each of these 
factors. 

(a) Connections (synapses). Neurons of a net are connected 
togeUier by oriented synapses. We can observe a neural net as a 
graph vvith oriented edges. There are several types of connections 
(graphs), among them the most typical ones are: 
• total connecdon: each node is connected vvith ali nodes; 
• uniform local connecdon: each neuron is connected v«th its 

neighbours only; 
• layered netvvorks: neurons are grouped into layers vvhich are 

ordered; neurons can be connected to neurons of the same layer, 
those of the next 'higher' layer. or any 'higher' layer, or 'lovver' 
layer etc; some of the possible layered types are on Fig. 5. 

(b) Weights (connection strengths). If the neuron m is 
connected to the neuron n , then the coiresponding connection 
(synapsis) has a certain strength or vveight w^ . A vveight is usua]ly 
characterised by a real number from a certain interval. AH vveights 
of a neural net form a matrix w = [iv^J which is called (long-
term) memory of the net. • 

, Weights can be eidier posiuve numbers (in such a čase the 
connection is called excitatory), or negative {inhibitory connecdon). 
If a vveight has zero value, then we have to distinguish either static 
zero (there exists no connection betvvecn the two nodes at aH) or 
dynamic zero (tiie initial zero value of die vveight has not been 
modified yet). 

If »v̂  w^ for ali connections, then the neural net is 
called symmetrical. If w^ * w^ = O for ali connections, then we 
have one-way connection netvvort:. Othervvise, the net is of a general 
asymmetrical typc. 

(c) Interconnection schemes. We distinguish feedforvvard and 
feedback schemes. If infortnation (signals) flovvs in one direction 
only, the net exhibits so-called feeeffbrward scheme. If Information 
flovvs in either direction and/or infortnation flovvs recursively the net 
has die feedback scheme. Most feedback systems exploit rccursive 
Information flow vvith the follovving stopping condltion: the Infor­
mation flovvs until the output of the netvvork ceases to change. 

3.2. Aspects of Neural Nets 

Hecht-Nielson [He88] defmes a neural netvvork as a parallel, 
distributed information processing structure consisung of processing 
elements interconnected together vvith connections; each processing 
element has a local memory, a single output, and carries out 
iocalized information processing operations. Ano±er definition can 
be found in [Sim90]: a neural net is a nonlinear directed graph vvith 
weighted edges that is able to store pattems by changing the edge 
vveights, and is able to recall pattems from incomplete and unknovvn 
data. 

(3) Environment 
A neural net is vvorking in a certain environment, processes 

environmental stimuli and retums its responses (output signals). The 
nodes vvhich are direcdy connected to the environment (i.e. they 
process the environmental inputs, stimuli) are called input nodes. 
The nodes vvhose outputs (activities) are retumed to the environment 
are called outpm nodes. Other nodes (i.e. those vvhose inputs and/or 
output are not directly connected to the environment) are called 
hidden ones; see Fig. 6. 

ConsequenUy, vve can characterize a neural net as a system 
widi the mapping b = S(a) vvhere a is a vector of ali environ­
mental inputs, b a vector of outputs (activities) of ali output nodes 
(i.e. the response of die neural system to the given environmental 
input). 
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Fig. 5. Layered networlcs 

(A) Time 

A neural network can work either in continuous or discrete 
tirne. The neural systentis we will present here are working in 
discrete tirne cnly. However, most of them have cotresponding 
continuous variant. 

(5) Rule of activity 

A detailed structurc of a node (neuron) is on Fig. 7. The 
neuron n has N inputs a,, Oj,..-. ON > which are either outpuis of 
some neurons or environmental inputs (stimuli). Ali inputs are 
vveighted by weights w^^, W2„,.— »Vn„ , summed, and led through a 
nonlinearity function (or threshold function) / . The common types 
of the threshold function are also shown on Fig, 7. A neuron 
usually has a threshold which symbolizes the level of the summed 
input signals above vvhich the neuron is 'activated'. To simplify the 
formula for the neuron's output we consider its threshold as a 
weight Wg„ and formally introduce the 0-th input Og identically equal 
to 1 . Hencc, the output (state, activity) of the neuron n is 

N 
) 

To incorporate discrete tirne we should write rather 

x „ ( t + l ) = / ( Z >v™ajt)) 
m 

which indicates that the input signals at tirne t form the output for 
tirne t+1 .• 

The neuron can process its own output x„ as one of its 
inputs, i.e. a feedback loop can be incorporated. Fig. 7 depicts this 
situation by means of the dotted connection with the weight vv^ . 

(6) Learning 

Learning is characteiized by any change of neural net's 
memory w (i.e. matrix of ali its weights). Methods of leaming can 
be classified along several different dimensions. However, the 
presence or absence of a teacher seems to be a most important 
attribute. We will thus distinguish two types of leaming for neural 
systems: supervised leaming (with a teacher) and unsupervised one 
(without a teacher). 

Supervised learning consists in that the teacher supplies so-
called training set of typical exemplars (rcpresentatives, prototypes, 
etalons) aj, aj BR with the desired output behaviour of the net. 
One of the simplest, but commonly used method of supervised 
learning is so-called error-correction learning (or Widrow-Hojf, or 
delta). A change of the weight »v^ between the neuron m and n is 
done by the formula 

A vv^ = TI *m (X„ - ;c„) 

where x^ is the input from the neuron m , ;c„ is the actual output of 
the neuron n , X„ is the desired output of the neuron n , provided 
by the teacher, and TI is a parameter, called leaming rate. The 
Rosenblatt's algonthm, discussed in Section 1, is a generalization of 
the above. 

The simplest method of unsupervised learning (vvithout a 
teacher) is Hebbian learning. A change of the weight w^„ between 
the neuron m and n is done by the formula 

When studying leaming algorithms we should also distinguish 
competitive and cooperative leaming. The competitive leaming ušes 

Neural Net 

input 
nodes 
(layer) 

hidden 
nodes 
(layers) 

output 
nodes 
(Iaye0 

Fig. 6. A neural net in an environment 
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Fig. 7. Rule of activity and threshold functions 

neighbour-inhibiting stratcgy, i.e. activities of ali neighbour neurons 
of a given neuron are lessened, and the activity of the given neuron 
is increased. One simple compedtive leaming method is called 
winner-take-all; we will discuss it in the Section 3.5. The cooperat-
ive leaming, on the other hand, ušes neighbour-exciting straiegy, i.e. 
activities of ali neighbours including the given neuron are reinforced. 

(7) Mapping mechanism 

A neural network can be observed as a cenain type of an 
associative memory. We distinguish two types of assoclativity: 
• autoassociative neural net: its memory w stores input pattems 

(environmental stimuli) Bj, 82, ..., a^ ; 
• heteroassociative neural net: its memory w stores input as well 

as output pattem pairs (a,, b,) (SK. b^) . 

(8) Rule for changing topology 

This optional attribute grants a neural net to modify its 
topology, which is usually done by adding new connections between 
existing nodes, or even by creating a new node and its new connect­
ions to existing nodes. Carpenter-Grossberg classifier (Section 3.6) 
is one example of the neural net which is able to modify its 
topoIogy. 

Its motion consists in that, for given extemal (environmental) input 
a, the State vector is initialized to 

3.3. Specification of neural nets 

We observe from the above aspects of neural nets that there 
exist two (or three) interacting dynamic regimes: activities (ourputs) 
of nodes are changed, the weights (connection strengths) are adjust-
ed, and, opdonally, the net's topology is modified. Since the weight 
adjustments and topology modifications are usually much slower 
processes than the activity changes, we can specify the above 
processes separately. 

(/) Active regime is specified by 

• the space X of state vectors x = [ *], ^ j , 
the state (activity, output) of the neuron n 

• the activity function 

., XN ] , where ;:„ is 
n=l,2 N ; 

x(t+l) = F(x(t), w(t)) 

which determines the state vector for the tirne t+1 if the state 
vector and the net's memory are given for the tirne t ; 
the energy function £(x) . 

x(0) = a 
x(0) = O (or a random vector). 

for input nodes, 
othenvise 

and the net is trying to find a stable state x(t') for which the energy 
function E reaches its minimum (so-called stability of the net). The 
over-all output (i.e. the response of the neural networlc to the given 
environmental input) is 

x(t) for output nodes. 

A typical active regime is called nearest-neighbour one: for 
a given unknown input pattem a , it finds the stored input pattem 
(exemplar, etalon) â  vvhich most closely matches a , see Section 3.4 
for details. 

(2) Training (learning) regime is specified by 

• the space W of the weight matrices w = [ w^„ ] ; 
• the u-aining function (learning algorithm) 

A w = G(w,a) 

which determines how the weight matrix w is changed according 
to the training example a ; 

• the error funcdon /(w) . 

Its motion consists in that, for a given training set of training 
examples a,, aj BR and w(0) = O (or random), it finds an 
optimal weight matrix w' for vvhich the error function reaches its 
minimum (so-called convergence of leaming). 

(3} Optional conpguration regime could be considered as a 
special type of the training regime. If the modificarion of the weight 
matrix is not efficient for some reasons then the configuration 
(topology) of the network could be optionally changed: eiiher ncw 
connections are added or ncw nodes are incorporated to the existing 
network. Specification of such a regime is not, however, so uniform 
as that of the other regimes. We have to specify first of aH the 
conditions under which the training mode has to be replaced by the 
configuration regime. Second, rules for adding new connections 
and/or nodes and their connections have to be specified as functions 
of existing topology and training examples. 
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Fig. 8. Hopfield net 

3.4. Hopfield net 

The Hopfield net [Hop82) (see Fig. 8) is a single-layer, 
symmetric neural networlc, with the feedback scheme, working in 
discrete tirne. It ušes the nearest neighbour active regime and 
Hebbian algorithm for (unsupervised) leaming. It is a simplc but 
very efficient network exhibiting the autoassociative mapping 
mechanism. Therefore, it is also called autocorrelator, or just 
autoassociative memory. Its input is binary only. 

Training (leaming) of the Hopfield net looks as follows. 
Given R training examples a, = [ a,, a,j^ ] , r=I R, which are 
to be stored in the memory of the network, the vveight from the 
node m to n is simply given by 

R 

= ^. ' ^ . n m,n 1,...,N , r = 1 R 

Hovvever, if we prefer sequenual formulas for (incremenial) learning 
we can simply derive Hebbian learning algorithm: 

for the r-th example on the input, r=l,...,R 

until the States (outputs) no longer change on successive iterations 
(i.e. stopping condition of the active regime is reached). The patlem 
x(t') specified by the node outputs after the stability is achievcd 
represents the exemplar a, which best matches the unknown pattem 
X (i.e. the nearest-neighbour active regime). 

The energy function £(x) used for the Hopfield net is the 
Lyapunov function 

£(x) = - I w^x^x„ 
[n,n 

It reflects a disharmony (chaos) of the system. Leaming can be 
portrayed as a decrease of the energy function, i.e. 'relaxation' of 
the system. Stability and capacity (i.e. number of exemplaTs stored 
in the network) is discussed e.g. in [Sim90]. [Lip87] states that R 
< 0.15 N . Here we just mention that locd minima of the energy 
function are either the right ones (i.e. correspond to stored exempl-
ars), or spurious ones, so-called phantoms. If a phantom (p is 
identified then it can be 'unleamed' by 

A w ^ = - /» (p„ (p„ 

where ft is a positive constant. 

In the active regime, an unknown (new) pattem a = [a, a^] 
is imposed onto the net's input at tirne O and the node states 
(outputs) are changed in the feedback scheme according to the 
folIowing formula (Fig. 8): 

x(0) = a 

a:„(t+l) = f ( £ w„ 
m=l 

Jtn,(t) ) 1 N 

3.5. Hamming net 

The Hamming net (Fig. 9) is a two-Iayer neural netvvork, 
with the feedback scheme, working in discrete time. Its input is 
binary only. Leaming regime of the Hamming net is very simplc, 
because it is in fact done by these assignment stateraents for the 
vveights of the first laycr: 

+/ Mi, 

pick-up 
maximum 
(winner-
take-a l l ) 

calculates 
Hamming 
distance 

Fig. 9. Hamming net 
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r = 1.....R 1,...,N 

where a, = [ o^, 0,^^ ] , r=l R, are training exainples. The 
sccond layer haspredefined vveights, see Fig. 9. 

In the active regime, an unknovvn pattem a = [ a, ,..., a^ ] 
is imposed onto the net's input layer and is propagated through the 
first layer. The outputs of the first-layer nodes are (see Fig. 9): 

x,=f(l^W:r,a„) . r = l R 
D=0 

where / is the linear-threshold nonlinearity. The first layer in fact 
calculates Hamming distance for each training exainple stored in the 
network, which is defined as a number of (binary) features of the 
input pattem a which do not tnatch the corresponding components 
(features) of the stored exaniple a, . 

The second layer of the Hamniing net depicis the winner-
lake-all technique which picks up the maximum value among its 
inputs Xi ,..., Xn . This is done in a feedback regime according to 
the following iterative formulas: 

r̂CO) = ^ 1,...,R 

y , ( t + l ) = / ( > , ( t ) - e l y . ( t ) ) 

where O < e < 1/R is a priori given constant. The above formula 
is executed until the outputs >, no longer change. At that tirne oiily 
one output is positive and the others are zero. This positive output 
indicates the Vinner*; it is the training exaniple which is the closest 
to the input pattem a , i.e. whose Hamming distance to the input 
pattem is minimum. If the Hamming net is used for classification 
then the input pattem will be classified to the class of the vvinner. 
Other attributes are discussed e.g. in [Lip87]. 

As we can see on Fig. 10, the network consists of both 
'bottom-up' cormections with vveights w„ and 'top-down' connect-
ions with weights w\„ . The net of 'bottom-up' connections is 
equivalent to the Hamming net (section 3.5), the 'top-down' connec­
tions propagate so-called matching exemplar to the input nodes 
where it is compared with the input pattem. In the following we 
will give a flow-chart of the entire procedure. Let there be N input 
nodes and R output nodes. Assume the ali weights have been 
adjusted according to previous leaming sweeps. Let a new input 
pattem be a = [ Oj fl^ 1 • "̂ ^^^ "* pnx;essing by the Carpenter-
Grossberg classifier is outlined as follows: 

1. Present an unknovvn input pattem a = [ a, a^ ] to the 
input nodes. Let the set of allovvable winners comprise ali output 
nodes. 

2. Send signals through w„ to these output nodes y, which are 
members of the set of allovvable winners. 

3. Find y, vvith the maximum value among y, , r=l,...,R, using 
the winner-take-all strategy (equivalent to the Hamming net). 

4. The vvinning output node y, sends the top-dovvTi signal along 
the vveights w'„ back to the input nodes, fomiing the matching 
exemplar a' = [ w',i a| ,..., vv',;̂  â , ] . 

5. The input pattem is compared vvith the matching exemplar by 
so-called vigilance 

vvhere the norm lal of the pattem a equals to the sum of its compo­
nents (features) a„ . 

5.1. If p 2 p„„ , vvhere p„^ is a vigilance threshold (a number 
betvveen O and 1 ), then the vvinning node y, represents the proper 
class of the given input pattem a , and a is merged into this class, 
i.e. ali w„ and w'„ of the vvinning matching exemplar are modified: 

W„(t+1) = >v'„(t) a, 

w (t+1) - r̂'?̂ '̂  S 
"^"•^^^ 0.5 + la'l 

3.6. Carpenter-Grossberg classirier 

The Carpenter-Grossberg classifier [Car86] (Fig. 10) is a 
two-layer neural netvvork, vvith the feedback regime, vvorking in a 
discrcte time. It ušes the nearest neighbour active regime and 
competitive unsupervised leaming. Its input is binary only. This net 
achieves a clustering algorithm vvhich is similar to the traditional 
scquential leader clustering algorithms (see e.g. [Har75]). 

and the leaming svveep for the given input pattem is terminated. 

5.2. Hovvever, if p < p„„ then the vvinning node y, does not 
represent the proper class of the input pattem a , and y, is removed 
from the set of allovvable vvinners. If there are stili some allovvable 
vvinners, go to Step 2. Othenvise the pattem a forms a nevv class, 
i.e. a nevv node ^R^, is created and a is encoded to it. 

2. layer 

1. Iayer 

/ 
w m 

Fig. 10. Carpenter-Grossberg classifier 
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With no noise, the vigilance threshold can be set such that 
two pattems which are most similar are considered different. In 
noisc, however, this level may be too high and the number of new 
stored exemplan can rapidly grow. One possibility is changing 
vigilance threshold during training, see e.g. (Car86]. 

3.7.' Kohonen's self-organizing feature maps 

The Kohonen's self-organizing feature map [Koh84] is a one-
layer neural network with the feedfonvard scheme, working in 
discrete tirne. It exploits the nearest-neighbour active regime and 
cooperative leaming. Its behaviour is similar to K-means clustering 
algorithm. It incorporates a kind of space topology (Fig. 11), since 
ali its nodes are organized into a two-dimensional ajTay. Particularly, 
neighbourhood of a node is taking into consideration. 

Training (leaming) of Kohonen's feature map looks as 
foUows. Let there be R nodes in the two-dimensional topology, and 
each pattem have N features. For a training example a = [a,,...,«^] 
the following distances betvveen a and the weighi vectors w, for 
each node are computed 

d, = I a - w. I* 
N 

I K - w„f 1 R 

Then the output s with minimum distance is selected among 
r=l,...,R . Afterwards, the weights of this winner and its neighbours 
are updated: 

^^(t+l) = w„(t) + li(t) (a„ - w„(t)) for r e N.(t) 

where iV,(t) is the neighbourhood of the node s at time t , T|(t) 
is the leaming rate at time t . The other vveights are not modified. 
The important fact is that both the size of any neighbourhood and 
the leaming rate decrease in time. E.g. if the node s is a winner 
for the time t then the weights of ali 25 nodes in its neighbour­
hood (including the winner itself) are modified at the time t , only 
9 nodes at the time t+1 , and just the winner itself at time t+2 , 
see Fig. 11. 

After enough training pattems have been presented, the 
weights will specify cluster or pattem (vector) centers that sample 
the feature space such that the density function of the pattem centers 

' tends to approximate the probability density function of the training 
pattems. The weights vviU be organized such that topologically close 
nodes are sensitive to the input pattems that are physicaUy similar. 

. The algorithm performs relatively well in noise. Other aspects as 
well as areas of applications can be found in [Sim90]. 

3.8. Boltzmann machine 

The Boltzmann machine [Hin86] is a two-layer netvvork wiih 
feedforvvard scheme and binary inputs, working in discrete time. It 
exploits the nearest-neighbour active regime and a combination of 
Hebbian leaming and stochastic leaming. 

The entire principle of the Boltzmann machine is described 
in detail e.g. in [Sim90]. Here we highlight the idea of stochastic 
learning onIy. A leaming sweep looks as follovvs: 

1. Add a new training example to die network by applying the 
Hebbian leaming formula. 

2. Make a random weight change. 
3. Determine the change of energy function A£ after the weight 

was randomly changed." 
4a. If A£ < O then keep the change. 

4b. If A£ > O select a random number p and calculate 
p _ g- A£/r(0 

where T(t) is the temperature of the Boltzmann process. If 
p < P then accept the vveight change; otherwise retum to the 
original value. 

We can obscrve that larger T(t) causes the random vveight 
change would be accepted more likely. The temperature T(t) 
decreases in time according to 

T(t) = To / (1 -f log t) 

The authors of this method have proven that the random character 
of the weight change allows to escape local energy minima and 
reach thus the absolute minimum of the energy function. 

3.9. MuUilayer perceptron 

As we have ah-eady mentioned, a linear classifier, i.e. 
Rosenblatt*s perceptron without its O-processor (or: a single-layer 
perceptron, in the neural net tenninology) can only create linear 
decision boundaries (Fig. 12a). A two-tayer perceptron can fomi 
convex decision boundaries (see Fig. 12b) while a three-layer one 
can generate boundaries of any shape (Fig. 12c) [Lip87]. This means 
that no more than three layers are required because a three-layer 
perceptron can generate arbitrarily complex decision regions. 

The stmcture of a three-layer perceptron is shown in Fig. 
12c; it has two hiddcn layers and one output layer. A two-layer 

/ / / / / / 
neighbou rs of neder 
at time t: 

N^ (t) 

Nr (t+l) 

Nr (t+2) 

Fig. 11. Kohonen's self-organizing feature map 
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perceptron has only one hidden layer and, of couisei one output 
layer (Fig. 12b). Thanks to the hidden layer(s), the multilayer 
perceptrons overcome niany limitations found in a single-layer 
perceptron. Howevcr, they were not generally used in the past 
because effcctive leaming dgorithms that would adjust their weights 
in an optimal way were not available. Threc years ago, the so-
called back propagation leaming algorithnn for niuitilayer perceptrons 
was discovered [Ru86b]. Although it cannot be proven that this 
leaming algorithtn generally converges (as with the single-layer 
perceptron), it has been proven to be useful and efftcient for many 
pattem recognition problems. 

Since the structure and the back propagation leaming algo­
rithtn are almost identical for two- and three-layer perceptron, we 
will only describe the structure and behaviour of the latter. An input 
pattem of a inultilayer perceptron is represemed by a N-dimensional 
fcature vcctor 

•• [ X , X N ] 

where Xn 
to 1 . 

n = 1,...,N are features, i.e. numbers in the range O 

The feature vector is input to each of M nodes of the first 
hidden layer so that the linear weighted sum of ali features is 
computcd and the sigmoid nonlinearity 

converts it to an output x), , tn 

and 1 . Hence (see Fig. 12c) 

1,...,M , that h thus between O 

N 

ll>0 
w, ' " X n ) m = 1 M (5) 

where f is thc above nonlinearity, w ^ is the weight connect-
ing the n-th input to the m-th node of the first hidden layer, Xo = 
1 aIlows the weight w ^ to be considered as a threshold of 
the m-th hidden node. 

In the same way, the second hidden laycr has H nodes and 
the output x'|| 

X h = f ( 

of the h-th node of the second hidden layer is 

) , h = l,...M (6) 
M 

I 
m=0 where w ^ is the weight connecting the m-th node of the first 

hidden layer to the h-th node of the second hidden layer, xj) = I 
processes the weights v ^ as thresholds. 

Similarly, the output layer has R nodes and the outputs x'{, 
of the second hidden layer are linearly vveighted and the sum is 
converted by the sigmoid nonlinearity. The output signal of the r-th 
output node is thus 

y, = f( I W£=̂ 'l,) 1 R (7) 

where WĴ  is the weight connecting the h-th node of the second 
hidden layer to the r-th output node, X"Q = 1 processes the 
weights WJ>. as thresholds. 

The multilayer perceptron, when used for classification, can 
classify input pattems to R classcs z, , r = 1 R . The 
discriminant functions are given by formulas (7) and the decision 
rule of the classifier is equivalent to (1): the pattem (more precisely, 
its feature vector) x is classified to the class z, iff the output 
y, is the maximum among y, , r = 1 R . 

Fig. 12. Structure and shape of decision regions for (a) single-layer perceptron, (b) two-layer 
perceptron, (c) three-layer perceptron. The ant)ws depict weights, a circle represents the sum 
including nonlinearity 
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Since we wam the multilayer perceptron to have the optimal 
classification perfonnance we have to adjust its vveights according 
to a criierion. As in čase of a single-layer perceptron, one possible 
and commonly used way of such an optimal adjustmcnt is to usc a 
leaming (training) process. As we have already stated one of the 
popular leaming algoridim for multilayer perceptrons is the back 
propagation training algorithm. It propagates an output error signal 
back through the network and modifies its weights accordingly. 

The error signal is dcfined as 

eps (8) 

vvhcre Yj is the desired output of the r-lh output node. 

For the purposes of classification, if a training pattem x 
belongs to the desired class Z = z, then 

Y = O for r ,t s 

If we have modified the weights for at least one training 
pattem, increment Number_of_Ieaming_sweeps by 1 and 
retum to the step 3, i.e. repeat the training for the entire 
training set. 
If not, save ali weights, print Number_of_leaming_sweeps 
and terminate the leaming process. 

Convergence is sometimes faster and the danger of oscillation 
is diminished if a so-called momentum term a is added to the 
formulas for changing weights [Lip87]. 

The two-layer perceptron has just one hidden layer with 
vveights w ^ and the output layer with weights w ^ . Oihervvise, 
the structure is identical to the threc-layer perceptron, and the 
formulas (11) to (16) have to be slightly changed. 

(9) 4. Application: waveform processing 

Hence, the error signal for the training pattem 
class Z = z, is 

X of the (desired) 4.1. Introduction 

eps I y / + ( 1 - y . ) ' (10) 

Training pattems are presented several times to the training 
algorithm until the error signal for aH training pattems is less than 
an a priori given maximum epsmax . This maximum must be 
below 0.5 , since it is the error signal value of the worst čase: if 
e.g. a training pattem belongs to Z = z, and if 

y, = 0.5 , y2 = 0.5 , y, = O for r ?t 1. 2 

then 

eps = 0.5^ + (1 - 0.5)* = 0.5 

The flow chart of the back propagation algorithm is given 
belovv (written in the same fashion as Rosenblatt's leaming algo­
rithm): 
1. Inidalize ali vveights to random values in the range -Winit 

to +Winit vvhere VVinit is a parameter of the leaming 
algorithm that shrinks or expands the range of the initial 
values of vveights. 
Set Number_of_leaming_sweeps 

[X, 
to o . 
.... xn ] vvith its desired For each training pattem x 

class Z = z, do: 
3.1. Corapute y^ , i = 1 R for the given pattem accord­

ing to (5) to (7). 
3.2. Compute the error signal eps according to (8) and (9). 
3.3. If eps > epsmax (a given maximum) then modify thc 

vveights as foUovvs: compute 
5̂ " = y, (1 -yr)(Y,-yr) , r = 1 R (11) 
and changc the vveights of the output layer: 
vv̂S += n 5™ x; , h = 0,1 H , r = 1 R (12) 
vvhere r\ is the learning rate (gain term), another 
parameter of the leaming algorithm. 
Similarly, change the vveights of the second hidden layer: 
5,™ = X'K ( 1-X'H ) Z hf K 

f=i 

wS+= TI 5;i» x;„ . m = 0,l,...,M 
and those of the first hidden layer: 

5^" = x'^ ( l-x; ) I 6f' vv^ 

w^+=Tl6^'>x„ , n = 0,l,...,N , 

, h = 1,. 

m = 1,., 

..,H 

.,M 

(13) 

(14) 

(15) 

(16) 

Multilayer perceptrons have found many useful and efficient 
applications in pancm recognition. Our research group is using a 
multilayer perceptron as one coraponent of a larger decision-support-
ing system for neurological diagnoses. The actual input to our 
system is an evoked potential vvaveform. It is processed by these 
subsystems [Bru88], [Bru89] (see Fig. 13 for illustration): 
(1) Filter preprocessing. The evoked potendal vvaveform is 
preprocessed by a digital filter. This eliminates noise and allovvs the 
use of simple recognidon grammars in the syntax analysis stage. 

(2) Extracting a string of svmbols. The potential vvaveform is 
scgmented and each segment is described by one (terminal) symbol. 
Thus, the entire input vvaveform is formally described by a string of 
(terminal) symbols [Mad86]. 
(3) Svntax analvsis. An attributed regular grammar vvith seman­
tic functions [Fu82] is used for the syntacoc analysis of an input 
vaveform reprcsented by a string of symbols. It recognizes the start 
of the relevant vvaveform as vvell as each peak of the vvaveform. 
It retums through its semantic functions the latency of the beginning 
of the relevant vvaveform, number pf hiUs, and the peak latency of 
each hill found (see [Bru88] for details). 

(4) Numerical classification. The features extracted by the 
attributed grammar are further processed by a two-layer perceptron 
that classifies the given input vvaveforms (using the above features) 
into tvvo classes: normal and abnormal. Note the semantic funct­
ions of our attributed grammar form an interface betvveen strictly 
syiitax subsystem (a grammar) and strictly nuinerical processing (a 
multilayer perceptron). 
(5) The knovvledee-based subsvstem. We analyze methods of 
incorporating a knowledge-based subsystem into our decision-
supporung system in order to obtain more reliable results. The need 
for such a knovvledge-intensive device is discussed in the conclusion 
of this paper. 

After analyzing a large number of experiments that have been 
conducted to obtain the performance characteristics of a multilayer 
perceptron, we have found out that the three-layer perceptron is 
quite unstablc for this recognition task. Therefore, we have focused 
on a two-layer perceptron. Similar conclusion can be found in e.g. 
[Wie87]. 

The training method used in our experiments is the back 
propagation ti^aining algorithm. By analyzing the above algorithm 
one can easily discover that the follovving five parameters strongly 
affect both leaming and classification performance of the multilaycr 
perceptron: 
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C) x"u' f'd'iVuvru' d't'u'f'dVd'f'u'iV('d'i'u'iVd't'u' 

d) 11 14.5 27 39 46.S 54 70.S 89 

Rg. 13. Wavefonn processing: (a) evoked potential wavefonn, (b) filteied data, (c) siring 
of symboIs (u upwaKl slope, d downward slope, / flat line, x irrelevant data). (d) list of 
features 

- the range of initial weights VVinit, 
- the leaming rate (gain term) eta , 
- the momentum term alpha , 
- the niaxiinum allowed value of the error signal 
- the number of hidden nodes M . 

eps 

However, there is no formal niethod for obtaining optimal values of 
the above parameters. Thercfore, we have canied out a large number 
of experiments, analyzed them, and obtained a few heuristics 
(thumb-rules) for opdmal adjustments of the above parameters. The 
following sccrions discuss both experiments and the heuristics 
obtained. 

number ol 
•»•n>lng sweep9 

600 

400 

300 

200 

100 

Wlnit - 0.2 

Wlnlt - 2 

Wlnlt - 0.S 

VVInll - 3 

Wlnll - 1 

Fig. 14. Number of leaming svveeps versus the leaming rate (gain 
term) eta and the initial weight range Winit ( M = 9 , eps = 
0.30 . alpha = O ) 

4.2. Optimal adjustment of parameters: experiments 

A two-layer perceptron emulator used in the experiinents has 
been implemented in C because of its portability and flexibility. The 
emulator has been tested under BSD 4.3, SunOS, and DOS using 
MS-DOS Microsoft C and Turbo C 

We have used a training set of 50 evolced poiendals (training 
pattems) of normals (class z, ) and 50 potendals of abnormals 
(class Z2 ) for training the two-layer petcepmDn. Addidonal set of 
40 pattems with unlaiown classes has been used for tesdng. The 
number of features (inputs) has always been N = 4 , and the 
number of classes R = 2 . We have chosen the maximum error 
signal eps = 0.3 for most experiments since it corresponds to the 
reasonable difference of 0.4 between the actual output (y,) and the 
desired one (Y,) vvhich has been accepted in many expeiiments (sce 
e.g. [Bur88], [Bru89]); if a training pattem belongs to the class say 
z, then we allow 

y, = 0.6 , y2 = 0.4 

thus approxiraately 

eps = (1 - 0.6)* + 0.4* = 0.3 

We have executed a large number of experiments for various 
sets of parameters. The efficiency of the leaming algorithm has been 
symbolized by the following factors [BurSS]: 
1. the number of leaming su^eeps, 
2. the accuracy in classifying unknown (tesdng) pattems, measured 

as percentage of correct classificarions. 

Following the Kolmogorov's mapping theorem and its 
interpretadon to the neural nets [He87], we have set the number of 
hidden nodes to 

M = 2 * N + 1 = 9 

Afterwards, we have canied out four sets of expcriments, running 
the back propagadon algorithm for the given set of 100 training 
pattems (50 normals and 50 abnonnals). To achieve comparable 
stadsdcal results, we have made 200 runs for each conflguradon. 
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The first set of our experiments has been run to find optimal 
values of the leaming rate eta . Therefore, we have run the back 
propagadon algorithm for the two-layer perceptron with eps = 0.30, 
M = 9 , alpha = O , for various leaming rates (gain terms) eta 
(from 0.5 to 4.0 ) and various initial weight range Winit (from 
0.2 to 3.0 ). The results are in Fig. 14. We observe that the 
leaming algorithm has required larger number of leaming svveeps 
for smaller values of eta , sincc less Information is leamed during 
each sweep. The perforaiance has not changed substantially for 
leaming rate eta betwecn 2.5 and 4.0 . It is also seen that the 
larger the range of inidal weights, the faster the training is complet-
ed. 

Therefore, we have chosen Winit = 3.0 and eta = 2.5, 3.0, 
4.0 as protnising values for the second set of experiments that were 
to reveal an optimal number of hidden nodes M . Again, eps = 
0.30 , alpha = O , but the number of hidden nodes has been changed 
ftom 4 to 25 . The results are in Fig. 15a and 15b. The figures 
indicate that the number M = 9 chosen according to Kolmogorov*s 
mapping theorem yields the optimal performance for the number of 
leaming sweeps only. On the other hand, the accuracy of classify-
ing unknown pattems (evoked potendal waveforms) is satisfactory 
for M > 9 . Therefore, we conclude that the number obtained by 
Kolmogorov's theorem should be considered as the lower bound of 
the recommended number of hidden nodes. 

The objective of the third set of experiments has been to 
confirm the previous two tests that Winit equal 3.0 was an 
opumal parameter. We have set eps = 0.30 , eta = 4.0 , alpha = 
O , M has been changed from 7 to 16 . The results are present-
ed in Fig. 16a and 16b; they confirm the predicted optimal value for 
Winit as weU as the above thumb-rule for M . 

The niomenrum term alpha may speed up the convergence 
of the back propagation leaming algorithm. It is expected to smooth 
the weight changes during the leaming. Therefore, we have run the 
last set of experiments in order to observe die effect of the moment-
um term to the perceptron's performance. The results are in Fig. 
17a and 17b. Fig. 17a indicates that as the value of the momentum 
factor increases, the optimal value for the leaming rate (gain term) 

decreases. Hovvever, the accuracy of classification decreases with 
larger momentum factor (Fig. 17b). 

We have run the same set of experiments for a three-laycr 
perceptron for the same leaming rates, initial weights range, and 
maximum error signal. As for the number M of nodes in the fu-st 
hidden layer, we have again incorporated Kolmogorov's theorem, 
and have followed the advice [6] that there should be more than 
three times as many nodes in the second hidden layer as in the first 
one, i.e. H >= 3 • M . However, we have discovered that the 
back propagadon leaming algorithm does not converge over a great 
number of runs, and the weights oscillate, especially in the second 
hidden layer. 

4.3. Oplitnal Adjustment of Parameters: Heuristics 

This section discusses the heuristics (thumb-rules) for optimal 
adjustment of multilayer perceptron's parameters we have observed 
after analyzing the results of our experiments. 

• The initial weight range Winit should be a larger value, greater 
than 1.0 . Our recommendation is Winit = 3.0 . 

• The leaming rate (gain term) eta should be a larger value, 
greater than 1.0 . Intuitively, a larger momentum term together 
with a larger leaming rate would speed up tiie leaming and avoid 
the oscillation. However, our experiments have rcvealed that the 
opumal leaming rate for minimum number of leaming sweeps 
becomes smaller for larger momentum factor. Our recommenda­
tion is to choose eta between 1.0 and 4.0 and alpha = O 
as a staning point. If the leaming does not converge, one should 
increase alpha and decrease eta . 

• The number obtained by Kolmogorov's theorem should be 
considered as the lower bound of the recommended number of 
hidden nodes. However, (Guy89] introduces another thumb-rule 
for an opdmal number of hidden nodes: 

M = ( N -f R ) / 2 
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Fig. 15a. Number of leaming sweeps veisus number of hidden 
nodes M ( eta = 2.5, 3.0, 4.0 , Winit = 3 , eps = 0.30 , alpha = 
0 ) 

Fig. 15b. Percent correct recognitions versus number of hidden 
nodes M ( eta = 2.5, 3.0, 4.0 , Winit = 3 , eps = 0.30 , alpha -
0 ) 
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whcre N is the number of features (input nodes) of the peicept-
ron, R is the number of output nodes (i.e. classes in a classLfi-
cation problem). Our recommendation is to try Kolmogorov's 
mapping theorem for smallcr number (units) of features, and the 
above formula for larger number (tens) of features'. 

Let us summarize the entire procedure of finding optimal 
values of the parameiers: 
(1) • The user of a multilayer perceptron should firstly select a 
relatively small subset of representative training examples (pattems). 
The error signal should be set to a larger value (less than 0.5 ), SBy 
eps = 0.49 . The first heuristic should be applied for the ininal 
vveight range. 
(2) Following the second and the third heuristics, the user should 
run a few experiments (using the above small representative set of 
training pattems) in ordcr to find the optimal values of eta , alpha 
and M . 
(3) As our expcriments have revealed, the above optimal values 
can be afterwards used for the entire training set. wiih the error 
signal set to e.g. eps = 0.30 , which will guarantee more precise 
rcsults of leaming. 

5. Conclusion: the need for a knovvledge-based 
subsystem 

This paper surveys the fundamental tools for pattem recogni-
tion: perceptrons and neural nets. We have exhibited that neural nets 
are povverful tools for image, speech, and waveform processing, as 
well as general recognition systems. The greatest potential of neural 
nets is in the high-speed processing that can be achieved by means 
of parallel VLSI implementations. Massively parallel hardvvare is 
evidently one of the reasons why so many researchers are investigat-
ing this field so broadly at present. Current research is aimed at, 
ana]yzing ncw types of neural net stmctures and their leaming (or 
self-leaming) algorithms. Thus after twenty years the enthusiasm of 
artificial intelligence research and development has retumed to 
connectionism. Nevertheless, we should bear in mind that the 
marvellous powers of the brain emerge not firom any single, uni-
formly stmctured connectionist nervvork but from highly evolved 
arrangements of smaller, specialized netvvorks which are intercon-
nected in very specific ways [Min88]. 

knowledge-based subsystem to our decision-supporting system, since 
our present combined syntax and neural net system would not be 
able to handle such situations in an elegant way. The knowledge-
based subsystem will be able: 
(a) to handle 'non-well-behaved' data as mentioned above, 
(b) to combine different modalities of evoked potential waveforms 

(to improve its behaviour the system will have to process and 
analyze three or more separate types of evoked potential 
vvaveforms), 

(c) to incorporate other clinical infonnation (for a complete diag-
nostic system, mles for incorp)orating other patient related factors 
such as age, sex, etc. will have to be developed). 

There are three possible ways of incorporating a knovvledge-
based subsystem into our decision-supporting system; 

(i) A knovvledge-based system as a 'high-level' processing 
subsystem can be placed at the end of the entire evoked potential 
processing. In this traditional čase, the knowledge-based subsystem 
does not influence the 'lovv-level' processing at ali. Hovvever, this 
configuratipn fails if the feature list represents a 'non-well-behaved' 
situation (pattem) vvhich would be processed by the neural net in an 
improper fashion and should, therefore, be recognized in advance by 
the knovvledge-based subsystem. 

(ii) A knovvledge-based subsystem can be placed before the 
neural net, recognize 'non-wcll-behaved' cases (pattems) and process 
them separately; the 'vvell-behaved' cases could be directly processed 
by the neural net. We are going to investigate this promising 
configuration thoroughly but its success vvill depend on the knovv-
ledge acquisition, i.e. co-operation vvith human experts in the field 
of neurology. As for the knovvledge representation we are going 
to use a mle-based model vvith uncertainties, the expert system 
environment called McESE [Fr89]. 

(iii) A knovvledge-based subsystem can co-operate vvith the neural 
net šo that it can call the multilayer perceptron and continue the 
processing according to its results. This feed-back loop configura­
tion seems to be die most promising model. Hovvever, we caimot 
directly use the conventional representation of knovvledge as a set 
of production mles, vvhich is the čase in the model (ii), since the 
mle-based system has to modify its inference process according to 
the results of the neural net. 
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Nevronske mreže - pregled in uporaba v procesiranju signalov 

V prispevku je podan pregled umetnih nevronskih mrež kot bistvenih orodij za 
razpoznavanje vzorcev. Avtorjeva pozornost gre predvsem značilnostim dobro 
znanih tipov trenutno uporabljanih nevronskih mrež in implementaciji 
večnivojskega perceptrona. Podane so specifikacije, različni vidiki in 
primerjave različnih vrst nevronskih mrež. Opisan je tudi sistem za podporo 
pri odločanju za nevrološko diagnostiko. Vhod v ta sistem je signal 
evociranega potenciala, ki ga. analizira algoritem za sintaktično 
razpoznavanje vzorcev. Algoritem temelji na atributni regularni gramatiki in 
njegove semantične funkcije izračunajo seznam njegovih numeričnih značilk. 
Druga faza procesiranja signala vključuje dvonivojski perceptron, ki 
procesira omenjene numerične značilke. Nekaj besed bomo namenili tudi 
empiričnim pravilom za optimalno nastavitev parametrov pri perceptronu. 


