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In this paper we propose a clique-based high-resolution overlapping community detection algorithm. The
hub percolation method is able to find a large number of highly overlapping communities. Using different
hub-selection strategies and parametrization we are able to fine tune the resolution of the algorithm. We
also propose a weighted hub-selection strategy, allowing the algorithm to handle weighted networks in a
natural way, without additional filtering. We will evaluate our method on various benchmarks, and we will
also demonstrate the usefulness of our algorithm on a real-life economic case-study.

Povzetek: Predstavljena je nova hevristika za reSevanje evklidskega BDMST problema. Primerjalni testi

pokaZejo prednosti pred obstojeCimi metodami.

1 Introduction

One of the landmarks in graph theory was the introduc-
tion of small-world networks by Watts and Strogatz [31].
They have observed, that in real-life networks, the typical
distance between two randomly chosen nodes grows pro-
portionally to the logarithm of the number of nodes in the
network. Since then, several other properties of real-life
networks was discovered. The degree distribution of these
networks follows a power-law [2], and the edge distribution
is not only globally, but also locally inhomogeneous. This
latter feature is called community structure [11]. The goal
of community detection is the discovery of this structure.
While the phenomenon of communities is well observed,
an exact definition is difficult to find.

In recent years, a large number of community detection
algorithms have been proposed. Most of these consider
communities to be disjoint vertex sets, and adopt the fol-
lowing intuition: They are looking for a partitioning of the
nodes, which maximizes the number of edges between the
nodes inside the sets, and minimizes them between the sets.
It is also a goal to find meaningful communities, i.e. they
discard trivial solutions of the problem (like a single com-
munity containing all of the vertices). Newman proposed
modularity [27] as an efficient way to measure the good-
ness of disjoint communities. A comprehensive review of
community detection can be found in [10].

The traditional definition of community allows disjoint
vertex sets only. Based on the observation that in real-life

networks, nodes can belong to multiple communities, Palla
et al. introduced the concept of overlapping community de-
tection and proposed the clique percolation method [29] as
a solution. The idea of finding maximal cliques and joining
them according to some criteria is the basis of several over-
lapping community detection algorithms [17, 21]. Other
approaches are based on block models [12, 7], edge cluster-
ing [9, 1], label propagation [13] or optimization according
to some fitness function [25, 20].

Measuring the goodness of overlapping community de-
tection algorithms is complicated, since there is no agree-
ment on the definition of an overlapping community. The
specifications of different applications depend mainly on
the ratio of overlaps between communities: several ap-
proaches require only a loose relaxation of the original
“non-overlapping” definition in such way that occurence
of nodes belonging to multiple communities is strongly
restricted [13]; other concepts prefer highly overlapping
community structure [20]. The resolution of the methods
are closely tied to the ratio of overlaps. A highly overlap-
ping community structure is often associated with a large
number of relatively small communities, however the op-
posite is not always true. Hierarchical or multiresolutional
methods combine these approaches.

Corresponding to this, the output of the above mentioned
algorithms can be fundamentally different. There are basi-
cally two types of evaluation in the literature: one can use
some kind of benchmark network like in [18, 22, 26, 32],
and compare the results to the already known community
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structure of the network [14, 28]. Another option is using a
real-life application as an example, similar to a case-study.

In this paper, the authors propose the hub percolation
overlapping community detection method. A node, that is
a member of many adjacent cliques is considered more im-
portant. We refer to these nodes as hubs. We expand and
join cliques if they contain the same hubs. One of the ad-
vantages of this method is, that both the hub selection and
the joining criteria is adjustable. This allows us to discover
different kinds of community structures from large, loosely
overlapping groups to ones with a dense, highly overlap-
ping structure. We also propose a hub-selection strategy
able to handle weighted networks in a natural way with-
out the need for filtering or pruning edges. Finally, we will
rely on the framework proposed by Pluhdr et al. in [3], and
show how several popular algorithms can be represented in
1t.

We will use well-known benchmark networks [29, 26,
11] to demonstrate the difference between hub selection
strategies in terms of community sizes, the size of over-
laps and the number of singletons: nodes without com-
munities. Then we will evaluate the performance of our
method in two different ways. We will use the community
based graph generator of Lancichinetti and Fortunato [18]
to compare the results of our method to the OSLOM al-
gorithm of the same authors [20], the COPRA method of
Gregory [13], and the clique percolation method of Palla et
al. [29]. We will also present a case study: we will exam-
ine the communities of an economic network constructed
from the Hungarian company register. We will focus our
attention on three aspects of the companies: the geograph-
ical location of them, the industrial sector they belong to
and the age of the companies.

2 General framework

The authors of [3] described a general framework for over-
lapping community detection. In this section we summa-
rize their approach. Here, and throughout the paper, by a
graph G we mean an undirected simple graph with vertex
(or node) set V(G) and edge set E(G). Edges might have
arbitrary weight.

According to the framework introduced in [3], most
community detection algorithms consist of two phases.
Taking an input graph G, the first phase constructs a hyper-
graph F = (V,H), where V(F) = V(G), and H C 2V.
The elements of H are considered the building blocks of
communities. The second phase adds a distance function
d to set H, creating a metric space M = (#,d). Using
function d, a clustering algorithm creates a set of clusters
C. Finally, the arising clusters are associated to the subsets
of V such that K; = Ugec,ecH, where K, the ith com-
munity corresponds to Cj, the ith cluster and K is just the
union of the vertex set of those hyperedges that belong to
C;.

It is easy to show, that this framework applies to most
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community detection algorithms. In the case of the clique
percolation method [29], H contains the k-cliques' of the
original graph, and function d is:

Ao ) = {1, if KGO G = k=1,
00, otherwise

In the same paper [3], the authors have proposed
the NTF community detection algorithm with a general
distance function, where H is the same as above and
d(K;, K;) = Lonly if |K; N K| > ¢, where c is a param-
eter of the algorithm. In other cases d(K;, K;) = oo. This
method has proven its usefulness in applications [6, 16].

It is also possible to describe non-clique based methods
using this formulation. In the case of COPRA [13], each
element of H initially only contains one unique vertex v €
V(G). In the second phase, these are joined according to a
belonging coefficient. A threshold is introduced to provide
a lower bound for community membership.

3 The hub percolation method

The motivation for creating an advanced community de-
tection algorithm came from our previous work with the
general framework of community detection [3]. Our aim
was to create a flexible clique-based method taking into
consideration our experiences with the clique percolation
method [29] and the N T+ method [3]. Much of the details
of the algorithm described in this section comes from expe-
riences gained during test runs on well-known benchmark
networks like [32, 29, 26, 22].

The hub percolation method has two simple ideas at its
core. A natural property of most approaches for overlap-
ping community detection? is that cliques (fully connected
subgraphs) are considered to be the purest communities.
Therefore our method uses cliques at the beginning of the
building process. An important observation on real-life net-
works is, that inside a community some members are more
important than others with respect to the role of the nodes
in connecting different communities. We will denote these
nodes as hubs. In the building process the cliques of the
graph are extended according to a limited percolation rule:
two k-cliques are joined if they share & — 1 vertices. As
a result of this process, the set of extended cliques consists
of the building blocks of community detection. The joining
phase of our method merges these extended cliques if they
share the same hubs. Considering these ideas, an outline of
the hub percolation algorithm is as follows:

1. Find the set C' of all maximal cliques of size greater
or equal than 3 on graph G.

2. Select the set of hubs H.

3. Create the set of extended cliques C”.

!Fully connected subgraphs containing exactly & nodes.
2In the following chapters, we will refer to overlapping community
detection simply as community detection.
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4. Compute the set of communities K : Take the union of
extended cliques if one of them contains all the hubs
in the other one.

Finding the set of all maximal cliques in a graph is a
well-studied NP-hard problem of graph theory. Unfortu-
nately an n-vertex arbitrary graph may contain i3"/® maxi-
mal cliques in the worst case [24]. Because of their unique
structure, this number is significantly lower in small world
networks allowing algorithms like in [30, 4, 8] to list the set
of maximal cliques in reasonable time even for large net-
works. In this work we used the modified Bron-Kerbosch
algorithm described in [8].

The hub selection strategy is an important part of the
algorithm. Hubs represent the locally important nodes in
the network. As a consequence, whether a node is a hub
should depend on the t-neighborhood® of the given node,
where ¢ is a small number. In our interpretation hubs con-
nect communities, therefore the deciding factor in hub se-
lection should be the number of cliques the vertex belongs
to. Each node v is assigned a hub value h,, according to the
above rule, then some of them are selected if their value
is higher than the average or median hub values in their
t-neighborhood. It is also possible to extend the selection
strategy to weighted networks. We will discuss hub selec-
tion in the next subsection.

In our method, cliques of the network are extended with
a a one-step percolation rule, then merged if they share the
same hubs. Introducing the filtering parameter £ > 2, let
us consider all cliques of size equal to £ on the subgraph
induced by the set of hubs H. We will denote the set of k-
cliques on G[H| as Cly. Then, we expand the elements of
C'y according to a one-step percolation rule. Let C, denote
the set of merged cliques c. = cyUcoU---Ucy with ey €
Ch,coy-.-,c0 € Cand |coNeyg| > 2,...,jceNey| > 2
4

The last step of our method corresponds to the joining
phase of the community detection framework. We merge
elementary communities if they contain the same hubs,
more precisely, we take the union of two elementary com-
munities ¢, and c., if cc, N H C ¢, N H. We iterate
this process by adding the new merged clique to C, and
removing the original ones. At the end of the process C.
contains the communities of graph G. Note, that depend-
ing on the hub selection strategy C'. may contain duplicate
members, the merging process eliminates this problem as
well. Each element of C, is a union of the cliques of G and
contains at least £ hubs. We will refer to the members of
C. as elementary communities.

The hub percolation method
Input : Graph G, parameter k

3A t-neighbothood of a vertex v is the set of vertices Nf,, where u €
N} only if the length of the shortest path from u to v is less or equal then
t.

4Qur experiances on various benchmark networks indicate that this
value gives the best performance.
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1. Find all maximal cliques of graph G using any exact
algorithm or heuristic. Let C denote the set of cliques.

2. Forallv € V(G), let h, = |H,|, H, = {hlv €
h,h e C}.

3. Select the set of hubs H according to the hub selection
strategy.

4. Let C'y denote the set of k-cliques on the subgraph
induced by the hubs G[H].

5. Create the set of extended cliques C, according to the
following rule: for all ¢y € C'y find all cliques ¢ € C'
where |c N cy| > 2. Let ¢, . . ., ¢; denote the cliques
satisfying this criterion. Create the union of cliques
Cce =cgUcoU---Ucy,and add ¢, to C..

6. For all ¢.,,ce, € C. add the union of them to C, if
Ceo N H C ¢, N H, and remove ¢, and ¢, from C..
Iterate until there are no more merges.

7. The set C, contains the communities of graph G.

Figure 1: The communities of Zachary’s karate club net-
work [32]. Hubs are marked as diamond shapes. Nodes
with multiple colors indicate overlapping nodes. The me-
dian hub selection strategy was used with £ = 2. Nodes
9, 3, 33 form an additional community and node 9 belongs
to three communities.

It is easy to see, that the general framework proposed in
applies to the hub percolation method. The edges of the
hypergraph correspond to the extended communities in C,,
while the distance function is

1, ifK;nHCK;nHor
K;NHCK;,NH,

oo  otherwise

d(Kiv Kj) =
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The community structure of Zachary’s karate club net-
work [32] can be seen on Figure 1. This network is a well-
known social network, that represents friendships between
the members of the club. Our method identifies five com-
munities®, the most interesting ones being the green and
blue ones, as well as the one represented by the red triangle.
During Zachary’s observation the club split into two parts,
because some friendships were broken. Most community
detection algorithms are able to identify these subgroups
even before the actual split. In our case the borders of the
green and blue communities represent the borders between
the two subgroups, and the red group identifies the edge
that was broken when the split occurred.

3.1 Hub selection strategies

Hub selection is a crucial part of the algorithm. As we
have mentioned before, each node in the graph is assigned
a hub value based on the number of cliques it belongs to.
Based on this value the selection strategy chooses the set of
hubs H. Hubs represent "locally important” nodes so the
criterion of the hub property of nodes or “hubness" should
depend only on the tight neighborhood of the node. In our
interpretation, this criterion depends on some simple sta-
tistical property of the first or second neighborhood of the
given node, namely the average or median of neighboring
hub values.

At the beginning of our work on several famous bench-
mark networks [26, 32] we have quickly found out, that
the 2-neighborhood strategies are often not robust enough
to select the appropriate hubs: hubs were relatively rare,
which resulted in small overlaps and a larger than accept-
able number of nodes without community memberships.
A general experience was, that hubs should be “common
enough”, so that most of the nodes have one or more in
their direct neighborhood.

Considering this, the 1-neighborhood median selection
strategy provided the best community structure on these
benchmark networks. This may not be the case, however,
with other real-life networks. In order to extend our algo-
rithm to handle different kinds of networks, we can gener-
alize suggest another hub selection rule. Still considering
only the direct neighborhood of nodes, we calculate the av-
erage hub value and multiply it with a parameter ¢ > 0. If
the hub value of the node is higher than the mean, we select
it as a hub. This approach makes hub selection more flex-
ible, allowing the algorithm to adapt to different require-
ments. A small value of g selects higher number of hubs re-
sulting in larger communities with greater overlaps, while
increasing q has the opposite effect. This also allows the al-
gorithm to discover several layers of community structure
on the network.

Finally, hub selection can be extended to weighted
graphs in a natural way. As before, the hub value of a node
is the number of cliques it belongs to. Then the values are

5The median hub selection strategy was used with k = 2, see subsec-
tion 3.1.
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multiplied with the strength® of the node. After this, the
process is the same as in the previous strategies.

In summary we propose the following hub selection
strategies:

— l-neighborhood median: A node is selected as a hub if
its hub value is greater than the median of hub values
in its one-neighborhood.

— 1-neighborhood mean with multiplier: A node is se-
lected as a hub if its hub value is greater than the mean
of hub values in its one-neighborhood multiplied with
a parameter g > 0.

— 1-neighborhood weighted mean with multiplier: The
hub values are multiplied with the strength of the
nodes. Beside this, the strategy is the same as above.

As a recommendation, the median strategy should be
tried first, and if it does not give satisfactory results the
average strategy should be used with ¢ = 1 initially, de-
creasing or increasing its value in small steps depending on
the requirements. In practice 0 < ¢ < 2 seems to hold.

3.2 Implementation

The bottleneck of the algorithm is finding all maximal
cliques in graph G. A general graph with n vertices may
contain up to 3"/% maximal cliques. In correspondence,
the original algorithm of Bron and Kerbosch has a worst-
case running time of O(3"/3). In small-world networks
however, the number of maximal cliques is smaller by
magnitudes, decreasing the running time of the algorithm.
Furthermore, refinements of the Bron-Kerbosch algorithm
have been published in recent years, enabling the use of
this method on large sparse networks [30, 8]. In cases
when even faster computation is required, there are existing
heuristics for clique search [5].

The hub value of each node can be calculated in a single
pass on the set C of cliques. All of the hub selection strate-
gies suggested in the previous section have a local fashion:
they can be computed in a single pass on the vertices and
their one-neighborhoods.

The computation of C'y; does not require a repeated run
of the Bron-Kerbosch algorithm on G[H], since the cliques
of G contain the cliques of G[H] as subsets. Therefore it
is enough, that for each ¢ € C, if |c N H| > k, simply
add all k-combinations of ¢ to C'ir. Depending on the size
of the network and the hub selection strategy, H may be
quite large, but the use of flags on the nodes of the graph
G to signal the hub property can reduce the computation
of this step to a single pass on C. The percolation step
can be executed by computing the 1-neighborhood of each
cg € Cg. Let cz contain all of the direct neighbors of
vertex set cy, and initially let ¢, < cpy. For all nodes
v € cjy, if [{v}T Ney| > 2 add v to c.. Again this step
can be computed by making a single pass on Cp.

6The sum of the weights on all adjacent edges.
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In order to make the joining step, the computation of the
hubs of each elementary community is required: for each
ce € Celetey, = c.N H. Let C'y, denote the sets of hubs
of the elementary communities. An important remark is,
that Cy, # Cp since in the previous step additional hubs
may have been added to the elements of C'y. Removing
the “’sub-hubs” (hubs being contained in other elements of
C'i,) can be executed in quadratic time in worst case. In
general, performance can be improved by sorting C'y, in
descending order according to the sizes of cy, € Cp,.
After this, starting from the first element, remove all the
sets of vertices from C'zy, which are subsets of the first one,
then repeat for the second, third, ... until no more vertex
sets can be removed from Cy,. Finally, the elements of
C. and Cy, must be compared: for all cyy, € Cy, find all
ce € C, where c. N H C cy, and take the union of these
vertex sets.

We can conclude, that the two most time-consuming
steps of the method is the computation of C' and Cp, all
other operations take at most quadratic time’. The algo-
rithm of Eppstein and Strash [8] is able to list all maximal
cliques in large sparse networks in reasonable time. For
faster computation heuristics [5] or the use of quasi-cliques
[23] can be applied. The size of C'y; depends on two fac-
tors: the size of H and k. The former is governed by the
hub selection strategy, the latter is a parameter of the al-
gorithm. Choosing a different hub selection strategy, that
produces a smaller number of hubs, or decreasing k£ may
speed up computations.

4 Sensitivity to parameters

We have created the hub percolation method with the intent
to provide a versatile tool for community detection. There-
fore, an important question arises: how does the hub selec-
tion strategy and the filtering parameter influence the com-
munity structure found by the algorithm? For the purpose
of examining their effect, we will use several well-known
benchmark networks including the word association graph
of Palla et al.[29], a scientific collaboration network [26]
and a graph of American football games [11].

The first network we will examine was created by New-
man [26] on the condensed matter archive at www.arxiv.org
based on preprints posted to the archive between January
1, 1995 and March 31, 2005. The graph is undirected, un-
weighted and contains 39540 nodes and 175683 edges. We
will evaluate the median and average hub selection strate-
gies and we will also experiment with different values for
k. We will measure the number of communities, the av-
erage overlap®, the number of singletons® and hubs in the
network. We will also present the community size distribu-
tion for each selection strategy.

7We have also conducted experiments, and found that clique detection
may take from 60% up to 95% of the running time.

8The sum of the cardinalities of all community divided by the number
of nodes.

9Nodes without communities.
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Figure 2: Upper left: Number of communities for different
hub selection strategies and values for k; Upper right: The
percentage of nodes without communities; Lower left: The
average overlap; Lower right: The percentage of hub nodes
in the network.
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Figure 3: Upper left: Number of communities for the aver-
age hub selection strategy withg = 0.3,...,1.1and k = 2;
Upper right: The percentage of nodes without communi-
ties; Lower left: The average overlap; Lower right: The
percentage of hubs in the network.

On Figure 2 we have compared four different hub selec-
tion properties: the median strategy and the average strat-
egy with values ¢ = 1,0.8,0.5. The number of commu-
nities is the greatest and the number of singletons is the
lowest with the median strategy and the average strategy
with ¢ = 0.5; these strategies provide the greatest cover
on the network. The number of hubs is also the greatest
with these strategies: roughly one in three nodes, this con-
firms our expectations, that hubs should be "common”. We
can see, that the average overlap and the number of sin-
gletons increases with k, while the number of communi-
ties does not change. The reason for the above fact is that
by increasing k, the nodes are concentrated in highly over-
lapping communities keeping the number of communities
constant, while many nodes are left out of the community
building process.

We will further examine the average hub selection strat-
egy with k = 2 on Figure 3. The main observations remain
the same with higher values for k. As before, the num-
ber of hubs and communities grows inversely proportional
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2 3 a

Figure 4: The community size distribution of the median
hub selection strategy with different values of k. Left: The
number of communities with size below 150. Right: The
number of communities with size greater than 150.

Figure 5: The community size distribution of the average
hub selection strategy with different values of ¢, £ = 2.
Left: The number of communities with size below 150.
Right: The number of communities with size above 150.

with ¢, while the number of singletons grows proportion-
ally with it. The average overlap slowly decreases when ¢
is increased, indicating that decreasing the number of hubs
causes communities to become smaller and scarcer.

We can see, that the community size distributions follow
a power-law on Figures 4 and 5. The median hub selection
strategy is depicted with different values for k. Increasing
k results in much larger communities: With & = 2, The
largest community had 255 members, with k = 4 the maxi-
mum was 869. This confirms our previous observation, that
increasing k creates a highly overlapping community struc-
ture. Similar observations can be made with the average
hub selection strategy. Increasing g decreases the number
of communities evenly among the community sizes, even
the size of the largest communities does not change much.

A strict requirement for all community detection algo-
rithms should be, that the number of nodes left without
community memberships should be minimized. Therefore
we can conclude, that the filtering parameter should be kept
as low as possible, and the ratio of hubs should be above
30%.

We have measured the running time of our method as
well'®. The results for the average hub selection strategy
with different values of ¢ and k can be seen on Figure 6.
We have seen before, that decreasing ¢ increases the num-
ber of hubs — the size of H and C. This directly increases
the computational time of the joining phase. The filtering
parameter k also has an impact on the running time of the
method, since it influences the size of Cy. As a conclu-
sion we can say, that the filtering parameter should be kept
as low as possible, and the average hub selection strategy

10We have implemented our method in JAVA, and we have used a com-
puter with an Intel i17-2630QM processor, and 8 gigabytes of memory.
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Figure 6: The running time measured in seconds with the
average hub selection strategy and different values of ¢ and
k.

should be used to further refine the results of the algorithm.

We can draw similar conclusions on the other two net-
works, with a few exceptions. The relationship between the
ratio of hubs, the community size and the average overlap
is the same in all networks. The ratio of singletons shows
a similar behavior as it grows inversely proportional to the
ratio of hubs. There is a difference however; the graph of
football games contains no singletons for the majority of
the parameter configurations, while the ratio of singletons
never goes below 30% in the word association network.
This can be explained by the difference in the structure of
the networks. The graph of football games is an union of
cliques by definition, while word associations do not have
this property. Since our method is clique-based, it is able
to cover all nodes of the former test set, while in the lat-
ter case nodes not part of any triangles are left out of the
building process.

The relationship between the ration of hubs and the hub
selection strategies is also similar, that is for the average se-
lection strategy increasing ¢ decreases the number of hubs.
However, the exact pairs of these values change together
with the networks. For example setting ¢ = 0.5 results in
35% of nodes being selected as hubs on the collaboration
network, 21% on the word association network and 90% on
the graph of football games. Therefore in any application,
it is important to find the hub selection strategy that pro-
duces the ratio of hubs so that the number of communities,
the size of the overlaps and the number of singletons move
according to the specifications of the application.

We have previously concluded that the filtering param-
eter should be kept as low as possible to reduce both the
ratio of singletons and the computation speed. As we will
see below, there are some situations where a higher value
is desirable. In the next chapter we are going to examine
networks with a large number of highly overlapping com-
munities.

5 Performance on benchmark
networks

For the purpose of evaluation, we have used benchmark
networks created with the graph generator of Lancichinetti
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Figure 7: The performance of hub percolation compared to
CPM and OSLOM with p; = 0.1.

and Fortunato [18]. We have generated both weighted and
unweighted networks, with the following parameters:

— We have created undirected graphs with |V (G)| =
1000

The average degree was 15

The maximum degree was 50

The exponent of the degree distribution was -2

The minimum community size was 3

The maximum community size was 25

The exponent of the community size distribution was
-1

The mixing parameter p; was between 0.1 and 0.2

The fraction of overlapping nodes o,, was between 0.3
and 0.9

A detailed description of the used model and its parame-
ters can be found in [18]. We have selected the parameters
above, because they are close to the recommendations of
Lancichinetti and Fortunato, yet they provide a challenge
to our method. Again following the recommendations of
the above authors, we have used mutual information [19]
to measure the similarity between the communities given
by our method and those of the benchmark. Because of the
probabilistic nature of the benchmark we have generated
10 different networks for each parameter configuration and
averaged the similarity measurements.

We have compared the performance of our method to
that of the clique percolation method and OSLOM. We
have tried several values for k-clique percolation, and have
found that k = 4 clearly provides the best results, therefore
we have used this parameter setting for comparison. We
have also made comparisons with COPRA but found, that
the above methods are clearly superior on these benchmark
networks, so we have omitted these results from the figures.

On Figures 7 and 8 we can see that the best results
were provided by the 1-neighborhood average hub selec-
tion strategy with low ¢ values and £ = 4. We can also see,
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Figure 8: The performance of hub percolation compared to
CPM and OSLOM with p; = 0.2.

¢
[}

ion
o
00

£ 0.7
€ -4 =
506 CPM k=4 1=1.5
£ 0SLOM

] 0.5

‘é 04 IR Avg q=0.1 k=4
- e« Avg q=0.1 k=3
N 0.3

= - = Avgq=0.2 k=4
£

ZB 02 = == Avg q=0.05 k=4

o
-

o

0.4 0.5 0.6 0.7 0.8 0.9

I
w

Figure 9: The performance of hub percolation compared to
CPM and OSLOM with p; = p,y = 0.1.

that our method reaches peak performance at ¢ = 0.1, but
the selection of ¢ has little influence on the results. The me-
dian selection strategy performs poorly on these networks,
and increasing or decreasing k worsens performance. If we
compare our method to CPM and OSLOM, we can con-
clude, that hub percolation gives better results on networks
with a high number of overlapping nodes.

Our observations remain the same when using the
weighted benchmarks of the same authors with the recom-
mended parameters p; = pq, and 5 = 1.5. Low values
of g and k = 4 gives the best results for hub percolation,
and 4-clique percolation with a weight threshold I = 1.5
is the best for CPM. As before, hub percolation gives bet-
ter results on networks with a high number of overlapping
nodes.

6 Case-study: an economic network

In this section, we will examine the community structure
of a specific economic network constructed from the Hun-
garian company register. We will consider a network of
companies: each vertex is a special type of company (Ltd.),
and the companies are connected if they share a common
owner (or member in the case of Ltd.’s). We will call this
network as an intersection network, because two vertices
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Figure 10: The performance of hub percolation compared
to CPM and OSLOM with p; = pi,, = 0.2.
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Figure 11: The locality of the communities of the intersec-
tion network with different hub-selection strategies, using
all digits of the zip-code (left) or the first two digits (right).

are connected, if the sets of owners associated with them
have a non-empty intersection. Due to the changes in the
regulations governing the company register’s construction,
there are large amounts of missing and erroneous data. The
register’s sometimes has unordered structure so the identifi-
cation of the companies, owners and the construction of the
graph itself required the application of several data mining
methods, data cleaning and filtering.

The resulting graph is not connected, there is a high
number of small disconnected components in it, but for-
tunately it contains a giant component as well. The small
components often cannot be divided into two or more com-
munities, thus they do not provide useful information about
the structure of the graph. Therefore, in our analysis we
will consider only the giant component. This graph is a
small-world network with the previously mentioned prop-
erties. It has 239685 vertices and 1423080 edges. Depend-
ing on the hub-selection strategy, our method was able to
discover the community structure of this network in 5-7
hours!'. We have considered comparing our method with
CPM on this dataset, but the publicly available'? imple-
mentation was unable to produce results.

There are several points of interests regarding the com-
munity structure of the network. In this paper, we are going
to focus on three of them. The first one is the geographical

110On the same hardware as above.
12We have used CFinder [29] downloaded from http://cfinder.org/

A. Bétaet al.

location of these groups and companies inside them. Our
main question is, are the communities of the graph local
in a geographical sense? Using the register, we can as-
sign zip-codes to the companies, and by counting the num-
ber of different zip-codes inside the community — the fre-
quency of individual zip-codes, we can easily address the
above question. We can further divide the frequency of the
most frequent location by the size of the community, and
by averaging this fraction over all of the communities we
can represent the locality of these communities as a simple
number. The structure of the zip code also allows us to fine-
tune the resolution of the analysis. The Hungarian zip-code
contains four digits: the first one divides the country into
nine large regions, the first two identifies 80 sub-regions.
On Figure 11 we can see the computed average locality of
the communities. Both the accurate locations — all digits
of the zip-code — and the sub-region classification system
is used. We can conclude, that the communities are local
indeed; in average 77% of companies inside communities
belong to the same sub-region, and even in the case of the
accurate locations, this percentage does not go below 55%.
This implies, than companies owned by the same people
tend to stay in the same geographical area. It is important to
emphasize, that we are observing a special form of compa-
nies: the Ltd.’s. Our results makes sense, because this com-
pany form is popular for small companies, that do not have
the resources to cover a large area. On Figure 11 we can
also see a comparison between the different hub-selection
strategies'>. Even though the number of communities and
the size of overlap changes according to the observations
in the previous section, all strategies gave a similar stable
performance.

We can perform the same analysis considering the indus-
trial sectors the companies belong to. Do the communities
of the graph belong to similar industrial sectors? The sec-
tor classification numbers for the individual companies are
available, but due to changes in regulation it is impossi-
ble perform a high-resolution scan. On the other hand we
can make use of a rough classification system containing
118 different industrial sectors. The method is the same
as before: we compute the most frequent sector for each
community, and we average the relative frequencies over
all communities. As a result we can say, that in average
84% of the companies inside the communities belong to
the same industrial sector. The communities are even more
“local” to the industrial sector most of their members be-
long to, than to their geographical location. The reason for
this is similar to the previous one: small companies tend
to specialize, and it is rare for an owner to have an inter-
est in multiple sectors. Again, we have compared different
hub-selection strategies and found, that they have similar
performance.

We can see a small example of this behavior on Figure
12. The whole economic graph is too large to visualize, so
we are going to take a look at a small subgraph of three
communities. The red community contains companies fo-

13k = 2 was used in all experiments.
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Figure 12: Three communities of the economic intersection
graph.

cusing on printing services, the blue one on distributing in
general, while the companies in the yellow one are cen-
tered around public utilities in real estate and engineering.
A huge overlap can be seen between the red and yellow
companies: vertices in the non-overlapping part of the red
groups are focused on distributing, while the companies in
the overlap are either copy shops, smaller publishing com-
panies or hardware and electronics retail shops.

Our last point of interest is the age of the companies.
Since the date of establishment is available for all compa-
nies, we can ask the question: Were the companies inside
the communities of the graph established in a short time pe-
riod? We can answer this question by computing the stan-
dard deviation of the dates of establishments for all com-
panies. The expected value of the standard deviation inside
the communities is 5 years. This relatively large value in-
dicates, that the establishment of these companies is spread
in time over a considerable interval.

As a conclusion we can say, that our method is capable of
identifying communities that share a common geographical
location and industrial sector.

7 Conclusions

In this paper, we have introduced the hub-percolation
method: a clique-based high-resolution overlapping com-
munity detection algorithm. This method is based on two
observations: cliques are the most natural representations
of communities, and some vertices are crucial in the birth
of communities: they connect different sub-communities
together by forming bridges between them. There are mul-
tiple ways to select these vertices; that authors have sug-
gested several hub-selection strategies, some of them have
tunable parameters. The method also has a filtering param-
eter k which influences the size and structure of the over-
laps between the communities. Adjusting k and the hub-
selection strategy allows the user to apply this method to
a variety of small-world networks with different densities.
It also allows the user to discover several layers of com-
munity structure on the same network. We have examined
the effect of different parameter choices on several well-
known benchmark networks. We have concluded, that the
selection strategy should be chosen so that 30-50% of the
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vertices are selected as hubs and k& should be kept low to
minimize the number of singletons.

We have shown two ways to measure the goodness of
the hub-percolation algorithm. One of them was an eco-
nomical case-study, a network where the vertices represent
companies, or more precisely Ltd.’s, and the companies are
connected if they share one or more members. Our method
is able to identify communities, that are geographically lo-
cal and belong to the same industrial sectors in reasonable
time considering the size of the network. We have also
used benchmark graphs created with the graph generator
of Lancichinetti and Fortunato [18]. Using these networks,
we have compared our method with the well-known clique
percolation algorithm of Palla et al. We have concluded,
that in average the two methods have similar performance,
but hub-percolation gives better performance on networks
with a high number of overlapping nodes.

Finally, a slight adjustment in the hub-selection strategy
allows us to handle weighted networks without the need
to filter the graph edges according to some possibly non-
trivial weight limit. Using the previously mentioned graph
generator, we have created weighted benchmark graph, and
compared the goodness of our method with those of the
weighted clique percolation algorithm. Our conclusions
were the same as before: similar performance in average,
better results with high overlaps.
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