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A Neural Random Forest (NeuRF) and a Neural Deep Forest (NeuDF) as classification algorithms, which
combine an ensemble of decision trees and neural networks, are proposed in the paper. The main idea
underlying NeuRF is to combine the class probability distributions produced by decision trees by means
of a set of neural networks with shared parameters. The networks are trained in accordance with a loss
function which measures the classification error. Every neural network can be viewed as a non-linear
function of probabilities of a class. NeuDF is a modification of the Deep Forest or gcForest proposed by
Zhou and Feng, using NeuRFs. The numerical experiments illustrate the outperformance of NeuDF and
show that the NeuRF is comparable with the random forest.

Povzetek: V povzetku sta predstavljena dva izvirna algoritma: nevronski naključni gozdovi in nevronski
globoki gozdovi.

1 Introduction

In spite of the intensive development of a huge number of
various modern classification models, including the deep
learning models, the ensemble methodology remains one
of the most efficient approaches for solving machine learn-
ing problems. The ensemble learning models are based
on constructing multiple classifiers for training data and on
aggregating their corresponding predictions in accordance
with a certain rule. The final ensemble classifier is repre-
sented as a weighted average of outputs of the base or weak
classifiers. The weight of each classifier can be viewed as
its contribution to the final decision. Several approaches
use some functions that combine the outputs from all base
classifiers instead of weighted averages. From a statisti-
cal point of view, one of the ideas underlying the improve-
ment of the classifier performance by means of the ensem-
ble combinations is based on reduction of variance of the
classification error [11]. This occurs because the usual ef-
fect of ensemble averaging is the reduction of the variance
of a set of classifiers.

Three main techniques of combining the classifiers can
be pointed out [44]: bagging, stacking and boosting. Bag-
ging [4] aims to improve accuracy by combining multi-
ple classifiers. One of the most powerful bagging meth-
ods is the random forest (RF) method [5], which uses a
large number of individual decision trees in order to com-
bine their predictions. Another technique for achieving
the highest generalization accuracy in the framework of
ensemble-based methods is stacking [41]. This technique
is used to combine various classifiers by means of a meta-
learner that takes into account which classifiers are reliable
and which are not. The best known ensemble-based tech-
nique is boosting which improves the performance of weak

classifiers by means of their combining into a single strong
classifier. Both boosting and bagging techniques use voting
for combining the classifiers. However, the voting mecha-
nism is differently implemented. In particular, examples
in bagging are chosen with equal probabilities. Boosting
supposes to choose the examples with probabilities that are
proportional to their weights [32].

There are several review papers devoted to various ap-
proaches based on the combination of classifiers. A de-
tailed analysis of many ensemble-based methods can be
found in a review proposed by Ferreira and Figueiredo [14].
The review compares a huge number of modifications of
boosting algorithms. One of the first books thoroughly
studying combination rules for improving classification
performance was written by Kuncheva [23]. An interesting
review of ensemble-based methods is proposed by Polikar
[30]. A nice review is presented by Wozniak et al. [42]
A comprehensive analysis of combination algorithms and
their application to machine learning approaches such as
classification, regression, clusterization can be also found
in a review paper written by Rokach [32]. We have to point
out also other recent reviews [13, 19, 31, 43]. A detailed
description and an exhaustive analysis of most ensemble-
based models are given in Zhou’s book [44].

One of the widely used and exhibiting extremely high
performance ensemble-based methods is a RF [4]. It is a
classifier consisting of a collection of randomized decision
trees. According to main algorithms for constructing the
RF, a certain numbers of training elements and features are
drawn at random with replacement from a training set in or-
der to build every decision tree in the forest. The RF mod-
els have been successfully used in various practical prob-
lems. The detailed descriptions of many RF applications
and properties of RFs have been reviewed by many authors
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[2, 9, 15, 27, 33].
An interesting new ensemble-based method which can

be viewed as a combination of several ensemble-based
methods, including the RF and the stacking, is proposed
by Zhou and Feng [45] and called the Deep Forest (DF) or
gcForest. Its structure consists of layers similar to a multi-
layer neural network structure, but each layer in gcForest
contains many RFs instead of neurons. gsForest can be
regarded as an multi-layer ensemble of decision tree en-
sembles. As pointed out by Zhou and Feng [45], gcForest
is much easier to train and can perfectly work when there
are only small-scale training data in contrast to deep neu-
ral networks which require great effort in hyperparameter
tuning and large-scale training data. A lot of numerical ex-
periments provided by Zhou and Feng [45] illustrated that
gcForest outperforms many well-known methods or is at
least comparable with them.

Advantages of gcForest motivate us to modify it in or-
der to improve its classification capability. Some im-
provements have been proposed by Utkin and Ryabinin
[37, 38, 39]. In particular, modifications of the DF for
solving the weakly supervised and fully supervised met-
ric learning problems were proposed in [39] and [37], re-
spectively. A transfer learning model using the DF was
presented in [38]. The main idea underlying the proposed
modifications is to assign weights to decision trees in ev-
ery RF in order to minimize the corresponding loss func-
tions which depend on the problem solved. The weights are
used to replace the standard averaging of the class proba-
bilities for every instance and every decision tree with the
weighted average. The weights are regarded as training pa-
rameters which can be computed by solving the constrained
quadratic optimization problems.

By introducing the tree weights, we simultaneously try
to overcome another shortcoming of gcForest. It cannot be
fully considered as an alternative to deep neural networks
due to its uncontrollability in the sense of defining a goal in
tasks different from the standard classification. One of the
advantages of neural networks is the flexibility of specify-
ing the error or loss function depending on the data process-
ing task or a specific application. The loss function in the
standard classification problem is determined by the dif-
ference between a true class label of a training set element
and a label computed by means of the forward propagation.
The Euclidean distance between the input and output of
the network is used in autoencoders. Various types of dis-
tances between the probability distributions of the source
and target data are used in transfer learning problems. The
variety of error functions allows solving a lot of machine
learning problems by specifying the required loss function.
Therefore, another aim of the modifications is to modify
gcForest in order to use different loss functions. We have
to point out that the idea of weighting in RFs is also not
new. Most weighting RF methods use weights of classes
to deal with imbalanced datasets, for example, [10]. At
the same time, there are a lot of publications devoted to
more complex weight assignments to every tree. In partic-

ular, Li et al. [25] propose to assign weights to decision
trees according to their classification ability. A similar ap-
proach for weighting decision trees is presented by Kim et
al. [20]. An interesting study of weighted voting methods
in RFs is also given in [34]. The main difference of these
methods from the proposed approach is that all the methods
use some measures of the classification quality in order to
assign the weights. Moreover, these measures are obtained
on the basis of testing data. To the best of our knowledge,
there are no methods which consider the weights as train-
ing parameters. The proposed approach allows us to select
a weighting assignment scheme in a flexible way by using
different loss functions for optimization.

The approach using weights of decision trees for com-
puting a target probability class vector for every RF have
illustrated the outperformance in comparison with gcFor-
est. However, it has some shortcomings. First, the number
of weights is strongly depends on the number of decision
trees in every RF. On the one hand, we increase the number
of trees in order to increase the classification accuracy, but
the large number of decision trees leads to the same large
number of weights. As a result, the number of training pa-
rameters is increased and the model may lead to overfitting.
On the other hand, a reduction of decision trees may lead
to a reduction of the classification accuracy. Second, the
weighted average used for computing the RF probability
class vector is a linear function of the weights. This fact
significantly restricts a set of possible solutions and may
make worse the classifier.

In order to overcome the above difficulties, we propose
to use a neural network of a special form for computing the
probability class vectors. The neural network plays a role
of a non-linear analog of the linear function of weights. Of
course, we do not have the weights of decision trees in the
explicit form now. But we get a function which combines
the probabilities of every class at the leaf nodes in order
to obtain the RF probability class vector. In other words,
the neural network plays a role of a non-linear function of
weights. It should be noted that the proposed neural net-
work is not standard because we have to identically process
probabilities of every class. This implies that if the num-
ber of classes is C, then we construct C identical neural
networks with shared parameters. In particular, if a train-
ing data have two classes, then the obtained neural network
is very similar to the Siamese neural network [6] which
has been widely used in many applications (see, for exam-
ple, [1, 8, 17]). Outputs of all identical networks for every
training instance form the corresponding probability class
vector. In fact, the neural networks can be viewed as a non-
linear alternative to the weighted sum of probabilities. In
particular, this approach coincides with the approach us-
ing the weighted averages when activation functions of all
units in the neural networks are linear. The proposed com-
binations of the neural network with the RF and the DF are
called NeuRF and NeuDF, respectively.

It should be noted that the idea to jointly use RFs and
neural networks is not new. An interesting approach for
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constructing a denoising RF was proposed by Hibino et
al. [16]. Another combination of the RF with the neural
network was presented by Kontschieder et al. [21] where
an ensemble of random trees is restructured as a collec-
tion of random neural networks, which exhibits better gen-
eralization performance. The authors of [21] introduced
a soft differentiable decision function at the split nodes
and a global loss function defined on a tree. Following
this approach, several similar models were proposed in
[3, 18, 35, 36, 40, 46]. Maji et al. [28] used a deep neural
network for unsupervised learning followed by supervised
learning of the deep neural network response using a RF.

In contrast to the above combinations of neural networks
and RFs, in the presented paper, we incorporate the neural
networks into the DF in order to correct and to control the
class vectors at outputs of RFs. Our experiments demon-
strate that NeuRF and NeuDF are competitive on many
publicly available datasets.

2 A short introduction to deep
forests

One of the important peculiarities of gcForest is its cascade
structure proposed by Zhou and Feng [45]. Every cascade
is represented as an ensemble of decision tree forests. The
cascade structure is a part of a total gcForest structure. It
implements the idea of representation learning by means
of the layer-by-layer processing of raw features. Each level
of cascade structure receives feature information processed
by its preceding level, and outputs its processing result to
the next level. The architecture of the cascade proposed by
Zhou and Feng [45] is shown in Fig. 1. It can be seen from
the figure that each level of the cascade consists of several
RFs which generate 3-dimensional class vectors concate-
nated each other and with the original input. It should be
noted that this structure of forests can be modified in or-
der to improve the gcForest for a certain application. After
the last level, we have the feature representation of the in-
put feature vector, which can be classified in order to get
the final prediction. The gcForest representational learning
ability is enhanced by applying the second part of gcForest
called as the so-called multi-grained scanning. The multi-
grained scanning structure uses sliding windows to scan the
raw features. Its output is a set of feature vectors produced
by sliding windows of multiple sizes. We mainly pay atten-
tion to the first part of gcForest because our modification
relates to the RFs.

Given an instance, each forest produces an estimate of
a class distribution by counting the percentage of different
classes of examples at the leaf node where the concerned
instance falls into, and then averaging across all trees in the
same forest as it is schematically shown in Fig. 2. The
class distribution forms a class vector, which is then con-
catenated with the original vector to be input to the next
level of cascade. The usage of the class vector as a re-
sult of the RF classification is very similar to the idea un-

derlying the stacking algorithm [41] which trains the first-
level learners using the original training dataset. Then the
stacking algorithm generates a new dataset for training the
second-level learner (meta-learner) such that the outputs of
the first-level learners are regarded as input features for the
second-level learner while the original labels are still re-
garded as labels of the new training data. In contrast to the
standard stacking algorithm, gcForest simultaneously uses
the original vector and the class vectors (meta-learners) at
the next level of cascade by means of their concatenation.
This implies that the feature vector is enlarged after every
cascade level. After the last level, we have the feature rep-
resentation of the input feature vector, which can be clas-
sified in order to get the final prediction. Zhou and Feng
[45] propose to use different forests at every level in order
to provide the diversity which is an important requirement
for the RF construction.

It is interesting to note that the same architecture of the
cascade forest was proposed by Miller et al. [29]. This
architecture differs from gcForest in using only class vec-
tors at the next cascade levels without concatenation with
the original vector. Miller et al. [29] illustrated by numer-
ical experiments that their approach is comparable to the
approach [45]. We have to point out that the cascade struc-
ture with neural networks without backpropagation instead
of forests was proposed by Hettinger et al. [7].

3 Weighted averages in forests

One of the ways to improve gcForest is to assign weights
to decision trees in every RF. The weights aim to correct
the original averaging of class probability distributions over
all decision trees in accordance with a predefined objective
function. In the standard classification problem, the objec-
tive function is the error function or the difference between
class labels of training instances and values of the forest
class probability distributions. In the metric learning prob-
lem, the objective function is the distance between similar
and dissimilar instances. Different machine learning prob-
lems define the corresponding objective function and the
corresponding weights of decision trees.

Our aim is to briefly consider the idea of the weighted
average in order to propose the neural networks for pro-
cessing the class probability distributions. Therefore, we
will consider the standard classification problem for sim-
plicity. The classification problem can be formally writ-
ten as follows. Given n training data (examples, instances,
patterns) S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which
xi ∈ Rm represents a feature vector involving m features
and yi ∈ {1, ..., C} represents the class of the associated
instances, the task of classification is to construct an ac-
curate classifier c : Rm → {1, ..., C} that maximizes the
probability that c(xi) = yi for i = 1, ..., n.

A decision tree in every forest produces an estimate of
the class probability distribution p = (p1, ..., pC) by count-
ing the percentage of different classes of training examples
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Figure 1: The architecture of the cascade forest [45].

at the leaf node where the concerned instance falls into.
Then the class probabilities for every forest are computed
by averaging all class probability distributions p across all
trees by taking into account the weights of the trees.

Suppose that all RF have the same number T of decision
trees, every cascade level contains M RFs, and the number
of cascade levels is Q.

The objective function for computing optimal weights is
defined as the Euclidean distance between the class vector
and a vector such that its element with index yi is 1 and
other elements are 0. According to [45], the class distribu-
tion forms a class vector which is then concatenated with
the original vector to be input to the next level of the cas-
cade. Suppose an origin vector is xi, and the p(t,k,q)i,c is the
probability of class c for an instance xi produced by the t-
th tree from the k-th forest at the cascade level q. Since we
consider a single RF at some cascade level, then we omit
indices k and q corresponding to the forest and the level,
respectively. Let us also introduce the notation

pi,c =
(
p
(t)
i,c , t = 1, ..., T

)
,

w = (wt, t = 1, ..., T ) ,

vi = (vi,c, c = 1, ..., C) .

Here wt is the weight of the t-th tree in the considered
forest. Suppose that 1 is a vector having T unit elements.
Then the c-th element vi,c of the class vector produced by
the considered forest for the instance xi is determined in
gcForest as

vi,c = T−1 · pi,c · 1T (1)

The weighted average of the class probability distribu-
tions leads to the following class vectors

vi,c = pi,c ·w.

It follows from the above that gcForest is a special case
of the weighting scheme when all weights are 1/T .

An illustration of the weighted averaging is shown in
Fig. 3, where we partly modify a picture from [45] in order
to show how elements of the class vector are derived as a
simple weighted sum. One can see from Fig. 3 that the
augmented features vi,c, c = 1, ..., C, corresponding to the
q-th forest are obtained as weighted sums, i.e., there hold

vi,1 = 0.4w1 + 0.2w2 + 1.0w3 + 0.0w4,

vi,2 = 0.4w1 + 0.5w2 + 0.0w3 + 0.0w4,

vi,3 = 0.2w1 + 0.3w2 + 0.0w3 + 1.0w4.

The weights are restricted by the following obvious con-
ditions:

w · 1T = 1, wt ≥ 0, t = 1, ..., T. (2)

Now we can write the objective function for computing
optimal weights:

J(w) = min
w

n∑
i=1

‖vi − oi‖22 + λR(w).

Here R(w) is a regularization term, λ is a hyper-parameter
which controls the strength of the regularization, oi =
(0, ..., 0, 1c, 0, ..., 0).

It has been mentioned that the use of the weighted aver-
aging significantly improves the DF and allows us to solve
various machine learning problems by controlling the ob-
jective function for computing optimal weights [37, 38].
However, we need a more complex function of the class
probability distributions sometimes in order to get superior
results. This function can be implemented by means of
neural networks which will be considered in the next sec-
tion.
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Figure 2: An illustration of the class vector generation by using average of the tree probability class vectors.

4 Neural networks as a function of
class probabilities

Let us return to the weighted averaging. The value vi,c can
be represented as a function f of probabilities pi,c, i.e.,
vi,c = f(pi,c). It is important to point out that the function
f does not depend on the class c. At the same time, it is
identical for all classes. Suppose now that the function f
is not linear and is implemented by using the neural net-
work. This implies that, for every class, we have to identi-
cally transform the vector pi,c in order to get the vector vi

for every forest. It can be done by using C identical neu-
ral networks with shared parameters. The input of the c-th
network is the vector pi,c of the length T . The output of
the c-th network is expected to be 1 if the class label of the
i-th instance coincides with the number of the network, i.e.,
if the condition yi = c is valid, otherwise the output is ex-
pected to be 0. The networks are trained on the basis of sets
of vectors pi,c obtained for every training example (xi, yi),
i = 1, ..., n. The condition for training is that parameters
of all networks have to be identical, i.e., the networks are
implemented with shared parameters. This implies that that
all networks are trained simultaneously.

Fig. 4 illustrates the use of identical neural networks
with shared parameters for computing the class vectors. It
can be seen from the picture that the input vector for the
first neural network consists of first class probabilities of
class probability distributions produced by all trees, i.e., it
is the vector (0.4, 0.2, 1.0, 0.0). The input vector for the
second neural network consists of probabilities of the sec-

ond class, i.e., it is the vector (0.4, 0.5, 0, 0). The same
can be written for the third network input vector. In other
words, the k-th network uses all probabilities of the k-th
class. In the case of two classes, we have the standard
Siamese neural network [6].

It should be noted that one network, say the last one, is
superfluous because the C-th element of the vector vi can
be obtained from its other elements under condition that the
sum of all probabilities should be equal to 1. However, we
use it in order to compensate a possible bias of probabili-
ties.

A total algorithm of training the DF is given as Algo-
rithm 1.

Having the trained NeuDF, we can make decision about
the class of a new example x. By using the trained decision
trees and the neural networks, the vector x is augmented at
each level. Finally, we get the vector vi of augmented fea-
tures after the Q-th level of the forest cascade correspond-
ing to the original example x. The example x belongs to
the class c, if the sum of the c-th elements of all vectors vi

obtained for all RFs and all cascades (the total number of
vectors is

∑Q
q=1Mq) is maximal.

The preliminary numerical experiments show that the
proposed combination of the RFs and the neural networks
may lead to overfitting. This is caused by a large number
parameters of neural networks when the number of deci-
sion trees is also large because the number of trees defines
the input vector for the neural networks. We have the fol-
lowing contradiction. On the one hand, we try to increase
the number of trees in a RF in order to get better results.
On the other hand, we have to use in this case a large neu-
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Figure 3: An illustration of the class vector generation taking into account the weights.

Algorithm 1 A total algorithm for training the NeuDF
Require: Training set S = {(xi, yi), i = 1, ..., n}, xi ∈

Rm, yi ∈ {1, ..., C}; number of levels Q; number of
forests at the q-th level Mq

Ensure: w for every q = 1, ..., Q and every k = 1, ...,Mq

1: for q = 1, q ≤ Q do
2: for k = 1, k ≤Mq do
3: Train all trees from the k-th forest at the q-th level

in accordance with the gcForest algorithm [45]
4: For every xi, compute C vectors of probabilities

pi,c, c = 1, ..., C
5: Train C neural networks from the k-th forest at

the q-th level
6: For every xi, compute vi by using the trained

neural networks for the k-th forest
7: Concatenation xi ← (xi,vi)
8: end for
9: The concatenated vector xi is used for the next level

10: end for

ral network with many parameters (weights), which may
lead to overfitting by a small training dataset. In order to
overcome this difficulty, we proposed to use small neural
networks with input vector of the dimensionality s. Here
s is a tuning parameter. At that, all trees are united into
groups such that there are s groups. The class probability
distribution for every group is determined by averaging all
class probability distributions in the group.

5 Numerical experiments

In order to illustrate NeuRF and NeuDF, we compare them
with the gcForest. NeuDF has the same cascade structure
as the standard gcForest described in [45]. Each level of
the cascade structure consists of 10 RFs. In NeuDF, we
do not use the Multi-Grained Scanning part. Three-fold
cross-validation is used for the class vector generation. The
number of cascade levels is 4.

NeuRF and NeuDF use a software in Python
implementing the gcForest, which is available at
https://github.com/leopiney/deep-forest to implement
the procedure for computing optimal weights of trees
and the corresponding class vectors. Accuracy measure
A used in numerical experiments is the proportion of
correctly classified cases on a sample of data. To evaluate
the average accuracy, we perform a cross-validation with
100 repetitions, where in each run, we randomly select N
training data and Ntest = 3N/4 test data.

The neural network in most numerical experiments con-
sists of two hidden layers (total four layers). The number
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Figure 4: An illustration of the class vector generation by using C identical neural networks with shared parameters.

of neurons on the first hidden layer increases by 10% of
the input layer. For example, if the input vector consists of
100 features then the first hidden layer contains 110 neu-
rons. On the second layer, it decreases by 10% relative to
the input layer, that is, consists of 90 neurons. However,
we also investigate how the accuracy measures depend on
the number of hidden layers in the neural network. The
activation function is the sigmoid. The neural network is
trained by using 50 epochs. The value of tuning parame-
ter s is taken 4. Some numerical experiments illustrate the
dependence of the classification accuracy on the parameter
s. The number of decision trees in every RF is taken 1000.
However, we also study how the number of trees impact the
classification accuracy.

First, we compare NeuRF and NeuDF with the RF and
gcForest, respectively, by using some public datasets from
UCI Machine Learning Repository [26]. Table 1 is a brief
introduction about these datasets, while more detailed in-
formation can be found from, respectively, the data re-
sources. Table 1 shows the number of features m for the
corresponding dataset, the number of examples n and the
number of classes C. Different values for the regulariza-
tion hyper-parameter λ have been tested, choosing those
leading to the best results.

We also investigate the proposed models by using
the well-known datasets: MNIST and CIFAR-10. The
MNIST dataset is a commonly used large database of
28 × 28 pixel handwritten digit images [24]. It has
a training set of 60,000 examples, and a test set of
10,000 examples. The digits are size-normalized and cen-

tered in a fixed-size image. The dataset is available at
http://yann.lecun.com/exdb/mnist/. The CIFAR-10 data set
consists of 32×32 color images drawn from 10 categories.
It consists of 50,000 training and 10,000 test images each.
It was collected by Krizhevsky et al. [22]. The data set is
available at https://www.cs.toronto.edu/~kriz/cifar.html.

Numerical results of comparison of the RF and NeuRF
are shown in Table 2, where the first column contains ab-
breviations of the tested data sets, the second column is the
accuracy measure by using the RF, the third column con-
tains the accuracy measures of NeuRF, and the fourth col-
umn represents the difference between the accuracy mea-
sures of NeuRF and the RF. It can be seen from Table
2 that the proposed NeuRF outperforms the RF for most
considered data sets. However, we have to point out that
this outperformance is not significant. In order to formally
compare the proposed NeuRF with the RF, we apply the
t-test which has been proposed and described by Demsar
[12] for testing whether the average difference in the per-
formance of two classifiers is significantly different from
zero. Since we use the differences between accuracy mea-
sures of NeuRF with the RF (see Table 2), then we compare
them with 0. The t statistics in this case is distributed ac-
cording to the Student distribution with 16 − 1 degrees of
freedom. The results of computing the t statistics for the
difference are the p-value denoted as p and the 95% confi-
dence interval for the mean 0.198, which are p = 0.036 and
[0.0139, 0.3823], respectively. The t-test demonstrates the
outperforming of NeuRF in comparison with the RF, but
the p-value is very close to the bound (0.05) of accepting
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Table 1: A brief introduction about data sets
Dataset Abbreviation m n C

Mammographic masses MM 5 961 2
Haberman’s Survival HS 3 306 2

Seeds Seeds 7 210 3
Ionosphere Ion 34 351 2

Ecoli Ecoli 8 336 8
Yeast Yeast 8 1484 8

Parkinson Park 23 351 2
Glass Identification Glass 10 214 7

Indian Liver Patient Dataset ILPD 10 583 2
Car Evaluation Car 6 1728 4

Waveform Database Generator Wave 40 5000 3
Soybean (Small) Soyb 35 47 4

Wholesale Customer Region WCR 8 440 3
Diabetic Retinopathy Diab 20 1151 2

Mice Protein Expression Mice 82 1080 8
Teaching Assistant Evaluation TAE 5 151 3

Table 2: Comparison of RFs with modified RFs
Dataset RF NeuRF Difference

MM 81.20 81.27 0.07
HS 73.02 73.24 0.22

Seeds 90.29 90.31 0.02
Ion 89.10 89.40 0.3

Ecoli 84.13 85.15 1.02
Yeast 58.11 58.45 0.34
Park 88.75 88.79 0.04
Glass 89.39 89.23 -0.16
ILPD 72.60 72.81 0.21
Car 88.97 89.17 0.2

Wave 84.89 84.32 -0.57
Soyb 85.10 85.46 0.36
WCR 74.83 74.96 0.13
Diab 71.19 71.20 0.01
Mice 94.20 94.86 0.66
TAE 53.17 53.49 0.32

the null hypothesis, which means that the accuracy mea-
sures are not significantly different.

However, quite different results are obtained by compar-
ing NeuDF and the DF. Numerical results of comparison
of the DF and NeuDF are shown in Table 3. It can be seen
from Table 3 that the proposed NeuDF outperforms the DF
for all considered data sets. Moreover, the results of com-
puting the t statistics for the differences between NeuDF
and the DF (see Table 3) are the 95% confidence interval
[0.495, 0.912] for the mean 0.704 with p = 0.000003. The
t-test demonstrates the clear outperforming of NeuDF in
comparison with the DF.

Let us formally compare also the RF and NeuDF as
a extreme cases among the considered models models.
By computing the t statistics for the differences between

Table 3: Comparison of the NeuDF with DF
Dataset DF NueDF Difference

MM 82.90 83.85 0.95
HS 73.5 74.19 0.69

Seeds 91.2 92.31 1.11
Ion 90.3 91.05 0.75

Ecoli 88.23 89.30 1.07
Yeast 59 59.34 0.34
Park 89.7 90.07 0.37
Glass 90.1 91.31 1.21
ILPD 73.12 73.90 0.78
Car 89.5 90.34 0.84

Wave 85.01 85.91 0.9
Soyb 86.3 87.59 1.29
WCR 75.1 75.20 0.1
Diab 71.29 71.36 0.07
Mice 95.2 95.78 0.58
TAE 53.82 54.03 0.21

NeuDF and the RF, we get the 95% confidence interval
[1.047, 2.277] for the mean 1.662 with p = 0.000038. We
see that NeuDF significantly outperforms the RF.

The same can be said about the MNIST and CIFAR
datasets. The corresponding numerical results are shown in
Table 4. One can see from Table 4 that NeuRF and NeuDF
clearly outperform the RF and the DF, respectively.

Another question is how the accuracy measures of

Table 4: Comparison of the RFs and DFs with their modi-
fications for MNIST and CIFAR data sets

Dataset RF NeuRF DF NeuDF
MNIST 96.04 96.44 98.4 99.20

CIFAR-10 93.90 94.32 94.89 95.44
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Figure 5: Accuracy measures as a function of the decision tree group numbers for the Ecoli dataset.

Figure 6: Accuracy measures as a function of the decision tree group numbers for the MNIST dataset.

Figure 7: Accuracy measures as a function of the hidden layer numbers for the Ecoli dataset.
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Figure 8: Accuracy measures as a function of the hidden layer numbers for the MNIST dataset.

Figure 9: Accuracy measures as a function of the decision tree numbers in every RF for the Ecoli dataset.

Figure 10: Accuracy measures as a function of the decision tree numbers in every RF for the MNIST dataset.
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NeuRF and NeuDF depend on the decision tree group num-
bers s, i.e., on the tuning parameter s. Fig. 5 illustrates
these dependences for the Ecoli dataset by using NeuRF
(the left plot) and NeuDF (the right plot). It can be seen
from the obtained results that there is an optimal value s
which provides the largest accuracy. This value is 4, and it
coincides for NeuRF as well as for NeuDF. The same re-
sults are obtained for the MNIST dataset (see Fig. 6). It is
interesting to note that the optimal values of s coincide for
the Ecoli and MNIST datasets. However, this is just a co-
incidence. If we perform the same numerical experiments,
for example, with the Yeast dataset, then we get optimal
value s = 6.

We also investigate how the number of hidden layers h
in every neural network impacts on the the accuracy mea-
sures. The corresponding curves are shown in Figs. 7-8.
Here we again have an optimal value of h, which provides
the largest accuracy. It is interesting to note that the in-
crease of the hidden layers does not improve the results.
Moreover, this increase makes the results worse. It can be
explained by the overfitting effect when a lot of training pa-
rameters of the modified RF (weights of trees) are replaced
by a lot of connection weights of the neural network. Fi-
nally, we investigate how the accuracy measures depend
on the number T of decision trees in every RF. Figs. 9-
10 clearly shows that the accuracy measures increase with
T , but the computational complexity increases also in this
case.

6 Conclusion

New classification models based on combination of the DF
and the neural network have been presented in the paper.
The main idea underlying these models is to improve RFs
and the DF by combining the class probability distributions
produced by decision trees for every training example by
using a series of identical shallow neural networks with
shared weights.

The proposed models have a number of advantages. First
of all, we replace a simple rule for the class probability
distribution combination (averaging) by a more complex
function implemented by the neural network, which aims
to minimize a classification loss function. Second, the
neural network allows us to simply use various loss func-
tions for computing the optimal RF class probability dis-
tributions. This leads to opportunity to solve tasks differ-
ent from the standard classification, for example, transfer
learning. Moreover, by applying the proposed models, we
can modify the stacking algorithm used in the DF extending
a set of the augmented features by some new functions of
the tree class probability vectors. The investigation of new
augmented features is a very interesting problem which can
be viewed as a direction for further research.

It should be noted that the proposed models have not
demonstrated a significant improvement when they were
applied to a separate RF. A small increase of the accuracy

measures for many datasets in this case is compensated
by additional computations because of the neural network
training. However, numerical experiments have illustrated
that the proposed combinations may be very effective for
the DF because it forms the appropriate augmented features
in the stacking algorithm. That is why we have considered
modifications of RFs as well as the DF in the paper.

The neural networks in the proposed models are trained
by using a training part of datasets. At the same time, a di-
rection for further research is to change the neural network
learning strategy. For example, they may learn by using
testing data or a combination of training and testing data.
The above changes may lead to outperforming results.
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