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Abstract

Biaxial compression tests were carried out on assemblies of ovals 
to study the micro-scale responses of granular materials under 
different confining pressures using the discrete element method 
(DEM). A total of 8450 ovals were generated in a rectangular 
frame without any overlap. Four dense samples were prepared 
from the initially generated sparse sample under different 
confining pressures. The simulated results yield a stress-strain-
dilatancy behaviour similar to that observed in sands under 
different confining pressures. The evolution of the different micro-
parameters and their inter-relationships are established. When 
the confining pressure is relatively high, the difference between 
the coordination number and the effective coordination number 
is very small; however, the difference is apparent for a low confin-
ing pressure. The microtopology of the granular assembly at 
several important states of shear is also reported. It is noted that 
the topological distribution of the granular materials is confin-
ing-pressure dependent. The normalized void-cell number is a 
minimum under the lowest confining pressure, whereas the same 
number is a maximum under the highest confining pressure. A 
linear relationship is observed between the normalized void-cell 
number and the effective coordination number, regardless of the 
confining pressures. The evolution of the deviatoric fabric for 
different confining pressures is measured and the macro-micro 
relationship is presented.

1 INTRODUCTION

The responses of granular materials are greatly 
influenced by the confining pressure. This is evident 
from numerous experimental studies [1-8]. These 
studies, in general, indicated that the deviatoric 
stress increases or the angle of the internal friction, 

[ ]1
1 2 1 2sin ( ) / ( )f s s s s-= - + , decreases with an 

increase of the confining pressure, where σ1 and σ2 are 
the stresses in the x1- and x2-directions, respectively. 
For example, Fukushima and Tatsuoka [2] considered 
extremely low to high confining pressures (5–400 
kPa) in triaxial compression tests and indicated that 
ϕ does not change a great deal when the confining 
pressure is low and the change is apparent when the 
confining pressures are relatively higher. In a similar 
study, Tatsuoka et al. [3] conducted a series of drained 
plane-strain compression tests under confining pres-
sures of 4.9 to 392 kPa considering the variation of 
bedding angles and reported that the dependency of ϕ 
is very small when the confining pressure is lower than 
50 kPa. Nevertheless, these characterizations have been 
made from experimental studies based on macroscopic 
measurements where the micro-scale information is not 
known. To explore the microscopic responses for differ-
ent confining pressures, the discrete element method 
(DEM) [9] can be used. Only a few studies considering 
the confining pressures using DEM have been reported 
in the literature. Mirghasemi et al. [10] studied the 
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effects of confining pressures on the shear strength and 
dilatancy of simulated rockfill using DEM and demon-
strated that the simulated stress-dilatancy behaviour is 
similar to data obtained from experiments on rockfills. 
Sitharam [11] studied the effect of confining pressures 
on the micro-scale responses using DEM and indicated 
that the increase in the average coordination number 
and the accompanying decrease in the fabric anisotropy 
reduce the shear strength at higher confining pressures. 
It is important to understand the micro-scale informa-
tion, even from a simpler simulation using DEM, before 
using this knowledge to develop physically sound 
continuum models. The objectives of the present paper 
are: (i) to simulate the macro-mechanical responses of 
assemblies of oval particles under different confining 
pressures (0–100 kPa) using DEM and (ii) to carry out 
a comprehensive study in order to explore the evolution 
of different micro-quantities under different confining 
pressures using DEM.

2 NUMERICAL EXPERIMENTS

In this section, the numerical method used in the simu-
lation, the sample-preparation procedures using ovals 
and the simulation of the biaxial compression tests are 
briefly discussed.

2.1 Brief overview of DEM

The numerical simulations were carried out using DEM. 
The basic idea in DEM is simple. Each particle in DEM 
can make and break contacts with its neighbours. The 
accelerations of a particle are computed using Newton’s 
second law of motion, as follows:

i imx f 1,2i= =å   ,        (1)

I Mq =å   ,        (2)

where m is the mass, ix  are the translational accelera-
tion components, fi are the force components, I is the 
moment of inertia, q is the rotational acceleration and M  
is the moment of a particle. The velocities and displace-
ments are obtained by integrating the accelerations over 
time. The increments of the normal and shear displace-
ments are computed by comparing the two successive 
time increments and used in the force-displacement law 
to obtain the increments of the normal and shear forces 
as follows:

,n s
n n s sf k u f k uD = D D = D ,        (3)

where kn and ks are the normal and shear contact stiff-
nesses, respectively. Slipping between particles occurs as 
soon as the following condition is satisfied:

tans nf f mf³  ,       (4)

where ϕμ is the interparticle friction angle, fn is the 
normal force and f s is the shear force.

2.2 Sample preparation

Numerical samples consisting of 8450 ovals in eleven 
different sizes (i.e., widths) ranging from 1 to 2 mm were 
prepared. A schematic diagram of an oval with refer-
ence axes is shown in Fig. 1. In the present simulation 
the computer program OVAL [12] is used. In OVAL, a 
simple contact model consisting of two linear springs 
in the normal and tangential directions is incorporated. 
The initial sample was created by randomly placing the 
ovals (height-to-width ratio of 0.60) on grids of a rect-
angular frame with no contact. The initial sample gener-
ated at this stage was very loose. This sample was then 
compacted isotropically with 15, 25, 50 and 100 kPa in 
different stages using the periodic boundaries, a bound-
ary condition in which the periodic cells are surrounded 
by identical cells. A particle that sits astride a periodic 
boundary has a numerical image on the opposite 
boundary. A deformation rate tensor is used to apply the 
global deformation uniformly. The interparticle friction 
coefficient, defined as tan mm f= , was intentionally 
turned off (set to zero) during the isotropic compaction 
to densify the assembly. When the target confining stress 
was reached, setting μ to zero in different stages during 
the isotropic compression, the sample was allowed to 
adjust with μ equal to 0.5 for a few steps before the start 
of the simulation. Then, μ was set to 0.50 [25] during the 
simulation of biaxial compression tests for all the confin-
ing pressures. An isotropically compressed dense sample 
compacted with 100 kPa with reference axes is shown 
in Fig. 2. The void ratio of the sample after the isotropic 
compression for different confining pressures was the 
same (0.126).

Figure 1. Schematic diagram of an oval with an inclination 
angle α.
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2.3 Simulation of a biaxial compression test

Simulations of drained biaxial compression tests were 
performed using the strain-control condition. During 
shear, the sample height decreased vertically with a very 
small strain increment of 0.00002% in each step by keep-
ing the stress in the lateral direction constant (i.e., 15 or 
25 or 50 or 100 kPa, whichever applicable). The param-
eters used in the simulations are presented in Table 1. 
Note that the coefficients of global-type viscous damping 
used in the present study (Table 1) are maintained suffi-
ciently small to keep the effect of the numerical damping 
to a minimum and to provide more stable solutions. 
The quasi-static condition during the simulation was 
examined by monitoring a non-dimensional index, Iuf, 
defined as follows [13]:
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where Np and Nc are the numbers of particles and 
contacts, respectively. The unbalanced force in Eq. (5) is 
the resulting force acting on a particle. Lower values of 
Iuf are desirable because they are associated with a higher 
simulation accuracy [13] and indicative of the lowest 
effect of numerical damping. In the present study, Iuf 
remains reasonably small (the average value is less than 
0.4%) during shear, regardless of the confining pressures.

Figure 2. Isotropically compressed dense sample compressed 
to 100 kPa with reference axes.

3 MACRO-MECHANICAL RESPONSES

Fig. 3(a) shows the relationship between the deviatoric 
stress, 1 2( ) / 2q s s= - , and the axial strain, ε1, while 
Fig. 3(b) shows the relationship between q/p and ε1 for 
different confining pressures, ranging from 15 to 100 
kPa. Here, the mean stress, 1 2( ) / 2p s s= + . Note that 
q increases with an increase in the confining pressures. 
The classic behaviour of granular materials such as sand 

DEM parameters Value
Normal contact stiffness, kn (N/m) 1 × 108

Shear contact stiffness, ks (N/m) 1 × 108

Mass density (kg/m3) 2650
Increment of time step (s) 1 × 10-6

Interparticle friction coefficient, μ 0.50
Damping coefficients 0.05

Table 1. DEM Parameters used in the simulations

Figure 3. (a) Relationship between q and ε1;
(b) q/p and ε1 for different confining pressures.

(a)

(b)

ε1(%)

ε1(%)
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for a dense sample under plane-strain conditions (i.e., 
hardening is followed by softening) is observed. The 
relationship between ϕ at the peak stress and the confin-
ing pressure is shown in Fig. 4. Note that the change 
in ϕ at the peak stress is negligible when the confining 
pressure is lower than 50 kPa. Above a confining pres-
sure of 50 kPa, very little decrease in ϕ is observed. The 
simulated behaviour reported in Fig. 4 is qualitatively 
the same as that reported by Tatsuoka et al. [3] for plane-
strain compression and Fukushima and Tatsuoka [2] for 
a triaxial compression test using Toyoura sand, in which 
it was found that the change ϕ with the confining pres-
sure is very small when the confining pressure is lower 
than approximately 50 kPa. This confirms the ability of 
DEM to capture the real behaviour of sands qualitatively 
using ovals, even under very small confining pressures.

The relationship between the volumetric strain, εν, and 
ε1 is shown in Fig. 5. εν is defined as εν=dV/V, where dV 
is the change in volume and V is the initial volume of the 
sample prior to the shear. A positive value of εν denotes 
compression, while a negative value denotes dilation. 
Note that the dilation is suppressed as the confining pres-
sure increases. The sample exhibits only little compres-
sion at small strains for a confining pressure of 100 kPa 
(maximum one), which is followed by a huge dilation. In 
contrast, the sample exhibits dilation from the beginning 
of the shear for a confining pressure of 15 kPa (minimum 
one) due to the lower lateral confinement. Note also that 
the evolution of εν is almost the same for relatively lower 
values of the confining pressures (i.e., 15 and 25 kPa), 
which is the same as reported in Tatsuoka et al. [3]. The 
relationship between the dilatancy index, DI=-dεν/dε1, 
and ε1 is shown in Fig. 6 for different confining pressures, 
where dεν is the change in εν and dε1 is the change in ε1. 
Note that the relationship is dependent on the confining 
pressures even for a small strain.

Figure 4. Relationship between ϕ at the peak stress state and 
the confining pressure. Figure 5. Relationship between εν and ε1 for different confining 

pressures.

Figure 6. Evolution of dilatancy index -dεν /dε1 with ε1 for 
different confining pressures.

4 MICRO-MECHANICAL RESPONSES

In this section the evolution of different micro-param-
eters such as the coordination number, the effective 
coordination number and the slip coordination number 
and their inter-relationship are presented.

4.1 Coordination number

The change in the coordination number, Z, as a function 
of ε1 is shown in Fig. 7. Z is defined as follows [16]:

2 c

p

N
Z

N
=         (6)

A considerable reduction in Z is observed for the initial 
stage of the simulation due to the reshuffling of the 
initial fabric regardless of the confining pressures. The 
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behaviour is similar to that observed in other DEM 
studies [11, 14]. The reduction in Z is the highest for the 
lowest confining pressure. This is directly linked to the 
higher dilation under lower confining pressures, as is 
clear in Fig. 5. The lateral boundaries for lower confining 
pressures (i.e., 15 and 25 kPa) have less restriction to 
move outward from the sample, causing relatively more 
disintegration of the contacts in the lateral direction.

4.2 Effective coordination number

The effective coordination number is defined by 
considering the particles that effectively participate in 
the load-bearing framework, as reported in Kuhn [15]. 
The non-participating particles are neglected in comput-
ing the effective coordination number. The effective 
coordination number is defined in a similar way to the 
coordination number, as follows [15-16]:

2 c

p

N
Z

N
=         (7)

where cN  and pN  are the total number of contacts 
and particles, respectively, that share in the effective 
load-bearing framework. The change in Z  as a function 
of ε1 is shown in Fig. 8. Note that the behaviour of Z  is 
similar to that of Z. A comparison between Z and Z  for 
confining pressures of 15 kPa and 100 kPa is shown in 
Fig. 9 to show their relative importance and comparable 
evolution during shear. 

Note that the evolution of Z is higher than Z for both the 
confining pressures, even though their initial values are 
same. This indicates that the number of non-participating 
particles increases with the increase of ε1 during shear. 
Note also that the difference between Z and Z is higher 
for a confining pressure of 15 kPa than for 100 kPa.

Figure 7. Evolution of Z as a function of ε1 for different
confining pressures.

Figure 8. Evolution of Z  as a function of ε1 for different
confining pressures.

Figure 9. A comparison between Z and Z  for confining
pressures of 15 and 100 kPa.

4.3 Slip coordination number

The slip coordination number can be defined in a similar 
way to the coordination number, as follows [16]:

 
2 sl

p

N
S

N
= ,        (8)

where Nsl is the total number of sliding contacts. The 
change in S as a function of ε1 is shown in Fig. 10. 
Note that S reduces rapidly after an initial increase up 
to the peak, regardless of the confining pressures. The 
reduction is greater for a confining pressure of 100 kPa 
than for 15 kPa. Note also that the evolution of S has no 
similarity with Z and Z  up to the peak stress. 

4.4 Microtopology 

The topological distribution of a granular system can be 
represented as a planar graph by connecting the branch 

ε1(%) ε1(%)

ε1(%)

M. M. Sazzad: Micro-scale responses of granular materials under different confining pressures using the discrete element method



32. Acta Geotechnica Slovenica, 2016/1

Figure 10. Evolution of S as a function of ε1 for different 
confining pressures.

vectors of those particles that effectively participate in 
the load-bearing framework. Such a topological distribu-
tion of a granular assembly, considering only the effec-
tive contacts and particles, was proposed by Kuhn [15]. 
All sorts of non-participating particles are neglected in 
the planar graph in which each polygonal micro-domain 
is referred to as a void cell.

Following the same approach as reported in Kuhn [15], 
the topological distributions of granular materials in the 
initial state prior to shear (ε1=0), at the peak stress state 
and at large strain (ε1=10%) for confining pressures of 
15 and100 kPa are shown in Fig.11. The number of void 
cells is a maximum at zero strain, indicating a compact 
contact network for the initial state of the simulation 
prior to shear. The sizes of the void cells are also smaller 
at this stage. When the deformation starts, the number 

Figure 11. Snapshots of the topological distributions of granular materials at ε1=0, at the peak stress state and ε1=10% for confining 
pressures of 15 and 100 kPa.

ε1(%)

ε1=0 (15 kPa) ε1=0 (100 kPa)

Peak (15 kPa) Peak (100 kPa)

ε1=10% (15 kPa) ε1=10% (100 kPa)
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of void cells starts decreasing and the size of the void 
cells starts getting larger. At the peak stress state, the 
distributions of the void cells reshuffle and the change 
is apparent. Many void cells become elongated, almost 
parallel to the x1-direction due to the disintegration of 
contacts in the x2-direction. In addition, large voids are 
observed in several regions. The number of void cells 
continuously decreases and the size of the void cells 
further increases as the deformation continues.

Large voids are observed at ε1=10% for a confining 
pressure of 100 kPa. The formation of large void cells 
in several regions is a consequence of excessive contact 
disintegration due to the rotation of the particles and 
the collapse of the force chains. Although the void cells 
appear to evolve in a similar way for all the confining 
pressures, the difference is evident in Fig. 12, where the 

Figure 12. Relationship between Nν / Nνi  and ε1 for different 
confining pressures.

number of void cells (Nν) is normalized by the initial 
number of void cells (Nνi) prior to shear (ε1=0) and 
plotted against ε1. Note that the normalized void-cell 
number is same at zero strain for all the confining pres-
sures; however, it reduces as the deformation progresses. 
The minimum value Nν /Nνi is observed for a confining 
pressure of 15 kPa, whereas the maximum value is 
observed for a confining pressure of 100 kPa. The 
minimum number of Nν /Nνi for a confining pressure of 
15 kPa is associated with the maximum dilation during 
shear. The relationship between Z and Nν /Nνi for differ-
ent confining pressures is shown in Fig. 13.

The relationship between Nν /Nνi and Z regardless of the 
confining pressures can be mathematically expressed as 
follows:

3.45 2.1v

vi

N
Z

N
æ ö÷ç ÷= +ç ÷ç ÷çè ø

        (9)

4.5 Deviatoric fabric

The fabric in a granular system is highly disordered on 
the grain scale. The fabric is usually characterized by 
contact normals [17-19]. The fabric, Hij, can be quanti-
fied in term of contact normals as follows [20]:

1

1 , 1 2
cN

ij i j
c

H n n i j
N

a a

a=

= = -å  ,        (10)

where ina is the i-th component of the unit contact 
normal at the α-th contact. 

Further characterization of the contact normals based 
on the strong and weak contacts would be interesting 
[21-22]. In the present study, a contact is defined as 
strong if it carries a contact force (f) greater than the 
average contact force (fa) and defined as weak if it carries 
a contact force smaller than, or equal to fa. The average 
contact force is given by 
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å

        (11)

Two additional fabric tensors for strong and weak 
contacts can be defined similar to Eq. (10) as follows [22]:

, 1 2s s s
ij i jH n n i j= = -å  ,        (12)

1

1 , 1 2
wN

w w w
ij i j

c w
H n n i j

N =

= = -å  ,        (13)

where s
in  and w

in  are the i-th component of the unit 
contact normals for the s-th strong and w-th weak 
contact, respectively, Ns is the number of strong contacts, 
Nw is the number of weak contacts and Nc = Ns + Nw.

Figure 13. Relationship between Z  and Nν / Nνi for different 
confining pressures.
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The evolution of the deviatoric fabric, H11 – H22 , for 
different confining pressures is shown in Fig. 14 as a 
function of ε1. H11 – H22 is zero at ε1=0 and increases 
with ε1 up to a peak, regardless of the confining pres-
sures and reaches the same value at large strain. The 
evolution of the fabric anisotropy is dominant for the 
lowest confining pressures. The highest fabric anisotropy 
with the lowest confining pressures is associated with the 
highest dilatancy, as observed in Fig. 5. The dilatancy is 
suppressed by the increasing confining pressures result-
ing in the suppression of the fabric anisotropy.

Similar to H11 – H22 , the evolution of 11 22
s sH H-  and 

11 22
w wH H-  as a function of ε1 is also shown in Figs. 15(a) 

and 15(b), respectively. 11 22
s sH H-  peaks at a small strain. 

At a large strain, 11 22
s sH H-  reaches almost the same 

value for different confining pressures. The evolution of 
11 22
w wH H-  is rather different from that of 11 22

s sH H-  .
11 22
w wH H-  is opposite to 11 22

s sH H-  near the peak, indicat-
ing a reverse fabric evolution of weak contacts, compared 
to strong contacts. However, 11 22

w wH H-  approaches to 
positive values with the increase of ε1. The phase-change 
point of 11 22

w wH H-  from negative to positive is confining-
pressure dependent. At large strain, 11 22

w wH H-  also reaches 
the same value for different confining pressures.

4.6 Macro-micro relationship

Several approaches in the literature related to the macro-
quantity (stress ratio) and the micro-quantity (fabric) 
computed using the single micro-parameter (contact 
normal) depending on the varieties of simulation 
conditions, such as particle shape, stress paths, sample 

Figure 14. Evolution of  H11 – H22 as a function of ε1
for different confining pressures.

Figure 15. Relationship between a) 11 22
s sH H-  versus ε1 and

b) 11 22
w wH H-  versus  ε1 for different confining pressures.

density, etc. [14, 22, 23-24] were reported. These studies 
indicated that the micro-quantity relates strongly to 
the macro-quantity when the contact normal vectors of 
strong contacts are considered in quantifying the fabric 
tensors. These studies also observed a unique macro-
micro relationship regardless of the conditions used in 
their studies. Following a similar approach, the relation-
ship between q/p and (H11 – H22)/(H11 + H22) at differ-
ent confining pressures is shown in Fig. 16 (a), while the 
relationship between q/p and 11 22 11 22( ) / ( )s s s sH H H H- +  
is shown in Fig. 16 (b).

Note that the relationship between q/p and (H11 – H22)/
(H11 + H22) is pressure dependent when all the contacts 
are considered. In contrast, q/p is almost equal to 

11 22 11 22( ) / ( )s s s sH H H H- +  for relatively lower confining 
pressures (i.e., 15–50 kPa) when strong contacts are 

ε1(%)

(a)

(b)

ε1(%)

ε1(%)
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considered. Note also that a unique relationship, regard-
less of the confining pressures considered in the present 
study, is not available, even when strong contacts are 
considered in quantifying the fabric tensors.

5 CONCLUSIONS

A numerical simulation was carried out to investigate 
the evolution of microstructures under different confin-
ing pressures using the DEM. The simulated stress-
strain-dilatancy behaviour is qualitatively similar to that 
observed in experimental studies using sands for differ-
ent confining pressures. Different micro-parameters are 
measured and their inter-relationship is discussed. It is 
important to understand the evolution of these micro-

Figure 16. Relationship between
a) q/p and (H11 – H22)/(H11 + H22) versus ε1 and b) q/p and 

11 22 11 22( ) / ( )s s s sH H H H- +  for different confining pressures.

parameters and their inter-relationship for different 
confining pressures, even from simpler simulations, 
before using this knowledge in developing physically 
sound and micro-mechanic-based continuum models. 
This micro-information may also be helpful for the 
comprehensive understanding of the complex behaviour 
of a granular system. Several interesting and important 
findings of this study are summarized below.

(i) The difference between the coordination number 
and the effective coordination number is very 
small when the confining pressure is relatively 
high; however, the difference is apparent when the 
confining pressure is very low.

(ii) The slip coordination number reduces sharply after 
an initial increase up to the peak stress, regardless 
of the confining pressures. At large strain, the slip 
coordination number under low confining pres-
sures takes precedence over the larger confining 
pressures.

(iii) The topological distribution of granular materials 
is confining-pressure dependent. The minimum 
value for the normalized void-cell number is 
observed for the lowest confining pressure, 
whereas the maximum value is observed for the 
highest confining pressure.

(iv) A linear relationship between the normalized void-
cell number and the effective coordination number 
is observed, regardless of the confining pressures.

(v) A single micro-parameter related to the contact 
normals of all the contacts is not sufficient to 
establish a unique macro-micro relationship 
between the stress ratio and the fabric ratio, 
regardless of the confining pressures.
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