ELEKTROTEHNISKI VESTNIK 79(4): 209-212, 2012
ERK 2012 ®MNFERENCEISSUE

Advanced correlation filters for facial landmark localization

Vitomir Struc!, Jerneja Zganec Gro€, Nikola Pavesic!

LFaculty of Electrical Engineering, University of Ljubljama
Trza8ka 25, SI-1000 Ljubljana, Slovenia
Alpineon Ltd., Ulica Iga Grudna 15, SI-1000 Ljubjana, Slownéa
E-mail: vitomir.struc@fe.uni-lj.si, jerneja.gros@alpiro.si, nikola.pavesic@fe.uni-lj.si

Abstract images. Contemporary methods, on the other hand, use

The paper develops a novel technique for facial langcorrelation templates (also referred toealvanced corre-

mark localization based on advanced correlation filters/ation filters) that are constructed by optimizing specific

Specifically, it introduces a new class of advanced coR€rformance criteria [1], [2]. Examples of existing corre-
relation filters, named Principal Directions of Synthetic'ation filters can be found in [3], [4], [S]or [6].
Exact Filters or PSEFs for short, and applies them to N this paper we focus on a class of correlation fil-
the problem of eye localization. To improve upon the paers called Principal directions of Synthetic Exact Fater
sic performance of the PSEF filter for eye localizatiol” SEFS) that we have originally introduced in [2]. These
two types of constraints (i.e., soft and hard constraints}ters generalize upon the recently proposed class of ad-
that affect the outcome of the localization procedure ar¥anced correlation filters called Average of Synthetic Ex-
also proposed and incorporated into the procedure. ThaCt Filters (ASEF) [6]. Based on these filters and a num-
effectiveness of the developed localization technique R" Of localization constraints we develop a facial land-
demonstrated on more than 40000 facial images poolerHark Iocghzatlon procedqre and dgmonstrate its effec-
from the FERET and LWF databases. The results of oi/€n€ss in comparison with ASEF filters and the estab-
experiments suggest that the PSEF filters produce sigShed Haar cascade classifier proposed in [7].

nificantly better localization results than, for example2 Preliminaries

the Haar-cascade object detector, while ensuring a more

than 10-fold improvement in the processing time. ASEF filters represent a recently proposed class of ad-
vanced correlation filters that have already proven suc-
1 Introduction cessful in various computer vision problems [6]. Similar

) ) ) to other correlation filters, a pattern of interest in an im-

so-called advanced correlation filters, which have provejpe input image with the given ASEF filter and examin-
extremely successful in solving complex tasks related tpq the resulting correlation plane for possible correlati
pattern recognition in computer vision, e.g., face or palmpeaks. However, ASEF filters differ from most existing
print recognition, object detection, tracking, etc. The in¢correlation filters in the way they are constructed.
terest in these types of filters is fueled not only by their  ypjike the majority of correlation filters, which define
efficiency, but also by some of their properties, such agnly a single correlation value per training image, ASEF
mathematical simplicity, computational efficiency and rofjjters predefine the entire correlation plane for each avail
bustness to distortions [1]. able training image. As stated by Bolme et al. [6], this
In general, advanced correlation filters bear a resermggrelation plane commonly features a high peak cen-
blance to templates and correlation-based template matgdyed at the pattern of interest and (near) zeros at all other
ing techniques, where patterns of interest in images al®age locations (second image in Fig. 1) [2]. Such a syn-
searched for by cross-correlating the input image Withhetic correlation output results in a synthetic exactrfilte
one or more example templates and examining the resufsgF) (third image in Fig. 1) that can be used to locate the
ing correlation plane for large values - also known as Colyattern of interest in its corresponding training image.
relation peaks. With properly designed templates, these opviously, SEF filters do not exhibit broad general-
correlation peaks can be exploited to determine the pregmtion capabilities, instead they produce distinct peaks
ence and/or location of patterns of interest in the giveamy for those images that were used for their construc-
input image [1]. Early template matching techniques reqjon. To overcome this shortcoming Bolme et al. [6] com-
lied on rather primitive templates, computed, for exampyted a new filter by averaging all of the synthetic ex-
ple, through simple averaging of the available trainingt fiiters corresponding to a specific pattern of interest.
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Figure 2: Visualization of the facial landmark localization pro-

Figure 1. Construction of a synthetic exact filter (SEF): NOr-adure (from left to right): the input image, the ASEF filter

malized inputimage multiplied with a cosine window (left), the i, shifted quadrants), the correlation output, the input image
synthetic correlation output plane (middle), the synthetic exackii, the detected correlation maximum.

filter corresponding to the training image on the left (right).
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3 PSEFfilters

Through the averaging operation the authors ensured bet- . . . . .

ter generalization capabilities of the ASEF filters Wher‘j-th N f"‘ef construct|orr]1_ pkr]ocedurell de;cnbed 'E.It.h.e prt;:v;]—

compared to the SEFs and avoided the over-fitting pro us section ensures high generalization capabilitieseof t
SEF filters through an averaging procedure applied on

lem that affects many existing correlation filters : e S
y g the SEF filters. However, it implicitly presumes that the

Consider a set af training imagesx,, x», ..., X, and . . :
n corresponding image locations of the pattern of inter§EF]‘|Iters represent a random variable drawn from a uni-

est. The first step towards computing the ASEF filter fOmodal symmetric distribution and, thus, that their distri-

a pattern of interest is the construction of the desired cog’-Utlon IS gdequately despnbed by thelr samplg mean.
. S ) To derive our PSEF filters we will make a similar as-
relation outputsy, yo, ..., ¥, for all n training images:

sumption and assume that the SEF filters are drawn from
a multi-variate Gaussian distribution. Under this assump-
tion, we are able to extend the concept of ASEF filters to
wherecs denotes the standard deviation of the Gaussiad-more general form The basic reasoning for our general-
shaped correlation output arid,, y;) represents the co- ization stems from the fact that the first eigenvector of the
ordinate pair corresponding to the location of the patterforrelation matrix of some sample data corresponds to the

(=) %+ (y—yy)?
o2

vi(z,y) =e , fori=1,2,...,n, (1)

of interest in the-th training image. data’s mean (or average), while the remaining eigenvec-
Once the correlation outputs have been determineprs encode the variance of the sample data in directions
SEFs are calculated for allpairs(x;,y;) as follows: orthogonal to the data’s average. By using more than only

the first eigenvector of the SEF correlation matrix for the

m— YiOXT 19 (2) localization procedure, we should be able to further im-

X0 XT f€ R prove upon the localization performance of the original

where,X; = F(x;) andY; = F(y;) denote the Fourier ASEF filters [2]. L

transforms of the-th training image and its correspond- Again consider a set of training imagesxy, ..., X,

ing synthetic correlation outputf; = F(h;) stands for for which we have already computed corresponding

the Fourier transform of theth SEF filterh;, e denotes SEFS for some pattern of interdst, h, ..., h,,, (Where

a small constant that prevents divisions by zeratands 1 = F (1) stands for thei-th SEF filter defined

for the Schur product antifor the conjugate operator. " the spatial domain).  Assume also that the SEFs re-
In the final step, all. SEFs are simply averaged to ;lde in ad-dimensional space and that they are arranged

produce an ASEF filter (see second image of Fig. 2 for §t0 @ column-data matri € R**".  Instead of sim-

visual example) that can be used to locate the pattern B @veraging the SEFs to produce an ASEF filter, we

interest in a given input image. Here, the ASEF filter iffoMPute the sample correlation matix of the SEFs:

the frequency domain is defined as [6]: 3 =(C¢ € R** ; and adopt its leading eigenvectors as
our PSEF filters, i.e.:
H* = l ZHZ*’ ) Efj = )\jfj,wher@' =1,2,...,min (d, n) (5)
n 1=1

andA; > Ao > - > X 2> Ain (dyn) -

To apply the ASEF filters for localization of a pat-  One problem arising as a consequence of such a con-
tern of interest in an input image, the input image in firsgtruction procedure is the sign ambiguity of the PSEF fil-
cross-correlated with the appropriate ASEF filter and thiersf;. Since the computed filters can be multiplied by
correlation output is then examined for its maximum. The~1 and still represent valid eigenvectors Bf we have
location of the maximum is simply declared the locatiorf© alleviate this sign ambiguity. In the experimental sec-

of the pattern of interest. In the frequency domain thiéon we will try to solve the sign ambiguity of our filters
can be defined as follows: through preliminary experiments on some training data.

Y=X.0H", (4) 3.1 Utilizing linearity
h d h lati i the f The landmark localization procedure using PSEF filters
whereY” denotes the correlation output in the reQUENCYy jgentical the one presented in Section 2, except for the

domam,Xt = F(x) denotes the Fourlgr tra_msform of fact that we have more than a single filter at our disposal
a test imagex;, H stands for the ASEF filter in the fre- ;4 ‘hance obtain more than one correlation output:

guency domain an@ again represents the Schur product.
The procedure is also illustrated in Fig. 2. Yy =X: @ Fj, for j€{1,2,..,min(d,n)}, (6)
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Figure 3: Comparison of the visual appearance of an ASEF fil- Figure 4: lllustration of the soft constraint concept.
ter (left) and the combined PSEF filter (right).
to more probable landmark locations. The weighting func-

where X; = F(x;) denotes the Fourier transform of atjon can be considered as sort of a prior model and is es-
given test imagex;, F; denotes the Fourier transform of timated by analyzing the locations of the landmark of in-
the j-th PSEF filteif; andY; refers to thej-th correlation  terest on some training data and fitting a Gaussian distri-
output in the Fourier domain. bution (with a diagonal covariance matrix) to these loca-

To determine the location of our pattern of interestions. The procedure is illustrated in Fig. 4. Here the first
in the given input image, we need to examine all correimage depicts the average of our training set of 15520
lation outputsY; for maxima and combine all obtained face images after the face detection step with superim-
information. A straight forward way of doing this is to posed coordinates of the left eye from all images in the
examine only the linear combination of all correlationtraining set. The second image shows the estimated weight-
outputs for its maximum and use the location of the deng function and the third image presents isohypses of
tected maximum as the location of our pattern of intefthe estimated Gaussian weighting function superimposed
est. Thus, we have to examine the following combinegdyer the average face.
correlation outputy,. = Zle w;yi, Wherey; denotes The second constraint incorporated into the landmark
the correlation output (in the spatial domain) of thth  |ocalization procedure, referred to as dward constraint
PSEF filter,w; denotes the weighting coefficient of thein the remainder, is to limit the search space for the facial
i-th correlation outputy . denotes the combined correla-landmark of interest. When using this heuristic, we look
tion output, andk stands for the number of PSEF filtersfor the left eye only in the upper left quadrant of the im-
used ( < k < min (d,n)). From the above descriptions age and, similarly, we search for the right eye only in the
we can deduce thatif = 1 the combined correlation out- upper right quadrant of the image.
put is identical to the correlation output of the ASEF filter.
On the other hand, i > 1 we add additional informa- 4 Experiments and results

tion to the combined correlation output by including ad—T the landmark localizat d Vi
ditional PSEF filters into the localization procedure. Th 0 assess he landmark locajization procedure relying on

presented procedure requires one filtering operation f rSEF filters we make use of two face databases, namely,

each PSEF filter used. However, the computation can I%el dFEE\I/EVT c(j:iatatl)) ase g8] ?/Cd the Labre] Ie? F_alces ?n the
speeded up by exploiting the linearity of the combinationj /|d (LFW) database [9]. We extract the facial regions

procedure. Instead of combining the correlation output rom all images of the two databases using the Haar cas-

we simply combine all employed PSEF filters into Onecade classifier proposed by Viola and Jones [7]. After

; ; ; i . detecting the facial regions in all images, we select 640
single filter with enhanced localization capabilities,:i.e . ’
g P images from the LFW database and manually label the

k k locations of the left and right eye. Next, we produce 40
ye=Y wilfi®ox) =) wfi)®xe=f.®x:, (7) variations of the facial region of each of the 640 LFW
=t =t images by randomly shifting the location of the facial re-
wheref. = Y0 wif;, and>"F_ w; = 1. Inthe pre- gions by up to+5 pixels, rotating them by up te-15°,
sented equationt stands for the combined PSEF filterscaling them by up td.0 + 0.15 and mirroring them
and® denotes the convolution operator. Note that the loaround they axes. Through these transformations, we
calization procedure with the combined PSEF filter hagugment the initial set 0840 images to a set af5600
exactly, the same computational complexity as the procémages (of sizel28 x 128 pixels) and employ them for
dure relying on ASEF filters regardless of the number ofraining of the ASEF and PSEF filters.
PSEF filters used. For our experiments the weights of the For testing purposes we apply the same random trans-
individual PSEF filters were selected as: = ﬁ forms to 3815 images from the FERET database. Here,
An example of the visual appearance of the combinedre produce 12 modifications of each facial region, which
PSEF filter obtained with the presented weighting proceresults in45780 facial images that can be used for our
dure (after the sign ambiguity has been eliminated - se&ssessment. Prior to subjecting the face images to the
Section 4) is shown on the right hand side of Fig. 3. proposed localization procedure, all face images are sub-
3.2 Incorporating localization constraints jected to a log transform and normalized to zero mean

To improve upon the basic performance of the PSEF fiend unit variance. In the last step the images are weighted
with a cosine window to reduce the frequency effects of

ters we incorporate two constraints into the thefaciaH::mH1e edges encountered when applying the Fourier trans-

mark localization procedure. . -
. . : . form [6]. To measure the effectiveness of the localization
The first, which we will refer to as owgoft constraint : o i
rocedure we adopt the following criterion [10]:

in the remainder, represents a weighting function that r(s):
multiplied with the correlation output to give more weight g = ax (llie = riells ltre = 1rell)

||7'le - TreH

; ®)
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Figure 5: Results of preliminary experiments aimed at alleviat ..
ing the sign ambiguity of the computed PSEFs. =
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Interoccular distance criterion Interoccular distance criterion

wherel;. andl,.. denotes the location of the left and rightFigure 6: Comparison of different localization techniques with
eye found by the assessed procedureandr,. denote (right) and without (left) hard constraint.
the reference location of the left and right eye, respecrapje 1: Localization rates (in %) at different values of the lo-
tively, and the expressiojfr;. — r.|| represents the ref- calization criterion.
erence interocculal(;) distance. For our assessment we : : : :
examine the correct localization rate for different operat | Withouthard constraint| _ With hard constraint
ing points, i.e.n < A € {0.10,0.15,0.20,0.25}. We Haar ASEF PSER Haar ASEF PSEF
use the soft constraint in all of our experiments with cor- 010 | 44.7 661  830| 883 914 933
relation filters, and state explicitly when we also adopt 0-15| 472 678 847 913 944 958
the hard constraint. 020 | 475 686 855| 91.7 965 975

The goal of our first series of experiments is to al- _0-25| 477 691 86.0| 91.8 981 986
leviate the sing ambiguity of the computed PSEF filters.
To this end, we computd PSEF filters (corresponding only a few minutes to be trained, since the rely only on
to the 5 largest, non-zero eigenvalues of Eq. 5), deriv@ simple averaging operation. The PSEF filters require a
two filters from each of the 5 PSEF filters by multiply- few hours for their training, as this involves the computa-
ing them with+1 and—1, and normalizing the result to tion of a large correlation matrix and its decomposition.
zero mean and unit variance. With the 5 computed filFinally, the Haar classifier is known to have training times
ter pairs, we conduct localization experiments with thén the order of days or weeks.
45780 face images of the FERET database and plot th .
results in form of graphs as shown in Fig. 5. We select Conclusion

threshold ofA = 0.25 as the relevant operating point of e have presented a new class of correlation filters called
our localization procedure and based on this value detgsyincipal directions of Synthetic Exact Filters and applie
mine the appropriate sign of each of the five PSEF filterghem to the task of eye localization. We have shown that
Note here that more (or less) filters than 5 could be usggie filters outperform the recently proposed ASEF filters

for our experiments, the presented results, however, aggd the established Haar cascade classifier at this task.
enough to show the feasibility of our approach.

If we take a look at the presented results in Fig. 5, wikeferences
can see that in our case the best localization results gi§ B.v.K.v. Kumar, A. Mahalanobis, A. Takessian: Optimal
obtained with the first two filters being multiplied with - tradeoff circular harmonic function correlation filter meth-
+1 and the remaining filters being multiplied with1. ods providing controlled in-plane rotation response. IEEE
Furthermore, we can notice, that the best localization per- Trans. on Image Proc., vol. 9, no. 6, 1025-1034, 2000.
formance is obtained with the first PSEF filter, which in[2] V. Struc, J.Zganec-Gros, N. Pagé: Principal Directions
fact corresponds to an ASEF filter, while the remaining  0f Synthetic Exact Filters for Robust Real-Time Eye Local-
filters perform worse. ization, In: Proc. of BiolD, pp. 180-192, 2011.

Our second series of experiments comprises two typ@ R.A. Kerekes, B.V.K.V. Kumar: Correlatloq filters with
of tests. The first type does not rely on the hard con- controlled scale response. IEEE Transactions on Image

. . Processing, vol. 15, no. 7, 1794-1802, 2006.
straint while the second type does. The results for t ] C.F. Hester, D. Casasent: Mulitvariant technique for multi-

first type of experiments are shown on the left side of * 35 pat. rec. App. Opt., vol. 19, no. 11, 1758-1761, 1980.

Fig. 6, while the results of the second type of experimenig] A. Mahalanobis, B.V.K.V. Kumar, D. Casasent: Minimum

are shown on the right side of Fig. 6. Some numerical average correlation energy filters. Applied Optics, vol. 26,

results for different values oA are also summarized in no. 17, 3633-3640, 1987.

Table 1. Note that the proposed PSEF filters outperforii] D.S. Bolme, B.A. Draper, J.R. Beveridge: Average of syn-

both tested alternatives to eye localization, namely, ASEF  thetic exact filters. In: CVPR'09, pp. 2105-2112, 2009.

filters as well as the Haar cascade classifier. [7] P. Viola, M.J. Jones: Robust real-time face detection. Int. J.
In the third series of experiments we measured the ex. °f €OMP- Vis., vol. 57,137-154, 2004. _

ecution times needed for the localization procedure. T 1 P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss: The FERET

. : evaluation methodology for face-recognition algorithms.
best average time, computed by conducting the (left and |czp TPAMI, vol. 22, no. 10, 1090-1104, 2000.

right eye) localization procedure 10 times on all test im 9] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller: La-

ages, was 46.3 ms for the Haar classifier (25.1 ms with  peled Faces in the Wild. Technical Report 07-49, 2007.
the hard constraint) and 1.00 ms for the correlation filterd 0] O. Jesorsky, K.J. Kirchberg, R.W. Frischholz: Robust

(1.01 ms with the hard constraint). face detection using the Hausdorff distance. AVBPAOL,
As a final note let us say that the ASEF filters require  Springer LCNS-2091, pp. 90-95, 2001.




