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Abstract. We use renormalization as a tool to extract universal features of the NN inter-

action in quark and soliton nucleon models, having the same long distance behaviour but

different short distance components. While fine tuning conditions in the models make dif-

ficult to fit NN data, the introduction of suitable renormalization conditions supresses the

short distance sensitivity. Departures from universality are equivalent to extracting infor-

mation on the model nucleon structure.

1 Introduction

The meson exchange picture has played a key role in the development of Nuclear
Physics [1,2]. However, the traditional difficulty has been a practical need to rely
on short distance information which is hardly accessible directly but becomes
relevant when nucleons are placed off-shell. From a theoretical point of view this
is unsatisfactory since one must face uncertainties not necessarily linked to our
deficient knowledge at long distances and which are difficult to quantify. On the
other hand, the purely field theoretical derivation yields potentials which present
short distance singularities, thereby generating ambiguities even in the case of
the widely used One Boson Exchange (OBE) potential. Consider, for instance, the
venerable One Pion Exchange (OPE)NN → NN potential which for r 6= 0 reads

V1π
NN,NN(r) = τ1 · τ2σ1 · σ2W

1π
S (r) + τ1 · τ2S12W

1π
T (r) , (1)

where the tensor operator S12 = 3σ1 · x̂σ2 · x̂− σ1 · σ2 has been introduced and

W1π
S (r) =

mπ

3

f2πNN

4π
Y0(mπr) , W1π

T (r) =
mπ

3

f2πNN

4π
Y2(mπr) . (2)

Here Y0(x) = e−x/x and Y2(x) = e−x/x(1 + 3/x + 3/x2) and fπNN = mπgπNN/

(2MN); f2πNN/(4π) = 0.07388 for gπNN = 13.08. As we see, the OPE potential
presents a 1/r3 singularity, but it can be handled unambiguously mathematically
andwith successful deuteron phenomenology [3]. Nonetheless, the standardway
out to avoid the singularities in this and the more general OBE case is to imple-
ment vertex functions for the meson-baryon-baryon coupling (mAB) in the OBE
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potentials. This correspondins to a folding in coordinate space which in momen-
tum space becomes the multiplicative replacement

VmAB(q) → VmAB(q)
[
ΓmAB(q2)

]2
. (3)

where q2 = q2
0 −q2 is the 4-momentum. Standard choices are to take form factors

of the mono-pole [1] and exponential [2] parameterizations

Γmon
mNN(q2) =

Λ2 −m2

Λ2 − q2
, Γ

exp
mNN(q2) = exp

[
q2 −m2

Λ2

]
, (4)

fulfilling the normalization condition ΓmNN(m2) = 1. Due to an extreme fine-
tuning of the interaction, mainly in the 1S0 channel, OBE potential models have
traditionally needed a too large gωNN to overcome the mid range attraction im-
plying one of the largest (∼ 40%) SU(3) violations known to date. In our recent
works [4–9] we discuss how this problem may be circumvented with the help of
renormalization ideas which upon imposing short distance insensitivity sidestep
the fine tuning problem and allow natural SU(3) values to be adopted in such a
way that form factors and heavy mesons play a more marginal role. Contrarily to
what one might naively think, renormalization reduces the short distance depen-
dence provided, of course, removing the cut-off and the imposed renormalization
conditions are mutually compatible operations.

Of course, the extended character of the nucleon as a composite and bound
state of three quarks has motivated the use of microscopic models of the nucleon
to provide an understanding of the short range interaction besides describing
hadronic spectroscopy; quark or soliton models endow the nucleon with its fi-
nite size and incorporate basic requirements from the Pauli principle at the quark
level or as dictated by the equivalent topology [10–13]. While much effort has
been invested into determining the short range interactions, there is a plethora of
models and related approximations; it is not obvious what features of the model
are being actually tested. In fact, NN studies set the most stringent nucleon size
oscillator constant value bN = 0.518fm [13] from S-waves and deuteron proper-
ties which otherwise could be in a wider range bN = 0.4 − 0.6fm. This shows
that quark models also suffer from a fine tuning problem. In this contribution we
wish to focus on the common and universal patterns of the various approaches
and to show how these fine tunings can be reduced to a set of renormalization
conditions.

2 The relevant scales

From a fundamental point of view theNN interaction should be obtained as a nat-
ural solution of the 6-q system. However, in order to describe the NN interaction
it is far more convenient to study two 3-q clusters with nucleon quantum num-
bers, a procedure also applied in recent lattice QCD investigations of the nuclear
force [14,15]. NN scattering in the elastic region corresponds to resolve distances
about the minimal de Broglie wavelength associated to the first inelastic pion
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production threshold, NN → NNπ, and corresponds to take 2ECM = 2MN +mπ

yielding pCM =
√
mπMN = 360MeV which means λmin ∼ 1/

√
mπMN = 0.5fm.

This scale is smaller than 1π and 2π exchange (TPE) with Compton wavelengths
1.4 and 0.7fm respectively. Other length scales in the problem are comparable
and even shorter namely 1) Nucleon size, 2) Correlated meson exchanges and 3)
Quark exchange effects. All these effects are of similar range and, to some ex-
tent, redundant. In a quark model the constituent quark mass is related to the
Nucleon and vector meson masses through Mq = MN/Nc = MV/2 which for
Nc = 3 colours gives the estimateMq = 310 − 375MeV. Exchange effects due to
e.g. One-Gluon-Exchange are ∼ e−2Mqr since they correspond to the probability
of finding a quark in the opposite baryon. This follows from complete Vector Me-
son Dominance (for a review see e.g. [16]), which for the isoscalar baryon density,
ρB(r), and assuming independent particle motion yields

∫
d3xeiq·x〈N|ρB(x)|N〉 = 4π

∫∞

0

dr r2|φ(r)|2j0(qr) ∼
M2

V

M2
V + q2

(5)

suggesting a spectroscopic factor φ(r) ∼ e−MV r/2MV/
√
4πr at large distances.

As we have said and we will discuss below these effects are somewhat marginal
but if they ought to become visible they should reflect the correct asymptotic be-
haviour. In the constituent quark model the CM motion can be easily extracted

assuming harmonic oscillator wave functions, φ(r) ∼ e−b2r2/2 [10,11,13] which
yield Gaussian form factors falling off much faster than the experimental ones.
Skyrme models without vector mesons yield instead topological Baryon densi-
ties ρB(r) ∼ e−3mπr/r7[12] corresponding to the outer pion cloud contributions
which are longest range but pressumably yield only a fraction of the radius. In
any case quark-exchange looks very much like direct vector meson exchange po-
tential which is ∼ e−MV r.

3 Chiral quark soliton model

Most high precision NN potentials providing χ2/DOF < 1 need to incorporate
universally the One-Pion-Exchange (OPE) potential (including charge symme-
try breaking effects) while the shorter range is described by many and not so
similarly looking interactions [17]. This is probably a confirmation that chiral
symmetry is spontaneously broken at longer distances than confinement, since
hadronization has already taken place. It also suggests that in a quark model
aiming at describing NN interactions the pion must be effectively included. Chi-
ral quark models accomplish this explicitly under the assumption that confine-
ment is not crucial for the binding of π, N and ∆. Pure quark models including
confinement or not have to face in addition the problem of recovering the pion
from quark-gluon dynamics. In between, hybrid models have become practical
and popular [10,11,13]. As mentioned, all these scales around the confinement
scale are mixed up. Because these effects are least understood and trigger side
effects such as spurious colour Van der Waals forces arising from Hidden color
singlet states [88]A states [18,19] in the (presumably doubtful) adiabatic approxi-
mation, we will cavalierly ignore the difficulties by remaining in a regime where
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confinement is not expected to play a role and stay with standard chiral quark
models.

While both the constituent chiral quark model and the Skyrme soliton model
look very disparate the Chiral Quark Soliton Model embeds both models in the
small and the large soliton limit respectively 1. We analyze the intuitive non-
relativistic chiral quark model (NRCQM) explicitly and comment on the soliton
case where similar patterns emerge. The comparison stresses common aspects
of the quark soliton model pictures which could be true features of QCD. While
the long distance universality between both NRCQM and Skyrme soliton model
NN calculations may appear somewhat surprising this is actually so because in a
large Nc framework both models are just different realizations of the contracted
spin-flavour symmetry [23].

4 The non-relativistic chiral quark model

To fix ideas it is instructive to consider the chiral-quark model which corresponds
to the Gell-Mann–Levy sigma model Lagrangean at the quark level [24] (the non-
linear version suggested in Ref. [25] will be discussed below),

L = q̄ (i∂/− gπqq(σ+ iγ5τ · π))q+
1

2

[
(∂µσ)2 + (∂µπ)2

]
−U(σ, π) , (6)

where U(σ,π) = λ2(σ2 + π2 − ν2)2/8 − fπm
2
πσ is the standard Mexican hat po-

tential implementing both spontaneous breaking of chiral symmetry as well as
PCAC yielding the Goldberger-Treiman relationMq = gπqqfπ = gσqqfπ at the
constituent quark level. When this model is interpreted from a gradient expan-
sion of the NJL model quarks are regarded as valence quarks whereas kinetic
meson terms arise from the polarization of the Dirac sea and m2

σ = 4M2
q +m2

π,
which forMq = MN/3 = MV/2 yields mσ = 650 − 770MeV. In the heavy con-
stituent quarks limit the model implies 1π and 1σ exchange potentials,

V1π
qq ′(r) = −

g2
πqq

4M2
q

τq · τ ′q
∫
d3p

(2π)3
eip·r (σq · p)(σq ′ · p)

p2 +m2
π

,

V1σ
qq ′(r) = g2

πqq

∫
d3p

(2π)3
eip·r 1

p2 +m2
σ

= −
g2

πqq

4π

e−mσr

r
, (7)

whence baryon properties can be obtained by solving the Hamiltonian

H =

Nc∑

i=1

[
p2

i

2Mq

+Mq

]
+

∑

i<j

V(xi − xj) =
P2

2M
+NcMq +Hint , (8)

1 Within the large Nc framework the difference corresponds to a saddle point approx-

imation around a trivial or non-trivial background. The question which regime is the

appropriate one is a dynamical issue [20,21]. Likewise, when the soliton is large, quarks

are deeply bound and the topological soliton picture of Skyrme sets in, giving the ap-

pearance of a confined state (where colour Van der Waals forces cannot take place). The

soliton of the Spectral Quark model does not allow this interpretation as baryon charge

is never topological [22].
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where the total momentum P =
∑Nc

i=1 pi/Nc and the intrinsic Hamiltonian have
been introduced. Due to Galilean invariance thewave function of amoving baryon
can be factorized

ΨB(x1, . . . , xNc
) = φ(ξ1, . . . , ξNc−1)eiP·R , (9)

with R =
∑Nc

i=1 xi/Nc the CM of the cluster and ξi = xi − R/Nc intrinsic coordi-
nates,

∑
i ξi = 0. We will assume that this complicated problem has been solved

already Ref. [26]. For large Nc the Hartree mean field approximation

ΨB(x1, . . . , xNc
) =

∏Nc

i=1 φαi
(xi)χc might be used [27]). For separated hadrons

the interaction between quark clusters A and B can be written as sum of pairwise
interactions which, for elementary πqq and σqq vertices, reads

Vint(x1, . . . , xNc
; y1, . . . ,yNc

) =
∑

i,j

Vσ+π
ij (xi − yj)

=

∫
d3q

(2π)3

∑

i,j

Vσ+π
ij (q)eiq·(xi−yj) . (10)

Switching to intrinsic coordinates variables xi = ξi +R/2 and yj = ηj −R/2with∑
i ξi =

∑
j ηj = 0 where R is the distance between the CM of each cluster, we

have

V1π(R) =
g2

πqq

M2
q

∫
d3q

(2π)3
eiq·R qkqk

q2 +m2
π

Gka
A (q)Gka

B (q)∗ , (11)

V1σ(R) = g2
πqq

∫
d3q

(2π)3
eiq·R 1

q2 +m2
σ

ρA(q)ρB(q)∗ , (12)

where the spin-isospin density and scalar densities are given by (e.g. cluster A)

Gka
A (q) =

1

2

Nc∑

i=1

σk
i τ

a
i e

iξi·q , ρA(q) =
1

Nc

Nc∑

i=1

eiξi·q , (13)

respectively. Note that the scalar and Baryon densities as well as the pseudoscalar
and axial densities coincide unlike the relativistic case. That means that within
the approximations one should have MS = MV . Thus, the total Hamiltonian is
written as

H = HA,int +HB,int + Vint(R) +
P2

2MT

+
p2

2µ
. (14)

Galilean invariance implies that inertial masses are MT = 2NcMq and
µ = NcMq/2. Introducing the two independent cluster complete states
HA,intφA,n = MA,nφA,n and HB,intφB,m = MB,mφB,m the two-clusters CM
frame unperturbed wave function is just a product

Ψ
(0)

An,Bm
(1, 2, 3; 4, 5, 6) = φA,n(1, 2, 3;R/2)φB,m(4, 5, 6; −R/2)eiQ·R , (15)

where Q is the relative momentum between the two clusters. The above prob-
lem is usually handled by Resonating Group Methods [10,11,13,28]. We analyze
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this coupled channel scattering problem perturbatively where the transition po-
tentials, defined as VAnBm;AkBl

(R) = 〈φA,nφB,m|Vint|φA,kφB,l〉, have a familiar
folding structure which in the case of the pion reads

V1π
AnBm;AkBl

(R) =
g2

πqq

M2
q

∫
d3q

(2π)3

qiqj

q2 +m2
π

eiq·R〈An|Gia(q)|Ak〉〈Bm|Gja(−q)|Bl〉 .

(16)

5 Long distance limit and the need for renormalization

At long distances the leading singularities q = imπ and q = imσ dominate [29,30].
Using that |〈N|ρ(q)|N〉|2 is an even function of q we get the structure for the
NN → NN potentials

Vσ(R) = g2
πqqN

2
c

∫
d3q

(2π)3
eiq·R |〈N|ρ(imσ)|N〉|2

q2 +m2
σ

+ C0 δ
(3)(R)

+C2(−∇2 +m2
σ)δ(3)(R) + . . .

= −
g2

σNN

4π

e−mσr

r
+ distributions (17)

and Eq. (1) for the OPE contribution. Here, the couplings are given by gσNN =

Ncgσqq|ρ(imσ)| and gπNN = NcgAgπqq|ρ(imπ)| where gA = (Nc+2)/3 [31]. As-
suming |ρ(imπ)| ∼ |ρ(0)| = 1 one has the Goldberger-Treiman relation gAMN =

gπNNfπ at the nucleon level. Thus, at long distances finite size effects are rep-
resented as an infinite sum of delta functions and derivatives thereof. However,
any finite truncation will produce a negligible contribution at any non-vanishing
distance. In a sense, this result is reminiscent of the Gauss theorem for charged
objects with a sharp non-overlapping boundary; the interaction is mainly due to
the total charge and regardless on the density profiles of the system. Only an in-
finite number of terms may yield a finite size effect. Note that the coefficients of
the contact interactions are fixed numbers having a meaning perturbatively. How-
ever, if one tries to play with them to characterize finite resolution effects (nucleon
size and potential range) in a model independent way non-perturbatively (solv-
ing e.g. the Schrödinger equation) important restrictions arise. Unlike the δ ′s,
the OPE short distance 1/r3 singularity is not located in a compact region, i.e.
is not killed by taking a finite support test function, and contributes to all arbi-
trarily small distances. Thus, one can effectively drop the derivatives of distri-
butions. This simple-minded argument was advanced in Ref. [32] and explicitly
verified in momentum space by taking C0 and C2 as real counterterms in the
Lippmann-Schwinger equation in Ref. [29]; either C2 becomes irrelevant or the
scattering amplitude does not converge. Therefore, we represent C0 as an energy
independent boundary condition. The renormalization procedure in coordinate
space generally corresponds to 1) fix some low energy constants such as e.g. the
scattering length for s-waves, α0, at zero energy as an independent variable of the
potential, 2) integrate in down to an arbitrarily small cut-off radius rc, 3) con-
struct an orthogonal finite energy state by matching log-derivatives at rc and 4)



12 E. Ruiz Arriola and A. Calle Cordón

integrating out generating a phase-shift δ0(p) with a prescribed scattering length
α0. This prescription is the renormalization condition and the procedure of integrat-
ing in and out corresponds to evolving along the renormalization trajectory. The
crucial aspect is that short distance insensitivity is implemented. The π+σmodel
and OBE extensions are analyzed in detail in Refs. [4,5,9] where form factors after
renormalization are found to be marginal.

6 Renormalization of Spin-flavour Van der Waals forces

The non-linear chiral quark model [25] corresponds to take mσ → ∞, reducing
to just OPE. The results for the phase shifts in the lowest partial waves are pre-
sented in Fig. 1. Note the bad 1S0 phase. To improve on this the long distance
OPE transition potential is taken

VAB;CD(R) = (τAB · τCD)
{
σAB · σCD[W1π

S ]AB;CD(R)

+[S12]AB;CD[W1π
T ]AB;CD(R)

}
, (18)

where the tensor term is defined as S12 = 3(σAB · R̂)(σCD · R̂) − σAB · σCD and

[W1π
S,T ]AB;CD(R) =

mπ

3

fπACfπBD

4π
Y0,2(mπR) (19)

Note that also here there is a 1/r3 singularity. In this particular form the result-
ing potential is model independent [33] 2. In general, this requires solving a cou-
pled channel problem [34,35] but if we are interested in the elastic channel with
TCM = mπ < ∆ ≡ M∆ − MN = 293MeV we may take into account the effect
of the closed channels as sub-threshold effects in perturbation theory. We neglect
the exponentially ∼ e−2Mqr suppressed quark exchange contribution. In obvious
operator-matrix notation and restricting to the two particle ground |0〉 = |NN〉
and excited |n〉 = |N∆〉, |∆N〉, |∆∆〉 in-going and out-going channels and resol-
vent G0,k(E) = (E−H0,k)−1 with H0,k = P2/(2µk) + Ek, we get for the T-matrix

(T)nm = (V)nm +
∑

k

(V)nkG0,k(V)k,m + O(V3) , (20)

with E0 = 2MN,E1,2 = MN + M∆ and E3 = 2M∆ the corresponding thresh-
olds. Thus, separating the elastic term k = 0 explicitly from the sum we get the
effective potential in the elastic scattering channel corresponding to higher pion
exchanges, wich, when iterated to second order yields the elastic scattering am-
plitude T00. Specifically, defining the momentum space potential Vnm(k ′ − k) ≡
2 The corresponding couplings are fπAB = |FπAB(imπ)| where the transition form fac-

tors are defined as FπAB(q2)χ
†
AT

aSiχB = 〈A|Gia(q)|B〉. In the SU(4) ⊗ SUc(Nc) quark

model [31] and in the chiral limit they fulfill fπ∆∆/fπNN = 1/5 and fπN∆/fπNN =

3[(Nc − 1)(Nc + 5)/2]
1
2 /(Nc + 2). The ∆ → Nπwidth in the Born approximation yields

f2πN∆/(4π) = 0.324.
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〈k ′, n|V |k,m〉 =
∫
d3RVnm(R)ei(k−k ′)·R we get

V̄00(k ′ − k, E) = V00(k ′ − k) +
∑

n6=0

∫
d3q

(2π)3

V0n(k ′ − q)Vn0(q− k)

E− q2/2µn − En

+ O(V3) (21)
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Fig. 1. Renormalized (eigen) phase shifts for the OPE and ∆-Born-Oppenheimer potentials

as a function of the CM np momentum p in the spin singlet 1S0 (one counterterm) and

triplet 3S1 −3 D1 (three counterterms) channels compared to averaged Nijmegen poten-

tials [17]. We take f2πNN/4π = 0.07388[17] and fπN∆/fπNN = 6
√
2/5.

which, expectedly, depends on the energy. Evaluating on-shell atE = E0+p2/2µ0,
assuming a large splitting p ≪

√
∆M∆ = 600MeV and neglecting the kinetic

energy piece in theN∆ cannel, we get the perturbative and local optical potential
in coordinate space

V̄1π+2π+...
NN;NN (R) = V1π

NN,NN(R) +
2|V1π

NN,N∆(R)|2

MN −M∆

+ O(V3) (22)

which is the Born-Oppenheimer approximation to second order which generates
more complicated spin-isospin structures than just OPE including a central force,
all of them ∼ e−2mπR and resembling TPE. Note that only the intermediate N∆
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state contributes. The above result implies an attractive and short distance sin-
gular potential since V1π

NN,N∆(R) ∼ g2
A/(f

2
πR

3) and hence the potential becomes
singular V̄NN,NN ∼ −g4

A/(∆f
4
πR

6). Actually, Eq. (22) was evaluated in the Skyrme
soliton model within the Heitler-London approximation, i.e. the product ansatz
in the coupled channel space [36,37] providing the long sought mid range attrac-
tion [12]. 3 We reproduce the same results in the quark model calculation. The
potential found using Feynman graph techniques [39] looks very similar with
identical short distance singular behaviour identifying hA/gA = fπN∆/2fπNN.
Note that we leave out background πN scattering which correspond to triangle
and box TPE diagrams at the quark level. The renormalization procedure as well
as the necessary counterterms in the general coupled channel singular potentials
has been explained in much detail in Ref. [32,40]. The results for the phase shifts
using Eq. (22) in the lowest partial waves are depicted in Fig. 1. In any case the de-
scription looks extremely similar (including deuteron properties) to the renormal-
ization [41] of more sophisticated field theoretical potentials [39]. Convergence is
achieved already at rc ∼ 0.5fm.

The multiplicative structures of Eq. (22) reflect spin-flavour excitations and
remind of the analogous Van der Waals forces in atomic systems. They hold liter-
ally even after inclusion of form factors with folded potentials (although ΛπNN,
ΛπN∆ and Λπ∆∆ are not necessarily identical) which remove the singularity. This
is not equivalent to regularize the effective potential as a whole through subtrac-
tions. We have checked that form factors after renormalization become marginal in
agreement with the OBE analysis [9].

7 Wigner SU(4) as a long distance symmetry

If the tensor force component of the qq potential, Eq. (7), is neglected one has in-
variance under the spin-isospin SU(4) group with the quarks in the fundamental
4-dimensional representation, q = (u ↑, u ↓, d ↑, d ↓). In the three quark sys-
tem we have the spin-flavour states 4 ⊗ 4 ⊗ 4 = 4A ⊕ 20S ⊕ 20M1

⊕ 20M2
. Due

to colour antisymmetry only the symmetric state survives which spin-isospin,
(S, T), decomposition is 20S = (1

2
, 1

2
)⊕ (3

2
, 3

2
) = N⊕∆ yieldingN−∆ degeneracy.

SinceM∆−MN is large at nuclear scales, one might still treat the Nucleon quartet
N = (p ↑, p ↓, n ↑, n ↓) as the fundamental rep. of the old Wigner-Hund SU(4)

symmetry which implies spin independence, in particular that V1S0
(r) = V3S1

(r)

at all distances suggesting that phases δ1S0
(p) = δ3S1

(p) in contradiction to data
(see e.g. Fig. 1). The amazing finding of Ref. [6] was that assuming identical po-
tentials V1S0

(r) = V3S1
(r) for r > rc → 0 one has

p cot δ1S0
(p) =

α1S0
A(p) + B(p)

α1S0
C(p) + D(p)

, p cot δ3S1
(p) =

α3S1
A(p) + B(p)

α3S1
C(p) + D(p)

, (23)

where the functions A(p), B(p), C(p) and D(p) are identical in both channels, but
the experimentally different scattering lengths α1S0

= −23.74fm and α3S1
=

3 Molecular methods used in the Skyrme model [36,37,12] are replaced by evaluating

model form factor yielding regularized Meson Exchange potentials [38] where the only

remnant of the model is in the meson-form factors.
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5.42fm yield quite different phase shifts with a fairly good agreement. Thus,
Wigner symmetry is broken by very short distance effects and hence corresponds
to a long distance symmetry (a symmetry broken only by counterterms). Moreover,
largeNc [23] suggests that Wigner symmetry holds only for even L, a fact verified
by phase shift sum rules [6]. In Refs. [7,8] we analyze further the relation to the
old Serber symmetry which follows from vanishing P-waves in S = 1 channels,
showing how old nuclear symmetries are unveiled by coarse graining the NN in-
teraction via the Vlowk framework [42] and with testable implications for Skyrme
forces in mean field calculations [43].

The chiral quark model is supposedly an approximate non-perturbative de-
scription, but perturbative gluons may be introduced by standard minimal cou-
pling [13], i∂/ → i∂/ + g/Aa · λc

a/2 with λc
a the N2

c − 1 Gell-Mann colour matrices.
A source of SU(4) breaking is the contact one gluon exchange which yields spin-
colour chromo-magnetic interactions (Sij is the tensor operator),

VOGE =
1

4
αs

∑

i<j

(λc
i · λc

j )

{
1

rij
−

π

4mimj

[
1+

2

3
σi · σj

]
δ(3)(rij) −

3

4mimjrij
Sij

}

(24)

breaking the ∆ −N degeneracy. This short distance terms break also the 1S0 and
3S1 degeneracy of the NN system providing an understanding of the long dis-
tance character of Wigner symmetry. Taking the Wigner symmetric zero energy
state and perturbing around it, the previous argument suggests that 1/α3S1

−

1/α1S0
= O(M∆ −MN) with a computable coefficient.

8 Conclusions

Chiral Quark and Soliton models while quite different in appearance provide
some universal behaviour regardingNN interactions. If the asymptotic potentials
coincide, the main differences in describing the scattering data are due to a few
low energy constants which in some cases are subjected to extreme fine tuning of
the model parameters. The success of the model at finite energy is mainly reduced
to reproducing these low energy parameters.
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506078.
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