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Abstract: Irmen and Thisse (1998) demonstrate that two firms competing with multi-
characteristic products differentiate them in one characteristic completely, while keeping 
them identical in all others. This paper shows that their min-…-min-max differentiation 
result is not robust with respect to the number of firms. A market setting that replicates 
their result in a duopoly, but fails to do so in a three firm oligopoly is identified. Sym-
metric pure strategy equilibrium with three firms differentiating their products in two 
dimensions, but not completely in either of them, is a novel medium-medium differen-
tiation result.
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JEL classification: L11, L13, R39

Three firms on a unit disk market: intermediate product 
differentiation

Models of discrete location choice commonly interpreted as modeling product differ-
entiation, as well, have been explored in a variety of contexts.2 Irmen and Thisse (1998) 
provide the most comprehensive study of two firms competing with their products in an 

1 University of Ljubljana, Faculty of Economics, Ljubljana, Slovenia, e-mail: aljosa.feldin@ef.uni-lj.si
2 ReVelle and Eiselt (2005), and ReVelle, Eiselt, and Daskin (2008) provide a comprehensive survey of the field 
and collect an extensive bibliography covering various aspects and problems in this area, respectively. A part 
of the literature is interested in the extent of product differentiation that firms should employ, and the number 
of product dimensions they should use doing that. Pioneering work with a linear duopoly model by Hotelling 
(1929) offered a principle of minimum differentiation. Hotelling’s contribution was revisited 50 years later, 
when d’Aspremont et al. (1979) showed that there is no price equilibrium in pure strategies when two firms 
are located too closely to each other. Using quadratic instead of linear transportation costs, they find unique 
market equilibrium with firms maximizing product differentiation. The direct demand effect that makes 
a firm move towards its opponent to capture its demand is followed by the opponent’s price cut. The latter 
overrides extra profit gained with new demand from moving towards the opponent. The negative strategic 
effect of igniting stronger competition induces firms to differentiate their products as much as they can. As it 
was shown later, a maximum differentiation result rests both on the form of consumers’ utility function (e.g. 
Economides, 1986), and the uniform distribution of their tastes within the product characteristics space (e.g. 
Neven, 1986, Tabuchi & Thisse, 1995). 
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n-dimensional product space.3 They investigate a unit hyper-cube market that is uni-
formly populated by consumers and served by two firms. When consumers incur disu-
tility that is quadratic in distance between a product variety that they would prefer the 
most and the variety bought, they show that it is always optimal for the two firms to 
differentiate their products in one dimension only, and doing so completely. This type of 
practice is referred to as min-…-min-max product differentiation.

This paper departs from the Irmen in Thisse model in that it studies a market with three 
firms in a two-dimensional product space. We present a unit disk market uniformly 
populated by consumers that are served by firms operating one store each. Firms choose 
respective store locations in the first stage and compete with prices in the second. There 
are some authors that explore how competition between more than two firms affects 
product differentiation. Salop (1979) and Economides (1989) look at a circular city model 
with location equilibria that place firms equidistantly. Economides (1993) provides price 
equilibrium characterizations for every location configuration in a linear city model, and 
Brenner (2005) presents location equilibria for different number of firms (from three to 
nine) in the same type of the market. Brenner shows that firms depart from a maximum 
differentiation result in that the store locations move towards the middle of the market.

We address two questions. First, will more than two firms in a bounded, two dimen-
sional product characteristics space differentiate their products less than completely, as 
we might suspect from Brenner (2005)? Brenner shows that a firm with two neighbors 
does not cut prices as drastically as in a duopoly case when it is approached by one of 
the neighbors. The reason is that it does not want to alter its optimal revenues from the 
other side, where it neighbors a firm that did not deviate from an equilibrium position. 
Consequently, in equilibrium even the two firms on the two outskirts of the city move to-
wards the center. The direct demand effect outweighs the strategic price effect and extent 
of product differentiation is reduced. There are two reinforcing effects facilitating Bren-
ner’s result. First, the area of confrontation between an intrusive firm and its victim is a 
single point, a marginal consumer between the two firms. Since the area of confrontation 
between the victim and its other side neighbor is of the same size, the incentive to cut 
its price to counter the intruder is offset in a large part by a lower price and suboptimal 
profits on the other side. Second, the other side neighbor anticipates lower prices; it re-
duces its price as well. Hence, a reduction of victim’s price does not translate in a sizeable 
increase of its demand on the other neighbor’s side and is not profitable. Consequently, 
a cut in a victim’s price is not large enough to keep the intrusive firm from moving in to 
capture a part of its demand. Consequently, firms locate closer to each other. The role of 
the two effects we have described is less obvious in our case of firms competing in two 
dimensions. Market configuration may be such that a firm that moves its store does that 
in a direction of two and not just one neighbor. The firms’ demands are now delineated 
by line segments of consumers that are indifferent between buying from any of the two 

3 Irmen and Thisse are not the first to explore markets where consumers care about more than one product 
characteristic. Neven and Thisse (1990) and Tabuchi (1994) were the first to show that in a two dimensional 
product characteristics space two firms will never find it optimal to differentiate their products fully. There are 
equilibria in which products are completely differentiated along one dimension and identical in the other. 
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neighboring firms. A confrontation frontier for an intrusive firm may hence be longer 
than is a line segment between respective neighbors fighting the intruder. This means 
that a price cut by the neighbors does not necessarily be as pronounced as it was in a 
one-dimensional case but may still keep the intrusive firm away. As a result, it might be 
that firms stay on the outskirts of the market. On the other hand, we might see a free-
rider effect, meaning that firms under attack would count on each other to counter the 
intruder with lower prices. This might lead to a price cut that is insufficient to keep the 
intruder on the edge of the market.

Another question is whether firms find it optimal to differentiate their respective prod-
ucts in more than one dimension in the first place. If the market was unbounded and 
consumers’ reservation prices finite, the answer is obviously positive. With a bounded 
market, the answer is not imminent and might depend on the shape of the market in 
general. We expect that firms will find it beneficial to leave the congested competition in 
one product characteristic at some point and will choose to differentiate their products 
in another one as well. Swann (1990) explores such a process with a simple model and 
simulations. Whenever the field of competition becomes too dense at least one firm en-
dogenously finds it optimal to introduce a new product attribute. 

We first show that maximum differentiation in one dimension – and no differentiation 
in the other (Irmen and Thisse, 1998) – remains optimal in a duopoly. In our setting 
this means that the two firms position their stores on the perimeter of the disk, exactly 
opposite from each other. We then present two novel results. An oligopoly with three 
firms competing on the same market facilitates a pure strategy subgame perfect Nash 
equilibrium of our location-price game. The equilibrium has all three firms located at the 
same distance from the center of the disk, equidistant from each other. That means that 
we observe differentiation in two product characteristics, a result that extends the exist-
ent literature. Furthermore, firms do not choose full differentiation, but move inward, 
towards the center of the disk considerably. We find medium-medium type of product 
differentiation in a setting that yields a min-max differentiation result in a duopoly. This 
means that the conjecture based on Brenner (2005), given above, carries over to markets 
with more than two competitors and more than just one product characteristic. When 
firms are located close to the perimeter of the market, the positive demand effect of a 
radial deviation towards the center outweighs the negative strategic effect of rivals de-
creasing their prices.

Another interesting aspect of the model is that, while in a duopoly a social planner would 
have firms differentiating their products less extensively, the result reverses in a three-
firm oligopoly. Hence, some cooperative behavior or regulation on product specifica-
tions would be beneficial both to firms and to society as a whole.

The organization of the paper is as follows. We set up our model in Section 1, and present 
our results for a duopoly and a three-firm oligopoly in Sections 2 and 3, respectively. 
Section 4 considers welfare issues, and we make our conclusions in Section 5. Proofs of 
Lemmas and Propositions and all necessary derivatives are deferred to the Appendices.
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1.	 The model

We use the classical spatial model of an oligopoly. Consumers of a total mass π are uni-
formly distributed on a unit disk.4 Each consumer has a unit demand for a homogeneous 
good produced by n firms on the market. We explore configurations in which all firms 
are at the same radial distance from the origin, R. Specifically, the firms are located at 
Li=(R,φi), i = 1,…, n. Firm 1 is always a counter-clockwise direction neighbor of Firm n, 
while Firm n−1 is a clockwise direction neighbor of Firm n. Firms charge pi, i = 1, …, 
n, per unit of the good. If a consumer residing at point x buys the good from Firm i, she 
derives utility: 
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L
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*

=(R, 0) 

L
2
=(r, φ) 

A=(1,α) 

B=(1,β) 

O 

z≡α −β

. A natural candidate for 
equilibrium configuration has firms positioned at an equal distance from the origin, 
equidistantly along the circle they occupy. Specifically, we explore locations: L1

*= (R, –p 
+ –2n p), L2

* = (R, –p + –4n p)), … , and Ln
* = (R, p).

2.	 Two firms

We first derive market equilibrium in a duopoly. Here we show that min-max result 
derived by Irmen and Thisse (1998) is also optimal strategy in our setting. In our setting 
that means that firms locate their stores on the perimeter of the disk, symmetrically 
across the origin. We search for an equilibrium that is symmetric in firms’ locations with 
Figure 1 showing a possible off-equilibrium configuration L1

*= (R,0) and L2 = (r,φ). 

4 Polar symmetry is used to avoid non-differentiable demand functions that arise in a rectangular market 
when a line of consumers indifferent between buying from two neighboring stores touches the corner of a 
market. Moreover, there is no symmetry to exploit in the market with three firms on a square.
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Figure 1: Configuration of the market, two firms.

Line AB in Figure 1 represents consumers that are indifferent between buying a product 
from either of the two firms given their locations and product prices. AB is perpendicu-
lar to the line connecting firms’ locations L1

* and L2. It is closer to the firm that sets the 
higher of the two respective prices. AB crosses the perimeter of the disk at angles α and 
β. Firm 1’s demand is the area between α and β, (α−β)/2, reduced by the area of a tri-
angle ABO, which is 
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The first term on the right hand side (RHS henceforth) of both (3) and (4) is zero due to 

profit maximization with respect to p
2
 in the second period, so we are left with the direct 

(demand) effect and indirect (strategic) effect of each move, which are the first and second terms 

in parentheses, respectively. We first derive the demand and strategic effects of a small radial 

move on Firm 2’s profit.  
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The first term on the right hand side (RHS henceforth) of both (3) and (4) is zero due to 

profit maximization with respect to p
2
 in the second period, so we are left with the direct 

(demand) effect and indirect (strategic) effect of each move, which are the first and second terms 

in parentheses, respectively. We first derive the demand and strategic effects of a small radial 

move on Firm 2’s profit.  
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the origin. To see this, we look at respective effects deviations in radial and polar direc-
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The first term on the right hand side (RHS henceforth) of both (3) and (4) is zero due to 

profit maximization with respect to p
2
 in the second period, so we are left with the direct 

(demand) effect and indirect (strategic) effect of each move, which are the first and second terms 

in parentheses, respectively. We first derive the demand and strategic effects of a small radial 

move on Firm 2’s profit.  
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Figure 2: Firm 2’s profits given the location of its store.
Source: Own calculations.

We now state our first result, which links this work to the existent literature of two firms 
competing in a multi-characteristic product space. This gives us a valid reference point 
with which to compare our subsequent results. 

Result 1: Two firms positioning their stores on the perimeter of the disk, symmetrically 
across its origin in the first stage of the game, and setting p=π in the second is a subgame 
perfect Nash equilibrium of the game.

This finding is in the spirit of Neven and Thisse (1990), Tabuchi (1994), and Irmen and 
Thisse (1998). Two firms offer products that are fully differentiated in one characteristic, 
while identical in the other.

3.	 Three firms

We add another firm to the model and search for symmetric equilibrium. We find that 
firms separate their stores in both dimensions, and interestingly, do not choose to locate 
them on the perimeter anymore, but relocate them towards the origin noticeably.

Given locations L1
* = (R,−π/3), L2

* = (R,π/3), and L3 = (r,φ), firms compete in prices, p1, p2, 
and p3. A particular market configuration is shown in Figure 3. 
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Figure 3: Configuration of the market, three firms.

Store locations and prices define the boundaries of market areas covered by firms. There 
are three line segments, DA, DB, and DC, representing buyers indifferent between buy-
ing from Firms 1 and 2, Firms 2 and 3, and Firms 3 and 1, respectively. These segments 
are needed in determining the demand functions firms face. They all join in one point, 
D, which is due to the fact that the delineating lines must be straight. Point D = (x, y) 
represents a consumer indifferent between buying from any of the three firms. Points 
A = (1, α), B = (1, β), and C = (1, γ) stand for consumers on the perimeter indifferent 
between buying from respective firms. With the knowledge of x, y, α, β, and γ, which, as 
well as p1, p2, and p3, are all functions of r, f, and R, we can write the demand functions 
firms face.5 Firm 1’s demand equals the area of the disk between α and γ reduced for the 
area covered by triangles OCD and ODA. The other two firms’ demands are obtained 
similarly:

5 For the derivation of x, y, α, β, and γ see the proof of Lemma 5.
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The sine of the difference rule and definitions of x and y yield:

(5)

(6)

(7)

The firms’ profit functions are:

(8)

Second-stage optimal prices are derived from the system of necessary conditions ob-
tained from these profits. The system is nonlinear and its general analytical solution for 
any possible Firm 3’s location, L3, is therefore out of reach. However, we are looking for 
symmetric equilibrium, so the derivation of optimal prices is straightforward.

Lemma 5: When three firms in the first stage of the game position their stores R away 
from the origin, equidistantly from one another, the optimal Nash equilibrium price

they charge in the second stage is 
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Again, the first term in RHS of both (9) and (10) equals zero. The first term in parentheses 

in both equations represents the direct or demand effect of the deviation in a respective variable, 

while the last two represent the indirect or strategic effects of such a deviation through 

competitors’ prices. We show that there exists a distance from the origin, R, such that if firms 

locate there equidistantly from one another, the necessary conditions for symmetric equilibrium 
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6 If Firm 3 located its store at the top of the disk, the configuration of the demands would have changed and 
quantities defined in Figure 3 would not be valid anymore.
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Again, the first term in RHS of both (9) and (10) equals zero. The first term in parentheses 
in both equations represents the direct or demand effect of the deviation in a respective 
variable, while the last two represent the indirect or strategic effects of such a deviation 
through competitors’ prices. We show that there exists a distance from the origin, R, 
such that if firms locate there equidistantly from one another, the necessary conditions 
for symmetric equilibrium are satisfied. The derivatives we need to determine the de-
mand and strategic effects in (9) are collected in Lemma 6.
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Part (a) considers the direct demand effect. If R > 0.25 Firm 3 would like to position its store 

closer to the origin as far as this effect is concerned. This way it captures the opponents’ demand 

around the center of the disk. For R < 0.25 the effect reverses, Firm 3 loses demand to 

competitors and would like to move away from the origin.
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Part (b) quantifies the positive effect competitors’ prices have on the demand captured by 

Firm 3. 

The most demanding task is to evaluate the effect Firm 3’s radial deviation has on 

opponents’ prices (part (c)). In order to simplify a very complex exercise we exploit the 

symmetry of the problem extensively. It is clear that replies in prices of both competitors must be 

identical when Firm 3 moves along the vertical axis. We therefore use only necessary conditions 

for profit maximization with respect to own prices for Firms 2 and 3 (A.9-A.10) in the proof of 

part (c). It can be readily verified that drdp
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 are positive for any 

R∈[0,1], that is, when Firm 3 moves towards the origin, prices decrease as competition 

toughens, and vice versa. 

These results, when compared to those for a duopoly (Lemma 2), offer some idea for what 

follows. Suppose all three firms were located on the perimeter of the disk, and Firm 3 

contemplated a small radial move towards the origin. The line of marginal consumers affected by 

this move is of length two (BO and CO; see Figure 3). The same is true for the duopoly case. 

Hence, direct demand effects should be very similar in both cases. They are −1 in the duopoly 

and −0.87 with three firms.
7

 Furthermore, we derive the elasticity of the firm’s demand with 

respect to its radial distance from the origin when all the firms are on the perimeter of the disk. 

The results are −0.64 and −0.83 for the duopoly and three-firm oligopoly, respectively. At 

current demands, a firm in a three-firm case gains relatively more than in the duopoly when it 

moves its store towards the origin (∆R < 0). We also derive the elasticity of opponents’ prices 

with respect to the firm’s radial distance from the origin.
8

 It is 0.71 in the duopoly and 0.41 in the 

three-firm oligopoly. Rivals’ price cut response to a firm moving towards the origin in the first 

stage of the game will be weaker in the three-firm case than in the duopoly. This is because a 

price cut by one of the two firms that have not moved would not only affect the aggressive rival, 

but the other neighbor as well. This would provoke a response from a peaceful rival and would 

lead to lower profits made on consumers not affected by the aggressive firm. We have illustrated 

the incentive a firm in a three-firm oligopoly has when R = 1, when compared to the duopoly. It 

will gain relatively more demand directly and will be punished by relatively less severe a price 

cut by rivals in the second stage. If a firm residing at R = 1 in the duopoly had an incentive to 
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moves its store towards the origin (∆R < 0). We also derive the elasticity of opponents’ prices 

with respect to the firm’s radial distance from the origin.
8

 It is 0.71 in the duopoly and 0.41 in the 

three-firm oligopoly. Rivals’ price cut response to a firm moving towards the origin in the first 

stage of the game will be weaker in the three-firm case than in the duopoly. This is because a 

price cut by one of the two firms that have not moved would not only affect the aggressive rival, 

but the other neighbor as well. This would provoke a response from a peaceful rival and would 

lead to lower profits made on consumers not affected by the aggressive firm. We have illustrated 

the incentive a firm in a three-firm oligopoly has when R = 1, when compared to the duopoly. It 

will gain relatively more demand directly and will be punished by relatively less severe a price 

cut by rivals in the second stage. If a firm residing at R = 1 in the duopoly had an incentive to 

.

Part (a) considers the direct demand effect. If R > 0.25 Firm 3 would like to position its 
store closer to the origin as far as this effect is concerned. This way it captures the oppo-
nents’ demand around the center of the disk. For R < 0.25 the effect reverses, Firm 3 loses 
demand to competitors and would like to move away from the origin.7

Part (b) quantifies the positive effect competitors’ prices have on the demand captured 
by Firm 3.

The most demanding task is to evaluate the effect Firm 3’s radial deviation has on op-
ponents’ prices (part (c)). In order to simplify a very complex exercise we exploit the 
symmetry of the problem extensively. It is clear that replies in prices of both competitors 
must be identical when Firm 3 moves along the vertical axis. We therefore use only nec-
essary conditions for profit maximization with respect to own prices for Firms 2 and 3 
(A.9-A.10) in the proof of part (c). It can be readily verified that dp1/dr, dp2/dr, and dp3 are 
positive for any R∈[0,1], that is, when Firm 3 moves towards the origin, prices decrease 
as competition toughens, and vice versa.

These results, when compared to those for a duopoly (Lemma 2), offer some idea for what 
follows. Suppose all three firms were located on the perimeter of the disk, and Firm 3 
contemplated a small radial move towards the origin. The line of marginal consumers 
affected by this move is of length two (BO and CO; see Figure 3). The same is true for the 
duopoly case. Hence, direct demand effects should be very similar in both cases. They 
are −1 in the duopoly and −0.87 with three firms.8 Furthermore, we derive the elasticity 

7 Point D moves along the vertical axes towards the top of the disk, so Firm 3 gains some new customers 
from the oponents (see Figure 3). At the same time line segments DC and DB rotate toward each other, 
which means that Firm 3 loses some customers on the outskirts of the market. The total effect is negative 
for R < 0.25.
8 From part (a) in Lemmas 2 and 6.
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Second-stage optimal prices are derived from the system of necessary conditions obtained 

from these profits. The system is nonlinear and its general analytical solution for any possible 

Firm 3’s location, L
3
, is therefore out of reach. However, we are looking for symmetric 

equilibrium, so the derivation of optimal prices is straightforward. 
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Again, the first term in RHS of both (9) and (10) equals zero. The first term in parentheses 

in both equations represents the direct or demand effect of the deviation in a respective variable, 

while the last two represent the indirect or strategic effects of such a deviation through 

competitors’ prices. We show that there exists a distance from the origin, R, such that if firms 

locate there equidistantly from one another, the necessary conditions for symmetric equilibrium 
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of the firm’s demand with respect to its radial distance from the origin when all the firms 
are on the perimeter of the disk. The results are −0.64 and −0.83 for the duopoly and 
three-firm oligopoly, respectively. At current demands, a firm in a three-firm case gains 
relatively more than in the duopoly when it moves its store towards the origin (∆R < 0). 
We also derive the elasticity of opponents’ prices with respect to the firm’s radial distance 
from the origin.9 It is 0.71 in the duopoly and 0.41 in the three-firm oligopoly. Rivals’ 
price cut response to a firm moving towards the origin in the first stage of the game will 
be weaker in the three-firm case than in the duopoly. This is because a price cut by one 
of the two firms that have not moved would not only affect the aggressive rival, but the 
other neighbor as well. This would provoke a response from a peaceful rival and would 
lead to lower profits made on consumers not affected by the aggressive firm. We have il-
lustrated the incentive a firm in a three-firm oligopoly has when R = 1, when compared 
to the duopoly. It will gain relatively more demand directly and will be punished by rela-
tively less severe a price cut by rivals in the second stage. If a firm residing at R = 1 in the 
duopoly had an incentive to move even farther away from the origin we expect this not 
to be the case with three firms anymore. Lemma 7 presents an interior radial distance 
from the origin for the three firms positioned equidistantly from each other, which does 
not make them want to relocate in radial direction.

Lemma 7: When 
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prices and profits in a symmetric configuration, but these are not sustainable since capturing the 
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Next, we show that, when firms are positioned equidistantly, none of them has an incentive 

to locally move along a polar direction.  
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Results from Lemmas 5, 7, and 8 are summarized in Proposition 2. 
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response to rivals’ locations. 

We lack analytical proof that every firm’s location is in fact a global best reply to rivals’ 

locations given the price competition in the second stage of the game. We therefore solve the 
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no firm finds it profitable to locally deviate from it.

Proof of Lemma 7 yields another result. Symmetric configuration with maximum dis-
tance between three firms, i.e. maximum differentiation, is never optimal.

Corollary 1: The three firms located on the perimeter of the disk, equidistantly from each 
other, is not a subgame perfect Nash equilibrium of the game.

Lemma 5 shows that locating at the perimeter of the disk will still yield the highest pos-
sible prices and profits in a symmetric configuration, but these are not sustainable since 
capturing the opponents’ demand around the origin is too tempting; a classic prisoner 
dilemma on an oligopoly market.

Next, we show that, when firms are positioned equidistantly, none of them has an incen-
tive to locally move along a polar direction. 

Lemma 8: For any R, φ = π is locally optimal for Firm 3.

Results from Lemmas 5, 7, and 8 are summarized in Proposition 2.

9 From part (c) in Lemmas 2 and 6.



ECONOMIC AND BUSINESS REVIEW  |  VOL. 14  |  No.  4  |  2012332

Proposition 2: When in the first stage of the game the three firms locate their stores

R* 

 

move even farther away from the origin we expect this not to be the case with three firms 

anymore. Lemma 7 presents an interior radial distance from the origin for the three firms 

positioned equidistantly from each other, which does not make them want to relocate in radial 

direction. 

 

Lemma 7: When R
*

= )5476.0(

38288

231572
2

≈

−

−+

π

ππ

 and firms are located equidistantly, no 

firm finds it profitable to locally deviate from it. 

 

Proof of Lemma 7 yields another result. Symmetric configuration with maximum distance 

between three firms, i.e. maximum differentiation, is never optimal. 

 

Corollary 1: The three firms located on the perimeter of the disk, equidistantly from each 

other, is not a subgame perfect Nash equilibrium of the game. 

 

Lemma 5 shows that locating at the perimeter of the disk will still yield the highest possible 

prices and profits in a symmetric configuration, but these are not sustainable since capturing the 

opponents’ demand around the origin is too tempting; a classic prisoner dilemma on an oligopoly 

market. 

Next, we show that, when firms are positioned equidistantly, none of them has an incentive 

to locally move along a polar direction.  

 

Lemma 8: For any R, φ = π is locally optimal for Firm 3. 

 

Results from Lemmas 5, 7, and 8 are summarized in Proposition 2. 

 

Proposition 2: When in the first stage of the game the three firms locate their stores R
* 

= )5476.0(

38288

231572
2

≈

−

−+

π

ππ

 away from origin, equidistantly from each other, the equilibrium 

price they charge in the second stage is 

πR

*

3

3

. Furthermore, every firm’s location is a local best 

response to rivals’ locations. 

We lack analytical proof that every firm’s location is in fact a global best reply to rivals’ 

locations given the price competition in the second stage of the game. We therefore solve the 

 away from origin, equidistantly from each other, the

equilibrium price they charge in the second stage is 

 

move even farther away from the origin we expect this not to be the case with three firms 

anymore. Lemma 7 presents an interior radial distance from the origin for the three firms 

positioned equidistantly from each other, which does not make them want to relocate in radial 

direction. 

 

Lemma 7: When R
*

= )5476.0(

38288

231572
2

≈

−

−+

π

ππ

 and firms are located equidistantly, no 

firm finds it profitable to locally deviate from it. 

 

Proof of Lemma 7 yields another result. Symmetric configuration with maximum distance 

between three firms, i.e. maximum differentiation, is never optimal. 

 

Corollary 1: The three firms located on the perimeter of the disk, equidistantly from each 

other, is not a subgame perfect Nash equilibrium of the game. 

 

Lemma 5 shows that locating at the perimeter of the disk will still yield the highest possible 

prices and profits in a symmetric configuration, but these are not sustainable since capturing the 

opponents’ demand around the origin is too tempting; a classic prisoner dilemma on an oligopoly 

market. 

Next, we show that, when firms are positioned equidistantly, none of them has an incentive 

to locally move along a polar direction.  

 

Lemma 8: For any R, φ = π is locally optimal for Firm 3. 

 

Results from Lemmas 5, 7, and 8 are summarized in Proposition 2. 

 

Proposition 2: When in the first stage of the game the three firms locate their stores R
* 

= )5476.0(

38288

231572
2

≈

−

−+

π

ππ

 away from origin, equidistantly from each other, the equilibrium 

price they charge in the second stage is 

πR

*

3

3

. Furthermore, every firm’s location is a local best 

response to rivals’ locations. 

We lack analytical proof that every firm’s location is in fact a global best reply to rivals’ 

locations given the price competition in the second stage of the game. We therefore solve the 

. Furthermore, every firm’s 
location is a local best response to rivals’ locations.

We lack analytical proof that every firm’s location is in fact a global best reply to rivals’ 
locations given the price competition in the second stage of the game. We therefore solve 
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well, which is what Feldin (2001) formally shows. This hypothesis rests on the market being 

uniformly populated by consumers. If there were some areas with higher population density there 

would be obviously more differentiation, since firms would try to tailor their products to meet 

the tastes of these different groups of customers. 
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There are two novel perspectives on product differentiation to this result. First, in a 
setting that leads to differentiation in one characteristic only in duopoly, which is con-
sistent with the existing literature, the three firms find it optimal to differentiate their 
products in two characteristics. Second, firms do not differentiate their products as 
much as they could have. In a setting that yields familiar a min-max differentiation 
result in the duopoly, a medium-medium type of product differentiation is observed. 
When all three firms are located on the perimeter of the disk, a radial deviation to-
wards the center of the disk by a firm is followed by rivals’ price cut that is less severe 
than the one observed in duopoly. Therefore, positive direct demand effect of such a 
move outweighs the negative strategic effect of rivals’ price cuts, and firms move closer 
together.

We can speculate on whether the min-min-…-min part of the product differentiation 
result by Irmen and Thisse (1998) could be observed in a three-firm market with ad-
ditional product characteristics. Firms may not want to differentiate their products in 
any additional characteristics, since they find max-max differentiation to be excessive 
in two dimensions, already. This suggests that firms may have no need to differentiate 
their products in another, third, dimension, since even the possibilities in two were not 
exhausted. We therefore predict that the min-min-…-min part of a product differentia-
tion result is going to hold in our setting as well, which is what Feldin (2001) formally 
shows. This hypothesis rests on the market being uniformly populated by consumers. 
If there were some areas with higher population density there would be obviously more 
differentiation, since firms would try to tailor their products to meet the tastes of these 
different groups of customers.
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Figure 4: Firm 3’s profits with respect to location of its store and given equilibrium loca-
tions of opponents.

Source: Own calculations.

4.	We lfare analysis

In this section we compare the extent of product differentiation in our competitive mar-
ket to a social optimum for a duopoly and a three-firm oligopoly. A social planner who 
cares about well-being of all agents in the market would simply minimize the traveling 
costs borne by buyers. Each of n firms on the market will satisfy π/n of the market de-
mand in a symmetric configuration. Every such piece of the pie can be split into two 
halves symmetrically over the line segment connecting the firm’s location and the center 
of the disk. One such part of the disk is presented in Figure 5. To find the social opti-
mum, we look at where a particular firm should have been in order to minimize the total 
traveling costs that consumers, from such a half of the disk, bear.

Figure 5: Derivation of socially optimal product differentiation.
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The cost that a consumer residing at (ρ,φ) is faced with when buying from the firm lo-
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This is analogous to what Brenner (2005) finds. Intense price competition in a duopoly 

drives firms to the edge of the market, and that is too far apart from a social standpoint. In a 

three-firm oligopoly the situation reverses. Product differentiation becomes too weak when 
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interest to induce cooperation among firms. She might pass a regulation demanding the firms 

locate R
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 away from the origin. This would help the firms to partly resolve their prisoner’s 

dilemma. They would now be able to charge higher prices; therefore, they would be willing to 

accept such a regulation. 

5 Concluding remarks 

We have presented some novel findings on the extent of product differentiation that firms in 

an oligopoly employ. Contrary to the literature on duopoly markets, we show that three firms 
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Source: Own calculations

This is analogous to what Brenner (2005) finds. Intense price competition in a duopoly 
drives firms to the edge of the market, and that is too far apart from a social stand-
point. In a three-firm oligopoly the situation reverses. Product differentiation becomes 
too weak when compared to the social optimum. Price competition becomes less intense 
and firms move in on each other’s demands. This gives rise to an interesting situation. 
It is in the social planner’s interest to induce cooperation among firms. She might pass 
a regulation demanding the firms locate RS away from the origin. This would help the 
firms to partly resolve their prisoner’s dilemma. They would now be able to charge higher 
prices; therefore, they would be willing to accept such a regulation.

5. Concluding remarks

We have presented some novel findings on the extent of product differentiation that firms 
in an oligopoly employ. Contrary to the literature on duopoly markets, we show that 
three firms will use two product characteristics to separate their products from rivals’. 
In a setting that usually yields min-max differentiation we find three firms to utilize a 
medium-medium type of differentiation. It remains to be seen how even a larger number 
of firms affects product differentiation in multi-characteristic space. 
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The demand side of the model is the sole driver of our results. If firms had to cover some 
R&D costs to introduce new varieties of products or improve some of the characteristics, 
which certainly is the case in reality, differentiation would be even weaker. We therefore 
note that firms deciding to introduce new characteristics to their products might want to 
be careful as not to engage in excessive differentiation that would not yield the maximum 
possible profits. Also, the fact that differentiation possibilities are not exhausted leads us 
to think that three firms will not want to use any new product characteristics to differ-
entiate themselves from competitors. The first step towards such a min-…-min-medium-
medium differentiation result is presented in Feldin (2001). 
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Appendix A: Proofs of Lemmas and Propositions

Proof of Lemma 1: We first determine α and β that we need for the demand functions. 
They are given by the indifference conditions for the two consumers residing in points A 
and B: 
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Firms’ behavior in prices will be symmetric, hence, it is enough to use only first equation in 
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The system of first-order conditions for profit maximization derived from (8), which we 
mainly need for future reference, is:
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. 
We first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which im-
mediately simplifies (A.10):
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Next, symmetry yields 
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 
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Again, symmetry, and partials (B.4), (B.9), and (B.15) give:
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 

simplifies (A.10): 
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(b) We proceed similarly as in part (a), to get:
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 
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From (A.7) we note that 
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(A.10) 

We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 

simplifies (A.10): 
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 (the indifference line CD is unaffected by Firm 2’s price 
change). With partials (B.4), (B.7) and (B.14) we obtain:
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We use the assumed symmetry of equilibrium configuration to find the optimal prices. We 

first note that in equilibrium, x = 0, y = 0, α = 0, β = 2π/3, and γ = −2π/3, which immediately 
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10 We denote partial derivatives with the variable with respect to which we differentiate in subscript and omit 
the index of the firm, since we always work with Firm 3.
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(c) The reaction in first two firms’ prices to a radial move by Firm 3 will be identical; 
hence, we can disregard Firm 1’s behavior. Totally differentiate (A.9) and (A.10) with 
respect to r to get:
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Next, we assume the first equality from part (c) of present Lemma and observe from (B.5) 
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Proof of Lemma 7: Collect results from Lemma 6 to calculate the expression in parenthe-
ses of (9) and equate it with zero:
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 

3’s profit with respect to r is derived from (9): 
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(A.11) 

At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*

 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 

second row of (A.11). We prove a series of claims.  
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We go back to the proof of Lemma 6(a) to obtain the relevant part of the partial derivative of 
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Simple algebra yields the result. 

However, to establish that we have really found a firm’s local best response to the rival 
locations we must check the second order condition also. The second order derivative of 
Firm 3’s profit with respect to r is derived from (9):
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We go back to the proof of Lemma 6(a) to obtain the relevant part of the partial de-
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 
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At r = R
*
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in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*

 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 

second row of (A.11). We prove a series of claims.  
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However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
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 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*

 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*

 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 

3’s profit with respect to r is derived from (9): 



















⋅

∂

∂

+⋅

∂

∂

+⋅

′















∂

∂

+⋅

′















∂

∂

+

′















∂

∂

⋅+















⋅

∂

∂

+⋅

∂

∂

+

∂

∂

⋅+














⋅

∂

Π∂

=

Π

2

2

2

2

3

2

1

2

1

32

2

31

1

33

3

2

2

31

1

3333

3

3

2

3

2

rd

pd

p

D

rd

pd

p

D

rd

pd

p

D

rd

pd

p

D

r

D

p

rd

pd

p

D

rd

pd

p

D

r

D

dr

dp

rd

pd

pdr

d

rd

d

 

(A.11) 

At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*

 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 

3’s profit with respect to r is derived from (9): 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 

zero at r = R
*
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We take the partial derivative from Lemma 6(b) and proceed similarly as in previous 
claim: 
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Simple algebra yields the result.  

However, to establish that we have really found a firm’s local best response to the rival 

locations we must check the second order condition also. The second order derivative of Firm 

3’s profit with respect to r is derived from (9): 
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At r = R
*

 both terms in the first row of (A.11) are zero. First one due to optimizing behavior 

in the second stage of the game, and the second one due to the expression in parentheses being 
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 (F.O.C.). It remains to evaluate the sign of the big expression in parentheses in the 
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Proof of Lemma 8: We are going to show that the expression in the parentheses in (10) is 
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move becomes more aggressive and reduces its price and vice versa, the neighbor that is 
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lows.                                                                                                                           Q.E.D.
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Appendix B: Derivatives

We collect all the derivatives needed in preceding Appendix in subsections B.1 and B.2 
for duopoly and three-firm oligopoly markets, respectively.

B.1 Two firms 

In equilibrium r = R, φ =π, and α = π/2.

From (A.2): 

 

is the same due to symmetry of the proposed configuration. The result follows. 
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