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Abstract. We present a microscopic description of the strong πNN, πN∆ and π∆∆ vertices.
Our starting point is a constituent-quark model supplemented by an additional 3qπ non-
valence component. In the spirit of chiral constituent-quark models, quarks are allowed to
emit and reabsorb a pion. This multichannel system is treated in a relativistically invariant
way within the framework of point-form quantum mechanics. Starting with a common
SU(6) spin-flavor-symmetric wave function for N and ∆, we calculate the strength of the
πNN, πN∆ and π∆∆ couplings and the corresponding vertex form factors. Our results
are in accordance with phenomenological fits of these quantities that have been obtained
within purely hadronic multichannel models for baryon resonances.

1 Introduction

One of the big deficiencies of conventional constituent-quark models is the fact
that all states come out as stable bound states. In nature, however, excited states
are rather resonances with a finite decay width. In order to remedy this situation,
we study a constituent-quark model with explicit pionic degrees of freedom. The
underlying physics is that of “chiral constituent-quark models”. This means that
the spontaneous chiral-symmetry breaking of QCD produces pions as the associ-
ated Goldstone bosons and constituent quarks as effective particles [1], with the
pions coupling directly to the constituent quarks. The occurrence of pions affects
then the masses and the structure of the hadrons and leads to resonance-like be-
havior of hadron excitations. If one assumes instantaneous confinement between
the quarks, only “bare” hadrons, i.e. eigenstates of the pure confinement problem,
can propagate. As a consequence, pionic effects on hadron masses and structure
can be formulated as a purely hadronic problem with the hadron substructure
entering pion-hadron vertex form factors1. In the present contribution we will
present predictions for πNN, πN∆ and π∆∆ couplings and vertex form factors,
given the πqq coupling and an SU(6) spin-flavor symmetric model for the 3q
wave function of the nucleon and the ∆.
? Talk delivered by Ju-Hyun Jung
1 Strictly speaking these are vertex form factors of the bare hadrons.
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2 Formalism

Our starting point for calculating the strong πNN, πN∆ and π∆∆ couplings and
form factors is the mass-eigenvalue problem for 3 quarks that are confined by
an instantaneous potential and can emit and reabsorb a pion. To describe this
system in a relativistically invariant way, we make use of the point-form of rela-
tivistic quantum mechanics. Employing the Bakamjian-Thomas construction, the
overall 4-momentum operator P̂µ can be separated into a free 4-velocity operator
V̂µ and an invariant mass operator M̂ that contains all the internal motion, i.e.
P̂µ = M̂ V̂µ [2]. Bakamjian-Thomas-type mass operators are most conveniently
represented by means of velocity states |V ;k1, µ1;k2, µ2; . . . ;kn, µn〉, which spec-
ify the system by its overall velocity V (VµVµ = 1), the CM momenta ki of the
individual particles and their (canonical) spin projections µi [2]. Since the phys-
ical baryons of our model contain, in addition to the 3q-component, also a 3qπ-
component, the mass eigenvalue problem can be formulated as a 2-channel prob-
lem of the form (

M̂conf
3q K̂π

K̂†π M̂conf
3qπ

)(
|ψ3q〉
|ψ3qπ〉

)
= m

(
|ψ3q〉
|ψ3qπ〉

)
, (1)

with |ψ3q〉 and |ψ3qπ〉 denoting the two Fock-components of the physical baryon
states |B〉. The mass operators on the diagonal contain, in addition to the relativis-
tic particle energies, an instantaneous confinement potential between the quarks.
The vertex operator K̂(†)

π connects the two channels and describes the absorption
(emission) of the π by one of the quarks. Its velocity-state representation can be di-
rectly connected to a corresponding field-theoretical interaction Lagrangean [2].
We use a pseudovector interaction Lagrangean for the πqq-coupling

Lπqq(x) = −
fπqq

mπ

(
ψ̄q(x)γµγ5τψq(x)

)
· ∂µφπ(x), (2)

where the “·”-product has to be understood as product in isospin space. After
elimination of the 3qπ-channel the mass-eigenvalue equation takes on the form[

M̂conf
3q + K̂π(m− M̂conf

3qπ)
−1K̂†π︸ ︷︷ ︸

V̂
opt
π (m)

]
|ψ3q〉 = m |ψ3q〉 , (3)

where V̂opt
π (m) is an optical potential that describes the emission and reabsorp-

tion of the pion by the quarks. One can now solve Eq. (3) by expanding the (3q-
components of the) eigenstates in terms of eigenstates of the pure confinement
problem, i.e. |ψ3q〉 =

∑
B0
αB0 |B0〉, and determining the open coefficients αB0 .

Since the particles which propagate within the pion loop are also bare baryons
(rather than quarks), the problem of solving the mass eigenvalue equation (3) re-
duces then to a pure hadronic problem, in which the dressing and mixing of bare
baryons by means of pion loops produces finally the physical baryons (see Fig. 1).
As also indicated in Fig. 1, the quark substructure determines just the coupling
strengths at the pion-baryon vertices and leads to vertex form factors. To set up
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Fig. 1. Graphical representation of the kernel 〈B′0|V̂
opt
π (m)|B0〉 needed to solve the mass-

eigenvalue equation (3).

the mass-eigenvalue equation on the hadronic level one needs matrix elements
〈B′0|V̂

opt
π (m)|B0〉 of the optical potential between bare baryon (velocity2) states.

The general structure of these matrix elements is (B0 and B′0 are at rest)

〈B′0|V̂
opt
π (m)|B0〉 ∝

∑
B′′
0

∫
d3k′′π

2
√
m2π + k′′ 2π

J5∗πB′′
0
B′
0
(k′′π)

1

m−mB′′
0
π

J5πB′′
0
B0

(k′′π) , (4)

wheremB′′
0
π is the invariant mass of the B′′0π system in the intermediate state and

spin- as well as isospin dependencies have been suppressed.
For the cases we are interested in, i.e. theN and the ∆, the currents occurring

in Eq. (4) can be cast into the form3:

J5πN0N0(kπ) = i
fπN0N0
mπ

FπN0N0(k
2
π) ū(−kπ)γµγ5u(0)k

µ
π ,

J5π∆0∆0(kπ) =
fπ∆0∆0
mπm∆0

Fπ∆0∆0(k
2
π) ε

µνρσ ūµ(−kπ)uν(0)k∆0,ρ kπ,σ ,

J5πN0∆0(kπ) = −i
fπN0∆0
mπm∆0

FπN0∆0(k
2
π) ε

µνρσ ū(−kπ)γσγ5uν(0)k∆0,µ kπ,ρ ,

J5π∆0N0(kπ) = i
fπN0∆0
mπm∆0

Fπ∆0N0(k
2
π) ε

µνρσ ūν(−kπ)γ5γσu(0) k∆0,µ kπ,ρ , (5)

where u(.) is the Dirac spinor of the nucleon and uµ(.) the Rarita-Schwinger
spinor of the ∆. Here we have again suppressed the isospin dependence and also
omitted the spin labels. From Eqs. (4) and (5) one can then infer the analytical
expression for the combination fπB′

0
B0 FπB′0B0(k

2
π) in terms of quark degrees of

freedom. It is an integral over the (independent) quark momenta involving the
3qwave function of the in- and outgoing (bare) baryons, the pseudovector quark
current as resulting from the Lagrangean (2) and some kinematical as well as
Wigner-rotation factors [4].

Assuming a scalar isoscalar confinement potential, the masses of the bare
nucleon and the bare ∆ are degenerate, the momentum part of the wave function
will be the same and the spin-flavor part of the wave function is SU(6) symmetric.
Rather than solving the confinement problem for a particular potential, we thus

2 We suppress this velocity dependence since it factors out and has no influence on the
mass spectrum.

3 Note that this form exhibits the correct chiral properties and avoids problems with su-
perfluous spin degrees of freedom when treating spin-3/2 fields covariantly by means
of Rarita-Schwinger spinors [3].
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parameterize the momentum part of the 3qwave function ofN0 and∆0 by means
of a Gaussian

ψN0,∆03q (kq1 ,kq2 ,kq3) ∝ exp
(
−α2(k2q1 + k

2
q2

+ k2q3)
)
, kq1 + kq2 + kq3 = 0 ,

(6)
and choose an appropriate value for the mass of N0 and ∆0, i.e. MN0 = M∆0 =:

M0. The parameters of our model are therefore the oscillator parameter α, the
N0 and ∆0 mass M0, the constituent-quark mass mq := mu = md and fπqq,
the πqq coupling strength. For fixed mq = 263 MeV we have adapted the re-
maining parameters such that the physical N and ∆ masses, resulting from the
mass renormalization due to pion loops (with N0 and ∆0 intermediate states),
agree with their experimental values. This gives us for the remaining parameters
M0 = 1.552 GeV, α = 2.56 GeV−1 and fπqq = 0.6953.

3 Results and Outlook

Having fixed the parameters of our model, we are now able to make predictions
for the strong πN0N0, π∆0∆0, πN0∆0, and π∆0N0 couplings and form factors.
The top plot of Fig. 2 shows these (unnormalized) form factors as function of
the (negative) four-momentum transfer squared (analytically continued to small
time-like momentum transfers). It is worth noting that Fπ∆0N0 and FπN0∆0 do
not agree. This is, of course, no surprise, since in the first case the N0 is real and
the ∆0 virtual, whereas it is just the other way round in the second case. The form
factors describe thus completely different kinematical situations, but they coin-
cide at a particular negative (i.e. unphysical) value of Q2. Since there is only one
coupling strength at the πN0∆0-vertex (i.e. fπ∆0N0 = fπN0∆0 , see Eq. (5)), this
is the natural point to normalize the form factors and extract the coupling con-
stants. Its value Q20 = −0.090 GeV2 is close to the standard normalization point,
namely the pion pole Q20 = −m2π. Comparing the resulting coupling strengths,
we get the ratio fπN0∆0 : fπN0N0 : fπ∆0∆0 = 1.208 : 1 : 0.608. This should be
compared with the prediction from the non-relativistic constituent-quark model
assuming SU(6) spin-flavor symmetry, i.e. fπN∆ : fπNN : fπ∆∆ = 4

√
2/5 : 1 :

4/5 = 1.13 : 1 : 0.8 [8]. The differences can solely be ascribed to relativistic effects
and are obviously significant, in particular for the π∆0∆0-vertex. Remarkably, our
results resemble very much those needed in dynamical coupled-channel models,
e.g. fπN∆ : fπNN : fπ∆∆ = 1.26 : 1 : 0.42 in Ref. [6].

In the bottom plot of Fig. 2 our result for FπN0N0 is compared with the out-
come of another relativistic constituent-quark model [5] and with two parame-
terizations of this form factor that have been used in dynamical coupled-channel
models [6, 7]. Up to Q2 ≈ 1 GeV2 our prediction is comparable with the form
factor parametrization of Ref. [7], but for higher Q2 it falls off slower. The form
factors of Refs. [5, 6] fall off much faster already at small Q2. Deviations of our
result from the one of Ref. [5] have their origin in different 3q wave functions of
the nucleon, but also in different kinematical and spin-rotation factors entering
the microscopic expression for the pseudovector current of the nucleon.

Having determined the πN0N0, π∆0∆0 and πN0∆0 vertices from a micro-
scopic model, we are now in the position to calculate the electromagnetic form
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Fig. 2. The top plot shows the (unnormalized) πN0N0, π∆0∆0, πN0∆0, and π∆0N0 form
factors as functions ofQ2 = −2M0(M0−(M2

0+k
2
π)
1/2). In the bottom plot theQ2 behavior

of FπN0N0 (normalized to 1 at Q2 = 0) is compared to the outcome of another relativistic
constituent-quark model (RCQM) [5] and of phenomenological fits obtained within two
purely hadronic dynamical coupled-channel models [6, 7] (SL and PR).

factors of physical nucleons and Deltas and determine the effect of pions on their
electromagnetic structure. First exploratory calculations for the nucleon show
that visible effects can be expected for Q2 . 0.5 GeV2 [4]. It will, of course, be
more interesting to investigate electromagnetic ∆ and N → ∆ transition form
factors, where pionic effect are expected to play a more significant role.
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