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Bipartivity Index (BPI) has been used in complex network analysis to quantify the extent of partitioning 

of the vertices of a network graph into two disjoint partitions; the edges between vertices within the 

same partition are called frustrated edges. The BPI values for a network graph ranges from 0 to 1 (the 

BPI of a network graph that is truly bipartite and has no frustrated edges is 1). Our hypothesis in this 

research is that the end nodes of a short distance link (the distance between the end nodes is 

significantly smaller than the transmission range per node) in a mobile sensor network (MSN) are more 

likely to share a significant fraction of their neighbors and such links are more likely to be stable. We 

introduce a notion called the egocentric network of an edge (adapted from egocentric network for a 

node) comprising of the end nodes of the edge and their neighbors (as vertices) and the edges incident 

on the end nodes (as edges). Our claim is that an edge whose egocentric network has a lower BPI score 

is more likely to be a stable short distance link, with a relatively larger fraction of shared neighborhood, 

and could be preferred for inclusion while determining stable data gathering trees for MSNs. Through 

extensive simulations, we show that the BPI-based DG trees are significantly more stable and energy-

efficient compared to the DG trees determined using the predicted link expiration time (LET), currently 

the best known strategy. 

Povzetek: Prispevek s pomočjo BPI indeksa ugotavlja stabilna in energijsko učinkovita drevesa za 

mobilne senzorske mreže. 

 

1 Introduction 
Mobile Sensor Networks (MSNs) are an emerging 

category of wireless sensor networks in which the sensor 

nodes are considered to move independent of each other. 

MSNs could be used for applications in which an entire 

region (that is being monitored) could be effectively 

covered by letting the sensor nodes to move rather than 

be static. For example [9], the pollutant concentration in 

an area (like the downtown of a city) could be effectively 

measured by fixing the sensor nodes in mobile vehicles 

(like cars) that move through the area. For most of the 

applications of wireless sensor networks (including those 

of the MSNs), the data recorded by the sensor nodes is 

forwarded to a control center (called the sink) through 

one of several network-wide communication topologies 

(like chains [11], clusters [7], trees [18], connected 

dominating sets [16], etc). Among these communication 

topologies, the data gathering trees (DG trees) have been 

observed to be energy-efficient [18] as they comprise of 

the minimum number of links needed to span all the 

sensor nodes and there are no redundant transmissions. In 

the case of DG trees, the leaf nodes merely sense the data 

and transmit them to an upstream intermediate node that 

would in turn aggregate its own data with data received 

from all of its child nodes and forward the aggregated 

data to an upstream node that is on the path to the root 

node of the DG tree. For the rest of the paper, the terms 

'node' and 'vertex', 'link' and 'edge', 'network' and 'graph', 

'data gathering' and 'data aggregation', 'construction' and 

'configuration' mean the same. These terms are used 

interchangeably unless stated. 

MSNs inherit all the constraints of their static 

counterpart (like energy and memory-constrained sensor 

nodes as well as limited network bandwidth); mobility of 

the nodes is an additional constraint that needs to be 

handled. Due to node mobility, the network topology 

changes dynamically with time and any communication 

topology (like DG trees) that is setup among the sensor 

nodes needs to be frequently reconfigured. Significant 

amount of energy might be lost if network-wide 

broadcasts are frequently initiated for reconfiguring the 

communication topology in use. This motivates the need 

to determine stable communication topologies that could 

exist for a longer time. 

In [19], the authors took the first step towards using 

DG trees for MSNs and proposed a distributed algorithm 

for determining stable DG trees in MSNs using the 

concept of predicted link expiration time (LET) [31] that 

has been earlier successfully used for mobile ad hoc 
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networks [20, 22]. In [24], the authors proposed a generic 

algorithm to determine maximum bottleneck link weight 

(MaxBLW)-based DG trees for static sensor networks: 

the bottleneck link weight for a path from a node to the 

root node of the DG tree is the minimum of the weights 

of the constituent links on the path and the MaxBLW-DG 

algorithm determines a DG tree in which the path from 

any node to the root node of the tree is the path with 

maximum value for the bottleneck link weight. In this 

paper, we explain a distributed version of the MaxBLW-

DG algorithm to determine ALGC-based DG trees 

wherein the link weight is the link stability score (LSS) 

computed based on this strategy. For performance 

comparison purposes, we use the distributed version of 

the MaxBLW-DG tree algorithm to also determine the 

LET-based DG trees [19] wherein the weight of a link is 

its predicted LET. 

The LET-based strategy is the only available link 

selection strategy that has been successfully 

demonstrated so far [19] for determining stable DG trees 

in MSNs. However, the LET formulation [19, 31] does 

not consider the distance between the constituent end 

nodes of a link and is prone to choosing links that could 

incur a larger transmission energy and ultimately 

contributing towards larger energy consumption per 

round. We opine that links whose constituent end nodes 

are closer to each other (i.e., the distance between the end 

nodes of the link is appreciably lower than the 

transmission range per node) are more likely to be stable 

(and vice-versa) as it would take a while for such end 

nodes to move out of the transmission range of each 

other. We refer to such links as "short distance" links. 

Also, as the energy lost per transmission is directly 

proportional to the square of the distance [28] over which 

the transmission is made, we claim that the DG trees 

comprising of short distance links are more likely to be 

both stable (and vice-versa) as well as incur lower energy 

consumption per round. Moreover, the LET approach 

[31] requires a sensor node to be aware of its own 

location and mobility as well as that of its neighbors. 

This would require the sensor nodes to be equipped with 

energy-draining hardware/software systems (like GPS 

[8]) that would make them location and mobility aware. 

All of the above observations form the motivation for the 

research conducted in this paper.  

The high-level contribution of this paper is that we 

show the use of a spectral graph-theoretic metric called 

Bipartivity Index (BPI) [6] to quantify the extent of 

shared neighborhood between the end vertices of an edge 

and thereby model the link stability score (LSS) for the 

edge. The BPI has been widely used in complex network 

analysis [6] to quantify the extent of partitioning of a 

network graph into two disjoint partitions of vertices; the 

edges between vertices within the same partition are 

referred to as frustrated edges. BPI values range from 0 

to 1 [6]. A network graph is said to be truly bipartite 

(such a partitioning also has no frustrated edges) if its 

BPI is 1 [6]. We propose to use a notion called the 

"egocentric network of an edge" (adapted from the notion 

of egocentric network of a node [13]) to quantitatively 

evaluate the extent of shared neighborhood between the 

end vertices of a link. The egocentric network of an edge 

u-v (denoted EGu-v) comprises as vertices - the end nodes 

of the edge and their neighbors, and edges - the links 

incident on the end nodes of the edge. We claim that an 

edge u-v is more likely to be a stable short distance link 

with a larger fraction of shared neighborhood if the 

egocentric network EGu-v of the edge has a lower BPI. 

Accordingly, we model for an edge u-v: the LSS(u-v) as 

1 - BPI(EGu-v).  

We provide a high-level justification for the above 

modeling as follows (more details are presented in 

Section 4). If the end nodes of an edge u-v do not have 

any shared neighbors, then the egocentric network of the 

edge u-v would comprise of node u and the neighbors of 

node v in one of the two partitions, and node v and the 

neighbors of node u in the other partition; all the edges 

would connect the vertices in one partition to the other 

partition and there would be no frustrated edges within 

either partition (a frustrated edge is an edge involving 

vertices that are in the same partition [6]). Such an 

egocentric network is truly bipartite and will have a BPI 

of 1. Whereas, if the end nodes of an edge u-v have one 

or more shared neighbors, the egocentric network of the 

edge (when analyzed for bipartivity) would comprise of 

one or more frustrated edges contributing to a BPI less 

than 1. We anticipate the BPI for the egocentric network 

of an edge u-v to reduce with increase in the number of 

shared neighbors for the end nodes u and v. 

The rest of the paper is organized as follows: Section 

2 outlines the maximum bottleneck link weight-based 

algorithm for determining data gathering trees in sensor 

networks. Section 3 reviews related work, including the 

strategy of using the predicted link expiration time (LET) 

to determine stable data gathering trees for MSNs. 

Section 4 introduces the notions of short distance links, 

egocentric network for an edge and bipartivity index 

(BPI) as well as illustrates their use to quantify the extent 

of shared neighborhood and stability of links. Section 5 

presents results of exhaustive simulations conducted to 

showcase the effectiveness of the BPI-based strategy to 

determine data gathering trees that are both stable as well 

as energy-efficient compared to the LET-based DG trees. 

Section 6 concludes the paper. 

2 Distributed algorithm to construct 

a maximum bottleneck link 

weight-based data gathering tree 
In this section, we describe a distributed version of the 

algorithm to construct maximum bottleneck link weight-

based data gathering (MaxBLW-DG) trees for mobile 

sensor networks. A centralized version of the MaxBLW-

DG algorithm has been earlier proposed in [24] and a 

distributed implementation of the algorithm to determine 

LET-based stable data gathering trees has been discussed 

in [19]. The distributed version of the MaxBLW-DG 

algorithm discussed here could be applied for any 

measure of link weight. For this section, we assume the 

link weights are randomly generated in the range [0...1]. 



Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 261 

In sections 4 and 5, the weight of a link depends on the 

link selection strategy (BPI or LET) employed.  

2.1 Assumptions and definitions 

We assume the sensor nodes to operate in a fixed 

transmission range, R. We assume the underlying 

network is modeled as a unit-disk graph wherein there 

exists a link between any two nodes if the Euclidean 

distance between them is within the transmission range, 

R. We assume the network to be homogeneous (i.e., all 

the nodes have an equal transmission range). We define 

the fraction of link distance (fld) as the ratio of the 

Euclidean distance between the end nodes of the link and 

the transmission range per node. In the case of 

heterogeneous networks (each node operating with a 

different transmission range), the fraction of link distance 

could be measured as the ratio of the Euclidean distance 

between the end nodes of the link and the maximum of 

the transmission ranges of the two end nodes. The data 

gathering algorithms (discussed in Sections 2 and 3) and 

the BPI strategy discussed in Section 4 could be used for 

both homogeneous and heterogeneous networks. For a 

directed edge u → v, we refer to node u as the upstream 

node and node v as the downstream node. In the context 

of link weights, we assume the links/edges are undirected 

(bidirectional): i.e., the weight of a directed edge u → v 

is the same as the weight of the directed edge v → u.  

We define a round of data gathering to comprise of 

steps in which the sensor nodes individually sense the 

data within their sensing range (typically the sensing 

range of a sensor node is at most half its transmission 

range [36]), aggregate and forward only a representative 

version of the data (like the average temperature in a 

region) to the sink through a network-wide 

communication topology (like a data gathering tree) 

spanning all the sensor nodes. The size of the aggregated 

data is assumed to be the same as the size of the data 

collected at the individual sensor nodes. The root node of 

a DG tree is called the LEADER node and is chosen by 

the sink at the time of tree construction. 

We assume the sensor nodes to be both TDMA 

(Time Division Multiple Access) and CDMA (Code 

Division Multiple Access)-enabled [35]. An upstream 

node communicates with its own immediate downstream 

child nodes using a TDMA schedule (one time slot per 

downstream node); such communication between every 

upstream node with their own downstream nodes can 

occur in parallel (using unique CDMA codes). The above 

assumptions and definitions hold good for both the BPI 

and LET-based MaxBLW-DG trees studied in this paper. 

When used for constructing the LET-based DG trees, 

we assume a sensor node to be aware of its current 

location, velocity and direction of movement at any time 

instant and mentions the same in a location update vector 

(LUV) [19] included in the control messages broadcast 

as part of tree discovery. Such an assumption is not 

required for the MaxBLW-DG algorithm that makes use 

of BPI (discussed in Section 4) as the BPI scores could 

be computed without a priori knowledge about the 

location and mobility of the nodes. Each node maintains 

a Link Weight Table comprising of the estimates of the 

bottleneck link weights to the neighbor nodes that sent it 

the TREE-CONSTRUCT message (see Section 2.3 for 

more details about the message). 

2.2 Initialization of state information at 

the sensor nodes 

Each sensor node locally maintains state information 

about the data gathering tree that is currently being used 

or newly configured. The state information comprises of 

the following fields (with their initial values indicated in 

parenthesis): estimated bottleneck link weight (-∞), 

upstream node id (NULL), tree level (0), LEADER node 

id and sequence number (the latest sequence number in 

the TREE-INITIATE message broadcast by the sink). 

The estimated bottleneck link weight is the value for the 

currently known maximum weight for a link on the path 

to the LEADER node of the DG tree. The upstream node 

id corresponds to the neighbor node that lies on the 

currently estimated maximum bottleneck link weight 

path to the LEADER  node. The tree level corresponds to 

the number of hops on the maximum bottleneck link 

weight path to the LEADER node. The sequence number 

corresponds to the latest sequence number for a TREE-

CONSTRUCT message received by the node.  

2.3 Initiation of the Tree-construct 

message 

Whenever the sink fails to receive the aggregated data 

from the LEADER node of the DG tree used in the 

previous round of data aggregation, the sink queries all 

the sensor nodes to send it their estimates of the weight 

of the links from their neighbor nodes. The sink 

calculates the estimated weight of a node as the sum of 

the estimated weights of the directed edges originating 

from the node (as reported by its neighbors); the sink 

selects the node with the largest estimated weight to be 

the LEADER node (root node) of the new DG tree that is 

to be setup and sends a TREE-INITIATE message 

(including a sequence number) to the chosen root node to 

begin the construction of the new DG tree. The sequence 

number for the tree construction process is a 

monotonically increasing value maintained at the sink 

and the sink sends the latest value of the sequence 

number to the LEADER node to facilitate the sensor 

nodes to uniquely identify the control messages that are 

exchanged with regards to the new DG tree being 

constructed. 

The LEADER node broadcasts a TREE-

CONSTRUCT message to its neighbors; the message has 

a 5-element tuple: <sequence number, LEADER node id, 

upstream node id, sender's estimated bottleneck link 

weight, tree level>. The sequence number is the one that 

is sent by the sink to the LEADER node. For the TREE-

CONSTRUCT message broadcast by the LEADER node, 

the values for the upstream node id, sender's estimated 

bottleneck link weight and tree level are respectively the 

LEADER node id, +∞ and 0. For the TREE-CONSTRCT 

message broadcast by the other nodes: the upstream node 
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id is the id of the node that the sender of the message 

considers to be the best node that would connect it to the 

LEADER node through a path estimated to be the one 

with the maximum bottleneck link weight (the value of 

which is also indicated in the message). The tree level 

field indicates the number of hops on the estimated 

maximum bottleneck link weight path from the sender 

node to the LEADER node of the DG tree. 

2.4 Propagation of the Tree-construct 

message 

When a node receives the TREE-CONSTRCT message 

(from a neighbor node) with a higher sequence number, 

it assumes that the DG tree that had been used until then 

no longer exists and resets its state information to the 

values listed in Section 2.2. The receiving node (say, 

node v) decides to further process the TREE-

CONSTRUCT message from a neighbor node (say, node 

u) if all the following conditions are met: (i) The 

upstream node id in the message is different from the id 

of the receiving node itself. (ii) The tree level value in 

the message is less than or equal to the tree level value 

maintained as part of the state information at the 

receiving node. (3) The value for the sender's estimated 

bottleneck link weight in the message is larger than the 

value for the receiver's estimated bottleneck link weight. 

(4) The weight of the directed edge from the sender node 

to the receiver node is larger than the latter's estimated 

bottleneck link weight for the path to the LEADER node. 

If all the above four conditions are met, the receiver node 

(node v) makes the following updates to its state 

information: (i) The receiver node updates its estimated 

bottleneck link weight for the path to the LEADER node 

to the minimum of the sender's (node u's) estimated 

bottleneck link weight value in the TREE-CONSTRUCT 

message and the weight of the directed edge u → v. (ii) 

The receiver node updates its upstream node id to that of 

the sender's node id. (iii) The value for the tree level is 

set to one more than the value for the tree level in the 

TREE-CONSTRUCT message. After making the above 

updates, the receiver node also rebroadcasts the TREE-

CONSTRUCT message in its neighborhood by changing 

the values for the upstream node id, sender's estimated 

bottleneck link weight and tree level fields in the message 

to the most recently updated values for these fields in its 

state information.  

Overall, a node receiving the TREE-CONSTRUCT 

message decides to further rebroadcast the message only 

if it can increase (through the sender node that sent it the 

message) its estimate for the bottleneck link weight path 

to the LEADER node (thus minimizing unnecessary 

retransmissions). Each node (other than the LEADER 

node) will be able to do so at least once because its initial 

value for the estimated bottleneck link weight is -∞ and 

all edge weights are positive as well as the value for the 

sender's estimated bottleneck link weight in the TREE-

CONSTRUCT message broadcast by the LEADER node 

is +∞. At the end of the tree construction process, each 

node (other than the LEADER node) would have joined 

the DG tree through an upstream node that is on the 

maximum bottleneck link weight path to the LEADER 

node. 

2.5 Propagation of the Tree-link-failure 

message 

Whenever an upstream node fails to receive an 

aggregated data packet from one of its downstream child 

nodes, the upstream node decides that the link to the 

child node has broken and initiates a TREE-LINK-

FAILURE message (included with a sequence number 

corresponding to the value sent by the LEADER node in 

the TREE-CONSTRUCT message) with the number of 

hops the message can get propagated equal to the tree 

level value for the initiating upstream node. The TREE-

LINK-FAILURE message is essentially reverse 

broadcast higher up the currently used DG tree so that 

the LEADER node can receive the failure message and 

initiate the construction of a new DG tree. Nodes that lie 

downstream of the failed link get to learn about the tree 

failure when a TREE-CONSTRUCT message with a 

higher sequence number (larger than the current value for 

the sequence number known) is received. 

3 Related work  
In this section, we first discuss related work data 

gathering in mobile sensor networks and then focus our 

discussion specifically on related work on determining 

stable data gathering trees in mobile sensor networks. 

3.1 Related work on data gathering in 

mobile sensor networks 

To the best of our knowledge, other than the work 

presented in Section 3.2 and the related works discussed 

below, the existing works (e.g., [10, 14, 32, 33]) in the 

literature on mobile sensor networks take the following 

hybrid approach: The regular data sensing nodes are 

considered static and there exists one or more mobile 

data collecting nodes that move around the static sensor 

nodes; a data gathering topology involving the data 

collecting nodes is constructed and maintained, if 

needed. Since all the sensor nodes are not considered 

mobile (the type of mobile sensor networks considered in 

our research) and the data gathering topology constructed 

is not network-wide (i.e., spanning all the sensor nodes), 

we do not delve further on related works based on the 

above approach.  

Among the very few network-wide spanning 

topology-based data gathering algorithms available in the 

literature for mobile sensor networks, most of the work 

focused on extending the classical LEACH (Low Energy 

Adaptive Clustering Hierarchy) [7] algorithm for static 

sensor networks to adapt to mobile environments. 

Variants of LEACH that have been proposed for MSNs 

focus on choosing the cluster heads by taking into 

account the residual energy available at the sensor nodes 

[2], mobility of the sensor nodes [29], stability of the 

links incident on a node [5] or proximity of the sensor 

nodes to certain landmarks [12]. Another work [30] 

related to cluster head selection proposed to set up a 
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panel of cluster heads (some of which serve as backup) 

to facilitate cluster reconfiguration due to node mobility.  

In [34], the authors proposed a cluster independent 

data collection tree (CIDT) protocol for mobile sensor 

networks that first partitions the entire network into 

clusters with a cluster head plus member nodes for each 

cluster and then chooses certain sensor nodes as data 

collection nodes (DCNs) that have better connection with 

the cluster heads. A data gathering tree of the DCNs is 

constructed and reconfigured over time when broken due 

to node mobility. The DCNs are selected in such a way 

that the links to the cluster heads and the links to the 

adjacent DCNs in the data gathering tree are stable. We 

opine that the CIDT protocol would incur a lot of control 

overhead (with respect to bandwidth and energy 

consumption) as two topologies (a cluster topology 

comprising of cluster heads plus their links to the 

member nodes and a tree topology of DCNs) have to be 

maintained in the network at any time. Though the two 

topologies have been formulated to be independent of 

each other, (due to node mobility) the identification of 

cluster heads and the DCNs has to be often initiated to 

maintain connectivity of the cluster heads to one or more 

near by DCNs.  

In [15], the authors propose a directed acyclic graph 

(DAG)-based topology for determining data gathering 

trees in mobile sensor networks. Whenever a data 

gathering tree is required, the sink constructs a DAG of 

the underlying network and runs a maximum bottleneck 

node weight-based data gathering (MaxBNW-DG) 

algorithm on the DAG. In this pursuit, the sink initiates 

data collection from all the nodes in the network on one 

or more multi-hop paths; the paths traversed by the data 

in cycle-free manner constitute a DAG of the network. 

The weight of a sensor node is determined based on the 

theory of thermal fields applied on the utility of the data 

sensed by the node as well as that of its neighbors. The 

sink then initiates a distributed version of the MaxBNW-

DG algorithm on the DAG such that each sensor node is 

located on a maximum bottleneck node weight path to 

the sink node. The bottleneck node weight for a path in 

[15] is calculated as the minimum of the weights of the 

intermediate node on the path; ties are broken in favor of 

paths of lower hop count. Due to node mobility, there 

may not be paths from one or more nodes to the sink 

node on the DAG. Similar to [34], we opine that a 

significant control overhead (in a mobile sensor network) 

would be encountered to first construct a DAG and then 

run a distributed version of the MaxBNW-DG algorithm 

on the DAG.  

3.2 Related work on stable data gathering 

trees in mobile sensor networks 

In [21], the authors had proposed a benchmarking 

algorithm to determine a sequence of stable data 

gathering trees that would exist for the longest time such 

that the number of tree transitions is the bare minimum. 

When a DG tree is required at a time instant t, the idea is 

to determine an intersection of the network graphs 

existing at time instants t, t+1, t+2, ... t+k such that the 

intersection graph is connected from time instants t ... t+k 

and not connected from time instants t ... t+k+1. That is, 

the inclusion of the graph at time instant t+k+1 to the 

intersection graph of time instants t ... t+k would 

disconnect the intersection graph from time instants t ... 

t+k+1. However, the algorithm is centralized in nature 

and would require the topology changes to be known a 

priori from the beginning to the end of the simulation 

session. On the other hand, the focus of research in this 

paper is to employ a distributed algorithm for 

determining stable data gathering trees using the BPI 

approach from complex network analysis - this approach 

does not require any a priori knowledge about the 

network topology changes as well as about the location 

and mobility of the nodes; we would just need the one-

hop neighborhood information at every node. 

In [19], the authors proposed distributed algorithms 

to determine the predicted link expiration time (LET)-

based data gathering trees for longer tree lifetime and the 

minimum distance spanning tree (MST)-based data 

gathering trees for longer node lifetime (time of first 

node failure due to exhaustion of energy) and longer 

network lifetime (time at which the network gets 

disconnected due to the failure of one or more nodes). 

The predicted link expiration time (LET) of a link i – j 

between two nodes i and j, currently at (Xi, Yi) and (Xj, 

Yj), and moving with velocities vi and vj in directions θi 

and θj (with respect to the positive X-axis) is computed 

using the formula proposed in [31]: 
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where a = vi*cosθi – vj*cosθj; b = Xi – Xj;  

 c = vi*sinθi – vj*sinθj; d = Yi – Yj 

  

The MST-based DG trees aim to minimize the 

largest Euclidean distance between the end nodes of a 

link in the DG tree, but are not as stable as the LET-DG 

trees [19]. Due to repeated tree reconfigurations, the gain 

obtained in the node lifetime (85-150% more than that of 

the LET-DG trees) does not equally get transferred to the 

gain obtained in network lifetime (only 15-130% more 

than that of the LET-DG trees) [19]. The LET-DG trees 

fit within the criteria of finding maximum bottleneck link 

weight-based DG trees (i.e., the objective is to maximize 

the minimum LET for a link on the path from any node 

to the LEADER node); whereas, the MST-DG trees fit 

within the criteria of finding minimum bottleneck link 

weight-based DG trees (i.e., the objective is to minimize 

the maximum value for the distance between the end 

nodes of the link on the path from any node to the 

LEADER node). In this paper, we model the short 

distance links as links with larger BPI/link stability score 

(measure of link weight; for further details, see Section 

4) and run the maximum bottleneck link weight-based 

algorithm to maximize the minimum link weight on the 

path from any node to the LEADER node of the DG tree; 

we show that by doing so, we can simultaneously incur a 

larger tree lifetime as well as a lower energy 
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consumption per round (see Section 5 for the simulation 

results).   

In [24], the authors proposed a generic algorithm to 

determine maximum bottleneck node weight 

(MaxBNW)-based data gathering trees wherein the root 

node is the node with the largest weight. In [24], the 

weight of a node has been modeled as the sum of the 

weights of the links incident on it. The bottleneck node 

weight for a path from a node to the root node of the DG 

tree is the minimum of the weights of the nodes on the 

path. The MaxBNW-DG algorithm aims to determine a 

DG tree in which the path from any node to the root node 

is the path with the maximum bottleneck node weight. In 

[24], it has been observed that the MaxBNW-DG trees 

have different characteristics compared to the MaxBLW-

DG trees. The focus of research in this paper is to 

determine MaxBLW-DG trees by modeling the link 

weight as a measure of the stability of the link using the 

algebraic connectivity approach from complex network 

analysis that does not need the location and mobility 

information of the nodes. 

4 Bipartivity index (BPI)-based link 

selection strategy 
In this section, we describe the Bipartivity Index (BPI) 

[6]-based link selection strategy adapted from complex 

network analysis to quantify the stability of links (i.e., 

the link weights) in a mobile sensor network. We 

compute the link stability score (LSS) for an edge by 

analyzing the bipartivity of the "egocentric network for 

the edge" that is adapted from the notion of egocentric 

network of a node [13]. The egocentric network of a 

node [13] in a graph is a sub graph comprising of: 

vertices - the nodes and its neighbors and edges - the 

links involving the node and/or its neighbors. We define 

the egocentric network of an edge in a graph to be a sub 

graph comprising of: vertices - the end nodes of the edge 

and their neighbors and edges - the links incident on the 

end nodes of the edge.  

Our hypothesis for this research is based on the 

observation that links (we refer to as short distance links) 

whose end nodes are close enough to each other (vis-a-

vis the transmission range per node) are more likely to be 

stable (and vice-versa) compared to links for which the 

distance between the end nodes is closer to the 

transmission range per node. We define the fraction of 

link distance (fld) for an edge as the ratio of the 

Euclidean distance between the end nodes of the edge 

and the transmission range per node. For a short distance 

link, fld is expected to be appreciably less than 1. Our 

hypothesis is that the end nodes of a short distance link 

are more likely to share a significant fraction of their 

neighbors (and vice-versa) and we could compute the 

BPI for the egocentric network of the link to quantify the 

extent of this shared neighborhood that can be in turn 

used as the link stability score (LSS). Note that the 

egocentric network of an edge could be independently 

(and identically) constructed by each of the two end 

nodes of the edge based on the one-hop neighborhood 

information received from the other node (as part of 

periodic beacon exchange). 

A graph is said to be truly bipartite [4, 6] if we could 

partition the vertices of the graph into two disjoint sets 

such that all the edges in the graph are those that connect 

the vertices in one partition to vertices in the other 

partition and that there are no edges (called frustrated 

edges [6]) between vertices within the same partition. 

However, all network graphs cannot be expected to be 

truly bipartite. Hence, Estrada and Rodriguez-Velazquez 

[6] proposed the notion of bipartivity index (BPI) to 

measure the extent of bipartivity in a graph. The 

bipartivity index of a graph ranges from 0 to 1. If a graph 

is truly bipartite, then the bipartivity index is 1 and there 

are no frustrated edges between vertices within the same 

partition [6]. If a graph is not truly bipartite, then the 

bipartivity index will be less than 1. Estrada and 

Rodriguez-Velazquez [6] proposed a mechanism that 

will allow us to identify a partitioning of the vertices into 

two disjoint partitions as well as identify the frustrated 

edges (if the graph is not truly bipartite) involving 

vertices within the same partition. The mechanism 

proposed by Estrada Rodriguez-Velazquez [6] is to 

determine the eigenvalues of the adjacency matrix of the 

graph (to determine the bipartivity index, as shown in 

formulation 2) and use the signs (positive or negative) of 

the entries in the eigenvector corresponding to the 

smallest eigenvalue of the adjacency matrix to determine 

the partitioning of the vertices. If λ1, λ2, λ3, ..., λn are the 

eigenvalues of the adjacency matrix of a graph G of n 

vertices, then the bipartivity index (BPI) of G is given by 

the formulation below [6]:   
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To measure the extent of shared neighborhood of the 

end vertices of an edge in a graph, we propose to 

compute the bipartivity index on the egocentric network 

of the edge and use the complement of the bipartivity 

index (1 - BPI) as the link stability score (LSS) for the 

edge. That is: LSS(u-v) = 1 - BPI(EGu-v), where EGu-v is 

the egocentric network graph of the edge u-v. We justify 

the above proposal as follows (also illustrated in Figures 

1-3: for an edge u-v where u1-u4 are four neighbors, 

other than vertex v, for a vertex u; and v1-v4 are four 

neighbors, other than vertex u, for a vertex v):  

If the end vertices of an edge u-v do not have any 

shared neighbors (i.e., u1-u4 and v1-v4 are all distinct 

vertices: as shown in Figure 1), then we could partition 

the vertices in the egocentric network of the edge to two 

disjoint partitions such that vertex u and the neighbors of 

vertex v are in one partition (referred to as partition-u) 

and vertex v and the neighbors of vertex u are in the 

other partition (referred to as partition-v). The egocentric 

network of the edge u-v with no common neighbors for 

the end vertices would be a truly bipartite graph (as in 
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Figure 1) as the only edges in the graph would be edges 

connecting vertices in partition-u to vertices in partition-

v. The bipartivity index of such an egocentric network 

graph would be 1.0 and as per our hypothesis, the link 

stability score for the edge would be 0.0. 

 

 

Figure 1: Example for a Truly Bipartite Egocentric 

Network of an Edge u-v. 

 

   

   2-a: BPI(EGu-v) = 0.75           2-b: BPI(EGu-v) = 0.85 

       LSS(u-v) = 0.25                     LSS(u-v) = 0.15 
 

 

2-c: BPI(EGu-v) = 0.92 

LSS(u-v) = 0.08 

Figure 2: Bipartivity Index of the Egocentric Network 

Graph of an Edge and its Link Stability Score (Varying 

the Number of Shared Neighbors for a Fixed Number of 

Edges in the Egocentric Network). 

    

   3-a: BPI(EGu-v) = 0.83           2-b: BPI(EGu-v) = 0.85 

       LSS(u-v) = 0.17                     LSS(u-v) = 0.15 
 

 

3-c: BPI(EGu-v) = 0.87 

LSS(u-v) = 0.13 

Figure 3: Bipartivity Index of the Egocentric Network 

Graph of an Edge and its Link Stability Score (Varying 

the Number of Edges in the Egocentric Network for a 

Fixed Number of Shared Neighbors). 

 

On the other hand, if the end vertices of an edge u-v 

share one or more of their neighbors: then, the 

eigenvector-based decomposition for bipartivity [6] 

applied on the egocentric network of the edge would 

group the two end vertices u and v together in one 

partition (referred to as partition u-v) and the neighbors 

of u and v together in the other partition (referred to as 

partition: neighbors of u and v). The BPI of such 

egocentric network graphs would be less than 1 (due to 

the presence of the frustrated edge u-v in the same 

partition) and the actual magnitude of the BPI would 

depend on the actual number of neighbors for the two 

end vertices (i.e., on the number of vertices in the other 
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Figure 4: Illustration of the Eigenvector-based Partitioning of the Egocentric Networks of the Edges and the 

Bipartivity Index and Link Stability Scores of the Edges in an Example Graph. 

 

partition: neighbors of u and v) as well as on the 

number of shared neighbors (i.e., on the number of edges 

connecting the vertices in partition u-v to the vertices in 

the partition: neighbors of u and v). For a given 

egocentric network graph EGu-v with a certain number of 

edges and is not truly bipartite (as shown in Figures 2-a, 

2-b and 2-c): the larger the number of shared neighbors 

(i.e., fewer the number of vertices in the partition: 

neighbors of u and v), the lower the BPI (and larger will 

be the LSS score for the edge u-v). Likewise, for a given 

egocentric network graph EGu-v with a certain number of 

shared neighbors and is not truly bipartite (as shown in 

Figures 3-a, 3-b and 3-c): the larger the number of 

vertices in the partition: neighbors of u and v (i.e., the 

larger the number of edges connecting the vertices in 

partition u-v to the vertices in the partition: neighbors of 

u and v), the larger the BPI (and lower will be the LSS 

score for the edge u-v). 

In Figure 4, we illustrate the computation of the 

bipartivity index of the egocentric networks of the edges 

(with coordinates of the vertices as indicated in a grid) in 

an example graph. The egocentric networks for none of 

the edges have been observed to be truly bipartite. We 

illustrate the eigenvector-based partitioning of the 

egocentric networks of three edges: 6-7, 3-4 and 1-5 that 

have different values for the fraction of link distance 

(fld). We observe the bipartivity-based LSS values (1 - 

bipartivity index) for these three edges to increase with 

decrease in the fraction of link distance (fld) values. 

Overall, we see the expected trend between fld and the 

bipartivity-based LSS values for the edges: the LSS 

values are more likely to be higher for edges with lower 

fld values and vice-versa. 

5 Simulations 
In this section, we first present the simulation 

environment and the notion of normalized 

comprehensive relative performance (NCRP) score to 

identify the link selection strategy that effectively 

balances the tradeoffs with respect to the performance 

metrics, and then discuss in detail the results of the 
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simulations obtained by running the distributed version 

of the MaxBLW-DG algorithm incorporated with BPI as 

well as the LET-based link selection strategies. The 

simulations were conducted in a discrete-event simulator 

implemented in Java for mobile sensor networks. The 

simulator was earlier successfully used for other related 

studies (e.g., [19][21][23]) for mobile sensor networks. 

The medium access control (MAC) layer is assumed to 

be ideal to extract the best possible performance from the 

data gathering algorithm and the link selection strategies.  

5.1 Simulation environment 

In this sub section, we present the simulation parameters 

(network density, maximum node velocity, data size and 

the number of rounds as well as the frequency of LSS 

updates), the mobility model, the energy consumption 

model, DG tree update policy and channel access policies 

as well as define the structural metrics and performance 

metrics.  

Simulation Parameters: The network dimensions is 

100m x 100m (Area A = 10,000 m2) and the sink is 

assumed to be outside the network: at (50, 300). The 

number of nodes (N) in the network is set to be 50 and 

100, and the transmission range (R) per node values used 

are 25m and 35m. The average number of neighbors per 

node is computed using the formula: πR2N/A. 

Accordingly, we have the following scenarios of network 

density: low density (N = 50, R = 25m, Avg. # neighbors 

per node = 9.8), low-moderate density (N = 50, R = 35m, 

Avg. # neighbors per node = 19.2), moderate-high 

density (N = 100, R = 25m, Avg. # neighbors per node = 

19.6) and high density (N = 100, R = 35m, Avg. # 

neighbors per node = 38.5). The maximum velocity of a 

node (vmax) is set to be: 1 m/s (low mobility), 3 m/s 

(low-moderate mobility), 5 m/s (moderate-high mobility) 

and 10 m/s (high mobility). Thus, we have a total of 

sixteen scenarios of various combinations of network 

density and node mobility. We generated 100 instances 

of node mobility profiles for each of the above sixteen 

scenarios of network density and node mobility and 

averaged the results (with respect to the performance 

metrics and structural metrics discussed below) obtained 

for the MaxBLW-DG algorithm incorporated with the 

BPI and LET-based link selection strategies run on these 

100 instances. 

Mobility Model: To start with, the nodes are 

uniform-randomly distributed throughout the network. 

Mobility of the nodes is modeled according to the 

Random Waypoint model [3] with the nodes moving 

continuously (zero pause time) and independent of each 

other. A node decides to move from its current location 

to a randomly chosen location within the network with a 

velocity uniform-randomly chosen from [0...vmax]; after 

reaching the chosen location, the node continues its 

movement by randomly choosing another location with a 

different randomly chosen velocity from the above range. 

A node continues its movement like this throughout the 

simulation. We record the instances of direction change 

and the corresponding location and velocity to construct 

(offline) a mobility profile for each node and feed in this 

mobility profile to the MaxBLW-DG tree algorithm. 

Energy Consumption Model: Nodes are assumed to 

be of sufficient energy so that there are no node failures 

due to exhaustion of energy. The energy consumed at a 

node for data aggregation is the sum of the energy lost in 

receiving the aggregated data from each of its child 

nodes, fusing its own data with that of the aggregated 

data and transmitting the final aggregated data to its 

upstream node in the DG tree. The energy consumed at a 

node for broadcast tree discovery is the sum of the 

energy lost to receive the broadcast control message from 

each of its neighbors and to the transmit the control 

message in its neighborhood, if the conditions for 

rebroadcast are met. The energy consumption model 

used is a first-order radio model [28] that has been used 

in several of the previous work [7, 11] in the literature. 

According to this model: (i) the energy consumed at a 

sensor node to transmit a k-bit message over a distance d 

is given by: ETX(k, d) = Eelec*k + amp
*k*d2, where 

Eelec = 50 nJ/bit is the energy lost to run the radio 

transmitter or receiver circuitry and amp
= 100 

pJ/bit/m2 is the energy lost to run the transmitter 

amplifier; (ii) the energy lost at a sensor node to 

broadcast a k-bit message to all its neighbors within the 

transmission range R is simply given by ETX(k, R); the 

energy consumed at a sensor node to receive a k-bit 

message is ERX(k) = Eelec *k. The total energy 

consumed at a sensor node to receive k-bit broadcast 

messages transmitted by all of its n-neighbors is simply 

given by n * ERX(k). We do not take into consideration 

the energy lost due to periodic beacon exchange as both 

the LET and BPI-based link selection strategies 

considered in this research use it to determine the link 

weights. 

Data Size and Frequency of LSS Updates: We 

conduct the simulations for 2000 rounds (one round for 

every 0.25 seconds: a total of 500 seconds). The LSS 

scores of the links are estimated in the neighborhood of 

the nodes for every second. For each round: data gets 

aggregated across the network, starting from the leaf 

nodes and proceeding all the way to the LEADER node 

of the DG tree; the LEADER node forwards the final 

aggregated data to the sink. The data size is assumed to 

remain the same during network-wide aggregation. That 

is, the size of the aggregated data is assumed to be the 

same as the size of the data collected at the individual 

sensor nodes. The data size is 2000 bits and the size of 

the control messages used for tree configuration and 

maintenance is assumed to be 400 bits (sufficiently large 

enough to accommodate the various fields in the control 

messages).  

DG Tree Update Policy: Every time a DG tree is 

needed, the sink collects the weights of the links of the 

sensor nodes using a network-wide broadcast. The node 

with the largest sum of the link weights is considered as 

the root node (a.k.a. LEADER node) and the sink node 

sends a control message to the LEADER node to initiate 

tree discovery (a process also called tree 
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reconfiguration). A DG tree is used as long as it exists: 

this is referred to as the Least Overhead Routing 

Approach (LORA) [1] in the literature of mobile ad hoc 

networks. 

Channel Access Policy: Note that in a particular 

timeslot, an intermediate node could collect data from 

only one of its child nodes (using Time Division Multiple 

Access, TDMA [35]) if the latter has its aggregated data 

available, and an intermediate node could transmit 

upstream its aggregated data only after receiving the 

same from each of its child nodes and aggregating with 

its own. An intermediate node could collect data from 

one of its child nodes at the same time (using Code 

Division Multiple Access, CDMA [35]) as any other 

intermediate node collects data from any of its child 

nodes. We assume that sufficient number of CDMA and 

TDMA codes are available at the sensor nodes (as 

needed) to facilitate data aggregation in the minimum 

number of time slots. 

Structural Metrics: We evaluated the following three 

structural metrics: (S-i) Tree Height, TH: The tree height 

is the maximum of the level numbers of the vertices (i.e., 

the number of hops) from the root node of the DG tree 

(with the root node considered to be at level 0). (S-ii) 

Fraction of Leaf Nodes, FLN: The fraction of leaf nodes 

is the ratio of the number of leaf nodes to the total 

number of nodes in the network graph. (S-iii) Average 

Number of Child Nodes per Intermediate Node, CNI: 

The average number of child nodes per intermediate 

node is the weighted average of the number of child 

nodes per intermediate node considered across all 

intermediate nodes.  

Performance Metrics: We evaluated the following 

three performance metrics: (P-i) Tree Lifetime, TL: The 

tree lifetime is the number of rounds a DG tree exists 

before one or more of its links fail due to node mobility, 

averaged over the duration of a simulation session. (P-ii) 

Aggregation Delay per Round, ADR: The aggregation 

delay per round is the minimum number of timeslots 

(computed as per algorithm [25]) it takes for data to get 

aggregated along the edges of the DG tree and reach the 

root node, averaged across all the rounds. (P-iii) Energy 

Consumption per Round, ECR: The energy consumed 

per round is the sum of the energy consumed at each of 

the nodes for data aggregation in the network plus the 

energy lost due to broadcast tree discoveries if the DG 

tree was reconfigured at the beginning of the round. We 

average the energy consumed across all the rounds of a 

simulation session.  

5.2 Normalized comprehensive relative 

performance (NCRP) score 

As described in Section 5.4, we observe a complex 

tradeoff between the three performance metrics: tree 

lifetime, energy consumption per round and aggregation 

delay per round. Since the performance metrics incur 

different levels of magnitude, we propose to bring the 

values incurred for these metrics on a common scale of 0 

to 1 using the method of normalization and propose to 

prefer the link selection strategy that incurs the largest 

value for the normalized score (or the complement of the 

normalized score, as appropriate) with respect to the 

individual metrics and/or with respect to the normalized 

comprehensive relative performance (NCRP) score 

(introduced below). In other words, the idea is to 

normalize the values incurred for each of the 

performance metrics incurred for the BPI and LET link 

selection strategies for a particular simulation scenario 

and compute a normalized comprehensive relative 

performance (NCRP) score with respect to the 

performance metrics (as shown below).  

As we seek for a larger tree lifetime (see Section 

5.4), lower energy consumption per round (see Section 

5.5) and lower aggregation delay per round (see Section 

5.6), we use the normalized values for the tree lifetime 

(TL), but complement of the normalized values for the 

energy consumption per round (ECR) and aggregation 

delay per round (ADR) to compute the NCRP score as a 

weighted average (weight = 1/3 for each metric) of these 

three values.  

Complement of Norm. ECR = 1 - Normalized ECR    

Complement of Norm. ADR = 1 - Normalized ADR 

NCRP = {Normalized TL + Complement of Norm. 

ECR + Complement of Norm. ADR}/3   ...........(3)          

5.3 Structural metrics 

In this section, we illustrate the results obtained with 

respect to the structural metrics for the DG trees 

determined based on the BPI and LET strategies. For 

lower energy consumption and lower aggregation delay 

per round, we would desire to have DG trees with a 

lower number of child nodes per intermediate node (so 

that an intermediate node can spend less energy in 

receiving data from each of its child nodes as well as 

aggregate data from its child nodes in fewer time slots) 

and at the same time a larger fraction of leaf nodes (so 

that the energy lost due to receptions could be lower and 

the number of nodes that readily have the data to transmit 

could be larger). However, we observe that it would not 

be possible to simultaneously maximize the fraction of 

leaf nodes as well as minimize the number of child nodes 

per intermediate node. As the fraction of leaf nodes in a 

DG tree increases, the fraction of intermediate nodes in 

the DG tree is bound to decrease and hence the number 

of child nodes per intermediate node is bound to only 

increase. We also observe a similar trend in the results 

(see Figures 5-6) for the structural metrics obtained for 

the DG trees based the LET and BPI strategies.  

The LET-based DG trees incur a larger fraction of 

leaf nodes (desirable for lower energy consumption and 

lower aggregation delay per round) and lower height 

(desirable for lower aggregation delay per round), but 

also simultaneously incur a larger number of child nodes 

per intermediate node. The BPI-based DG trees incur a 

relatively lower number of child nodes per intermediate 

node (desirable for lower energy consumption and lower 

aggregation delay per round), but also incur a lower 

fraction of leaf nodes. Thus, as envisioned previously, we 

observe a tradeoff between the fraction of leaf nodes and 

the number of child nodes per intermediate node.  
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(a) vmax = 1 m/s                        (b) vmax = 3 m/s                       (c) vmax = 5 m/s                       (d) vmax = 10 m/s 

Figure 5: Average Fraction of Leaf Nodes. 

 

            

(a) vmax = 1 m/s                        (b) vmax = 3 m/s                       (c) vmax = 5 m/s                       (d) vmax = 10 m/s 

Figure 6: Average Number of Child Nodes per Intermediate Node. 

 

            

(a) vmax = 1 m/s                        (b) vmax = 3 m/s                       (c) vmax = 5 m/s                       (d) vmax = 10 m/s 

Figure 7: Average Tree Height. 

 

Since the structural metrics are not dependent on 

node mobility, for a given network density: we observe 

the values incurred for the structural metrics to be 

independent of node mobility. For a given level of node 

mobility, we observe the fraction of leaf nodes as well as 

the average number of child nodes per intermediate node 

(incurred for both the LET and BPI-based DG trees) to 

decrease with increase in network density. On the other 

hand, for a given level of node mobility, we observe the 

tree height to increase with increase in network density 

(especially, as we increase from 50 to 100 nodes).  

5.4 Tree lifetime 

The BPI-DG trees incur significantly larger values for 

the tree lifetime (see Figure 8) compared to that of the 

LET-DG trees. The lifetime of the BPI-DG trees could 

be as large as 12 times the lifetime of the LET-DG trees 

(especially in scenarios of high network density and low 

node mobility). Even in the worst case (scenarios of low 

network density and high node mobility), the lifetime of 

the BPI-DG trees is at least 60% larger than the lifetime 

of the LET-DG trees. When considered across all the 16 

scenarios of network density and node mobility (refer 

Figure 9), the normalized values (with respect to tree 

lifetime) for the BPI-DG trees is at least 0.85; whereas, 

the normalized values for the LET-DG trees is at most 

0.52.  

 

 

     

(a) vmax = 1 m/s                        (b) vmax = 3 m/s 

 

     

(c) vmax = 5 m/s                        (d) vmax = 10 m/s 

Figure 8: Absolute Value of Average Tree Lifetime. 

 

From Figure 8, we could observe that for a fixed 

level of node mobility: the average lifetimes for the BPI-

DG trees relatively increase with increase in network 

density, whereas the average lifetimes for the LET-DG 

trees relatively decrease with increase in network 

density. From Figure 9, for a given level of network 

density: we could observe that the relative performance 
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of the LET-DG trees with respect to tree lifetime 

improves with increase in node mobility. On the other 

hand, the relative performance of the BPI-DG trees with 

respect to tree lifetime remains almost the same or only 

marginally degrades with increase in node mobility. 

Thus, with respect to tree lifetime, the BPI-DG trees are 

relatively more scalable (i.e., are robust to increase in 

network density for a given level of node mobility) and 

remains relatively about the same (with increase in node 

mobility for a given network density). Such observations 

on the relative performance of the link selection 

strategies cannot be easily assessed by simply looking at 

the actual values incurred for tree lifetime in Figure 8 (or 

for that matter any other performance metric). 

 

     

(a) LET                                  (b) BPI 

Figure 9: Normalized Value of Average Tree Lifetime. 

5.5 Aggregation delay per round 

From Figures 10-11, we observe the LET-DG trees to 

incur lower ADR values for all conditions of network 

density and node mobility. For a given level of node 

mobility, the difference in the magnitude of the ADR 

values between the BPI-DG trees and the LET-DG trees 

increases with increase in network density. For a given 

network density, the ADR values incurred for the DG 

trees based on a particular link selection strategy remain 

about the same (there is no particular or a significant 

trend of variation) at different levels of node mobility. 

As we prefer a link selection strategy to yield lower 

aggregation delay per round for the DG trees, we plot the 

complement of the normalized ADR values (instead of 

just the normalized ADR values) of Figure 10 in Figure 

11. The ADR values (shown in Figure 10) incurred for 

both the LET-DG and BPI-DG trees appear to be directly 

proportional and positively correlated with the height of 

the DG trees (shown in Figure 7). Though the absolute 

ADR values (Figure 10) are observed to increase with 

increase in network density for a given level of node 

mobility, there is no change in the trend of the 

normalized ADR values (a measure of the relative 

performance) incurred for the DG trees based on both 

LET and BPI (for a given level of node mobility, the 

complement of the normalized ADR values for either 

LET or BPI almost remains the same with increase in 

network density).  

Unlike the exceptionally high values for the tree 

lifetime incurred with the BPI-DG trees and relatively 

very poor tree lifetime (see Figures 8-9) observed for the 

LET-DG trees, (the complement of) the normalized ADR 

values incurred for the DG trees determined based on 

LET and BPI are not far different. In the case of tree 

lifetime, the difference in the normalized values for the 

lifetime of the LET and BPI- based DG trees is at least 

0.33 and is as large as 0.92 (with a high median of 0.69). 

On the other hand, in the case of aggregation delay per 

round, the difference in the complement of the 

normalized ADR values of the LET and BPI-based DG 

trees is at most 0.27 (with a low median of 0.11). 

 

     

(a) vmax = 1 m/s                        (b) vmax = 3 m/s 

 

     

(c) vmax = 5 m/s                        (d) vmax = 10 m/s 

Figure 10: Absolute Value of Average Aggregation 

Delay per Round (in time units). 

 

     

(a) LET                                  (b) BPI 

Figure 11: Complement of the Normalized Value of 

Average Aggregation Delay per Round. 

 

5.6 Energy consumption per round 

The BPI-DG trees incur lower values for energy 

consumption per round (ECR) for all scenarios of 

network density and node mobility (see Figures 12-13), 

and the LET-DG trees incur larger ECR values for all 

scenarios. The relatively better performance of the BPI-

based DG trees with respect to ECR could be primarily 

attributed to the less frequent network-wide broadcasts 

(due to a larger tree lifetime) and the short distance 

nature of the links that are part of the transmissions 

during data aggregation. For a given level of node 

mobility: the difference in the ECR values between the 

BPI and LET-based DG trees increases with increase in 

network density (attributed to the relatively unstable 

LET-based DG trees with increase in network density). 

Of course, for a fixed network density, the difference in 

the ECR values increase with increase in node mobility. 

Though both LET and BPI incur an increase in the 

magnitude for the ECR values with increase in network 
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density and/or node mobility, the ECR values for the 

LET-DG trees are significantly larger than those incurred 

for the BPI-DG trees.  

 

     

(a) vmax = 1 m/s                        (b) vmax = 3 m/s 

 

     

(c) vmax = 5 m/s                        (d) vmax = 10 m/s 

Figure 12: Absolute Value of Average Energy 

Consumption per Round (in Joules). 

For a given level of node mobility (see Figure 13): 

the complement of the normalized ECR values for the 

BPI-DG trees increases with increase in network density; 

whereas, the complement of the normalized ECR values 

for the LET-DG trees decreases with increase in network 

density. Thus, for a given level of node mobility: the 

relative performance (with respect to ECR) of the BPI-

DG trees vis-a-vis the LET-DG trees improves with 

increase in network density. On the other hand, (see 

Figure 13), for a given network density: the complement 

of the normalized ECR values for the LET-DG trees 

slightly increase with increase in node mobility; whereas, 

the complement of the normalized ECR values for the 

BPI-DG trees slightly decrease with increase in node 

mobility, more visibly in networks of high density. 

 

     

(a) LET                                  (b) BPI 

Figure 13: Complement of the Normalized Value of 

Average Energy Consumption per Round. 

5.7 Analysis of the relative performance 

tradeoff based on the NCRP scores 

We observe the lifetime incurred for the BPI-DG trees to 

be significantly larger than that of the LET-DG trees. 

Likewise, the average energy consumption per round 

incurred for the BPI-DG trees is lower than that incurred 

for the LET-DG trees. On the other hand, the aggregation 

delay per round incurred for the LET-DG trees is lower 

than the aggregation delay per round values incurred for 

the BPI-DG trees. This illustrates a complex {tree 

lifetime, energy consumption per round} vs. 

{aggregation delay per round} tradeoff. We use the 

normalization approach (introduced in Section 5.2) to 

analyze this tradeoff with respect to the above three 

performance metrics between LET and BPI. We observe 

(from Figure 14) the BPI-based link selection strategy to 

effectively balance this tradeoff and incur larger values 

for the NCRP score under all the 16 different scenarios 

of network density and node mobility. A closer look at 

the actual values (from Figures 8, 10 and 12) and 

normalized values (from Figures 9, 11 and 13) for the 

three individual performance metrics illustrates the same. 

 

     

(a) vmax = 1 m/s                        (b) vmax = 3 m/s 

 

     

(c) vmax = 5 m/s                        (d) vmax = 10 m/s 

Figure 14: Normalized Comprehensive Relative 

Performance Score for the Link Selection Strategies. 

With respect to the impact of network density and 

node mobility: the NCRP scores for the LET-DG trees 

decrease with increase in network density (for a fixed 

level of node mobility) and increase with increase in 

node mobility (for a fixed network density). On the other 

hand, the NCRP scores for the BPI-DG trees increase 

with increase in network density (for a fixed level of 

node mobility) and remain about the same with increase 

in node mobility (for a fixed network density). Thus, we 

observe the overall relative performance of the BPI-DG 

trees to only improve (or remain the same) with increase 

in network density and/or node mobility. 

Table 1 provides a comprehensive overview of the 

simulation results, identifying the link selection strategy 

that yields the most desirable values for the structural 

metrics and performance metrics. With respect to the 

structural metrics, we desire to have larger values for the 

fraction of leaf nodes and lower values for the number of 

child nodes per intermediate node and tree height. With 

respect to the performance metrics, we desire to have 

larger values for tree lifetime and lower values for the 

energy consumption per round and aggregation delay per 

round. With respect to the NCRP score (see equation 3 

for the formulation), we desire to have values closer to 1. 

On these lines, the LET strategy returns the most 

desirable values for two of the three structural metrics as   
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Table 1: Link Selection Strategies (LET vs. BPI) that Incur the most Desirable Values for the Structural Metrics and 

Performance Metrics as well as the NCRP Score. 

 
well as the aggregation delay per round (all of which 

are not dependent on node mobility); however, the BPI 

strategy is useful to discover stable DG trees (larger tree 

lifetime) that also incur a lower energy consumption per 

round (attributed to the less frequent network-wide 

broadcasts and short distance nature of the links). The 

relatively better performance of the BPI-DG trees with 

respect to the tree lifetime and energy consumption per 

round and competitive values for the aggregation delay 

per round lift the normalized comprehensive relative 

performance (NCRP) scores to be above that of the LET 

strategy. The minimum and maximum difference in the 

NCRP scores incurred for the BPI-DG trees vis-a-vis the 

LET-DG trees are respectively 0.15 (observed in 

scenario of low network density and high node mobility) 

and 0.55 (observed in scenario of high network density 

and low node mobility). The median difference in the 

NCRP scores is 0.38.  

6 Conclusions 
The high-level contribution of this paper is a 

proposal to use the Bipartivity Index (BPI) metric (a 

spectral graph-theoretic metric used in complex network 

analysis) to determine stable data gathering (DG) trees 

for mobile sensor networks (MSNs). Our hypothesis in 

this research is that the end nodes of short distance links 

(the Euclidean distance between the end nodes of the link 

is far less than the transmission range of the nodes) are 

more likely to share a significant fraction of their 

neighborhood (and vice-versa). As short distance links 

are more likely to be stable too (and vice-versa), we 

propose to use the BPI strategy to evaluate and quantify 

the extent of shared neighborhood of the end vertices of 

the edges for determining stable DG trees in mobile 

sensor networks.  

We model the neighborhood of the end vertices of an 

edge u-v as an egocentric network EGu-v comprising of 

the end vertices and their neighbors as nodes and the 

edges incident on the end vertices as links. We have 

shown (through detailed theoretical analysis and 

illustrative examples) that edges whose egocentric 

networks have smaller values for the BPI are more likely 

to be short distance links. The egocentric network for an 

edge and its BPI score could be independently 

determined by the two end vertices of the edge based on 

just the one-hop neighborhood information and without 

knowledge about the location and mobility of the nodes. 

We quantify the link stability score (LSS) for an edge u-v 

as 1 - BPI(EGu-v). We define the bottleneck link weight 

of a path as the minimum of the weights of the 

constituent links on the path. Whenever a DG tree is 

required, we determine the maximum bottleneck link 

weight-based DG tree for which the bottleneck link 

weight of the path from any node to the root node is the 

maximum (the root node is the node with the largest sum 

of the LSS scores of its incident links). 

We have compared the performance of the BPI-

based DG trees with that of the DG trees determined 

based on the predicted link expiration time (LET) - the 

only well-known strategy so far [19] to determine stable 

DG trees for MSNs. We observe the BPI-DG trees to be 

significantly more stable as well as incur a lower energy 

consumption per round compared to that of the LET-DG 

trees. On the other hand, we observe the aggregation 

delay per round incurred for the LET-DG trees to be 

lower than the aggregation delay per round incurred for 

the BPI-DG trees. We thus observe a complex {tree 

lifetime, energy consumption per round} vs. 

{aggregation delay per round} tradeoff. We attribute this 

tradeoff to the unstable nature of the LET-DG trees 

(leading to more energy-intensive network-wide 

broadcast tree discoveries) and lower height as well as a 

larger fraction of leaf nodes (contributing to a lower 

aggregation delay per round).  

Finally, we propose the use of a normalization-based 

approach to evaluate the relative performance of the link 

selection strategies in a scale of 0...1 and thereby 

# nodes Tr. range vmax FLN  CNI TH TL ECR ADR NCRP 

50 25m 

1 m/s LET BPI LET BPI BPI LET BPI 

3 m/s LET BPI LET BPI BPI LET BPI 

5 m/s LET BPI LET BPI BPI LET BPI 

10 m/s LET BPI LET BPI BPI LET BPI 

50 35m 

1 m/s LET BPI LET BPI BPI LET BPI 

3 m/s LET BPI LET BPI BPI LET BPI 

5 m/s LET BPI LET BPI BPI LET BPI 

10 m/s LET BPI LET BPI BPI LET BPI 

100 25m 

1 m/s LET BPI LET BPI BPI LET BPI 

3 m/s LET BPI LET BPI BPI LET BPI 

5 m/s LET BPI LET BPI BPI LET BPI 

10 m/s LET BPI LET BPI BPI LET BPI 

100 35m 

1 m/s LET BPI LET BPI BPI LET BPI 

3 m/s LET BPI LET BPI BPI LET BPI 

5 m/s LET BPI LET BPI BPI LET BPI 

10 m/s LET BPI LET BPI BPI LET BPI 
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overcome the difficulty arising in analyzing the tradeoffs 

among the performance metrics whose values fall under 

different levels of magnitude (as is the case for the three 

performance metrics studied in this paper). We illustrate 

the use of the normalization-based approach to identify 

the link selection strategy that best balances the 

performance tradeoff as well as whose relative 

performance is more scalable (with increase in network 

density and/or node mobility). We observe the BPI-based 

link selection strategy to yield DG trees that incur the 

largest values for the normalized comprehensive relative 

performance (NCRP) scores under all the 16 scenarios of 

network density and node mobility. To vindicate the 

larger NCRP scores, we observe the BPI-based DG trees 

to simultaneously incur larger values for tree lifetime and 

lower values for energy consumption per round and not 

so relatively high values for aggregation delay per round. 

We observe the comprehensive relative performance of 

the BPI-DG trees to be more scalable with increase in 

network density and not much affected with increase in 

node mobility.  
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