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A simplified collective model of pion *
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Abstract. In order to test the accuracy of the aproximate methods commonly used for the
Nambu - Jona-Lasinio model we study a simpler model which can be solved exactly. We
find that the Random Phase Approximation gives reasonably good results if used in com-
bination with the Hartree ground state (vacuum). On the other hand, the Tamm-Dancoff
and Hermitian Operator Methods give even better results, but for the price of requiring a
better approximation of the ground state.

1 Introduction

In the Nambu — Jona-Lasinio model (NJL), the vacuum properties and the pion
excitation are usually calculated using the Hartree-Fock (HF) and Random Phase
Approximations (RPA). We propose a simplied version of NJL which is appro-
priate to test the accuracy of these aproximate methods. The model preserves the
main features of NJL and is simple enough to be solved exactly. For simplicity we
limit ourselves to one flavour of quarks.

Since we shall deal with a finite number of quarks, it is convenient to start
with the one-flavour NJL Hamiltonian written in the first-quantized form [1] and
with a momentum cutoff A

I\’]z

H =) (vs(Kh(k)p(k) +mop(k))

~
Il

1

ii( + (iB(k)ys(k ))-(iﬁ(l)y5(1))).

k=1

i

NI@

A
Y Spiipperp/Ph PP, P
P,

;‘il\’l>
;"IVI> +L

* Outline of the Diploma Thesis presented at the University of Ljubljana (Mentor: Mitja
Rosina)



96 B. T. Oblak

2 The simple model

We made four approximations:

1. We confined quarks in a finite volume V with periodic boundary conditions
so that their momenta become discrete. Because the absolute values of mo-
menta are limited, there is only a finite number of momenta avaliable. There-
fore we have only a finite number 2N of single-particle states occupied by a
finite number N of quarks.

2. In the kinetic term of the Hamiltonian we take an average absolute value of
momenta (P = %/\) instead of their true values.

3. The interaction changes only the quark’s chirality and preserves its helicity,
color and momentum which then label the quark. Therefore the quarks can
be treated as distinguishable and Hartree is equivalent to Hartree-Fock.

4. We include a quark selfinteraction so that the double sumations can be re-
placed by two single sumations. This contributes a trivial constant —gN.

The simplified Hamiltonian is:

We can introduce the operators:

. 1 ) 1. . 1
’X:Eﬁ‘ )yZEIBYS» J2 =375,

which obey (quasi)spin commutation relations and allow us to make full use of
the angular momentum algebra.
Also separate sums over quarks with right and left helicity

N N
=) M5 0, se=y M50
k=1 k=1

as well as the total sum

N
Jo =La+Sa =) jalk)
k=1

obey the (quasi)spin commutation relations (o« = x, y, z).
The model Hamiltonian can then be written as

H=2P(L, —S.) + 2moJx —29(J2 +J2).

It commutes with L? and S? but not with L, and S,. Nevertheless, it is con-
venient to work in the basis |L, S, L, S,).The Hamiltonian matrix elements can be
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easily calculated using the angular momentum algebra. By diagonalisation we
then obtain the energy spectrum of the system.

The model has three model parameters: P, mo and g. Instead of g we prefer to
take G = gV/2 where V = >N /A3 is the normalization volume since g decreases
with increasing number of quarks while G stabilizes at large N.

We want to study the simple model in a physically interesting regime. There-
fore we choose the three model parameters so that we fit three observable

1. We calculate the mass of dressed quark (M = 335 MeV) from the difference
between the ground state energies (Eg) of the systems of N and N — 1 quarks.
For the momentum of quark we take the average value (P) and we obtain

M = /(Eg(N) — Eg(N — 1))2 P2,

2. The mass of pion my should be 138 MeV. The pion corresponds to the first
excited state of the system,

En:EI*Eg = mn:\/E%*P%»

where E; is the energy of the first excited state and E, is the pion energy.
We determined the effective pion momentum p, by the requirement, that the
pion behaves as a Goldstone boson in the chiral limit and that p, does not
change much when the small quark mass term is introduced:

pr=Ei(mo :O)_Eg(mo =0).

3. Instead of the pionic decay constant (f, = 93 MeV) we prefer to fit the chiral
condensate Q which is related to f, through the Gell-Mann — Oakes — Renner
relation

—Q=f2mZ/my.

In this way we avoid the ambiguity how to introduce f. in a one-flavour
model, as well as the ambiguities with the effective momentum of the pion in
a finite volume. In our model, the chiral condensate is
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We compare the fitted values of model parameters for several values of N
(Table 1). It is amusing that they are rather close to NJL parameters corresponding
to two flavours and infinite number of quarks in the system [2].

3 Test of approximate methods — the vacuum

We compare the ground state (vacuum) energy E4 and the chiral condensate Q of
the Hartree approximation with the exact solution.

The vacuum energy (Table 2) for N=48 and for the physically interesting
value G = 40.1MeV fm> deviates only by 1.2%. The deviation decreases with
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Table 1. Model parameters (above) fitted to reproduce the observables (below).

N 12| 24 | 36 | 48 |NJL |exper.
G (MeV fm>)[69.9(55.9|46.5(40.1(42.2
mo (MeV) |26.0{15.9(11.8/ 9.6 | 5.5
P (MeV) 484|557 | 613|659 | 473
M (MeV) 335(335(335|335|335| 335
my (MeV) |138]138|138|138|138| 138
fr (MeV) 93.0(93.0{93.0{93.0|93.0| 93.0

Table 2. The energies Eg4 of the ground state for 48 quarks for P = 659 MeV and mo =
9.6 MeV and three values of G.

G

(MeV fm?) 20.0 40.1 60.0
Exact —32058.96]/-32970.80(-37028.30
Hartree  |-31991.62|-32586.51|-36565.25

increasing N which hints that Hartre is a good large-N limit (we could not test
it yet for large enough N). One should take some care, however, since in spite of
the good agreement the Hartree ground state is still above the first (few) exact
excited states in some of the studied cases.
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Fig.1. Dependence of absolute value of the chiral condensate on the strength of in-
teraction for 48 particles and P = 659 MeV. From above follow the lines for my =
9.6,4.38,24,1.2, 0.6, 0.3 and 0 MeV. Exact (left) and Hartree (right) results are compared.

For a finite system we do not expect a sharp transition from the chirally sym-
metric to the chirally broken phase as a function of the interaction strength G.
As a matter of fact, for my = 0 the system remains chirally symmetric, the order
parameter Q remains zero. For a small but finite explicit symmetry breaking term
m, the system responds first with a small Q proportional to mo. For G larger than
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some critical value, however, Q starts to rise sharply (Fig.1). This is the analogue
for spontaneous symmetry breaking in the case of a finite system. One expects a
sharp phase transition if one makes the limit N — oo faster than the limit my — 0.

On the other hand, one gets in the Hartree approximation a sharp phase
transition already in the chiral limit my = 0 and a slightly larger chiral condensate
for mg > 0. This shows that the Hartree approximation strongly exaggerates the
chiral symmetry breaking and in this way immitates the situation at N — oo even
at smaller N.

4 Test of approximate methods — 7t and o mesons.

The first excited state (negative parity) corresponds to pion and the second ex-
cited state (positive parity) corresponds to sigma meson. As approximate meth-
ods we study several particle-hole methods in which the ground state is excited by
a one-body (“particle-hole”) excitation operator.

In our case the low-lying states are symmetric under permutation of quark
labels. Therefore the one-body excitation operators can be expressed as combina-
tion of quasispin operators Ly, S, il , iSy, L, and S, which we denote jointly
by Bi, i =1,...6. Then we expand the excited states in the basis [i)

lexc) = Z ciliy, [)=Bllg).

The calculation is formulated in terms of a secular equation for the excitation
energy w and expansion coefficients c;

He=whNc.
Different approximate methods differ in the proposition for the hamiltonian

and overlap matrices

1. In the Tamm-Dancoff method (TD) the basis |i) is taken literally and one obtains

Hji = (jI(H—Eg)li) = (g/B;j (H—E4)Bllg) and
Nii = (i) = (g/B; Bl|g).

2. The Hermitian Operator Method (HOM) [3] is an approximation to TD which
restricts the excitation operator to be either hermitian or antihermitian and
relies on |g) being an exact ground state. This simplifies the evaluation of
the matrix elements, but it makes a restriction to a smaller model space by
decoupling the spaces generated by real hermitian (L, , Sx, L, and S;) and
real antihermitian (iL, and iS,)) operators.

[B;, [H, Bl ]]]g) and

|[B
i) = (glB;Bllg)
O b

1
,Hji:§<g
J\/ji _ {(]
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where the upper line in Nj; applies if B; and B}L are both hermitian or both
antihermitian and the lower line (0) otherwise.

3. The Simple Operator Method (SOM) is even a more restrictive approximation
to TD, it chooses only one of the listed one-body operators, iJ,,. Its succes in
the description of the pion is based on the observation that such state is very

close to the pionic excitation: {7|i]y|g)/4/(gl]5lg) = 0.990 (for N = 48). It is

even useful to calculate the two-pion excitation |27) = 71123 lg) — (g\f]fJ lg) g} -

4. In the Random Phase Apoproximation one makes a risky but often sucessful as-
sumption that there exists an excitation operator AT =3, ciB‘{ whose adjoint
kills the ground state

AT\g) =lexc), Alg)=0.

The inspiration comes from the creation and annihilation operators of the
harmonic oscillator and it is a promissing approximation when one observes
harmonic vibrational spectra. One then gets

Hji = (gl[B;, [H, Bl 1]]g) and
Nji = (gl[Bj, Bi|g).

5 Conclusion

We found that although the Hartree ground state energy differs from the exact
ground state energy only by a small percentage for realistic model parameters,
the energy difference between the Hartree and the exact ground state is compa-
rable to the energy differences between the lowest exact excited states and the
exact ground state. In spite of this, the Random Phase Approximation (RPA)
gives a rather good approximation of the pion energy if used with the Hartree
ground state (Table 3); as a matter of fact, it gives better results when used with
the Hartree ground state than when used with the exact ground state. The condi-
tion Alg) = 0 for a one-body operator A is namely better fulfilled in the case of the
Hartree ground state than in the case of the exact ground state. On the other hand,
the Hermitian Operator Method (HOM), the Simple Operator Method (SOM) and
the Tamm-Dancoff (TD) method fail for the Hartree ground state, but give very
good results when used with the exact ground state.
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Table 3. Exact excitation energies compared to several approximate methods for 48 quarks,
P =659 MeV and mo = 9.6 MeV and three values of G.

G
(MeV fm?) 20.0 40.1 60.0
|state w(MeV) parity|w(MeV) parity|w(MeV) parity
exact solutions
1870.76  1.00| 879.21 1.00{ 947.76 -1.00
1870.76 -1.00| 788.36 -1.00{ 647.98 1.00
1848.51 1.00| 788.33 1.00{ 579.88 -1.00
|o) 91691 1.00f 365.20 1.00{ 401.18 1.00
|7r) 916.46 -1.00 319.65 -1.00{ 214.59 -1.00
lg) 0.00 1.00 0.00 1.00 0.00 1.00

approximations of low-lying states

computed from the exact ground state

RPA | |o) 917.06 1.00f 538.36 1.00{ 1630.42 1.00
|7r) 916.59 -1.00f 423.80 -1.00{ 591.55 -1.00
TD |o) 917.00 1.00f 42354 1.00{ 1365.81 1.00
|7t) 916.53 -1.00| 337.51 -1.00{ 246.99 -1.00
lg) 0.48 1.00 4.74 1.00 9.01 1.00
HOM| |o) 91696 1.00 41393 1.00{ 1223.81 1.00
|7r) 916.49 -1.00f 33398 -1.00{ 243.37 -1.00
lg) 0.48 1.00 476 1.00 9.07 1.00
SOM |[2mty | 1859.35 1.00| 84356 1.00 609.14 1.00
|7t) 916.49 -1.00| 333.98 -1.00| 243.37 -1.00

approximations of low-lying states

computed from the Hartree ground state

RPA | |o) 908.25 1.00| 656.92 1.00{ 1691.41 1.00
|7r) 907.75 -1.00f 260.35 -1.00{ 229.05 -1.00
TD |o) 976.01 1.00f 886.01 1.00{ 1744.26 1.00
|7t) 975.67 -1.00| 760.63 -1.00| 1083.67 -1.00
lg) 0.00 1.00 0.00 1.00 0.00 1.00
HOM| |o) 975.70 -0.01| 763.78 0.11{ 1881.07 -0.34
|7T) 77319 0.55| 58456 0.40( 1097.31 0.00
lg) 0.00 1.00 0.00 1.00 0.00 1.00
SOM | |27ty | 1965.87 1.00| 1540.17 1.00| 2156.63 1.00
|7t) 975.67 -1.00| 760.63 -1.00| 1083.67 -1.00
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