Are there locally precise three-body wave functions?
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Abstract

This paper concentrates on two topics. First it presents cases which show that
even in atomic physics, contrary to expectations, variational methods have problems
on the 4-5th digits in expectation values which depend on the values of ¥ at the
cusps, as opposed to the energy. Second, we compare the results of the direct
method, CFHHM (Correlation function hyperspherical harmonic method), in atomic
ionization calculations of the single and double ionization of the Helium atom and
the Helium isoelectronic sequence for Z up to 10 and excited states up to n = 5.
We calculate more n, Z dependencies than before; make predictions on corrections
due to quasi-free mechanism using a new formula (several new light sources are
becoming available).

Sophisticated variational methods nowadays try to overcome the fact that mathemat-
ically there is no reason to assume that a variational method would give accuracy for the
expectation values comparable to that of the energy E. The motivations in this section
is to show several examples where such variational calculation indeed break down.

CFHHM [1] is a direct solution of the Schrodinger equation by the separation of W
into the singular part (caused by the Coulomb interaction; this is specific to the atomic
physics) and the smooth part, ¥ = e/¢. The Schrodinger equation is converted into the
equation for y = p?¢ expanded into the hyperspherical harmonic basis (index v; p is
connected with the global angular momentum):
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where p is the hyperradius (a permutation-invariant measure of system size, given by
a weighted sum of squares of the Jacobi coordinates), and W is the velocity-dependent
potential, W =V — (Vf,V) = iV2f — L(Vf)? + %g—’;. The essential physical input to
CFHHM is the correlation function which in general is nonlinear
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where {i, j, k} are a permutation of {1,2,3}, and Z; and m; are charges and masses of the
particles. f but can be used in its linear form (by = a;) for Helium and its isoelectronic
sequence except H™. Mathematically this function is an accelerator of the convergence



but it also lowers the minimum p where convergence starts; it reduces the number of HH
required for a given precision by orders of magnitude; in addition, it can at the same
time incorporate some asymptotic (clustering) properties. For example, the nonlinear
correlation function for the positronium negative ion (Ps-) reduces the error of observables
by two orders of magnitude while making the calculation even less time consuming.

The sticking probabilities (Table 1) in the muon-catalyzed fusion process are an ex-
ample of CFHHM giving much smaller error margins than even the discrepancies between
different variational calculations.

Table 1: Sticking probabilities wy,; (@ = 5.844).

‘ Method ‘ Ky H 1s ‘ 2s ‘ 4s ‘ 2p ‘
CFHHM 0.6819(1) | 0.0978 | 0.0126 | 0.0238
HCM (Abramov) | 15 | 0.829 (?)

21 || 0.906 (?
21 || 0.7001 0.1004 | 0.0130 | 0.0245"Y
Var. (Hu) 0.6032 | 0.0992 | 0.0128 | 0.0241
Var. (Haywood) 0.6846
Var. (Hu) 0.6817
Kamimura 0.6842
Var. (Hu) 0.6802 0.0975 | 0.0126 | 0.0237
Var. (recent) 0.6802-
0.8422
D Q = 5.846.

In ep*He we have a case where CFHHM has resolved high precision discrepancies.
Even E converged faster than in a variational method (SVM), but the “local” expectation
values definitely are better than the differences between two high-precision calculations
by the same author:

10%(0(r urre)) 0.207 001 354 2(6) CFHHM
0.207 001 373 610  Smith-Frolov 1995
0.207 001 373 43 Frolov 2000

(5(rep)) 0.313 762 07(7)
0.313 763 0
0.313 760 812

(5(Terte)) 0.320 633 27(6)
0.320 626 88

0.320 631 162

Bartlett (in 1935) suggested comparing the local energy, D = HV/EV — 1. Fig. 1
shows the comparison of SVM (Varga, Kukulin) and CFHHM for Ps- from Ref. [2]. While
CFHHM is clearly better especially around the repulsive cusp which SVM avoids because
it contributes little to £, CFHHM turns out to be “much worse” than SVM for almost
all expectation values. However the § operators are much better:

(H) 0.262 005 069 5 CFHHM
0.262 005 070 226 SVM
0.262 005 070 232 965 EVE



<7”ee> 8.548 5(2)
8.548 580 655 061
8.548 580 655 12
(0(r.,))  0.020 733 14(6)*
0.020 731 048 976
0.020 733 198 0

(6(ree))  0.170 997(2)[-3]
0.171 112 600 741[-3]
0.170 996 99[-3]

Figure 1: D = HV/EV — 1 for Ps-.

The motivations of ionization calculations is to test CFHHM against systematic vari-
ational calculations by Forrey [3].

Experimentally it turns out that one electron takes away almost all energy (shake-off
mechanism). Very soon (Byron et al.) it was also realized that in the early calculations
the shake-off mechanism underestimates o (w) by a factor of 2, which indicates the
importance of correlations in this three-body system; indeed, Helium is very strongly
correlated. We shall calculate ratios of cross sections because they are independent of the
photon energy at high (but nonrelativistic) photon energies (this just gets rid of the w=7/2
factor). For precise calculations the dipole approximation (golden rule) is good but good
initial three-body wave function is needed. This leads to the expressions for the double



ionization cross section,
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where 1, (s) describes the unperturbed second electron in the field of the nucleus. (The
cross section o (w) contains only the lowest integral, and o™ (w) contains only the exci-
tation integrals.) We start out with ¥ corresponding to reasonable E which need not be
very precise (in CFHHM), but also should not be too imprecise (Table 2). Nevertheless,

we end up with differences at 3™ — 4*" digit (Table 3).
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Table 2: Helium binding energy and R values: various methods.

| Work || Basis | FE | R |
Present/ 121 2.9037243643 .01644
CFHHM 441 2.9037243765 .01644
3] 2.903724377034 | .01644
Kheifets || 7/MCHF | 2.90181 0167
Dalgarno 20 2.9037179 .0168

Table 3: R = o™ (w)/(c7(w) + 07 (w))|wsee values for the n'S states in the Helium
isoelectronic sequence (in percent), and the differences with Ref. [3].
1 2 3 4 )

N =3

1.602

1.644 0.903 0.369 0.169 0.088
0.855 1.204 0.830 0.546 0.360
0.508 0.994 0.849 0.677 0.530
0.334 0.768 0.728 0.643 0.553
0.235 0.595 0.599 0.561 0.512
0.175 0.469 0.491 0.479 0.453
0.135 0.377 0.406 0.406 0.395
0.107 0.309 0.339 0.346 0.344
0.087 0.258 0.287 0.297 0.299
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We anticipate several works with relevant data for experiments. For example, we
obtain a 35 % quasi-free correction at 100 keV [4]. Rather small computational demands
have been placed on CFHHM, but state-of-the-art results were improved. This calculation
for the first time separates the three-body input from approximations like the dipole
approximation. Higher excited states and QF corrections were calculated for the first
time. We plan to extend this work to triplet states and Compton scattering.
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