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Abstract. In this article, we introduce and investigate bucolic complexes, a common generalization of systolic

complexes and of CAT(0) cubical complexes. This class of complexes is closed under Cartesian products and

amalgamations over some convex subcomplexes. We study various approaches to bucolic complexes: from

graph-theoretic and topological viewpoints, as well as from the point of view of geometric group theory.

Bucolic complexes can be defined as locally-finite simply connected prism complexes satisfying some local

combinatorial conditions. We show that bucolic complexes are contractible, and satisfy some nonpositive-

curvature-like properties. In particular, we prove a version of the Cartan-Hadamard theorem, the fixed point

theorem for finite group actions, and establish some results on groups acting geometrically on such complexes.

We also characterize the 1-skeletons (which we call bucolic graphs) and the 2-skeletons of bucolic complexes.

In particular, we prove that bucolic graphs are precisely retracts of Cartesian products of locally finite weakly

bridged graphs (i.e., of 1-skeletons of weakly systolic complexes). We show that bucolic graphs are exactly the

weakly modular graphs satisfying some local conditions formulated in terms of forbidden induced subgraphs

and that finite bucolic graphs can be obtained by gated amalgamations of products of weakly bridged graphs.

1. Introduction

Avant-propos. In this paper, we introduce bucolic complexes and their 1-skeletons – bucolic

graphs. Bucolic complexes can be defined as simply connected prism complexes satisfying

some local combinatorial conditions. This class of cell complexes contains the class of CAT(0)

cubical complexes and of weakly systolic simplicial complexes and is closed under Cartesian

products and amalgamations over some convex subcomplexes. We show that bucolic com-

plexes satisfy some nonpositive-curvature-like properties: we prove a version of the Cartan-

Hadamard theorem, and the fixed point theorem for finite group actions. On the other hand,
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we characterize the 1-skeletons of bucolic complexes in several different ways, in particular,

we show that the bucolic graphs are exactly the retracts of Cartesian products of weakly

bridged graphs, i.e., of 1-skeletons of weakly systolic complexes (in comparison, notice that

the median graphs – the 1-skeletons of CAT(0) cubical complexes – are exactly the retracts

of Cartesian products of edges, i.e., 1-skeletons of 1-simplices). Finally, we characterize the

triangle-square complexes which can be realized as 2-skeletons of bucolic complexes as simply

connected triangle-square complexes satisfying some local combinatorial conditions.

Graph-theoretic and geometric viewpoint. Median and bridged graphs constitute two

of the most important classes of graphs investigated in metric graph theory and occur in

different areas of discrete mathematics, geometric group theory, CAT(0) geometry, and theo-

retical computer science. Median graphs and related structures (median algebras and CAT(0)

cubical complexes) have many nice properties and admit numerous characterizations. All me-

dian structures are intimately related to hypercubes: median graphs are isometric subgraphs

of hypercubes; in fact, by a classical result of Bandelt [2] they are the retracts of hypercubes

into which they embed isometrically. It was also shown by Isbell [28] and van de Vel [38]

that every finite median graph G can be obtained by successive applications of gated amalga-

mations from hypercubes, thus showing that the only prime median graph is the two–vertex

complete graph K2 (a graph with at least two vertices is said to be prime if it is neither

a Cartesian product nor a gated amalgam of smaller graphs). Median graphs also have a

remarkable algebraic structure, which is induced by the ternary operation on the vertex set

that assigns to each triplet of vertices the unique median vertex, and their algebra can be

characterized using four natural axioms [7, 28] among all discrete ternary algebras. Finally,

it was shown in [19,35] that the median graphs are exactly the 1-skeletons of CAT(0) cubical

complexes. Thus, due to a result of Gromov [24], the cubical complexes derived from median

graphs can be characterized as simply connected cubical complexes in which the links of

vertices are flag simplicial complexes. Sageev [36] established several important geometrical

properties of hyperplanes in CAT(0) cubical complexes, and initiated the investigation of

groups acting on such complexes. For more detailed information about median structures,

the interested reader can consult the survey [6] and the books [27,30,39].

Bridged graphs are the graphs in which all isometric cycles have length 3. It was shown

in [23,37] that the bridged graphs are exactly the graphs in which the metric convexity sat-

isfies one of the basic properties of Euclidean geometry (and, more generally, of the CAT(0)

geometry): neighborhoods of convex sets are convex. Combinatorial and structural aspects

of bridged graphs have been investigated in [1,16,34]. In particular, it was shown in [1] that

bridged graphs are dismantlable (a simpler algorithmic proof is given in [18]), showing that

the clique complexes (i.e., the simplicial complexes obtained by replacing complete subgraphs

by simplices) of bridged graphs are collapsible. Similarly to the local-to-global characteriza-

tion of CAT(0) cubical complexes of [24], it was shown in [19] that the clique complexes of

bridged graphs are exactly the simply connected simplicial flag complexes in which the links

of vertices do not contain induced 4- and 5-cycles. These complexes have been rediscovered

and investigated in depth by Januszkiewicz and Swiatkowski [29], and, independently by
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Haglund [25], who called them “systolic complexes” and considered as simplicial complexes

satisfying combinatorial nonpositive curvature property. More recently, Osajda [32] proposed

a generalization of systolic complexes still preserving some structural properties of systolic

complexes: the resulting weakly systolic complexes and their 1-skeletons – the weakly bridged

graphs – have been investigated and characterized in [20]. Since CAT(0) cubical complexes

and systolic simplicial complexes can be both characterized via their 1-skeletons and via

simple connectivity and a local condition on links, a natural question is to find a common

generalization of such complexes which still obey the combinatorial nonpositive curvature

properties. The cells in such complexes are prisms (Cartesian products of simplices) and the

2-dimensional faces are triangles and squares. In [11], answering a question from [12], the

1-skeletons of prism complexes resulting from clique complexes of chordal graphs by applying

Cartesian products and gated amalgams have been characterized: those graphs (which are

exactly the retracts of products of chordal graphs) are the weakly modular graphs not con-

taining induced K2,3, wheels Wk, and almost wheels W −
k , k ≥ 4 (weakly modular graphs and

some other classes of graphs are defined in next section). It was also shown that, endowed

with the l2-metric, such prism complexes are CAT(0) spaces.

The structure theory of graphs based on Cartesian multiplication and gated amalgamation

was further elaborated for more general classes of graphs. Some of the results for median

graphs have been extended to quasi-median graphs introduced by Mulder [30] and further

studied in [8]: quasi-median graphs are precisely the weakly modular graphs not containing

induced K2,3 and K4 − e; they can also be characterized as the retracts of Hamming graphs

and can be obtained from complete graphs by Cartesian products and gated amalgamations.

More recently, Bandelt and Chepoi [4] presented a similar decomposition scheme of weakly

median graphs and characterized the prime graphs with respect to this decomposition: the

hyperoctahedra and their subgraphs, the 5-wheel W5, and the 2-connected plane bridged

graphs (i.e., plane triangulations in which all inner vertices have degrees ≥ 6). Generalizing the

proof of the decomposition theorem of [4], Chastand [14,15] presented a general framework of

fiber-complemented graphs allowing to establish many general properties, previously proved

only for particular classes of graphs. An important subclass of fiber-complemented graphs

is that of pre-median graphs [14, 15] which are the weakly modular graphs without induced

K2,3 and K2,3 with an extra edge (which can be viewed as the graph W −
4

defined below). It

is an open problem to characterize all prime (elementary) fiber-complemented or pre-median

graphs (see [14, p. 121]).

In this paper, we continue this line of research and characterize the graphs G which are

retracts of Cartesian products of weakly bridged and bridged graphs. We show (cf. Theorem

2 below) that retracts of Cartesian products of weakly bridged (resp., bridged) graphs are

exactly the weakly modular graphs which do not contain K2,3, the wheel W4, and the almost

wheel W −
4

(resp., K2,3, W4, W5 and W −
4

) as induced subgraphs (for an illustration of these

forbidden graphs, see Fig. 1). We establish that these pre-median graphs are exactly the

graphs obtained by gated amalgamations of Cartesian products of weakly bridged (or of

bridged) graphs, thus answering Question 1 from [11]. This also provides a partial answer to
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Chastand’s problem mentioned above by showing that the weakly bridged graphs are exactly

the prime graphs of pre-median graphs without W4 and that the bridged graphs are the prime

graphs of pre-median graphs without W4 and W5.

Topological and geometric group theory viewpoint. Analogously to median graphs

which are built from cubes, are retracts of hypercubes, and gives rise to CAT(0) cubical

complexes, the graphs studied in this article are built from Hamming graphs (i.e., products

of simplices), are retracts of products of bridged or weakly bridged graphs (i.e., 1-skeletons

of systolic or weakly systolic complexes), and thus they can be viewed as 1-skeletons of some

cell complexes with cells being prisms (or Hamming cells), i.e., products of simplices. We

call such prism complexes bucolic complexes1. Thus our previous result can be viewed as a

characterization of 1-skeletons of bucolic complexes. We also characterize (Theorem 1 below)

bucolic complexes via their 2-skeletons (consisting of triangle and square faces) by showing

that they are exactly the simply connected triangle-square complexes satisfying the cube and

house conditions and not containing W4, W5, and W −
5

(this answers Question 2 from [11]).

Then we prove that the bucolic complexes are contractible (Theorem 3). Thus the three

results constitute a version of the Cartan-Hadamard theorem, saying that under some local

conditions the complex is aspherical, i.e. its universal covering space is contractible. Only

limited number of such local characterizations of asphericity is known, and most of them refer

to the notion of nonpositive curvature; cf. e.g. [13, 22, 24, 29, 32]. In fact bucolic complexes

exhibit many nonpositive-curvature-like properties. Besides the Cartan-Hadamard theorem

we prove the fixed point theorem for finite groups acting on bucolic complexes (Theorem

4), and we conclude that groups acting geometrically on such complexes have finitely many

conjugacy classes of finite subgroups (Corollary 2). Counterparts of such results are known

for other nonpositively curved spaces; cf. e.g. [13, 20, 29, 32]. Thus our classes of complexes

and groups acting on them geometrically form new classes of combinatorially nonpositively

curved complexes and groups (see e.g. [20, 24, 29, 32] for more background) containing the

CAT(0) cubical and systolic classes of objects. A question of studying such unification theories

was raised often by various researchers, e.g. by Januszkiewicz and Świa̧tkowski (personal

communication). Due to our knowledge, bucolism is the first generalization of the CAT(0)

cubical and systolic worlds studied up to now. The class of bucolic complexes is closed under

taking Cartesian products and amalgamations over some convex subcomplexes – the gated

subcomplexes. Thus the class of groups acting geometrically on them is also closed under

similar operations. It should be noticed that both systolic and CAT(0) cubical groups satisfy

some strong (various for different classes) restrictions; cf. e.g. [32] and references therein.

It implies that there are groups that are neither systolic nor CAT(0) cubical but which act

geometrically on our complexes. In particular, in view of Theorem 4 and the fixed point

theorems for systolic and CAT(0) complexes (compare [20]), the free product of a systolic

group with a CAT(0) cubical group always act geometrically on a complex from our class,

1The term bucolic is inspired by systolic, where b stands for bridged and c for cubical. See also the acknowl-

edgement for another source of our “inspiration”.
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although the group being such a product is often not systolic neither CAT(0) cubical. Another

example with this property is the Cartesian product of two systolic but not CAT(0) cubical

groups.

Article’s structure. In the following Section 2 we introduce all the notions used later on.

In Section 3 we state the main results of the article mentioned above (Theorems 1–4). In

Section 4, we provide the characterization of bucolic graphs (Theorem 2). A proof of the main

characterization of bucolic complexes (Theorem 1) is presented in Section 5. In Section 6 we

prove the contractibility and the fixed point result for bucolic complexes (Theorems 3 and 4).

Acknowledgements. This research was supported by the French-Slovenian Egide PRO-
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also supported by the ANR Projets Blanc THEOMATRO and GGAA. D. O. was partially

supported by MNiSW grant N201 012 32/0718. The authors would like to acknowledge the

participants of the ANR project GRATOS for organizing the workshop “Journées Graphes

et Structures Topologiques” in a bucolic place in the Cévennes and for inviting three of us to
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2. Preliminaries

2.1. Graphs. All graphs G = (V,E) occurring in this paper are undirected, connected, and

without loops or multiple edges, locally-finite but not necessarily finite. For two vertices u

and v of a graph G, we will write u ∼ v if u and v are adjacent and u ≁ v, otherwise. We will

use the notation v ∼ A to note that a vertex v is adjacent to all vertices of a set A and the

notation v ≁ A if v is not adjacent to any of the vertices of A. The distance d(u, v) = dG(u, v)

between two vertices u and v is the length of a shortest (u, v)-path. For a vertex v of a

graph G we will denote by B1(v,G) the set of vertices consisting of v and the neighbors of v

in G. We call B1(v,G) the 1-ball centered at v. More generally, we denote by Br(v,G) the

ball in G of radius r and centered at vertex v. The interval I(u, v) between u and v consists

of all vertices on shortest (u, v)-paths, that is, of all vertices (metrically) between u and v:

I(u, v) = {x ∈ V ∶ d(u,x)+d(x, v) = d(u, v)}. An induced subgraph of G (or the corresponding

vertex set A) is called convex if it includes the interval of G between any pair of its vertices.

The smallest convex subgraph containing a given subgraph S is called the convex hull of S

and is denoted by conv(S). An induced subgraph H of a graph G is said to be gated if for

every vertex x outside H there exists a vertex x′ (the gate of x) in H such that each vertex

y of H is connected with x by a shortest path passing through the gate x′ (i.e., x′ ∈ I(x, y)).

The smallest gated subgraph containing a given subgraph S is the gated hull of S. A graph

G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists a mapping

ϕ ∶ V → W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V . A retraction ϕ of

H is an idempotent nonexpansive mapping of H into itself, that is, ϕ2 = ϕ ∶ W → W with
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K2,3 W4
W

−

4 W5

Figure 1. K2,3, the wheel W4, the almost-wheel W −
4

, and the wheel W5.

d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈W. The subgraph of H induced by the image of H under

ϕ is referred to as a retract of H.

The wheel Wk is a graph obtained by connecting a single vertex – the central vertex c –

to all vertices of the k-cycle (x1, x2, . . . , xk, x1); the almost wheel W −
k is the graph obtained

from Wk by deleting a spoke (i.e., an edge between the central vertex c and a vertex xi of the

k-cycle), see Figure 1. The extended 5-wheel Ŵ5 is a 5-wheel W5 plus a 3-cycle (a,x1, x2, a)

such that a ≁ c, x3, x4, x5.

A graph G is a gated amalgam of two graphs G1 and G2 if G1 and G2 are (isomorphic

to) two intersecting gated subgraphs of G whose union is all of G. Let Gi, i ∈ I be an

arbitrary family of graphs. The Cartesian product ◻i∈IGi is defined on the set of all functions

x ∶ i ↦ xi, xi ∈ V (Gi), where two vertices x, y are adjacent if there exists an index j ∈ I

such that xjyj ∈ E(Gj) and xi = yi for all i ≠ j. Note that Cartesian product of infinitely

many nontrivial graphs is disconnected. Therefore, in this case the connected components

of the Cartesian product are called weak Cartesian products. Since in our paper all graphs

are connected, for us a Cartesian product graph will always mean a weak Cartesian product

graph. A strong Cartesian product ⊠i∈IGi is defined on the set of all functions x ∶ i ↦ xi,

xi ∈ V (Gi), where two vertices x, y are adjacent if for all indices i ∈ I either xi = yi or

xiyi ∈ E(Gi). A graph G is said to be elementary if the only proper gated subgraphs of G are

singletons. A graph with at least two vertices is said to be prime if it is neither a Cartesian

product nor a gated amalgam of smaller graphs.

A graph G is weakly modular with respect to a vertex u if its distance function d satisfies

the following triangle and quadrangle conditions (see Figure 2):

Triangle condition TC(u): for any two vertices v,w with 1 = d(v,w) < d(u, v) = d(u,w) there

exists a common neighbor x of v and w such that d(u,x) = d(u, v) − 1.

Quadrangle condition QC(u): for any three vertices v,w, z with d(v, z) = d(w,z) = 1 and

2 = d(v,w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists a common neighbor x of v and w

such that d(u,x) = d(u, v) − 1.

A graph G is weakly modular [3] if G is weakly modular with respect to any vertex u.

A weakly median graph is a weakly modular graph in which the vertex x defined in the

triangle and quadrangle conditions is always unique. Equivalently, weakly median graphs

can be defined as the weakly modular graphs in which each triplet of vertices has a unique

quasi-median. Median graphs are the bipartite weakly median graphs and, equivalently, can
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z zv w

=⇒

u u

v w

x

=⇒

v w

u u

v
x

w

TC(u) QC(u)

k k kk k − 1 k − 1

Figure 2. Triangle and quadrangle conditions

be defined as the graphs in which each triplet of vertices u, v,w has a unique median vertex.

Bridged and weakly bridged graphs constitute other important subclasses of weakly modular

graphs. A graph G is called bridged [23,37] if it does not contain any isometric cycle of length

greater than 3. Alternatively, a graph G is bridged if and only if the balls Br(A,G) = {v ∈

V ∶ d(v,A) ≤ r} around convex sets A of G are convex. Bridged graphs are exactly weakly

modular graphs that do not contain induced 4- and 5-cycles (and therefore do not contain 4-

and 5-wheels). A graph G is weakly bridged [20] if G is a weakly modular graph with convex

balls Br(x,G). Equivalently, weakly bridged graphs are exactly the weakly modular graphs

without induced 4-cycles C4 [20]. Bridged and weakly bridged graphs are pre-median graphs:

a graph G is pre-median [14, 15] if G is a weakly modular graph without induced K2,3 and

W −
4
. Chastand [14, 15] proved that pre-median graphs are fiber-complemented graphs. Any

gated subset S of a graph G gives rise to a partition Fa (a ∈ S) of the vertex-set of G; viz.,

the fiber Fa of a relative to S consists of all vertices x (including a itself) having a as their

gate in S. According to Chastand [14, 15], a graph G is called fiber-complemented if for any

gated set S all fibers Fa (a ∈ S) are gated sets of G.

2.2. Prism complexes. In this paper, we consider a particular class of cell complexes (com-

pare e.g. [13, p. 111-115]), called prism complexes, in which all cells are prisms. Cubical

and simplicial cell complexes are particular instances of prism complexes. Although most

of the notions presented below can be defined for all cell complexes and some of them for

topological spaces, we will introduce them only for prism complexes.

We start with some notions about abstract simplicial complexes. An abstract simplicial

complex is a family X of subsets (of a given set) called simplices which is closed for in-

tersections and inclusion, i.e., σ,σ′ ∈ X and σ′′ ⊂ σ implies that σ ∩ σ′, σ′′ ∈ X. For an

abstract simplicial complex X, denote by V (X) and E(X) the set of all 0-dimensional and

1-dimensional simplices of X and call the pair G(X) = (V (X),E(X)) the 1-skeleton of X.

Conversely, for a graph G one can derive a simplicial complex X(G) (the clique complex

of G) by taking all complete subgraphs (cliques) as simplices of the complex. An abstract

simplicial complex X is a flag complex (or a clique complex) if any set of vertices is included

7Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

1,
 F

eb
ru

ar
y 

10
, 2

01
2



in a simplex of X whenever each pair of its vertices is contained in a simplex of X (in the

theory of hypergraphs this condition is called conformality). A flag complex can therefore

be recovered from its underlying graph G(X): the complete subgraphs of G(X) are exactly

the simplices of X. All simplicial complexes occurring in this paper are flag complexes. By a

simplicial complex we will mean the geometric realization of an abstract simplicial complex.

It is a cell complex with cells corresponding to abstract simplices, being (topologically) solid

simplices.

A prism is a convex polytope which is a Cartesian product of simplices. This is consistent

with the standard definition of the product of two (or more) polytopes given on pp.9–10 of

the book [40]: given two polytopes P ⊂ Rn and Q ⊂ Rm, the product of P and Q is the set

P × Q = {(x, y) ∶ x ∈ P,y ∈ Q}. P × Q is a polytope of dimension dim(P )+dim(Q), whose

nonempty faces are the products of nonempty faces of P and nonempty faces of Q. It is

well known (see, for example p. 110 of [40]) that the product σ1 × ⋯ × σk of solid simplices

σ1, . . . , σk is a convex polyhedron, which we will call a prism. The faces of a prism are also

prisms of smaller dimensions. Particular instances of prisms are simplices and cubes (products

of intervals). A prism complex is a cell complex X in which all cells are prisms so that the

intersection of two prisms is empty or a common face of each of them. Cubical complexes are

the prism complexes in which all cells are cubes and simplicial complexes are prism complexes

in which all cells are simplices. The 1-skeleton G(X) = X(1) of a prism complex X has the

0-dimensional cells of X as vertices and the 1-dimensional cells of X as edges. The 1-skeleton

of a prism of X is a Cartesian product of complete subgraphs of G(X), i.e., a a Hamming

subgraph of G(X). For vertices v,w or a set of vertices A of a prism complex X we will write

v ∼ w, v ∼ A (or v ≁ w, v ≁ A) if and only if a similar relation holds in the graph G(X). The

2-skeleton X(2) of X is a triangle-square complex obtained by taking the 0-dimensional, 1-

dimensional, and 2-dimensional cells of X. Analogously to simplicial flag complexes, a prism

complex X is a flag complex if any Hamming subgraph of G(X) is the 1-skeleton of a prism of

X. In the same way, a triangle-square complex X is a flag complex if any 3-cycle and induced

4-cycle of G(X) defines a triangular or square cell of X. A triangle-square flag complex can

be recovered from its underlying graph G(X) ∶ the 2-dimensional cells of X are exactly the

triangles and the induced 4-cycles of X. Every graph G, which is a subgraph of a Cartesian

product of bridged or weakly bridged graphs (and the graphs occurring in our paper have

this property), gives rise to a prism complex X(G) obtained by replacing all subgraphs of G

which are Cartesian products of complete subgraphs (i.e., the Hamming subgraphs of G) by

prisms. We call X(G) the prism complex of the graph G. Notice that the vertices of G are

the 0-dimensional cells of X(G), that G is the 1-skeleton of X(G), while the triangle-square

complex X(G)(2) obtained by taking the vertices of G as 0-dimensional cells, the edges of G

as 1-dimensional cells, and the triangles (3-cycles) and the squares (induced 4-cycles) of G as

2-dimensional cells is the 2-skeleton of X(G). Let X(Wk) and X(W −
k ) be the triangle-square

(or the prism) complexes whose underlying graphs are the graphs Wk and W −
k , respectively

(the first consists of k triangles and the second consists of k − 2 triangles and one square).

8Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

1,
 F

eb
ru

ar
y 

10
, 2

01
2



Analogously, let X(Ŵ5) be the 2-dimensional simplicial complex made of 6 triangles whose

underlying graph is the extended 5-wheel Ŵ5.

As morphisms between cell complexes we consider all cellular maps, i.e. maps sending

(linearly) cells to cells. An isomorphism is a bijective cellular map being a linear isomorphism

(isometry) on each cell. A covering (map) of a cell complex X is a cellular surjection p∶ X̃→X

such that p∣St(ṽ,X̃)∶St(ṽ, X̃)→ St(v,X) is an isomorphism for every vertex v in X, and every

vertex ṽ ∈ X̃ with p(ṽ) = v; compare [26, Section 1.3]. (A star St(v,X) of a vertex v in a

prism complex X is the subcomplex consisting of the union of all cells in X containing v.)

The space X̃ is then called a covering space. A universal cover of X is a simply connected

covering space X̃. It is unique up to isomorphism. In particular, if X is simply connected,

then its universal cover is X itself. Note that X is connected iff G(X) = X(1) is connected,

and X is simply connected (i.e. every continuous map S1
→ X is null-homotopic) iff X(2)

is so. A group F acts by automorphisms on a cell complex X if there is a homomorphism

F → Aut(X) called an action of F . The action is geometric (or F acts geometrically) if it is

proper (i.e. cells stabilizers are finite) and cocompact (i.e. the quotient X/F is compact).

2.3. CAT(0) cubical complexes and systolic complexes. For 0 ≤ d < ∞, a d-cube is

the d-power of the segment [0,1] endowed with the ℓ1 metric. A cubical complex is a cell

complex X whose cells are cubes of various dimensions, attached in the expected way: any

two cubes of X that have nonempty intersection intersect in a common face, i.e. the attaching

map of each cube restricts to a combinatorial isometry on its faces. A cubical complex X

endowed with intrinsic ℓ2-metric is a CAT(0) (or nonpositively curved) metric space [13] if the

geodesic triangles in X are thinner than their comparison triangles in the Euclidean plane. A

geodesic triangle ∆ = ∆(x1, x2, x3) in a geodesic metric space (X,d) consists of three points

in X (the vertices of ∆) and a geodesic between each pair of vertices (the sides of ∆). A

comparison triangle for ∆(x1, x2, x3) is a triangle ∆(x′
1
, x′

2
, x′

3
) in the Euclidean plane E

2

such that dE2(x′i, x
′
j) = d(xi, xj) for i, j ∈ {1,2,3}. A geodesic metric space (X,d) is defined

to be a CAT(0) space [24] if all geodesic triangles ∆(x1, x2, x3) of X satisfy the comparison

axiom of Cartan–Alexandrov–Toponogov: If y is a point on the side of ∆(x1, x2, x3) with

vertices x1 and x2 and y′ is the unique point on the line segment [x′
1
, x′

2
] of the comparison

triangle ∆(x′
1
, x′

2
, x′

3
) such that dE2(x′i, y

′) = d(xi, y) for i = 1,2, then d(x3, y) ≤ dE2(x′
3
, y′).

The link of a vertex x in a cubical complex X is a simplicial complex, with a k-simplex

for each (k + 1)-cube containing x, with simplices attached according to the attachments of

the corresponding cubes. Gromov [24] gave a nice combinatorial characterization of CAT(0)

cubical complexes as simply connected cubical complexes in which the links of 0-cubes are

simplicial flag complexes. Gromov’s flagness condition of links can be equivalently formulated

in the following way: for any k ≥ 2, if three k-cubes of X pairwise intersect in a (k − 1)-cube

and all three intersect in a (k −2)-cube of X, then are included in a (k +1)-dimensional cube

of X. Independently, Chepoi [19] and Roller [35] established that the 1-skeletons of CAT(0)

cube complexes are exactly the median graphs, i.e., the graphs in which any triplet of vertices

admit a unique median vertex.
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Figure 3. The cube condition (left), the house condition (middle), and the

Ŵ5-wheel condition (right).

Now we briefly recall the definitions of systolic and weakly systolic simplicial complexes,

which are both considered simplicial complexes with combinatorial nonpositive curvature.

For an integer k ≥ 4, a flag simplicial complex X is locally k-large if every cycle consisting

of less than k edges in any of its links of simplices has some two consecutive edges contained

in a 2-simplex of this link, i.e., the links do not contain induced cycles of length < k. A

simplicial complex is k-systolic if it is locally k-large, connected and simply connected. A flag

simplicial complex is systolic if it is 6-systolic [19, 25, 29]. It was shown in [19] that systolic

complexes are exactly the clique complexes of bridged graphs. On the other hand, among

many other results, it was shown in [29] that the 1-skeletons of 7-systolic complexes are

Gromov hyperbolic. In the same paper were given sufficient combinatorial conditions under

which a systolic complex with regular simplices as cells is a CAT(0) space. A generalization

of systolic complexes inheriting many of their properties have been proposed in [32] and

[20]: a simplicial complex X is weakly systolic if and only if X is flag, connected and simply

connected, locally 5-large, and satisfies the following local condition:

Ŵ5-wheel condition: for each extended 5-wheel X(Ŵ5) of X, there exists a vertex v adjacent

to all vertices of this extended 5-wheel (see Fig. 3, right).

It was shown in [20] that the weakly bridged graphs, i.e. the 1-skeletons of weakly systolic

complexes, are exactly the weakly modular graphs without induced 4-cycles or, equivalently,

the weakly modular graphs with convex balls.

3. Main results

3.1. Bucolic complexes. A prism complex X is bucolic if it is flag, connected and simply

connected, and satisfies the following three local conditions:

(W4, Ŵ5)-condition: the 1-skeleton X(1) of X does not contain induced W4 and satisfies the

Ŵ5-wheel condition;
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Hypercube condition: if k ≥ 2 and three k-cubes of X pairwise intersect in a (k − 1)-cube and

all three intersect in a (k − 2)-cube, then they are included in a (k + 1)-dimensional cube of

X;

Hyperhouse condition: if a cube and a simplex of X intersect in a 1-simplex, then they are

included in a prism of X.

As we already noticed in the previous section, subject to simply connectivity, the (W4, Ŵ5)-

condition characterizes the weakly systolic complexes. On the other hand, as we noticed

above, the hypercube condition is equivalent to Gromov’s condition of flagness of links. Fi-

nally, the hyperhouse condition shows how simplices and cubes of X give rise to prisms. We

call a graph G bucolic if G is the 1-skeleton of a bucolic complex X, i.e., G =X(1).

Now, we consider the 2-dimensional versions of the last two conditions. We say that a

triangle-square complex X satisfies:

Cube condition: any three squares of X, pairwise intersecting in an edge, and all three

intersecting in a vertex of X, are included in a 3-dimensional cube (see Fig. 3, left);

House condition: any house (i.e., a triangle and a square of X sharing an edge) is included

in a 3-dimensional prism (see Fig. 3, middle).

We start with the main result of our paper, which is a local-to-global characterization of

the 1- and the 2-skeletons of bucolic complexes. It can be viewed as an analogue of similar

local-to-global characterizations of CAT(0) cube complexes, systolic, and weakly systolic

complexes provided in the papers [19,20,29,32].

Theorem 1. For a locally-finite prism complex X, the following conditions are equivalent:

(i) X is a bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag com-

plex satisfying the (W4, Ŵ5)-condition, the cube condition, and the house condition;

(iii) the 1-skeleton G(X) of X is a weakly modular graph not containing induced subgraphs

of the form K2,3, W4 and W −
4
.

Moreover, if X is a connected flag prism complex satisfying the (W4, Ŵ5), the hypercube, and

the hyperhouse conditions, then the universal cover X̃ of X is bucolic.

The proof of this theorem is provided in Section 5. The most difficult part of the proof is

to show that the 1-skeleton of a simply connected triangle-square complex X satisfying the

local conditions of the theorem is weakly modular. To show this, we closely follow the proof

method of a local-to-global characterization of weakly systolic complexes provided by Osajda

[32] using the level-by-level construction of the universal cover of X.

Analogously to Theorem 1, one can characterize the prism complexes derived from systolic

complexes. We will say that a bucolic complex X is strongly bucolic if it satisfies the following

(W4,W5)-condition: the 1-skeleton X(1) of X does not contain induced W4 and W5.

Corollary 1. For a locally-finite prism complex X, the following conditions are equivalent:
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(i) X is a strongly bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag com-

plex satisfying the (W4,W5)-condition, the cube condition, and the house condition;

(iii) the 1-skeleton G(X) of X is a weakly modular graph not containing induced subgraphs

of the form K2,3, W4, W
−
4
, and W5.

Moreover, if X is a connected flag prism complex satisfying the (W4,W5), the hypercube, and

the hyperhouse conditions, then the universal cover X̃ of X is strongly bucolic.

3.2. Bucolic graphs. In this subsection, we present several characterizations of finite and

locally-finite bucolic graphs. We show that finite bucolic graphs are exactly the finite graphs

which are obtained from Cartesian products of bridged graphs or weakly bridged graphs via

gated amalgamations. We also show that the locally-finite bucolic graphs are the weakly

modular graphs that do not contain induced K2,3, 4-wheels W4, and almost-wheels W −
4

and

that they are exactly the retracts of Cartesian products of weakly bridged graphs:

Theorem 2. For a locally-finite graph G = (V,E), the following conditions are equivalent:

(i) G is a retract of the (weak) Cartesian product of weakly bridged (resp., bridged) graphs;

(ii) G is a weakly modular graph not containing induced K2,3, W4, and W −
4

(resp., K2,3,

W −
4
, W4, and W5), i.e., G is a bucolic graph;

(iii) G is a K2,3,W
−
4
-free weakly modular graph in which all elementary (or prime) sub-

graphs are edges or 2-connected weakly bridged (resp., bridged) graphs.

Moreover, if G is finite, then the conditions (i)-(iii) are equivalent to the following condition:

(iv) G can be obtained by successive applications of gated amalgamations from Cartesian

products of 2-connected weakly bridged (resp., bridged) graphs.

The proof of this theorem is provided in Section 4. The most difficult part of the proof is

the implication (ii)⇒(iii), which we establish in two steps. First we show that if G is a weakly

modular graph not containing induced W4 and W −
4

, then all its primes are 2-connected weakly

bridged graphs or K2. Then, we deduce both theorems using the results of [5, 14,15,20].

The following convexity property of bucolic graphs (proved in Section 4) will be useful for

establishing contractibility and fixed point results for bucolic complexes.

Proposition 3.1. If G = (V,E) is a locally-finite bucolic graph, then the convex hull conv(S)

in G of any finite set S ⊂ V is finite.

3.3. Contractibility and the fixed point property. Using previous results, we establish

the following basic properties of bucolic complexes (proofs are provided in Section 6). The

first result is a version of the Cartan-Hadamard theorem. It has its CAT(0) (cf. [13, Corollary

1.5]) and systolic (cf. [19, Theorem 8.1]&[18] and [29, Theorem 4.1]) counterparts.

Theorem 3. Bucolic complexes are contractible.

The above property is the most important nonpositive-curvature-like property of bucolism.

Beneath we provide further properties of a nonpositive-curvature-like nature. All of them have

their CAT(0) and systolic counterparts; cf. [13, 20].
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Theorem 4. If X is a bucolic complex and F is a finite group acting by cell automorphisms

on X, then there exists a prism π of X which is invariant under the action of F. The center

of the prism π is a point fixed by F .

A standard argument (see e.g. the proof of [20, Corollary 6.4]) gives the following imme-

diate consequence of Theorem 4.

Corollary 2. Let F be a group acting geometrically by automorphisms on a bucolic complex

X. Then F contains only finitely many conjugacy classes of finite subgroups.

4. Proofs of Theorem 2 and Proposition 3.1

4.1. Gated closures of triangles. In this section, we prove that if G is a weakly modular

graph not containing induced 4-wheels W4 and almost 4-wheels W −
4

, then the gated hull of a

triangle is a weakly bridged graph. Additionally, we show that if G does not contain induced

5-wheels W5, then the gated hull of a triangle is a bridged graph.

Lemma 4.1. Let G be a weakly modular graph without induced W4 and W −
4
. Then G does

not contain an induced W −
n for n > 4.

Proof. Suppose by way of contradiction that W −
n is an induced subgraph of G and suppose

that G does not contain induced W −
k for any 3 < k < n. Let (x1, x2, . . . , xn, x1) be the outer

cycle C of W −
n and consider a vertex c adjacent to all vertices of C except x1. We apply the

triangle condition to the triple x1, x2, xn−1 and find a vertex a ∈ N(x1) ∩N(x2) ∩N(xn−1).

Note that if a ∼ c, then x1, x2, c, xn, a induce W4 if a is adjacent to xn or W −
4

otherwise.

Assume now that a ≁ c. If n = 5, then the vertices x4, a, x2, c, x3 induce either W4 if x3 is

adjacent to a, or W −
4

otherwise. Now, if n ≥ 6 and if a is not adjacent to x3, x4, . . . , xn−3
or xn−2, the subgraph induced by the vertices a,x2, x3, . . . , xn−1, c has an induced subgraph

isomorphic to one of the forbidden induced subgraphs W −
k , where k < n. Thus a is adjacent

to all vertices of C except maybe xn. The vertices a,x3, c, xn−1, x4 induce W4, if n = 6, or W −
4

otherwise, a contradiction. �

By an (a, b)-walk of a graph G we mean a sequence of vertices W = (a = x0, x1, . . . , xk−1, xk =

b) such that any two consecutive vertices xi and xi+1 of W are different and adjacent (notice

that in general we may have xi = xj if ∣i − j∣ ≥ 2). If k = 2, then we call W a 2-walk of G.

A 2-walk W in which all three vertices are different is called a 2-path. Let H be an induced

subgraph of a graph G. A 2-walk W = (a, v, b) of G is H-fanned if a, v, b ∈ V (H) and if there

exists an (a, b)-walk W ′ in H not passing via v and such that v is adjacent to all vertices

of W ′, i.e., v ∼ W ′. Notice that W ′ can be chosen to be an induced path of G. A walk

W = (x0, x1, . . . , xk−1, xk) of G with k > 2 is H-fanned if every three consecutive vertices

(xi, xi+1, xi+2) of W form an H-fanned 2-walk. When H is clear from the context (typically

when H = G), we say that W is fanned. If the endvertices of a 2-walk W = (a, v, b) coincide

or are adjacent, then W is fanned. Here is a generalization of this remark.
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Lemma 4.2. If W = (x0, x1, . . . , xk) is a fanned walk and the vertices xi−1 and xi+1 coincide

or are adjacent, then the walks W ′ = (x0, . . . , xi−2, xi+1, xi+2, . . . , xk) in the first case and

W ′′ = (x0, . . . , xi−1, xi+1, . . . , xk) in the second case are also fanned.

Proof. First suppose that xi−1 = xi+1. Every 2-walk (xj , xj+1, xj+2), where j ≤ i−4 or j ≥ i+1 is

fanned, because W is fanned. Thus to show that the walk W ′ is fanned it suffices to show that

the 2-walk (xi−2, xi+1, xi+2) is fanned. Since the 2-walks (xi−2, xi−1, xi) and (xi, xi+1, xi+2) are

fanned as 2-walks of W , there exist a (xi−2, xi)-walk R1 not passing via xi−1 and a (xi, xi+2)-

walk R2 not passing via xi+1 such that xi−1 ∼ R1 and xi+1 ∼ R2. Since xi−1 = xi+1, we conclude

that the vertex xi+1 is adjacent to all vertices of the (xi−2, xi+2)-walk (R1,R2), showing that

the 2-walk (xi−2, xi−1, xi+2) is fanned.

Now, let xi−1 ∼ xi+1. Every 2-walk (xj , xj+1, xj+2), where j ≤ i − 3 or j ≥ i + 1 is fanned,

because W is fanned. Therefore, to show that W ′′ is fanned it suffices to show that the 2-

walks (xi−2, xi−1, xi+1) and (xi−1, xi+1, xi+2) are fanned. Since both cases are similar, we will

check the first one. Since the 2-walk (xi−2, xi−1, xi) is fanned, there exists a (xi−2, xi)-walk

R such that xi−1 ∼ R. Therefore (R,xi+1) is a (xi−2, xi+1)-walk with all vertices adjacent to

xi−1. Hence the 2-walk (xi−2, xi−1, xi+1) is fanned. �

In the remaining auxiliary results of this section we assume that G is a locally finite

(possibly infinite) weakly modular graph without induced W4 and W −
4

. By Lemma 4.1, G

does not contain W −
k with k > 3.

Lemma 4.3. If C = (x,u, y, v, x) is an induced 4-cycle of G, then no induced 2-path of C is

fanned.

Proof. Suppose that the 2-path P = (u, y, v) is fanned. Let R = (u, t1, . . . , tm, tm+1 = v) be a

shortest (u, v)-walk such that y ∼ R (such a walk exists because P is fanned). Necessarily, R

is an induced path of G. Since C is induced, m ≥ 1 and ti ≠ x for all i ∈ {1, . . . ,m}. If t1 is

adjacent to x, then the vertices x,u, y, v, t1 induce W4 if t1 is adjacent to v, or W −
4

otherwise.

Suppose now that t1 is not adjacent to x and let i ≥ 2 be the smallest index such that ti is

adjacent to x. Since R is a shortest walk, the cycle (x,u, t1, . . . , ti, x) is induced. Thus the

vertices x,u, t1, . . . , ti, y induce a forbidden W −
i+2. �

Let v be a common neighbor of vertices a and b of G. For an (a, b)-walk W , we denote by

D(W ) the distance sum D(W ) ∶= ∑x∈W d(x, v).

Lemma 4.4. Let W = (a = x0, x1, . . . , xm = b) be a fanned (a, b)-walk not containing v,

let k = max{d(xi, v) ∶ xi ∈ W} ≥ 2 and j be the smallest index so that d(xj , v) = k. Then

either xj−1 = xj+1 and the walk W ′ = (x0, . . . , xj−2, xj+1, xj+2, . . . , xm) is fanned or xj−1 ∼ xj+1
and the walk W ′′ = (x0, . . . , xj−1, xj+1, . . . , xm) is fanned, or there exists a vertex y such that

d(y, v) = k − 1 and the walk W ′′′ = (x0, . . . , xj−1, y, xj+1, . . . , xm) is fanned. In particular, if

W is a fanned (a, b)-walk avoiding v with minimal distance sum D(W ), then v ∼W .

Proof. If xj−1 = xj+1 or xj−1 ∼ xj+1, then Lemma 4.2 implies that the walks W ′ and W ′′ are

fanned. So, suppose that xj−1 and xj+1 are different and non-adjacent. Note that d(xj−1, v) =
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k−1 and k−1 ≤ d(xj+1, v) ≤ k. If d(xj+1, v) = k−1, then we can use the quadrangle condition

for vertices v,xj−1, xj and xj+1 and find a vertex z ∈N(xj−1)∩N(xj+1) such that d(v, z) = k−2

(z = v if k = 2). Since z and xj are not adjacent, the 4-cycle (z,xj−1, xj , xj+1, z) is induced.

Since W is fanned, the 2-walk (xj−1, xj , xj+1) is fanned as well, contradicting Lemma 4.3.

So, suppose that d(xj+1, v) = k. Applying the triangle condition to the triple v,xj , xj+1,

we can find a common neighbor y of xj and xj+1 with d(v, y) = k − 1. Note that y ≠ xj−1
since xj−1 ≁ xj+1. First, let xj−1 ≁ y. Then we can apply the quadrangle condition to the

vertices xj−1, xj , y, v, and find a vertex z ∈ N(xj−1) ∩ N(y) with d(z, v) = k − 2 (z = v if

k = 2). Clearly, z is not adjacent to xj and xj+1. Hence, the cycle (xj−1, xj , y, z, xj−1) is

induced. Since the 2-walk (xj−1, xj , xj+1) is fanned, there exists a (xj−1, xj+1)-walk Q0 not

containing xj such that xj ∼ Q0. As a consequence, (Q0, y) is a (xj−1, y)-walk of G not

passing via xj whose all vertices are adjacent to xj . Therefore the 2-walk (xj−1, xj , y) of

the induced 4-cycle (xj−1, xj , y, z, xj−1) is fanned, contradicting Lemma 4.3. This implies

that xj−1 must be adjacent to y. Then W ′′′ = (x0, . . . , xj−1, y, xj+1, . . . , xm) is a walk of

G. We claim that W ′′′ is fanned. Indeed, all 2-paths of W ′′′, except the three consecutive

2-walks (xj−2, xj−1, y), (y,xj+1, xj+2), (xj−1, y, xj+1), are also 2-walks of W , hence they are

fanned. The 2-walk (xj−1, y, xj+1) is fanned because y is adjacent to all vertices of the walk

(xj−1, xj , xj+1). Since the 2-walk (xj , xj+1, xj+2) is fanned, there is an (xj , xj+2)-walk R such

that xj+1 ∼ R. Then all vertices of the (y,xj+2)-walk (y,R) are adjacent to xj+1, whence the

2-walk (y,xj+1, xj+2) is fanned. Analogously, one can show that the 2-walk (xj−2, xj−1, y) is

fanned, showing that W ′′′ is fanned. Since each of D(W ′),D(W ′′),D(W ′′′) is smaller than

D(W ), we conclude that if W is a fanned (a, b)-walk not containing v with minimal distance

sum D(W ), then k = 1, i.e., v ∼W . �

Now, let us define the concept of a twin-ball. Let S be a finite subset of a vertex set of

G. We define TB0(S) = S and suppose that the twin-ball TBt(S) is already determined for

some t ≥ 0. Then let TBt+1(S) be defined as the set of vertices from G that have at least two

neighbors in TBt(S). Note that every TBt(S) is finite, since G is a locally finite graph.

Let T be a triangle in G. Let H3,H4, . . . be a (possibly infinite) sequence of induced 2-

connected subgraphs of G, with H3 = T and Hi+1 is the subgraph of G induced by V (Hi)∪{v},

where v is an arbitrary vertex from the ball TBt(T ), t being the smallest integer such that all

vertices from TBt−1(T ) lie in Hi. (If there exists no such vertex v then the procedure stops

after a finite number of steps.) Hence v has at least two neighbors in Hi. Let K ∶= ⋃∞i=1Hi.

In the following lemmas, we prove that for every i, every 2-walk of Hi is K-fanned and that

Hi does not contain any induced 4-cycle.

Lemma 4.5. For every i, any 2-walk of Hi is K-fanned.

Proof. We proceed by induction on i. Clearly, H3 = T fulfils this property. Assume by

induction hypothesis that any 2-walk of Hi is K-fanned. Let v ∈ G ∖ Hi be an arbitrary

vertex from the ball TBt(T ), where t is the smallest integer such that all vertices from

TBt−1(T ) lie in Hi. Clearly v has at least two neighbors in Hi. We will prove that any
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2-walk of Hi+1 = G(V (Hi) ∪ {v}) is K-fanned. It suffices to consider the 2-walks Q of Hi+1

that contain v, since all other 2-walks lie in Hi and are K-fanned by the induction hypothesis.

Case 1. Q = (a, v, c).

Since Hi is connected and a, c ∈ V (Hi), there exists an (a, c)-walk R in Hi. Since any

2-walk of Hi is K-fanned by induction hypothesis, R itself is K-fanned. As Hi is a subgraph

of K, R belongs to K. Among all K-fanned (a, c)-walks belonging to K and avoiding v,

let W = (a = x0, x1, . . . , xm = c) be chosen in such a way that the distance sum D(W ) =

∑xi∈W d(v,xi) is minimized. By Lemma 4.4, v ∼W and thus the 2-walk Q is K-fanned.

Case 2. Q = (c, b, v).

If c and v are adjacent, then Q is trivially fanned. Thus we may assume that c ≁ v, and c ≠ v

as v /∈Hi. Since v has at least two neighbors in Hi, there exists a vertex a ∈Hi adjacent to v

and different from b. Since Hi is 2-connected and a, c ∈Hi, there exists an (a, c)-walk P0 in Hi

that avoids b. The walks P0 and (P0, b) are K-fanned because all their 2-walks are fanned by

induction hypothesis. Hence, there exists at least one K-fanned (a, b)-walk (P0, b) that passes

via c, avoids v, and all vertices of P0 are different from b. Among all such (a, b)-walks (P0, b)

of K (i.e., that pass c, avoid v, the vertices of P0 are different from b, and are K-fanned), let

W = (a = x0, x1, . . . , xm, xm+1 = c, b) be chosen in such a way that D(W ) is minimized. Since

v and xm+1 = c are different and not adjacent, k = max{dG(xi, v) ∶ xi ∈W} ≥ 2. Let j be the

smallest index such that d(xj , v) = k.

First suppose that j ≠ m + 1. By Lemma 4.4, the vertices a and b can be connected

by one of the walks W ′,W ′′,W ′′′ derived from W . These walks are K-fanned, contain the

vertex c, avoid the vertex v, and all three have smaller distance sums than W . In case

of W ′ and W ′′ we obtain a contradiction with the minimality choice of W . Analogously,

in case of W ′′′ we obtain the same contradiction except if the vertex y coincides with b,

i.e., b is adjacent to the vertices xj−1, xj , and xj+1. In this case, d(xj , v) = 2 and xj−1 ∼ v.

Consider the 2-walk (c, b, xj+1). By construction, we know that there is a K-fanned walk

R = (xm+1 = c, xm, . . . , xj+2, xj+1) that avoids b. Applying Lemma 4.4 with b and R, there

exists a K-fanned (c, xj+1)-walk R′ avoiding b such that b ∼ R′. Consequently, there is an

walk (R′, xj , xj−1, v) in K from c to v in the neighborhood of b and thus (c, b, v) is K-fanned.

Now suppose that j =m+1, i.e., v is adjacent to all vertices of W except xm+1 = c. From the

choice of W we conclude that b ≠ xm. If b ≁ xm, then C = (v,xm, c, b, v) is an induced 4-cycle.

Since the 2-path (b, c, xm) is K-fanned, we obtain a contradiction with Lemma 4.3. Finally,

if b is adjacent to xm, then the 2-path (c, b, v) is K-fanned because c and v are connected in

K by the 2-path (c, xm, v) and xm is adjacent to b. �

Lemma 4.6. Any Hi does not contain induced 4-cycles.

Proof. Again we proceed by induction on i. Suppose by induction hypothesis that Hi does not

contain induced 4-cycles. Let Hi+1 = G(V (Hi)∪{v}) and suppose by way of contradiction that

Hi+1 contains an induced 4-cycle C. Then necessarily v belongs to C. Let C = (v, a, b, c, v).

Since by Lemma 4.5 the 2-walks of Hi+1 are K-fanned, the 2-path (a, b, c) of C is fanned and
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we obtain a contradiction with Lemma 4.3. This shows that any Hi does not contain induced

4-cycle. �

Lemma 4.7. K is the gated hull of T in G.

Proof. Note that it is clear by the construction that all the vertices of K belong to the gated

hull of T . On the other hand, since G is weakly modular graph, we also deduce that K is

gated, by noting that it is ∆-closed and locally convex (i.e., if x, y ∈ K and 0 < d(x, y) ≤ 2,

then any common neighbor v of x and y also belongs to K) [4]. Indeed, if there is a vertex

u that has at least two neighbors v,w in K then there exists t such that v,w ∈ TBt and thus

u ∈ TBt+1. Hence all vertices not in K have at most one neighbor in K. �

Summarizing, we obtain the main result of this subsection.

Proposition 4.8. Let G be a locally finite weakly modular graph not containing induced W4

and W −
4
. Then the gated hull of any triangle T of G is a 2-connected weakly bridged graph.

Additionally, if G does not contain induced W5, then the gated hull of T is a 2-connected

bridged graph.

Proof. By Lemma 4.7, the gated hull of T is the 2-connected subgraph K of G constructed

by our procedure. Since K is a convex subgraph of a weakly modular graph G, K itself is a

weakly modular graph. By Lemma 4.6, the graph K does not contain induced 4-cycles, thus

K is weakly bridged by [20, Theorem 3.1(iv)]. If, additionally, G does not contain 5-wheels,

then G does not contain induced 5-cycles because in a weakly bridged graph any 5-cycle is

included in a 5-wheel. Then K is a weakly modular graph without induced 4- and 5-cycles,

thus K is bridged by [19, Theorem 8.1(ii)]. �

4.2. Proof of Theorem 2. We first prove the implications (i)⇒(ii). First, bridged and

weakly bridged graphs are weakly modular. Weakly bridged graphs do not contain induced

K2,3, W4, and W −
4

because they do not contain induced 4-cycles. Bridged graphs additionally

do not contain induced W5. Weakly modular graphs are closed by taking (weak) Cartesian

products (this holds also when there are infinite number of factors in weak Cartesian products,

since the distances between vertices in a weak Cartesian product are finite). If a (weak)

Cartesian product ◻i∈IHi contains an induced K2,3,W4,W5 or W −
4
, then necessarily this

graph occurs in one of the factors Hi. As a consequence, Cartesian products H = ◻i∈IHi of

weakly bridged graphs do not contain induced K2,3,W4, and W −
4
. Analogously, Cartesian

products H = ◻i∈IHi of bridged graphs do not contain induced K2,3,W4,W
−
4
, and W5. If G

is a retract of H, then G is an isometric subgraph of H, and therefore G does not contain

induced K2,3,W4,W
−
4

in the first case and induced K2,3,W4,W
−
4

and W5 in the second case.

It remains to notice that the triangle and quadrangle conditions are preserved by retractions,

thus G is a weakly modular graph, establishing that (i)⇒(ii).

Now suppose that G is a weakly modular graph satisfying the condition (ii) of Theo-

rem 2. Then G is a pre-median graph. By [14, Theorem 4.13], any pre-median graph is

fiber-complemented. By [14, Lemma 4.8], this implies that any gated subgraph H of G is
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elementary if and only if it is prime. Note that the gated hull of any edge in G is either

the edge itself, or it is included in a triangle by weak modularity, and by Proposition 4.8

we find that the gated hull of this edge is a 2-connected (weakly) bridged graph. Hence

every elementary (= prime) graph is a 2-connected (weakly) bridged graph or an edge. This

establishes the implication (ii)⇒(iii).

To prove the implication (iii)⇒(i), we will use [15, Theorem 3.2.1] and [20, Theorem

5.1]. By Chastand [15, Theorem 3.2.1], any fiber-complemented graph G whose primes are

moorable graphs is a retract of the Cartesian product of its primes. Note that elementary

subgraphs of G, enjoying (iii), are edges and 2-connected weakly bridged graphs. To see this

implication, we thus need to prove that weakly bridged graphs are moorable. Recall that

given a vertex u of a graph G, an endomorphism f of G is a mooring of G onto u if f(u) = u

and for any vertex v ≠ u, vf(v) is an edge of G such that f(v) lie on a shortest path between

v and u. A graph G is moorable if, for every vertex u of G, there exists a mooring of G onto

u. Equivalently, mooring can be viewed as a combing property of graphs which comes from

the geometric theory of groups [22]. Let u be a distinguished vertex (“base point”) of a graph

G. Two shortest paths P (x,u), P (y,u) in G connecting two adjacent vertices x, y to u are

called 1-fellow travelers if d(x′, y′) ≤ 1 holds for each pair of vertices x′ ∈ P (x,u), y′ ∈ P (y,u)

with d(x,x′) = d(y, y′). A geodesic 1-combing of G with respect to the base point u comprises

shortest paths P (x,u) between u and all vertices x such that P (x,u) and P (y,u) are 1-fellow

travelers for any edge xy of G. One can select the combing paths so that their union is a

spanning tree Tu of G that is rooted at u and preserves the distances from u to all vertices.

The neighbor f(x) of x ≠ u in the unique path of Tb connecting x with the root will be called

the father of x (set also f(u) = u). Then f is a mooring of G onto u (vice-versa, any mooring

of G onto u can be viewed as a geodesic 1-combing with respect to u). A geodesic 1-combing

of G with respect to u thus amounts to a tree Tu preserving the distances to the root b such

that if x and y are adjacent in G then f(x) and f(y) either coincide or are adjacent in G.

In [16, 19] it is noticed (using [18]) that for bridged graphs every spanning tree returned by

Breadth-First-Search starting from an arbitrary vertex u provides a geodesic 1-combing. More

generally, it is shown in [20, Theorem 5.1] that for weakly bridged graphs every spanning tree

returned by Lexicographic-Breadth-First-Search starting from an arbitrary vertex u provides

a geodesic 1-combing, thus showing that weakly bridged graphs are also moorable. Thus, by

[15, Theorem 3.2.1] G is a retract of the Cartesian product of its primes, establishing the

implication (iii)⇒(i) of Theorem 2.

Now, for finite graphs we show that (iv) ⇐⇒ (ii). As noticed above, bridged and weakly

bridged graphs are weakly modular and do not contain induced K2,3, W4, and W −
4

. Bridged

graphs additionally do not contain induced W5. Weakly modular graphs are closed by Carte-

sian products and gated amalgams. Moreover, if G is the Cartesian product or the gated

amalgam of two graphs G1 and G2, then G contains an induced K2,3 (resp. W4,W
−
4
,W5)

if and only if G1 or G2 does. Therefore (iv)⇒(ii). Conversely, suppose that G is a finite

weakly modular graph satisfying the condition (ii) of Theorem 2. Then G is a pre-median

graph. By [14, Theorem 4.13], any pre-median graph is fiber-complemented. Then according
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to [14, Theorem 5.4], G can be obtained from Cartesian products of elementary (=prime)

graphs by a sequence of gated amalgamations. By Proposition 4.8, any elementary graph is

either an edge, a 2-connected bridged graph, or a 2-connected weakly bridged graph. Thus

the implication (ii)⇒(iv) in Theorem 2 holds. This concludes the proof of Theorem 2.

4.3. Proof of Proposition 3.1. Let G be a locally-finite bucolic graph and let Hi (i ∈ I) be

the prime graphs of G so that G is (isometrically) embedded in the (weak) Cartesian product

H = ◻i∈IHi as a retract. Note that by Theorem 2 each Hi is a weakly bridged graph. For

each index i ∈ I, let Si denote the projection of S in Hi, i.e., Si consists of all vertices vi of

Hi for each of which there exists a vertex v of G whose ith coordinate is vi. Since the set S

is finite and the distance between any two vertices of S is finite, there exists a finite subset

of indices I ′ of I such that for any i ∈ I ∖ I ′, all vertices of S have the same projection in

Hi, i.e., for all but a finite set I ′ of indices i the set Si is a single vertex. Note that each Hi

is locally-finite since it is isomorphic to a gated subgraph of G. Since each set Si is finite,

it is included in a ball, which is necessarily finite. Since the balls in weakly bridged graphs

are convex, we conclude that for each Si, the convex hull convHi
(Si) of Si in Hi is finite.

The convex hull convH(S) of S in H is the Cartesian product of the convex hulls of the sets

convHi
(Si): convH(S) = ◻i∈IconvHi

(Si) (this equality holds for products of arbitrary metric

spaces). All convHi
(Si) for i ∈ I ∖ I ′ are singletons, thus the size of convH(S) equals the size

of ◻i∈I ′convHi
(Si), and thus is finite because I ′ is finite and each factor convHi

(Si) in this

product is finite by what has been shown above.

Now, set A ∶= V ∩ convH(S). We claim that the set A is convex. Let x, y ∈ A and pick

any vertex z of G in the interval I(x, y) of G. Since G is isometrically embedded in H,

dG(x, y) = dH(x, y), dG(x, z) = dH(x, z), and dG(z, y) = dH(z, y), thus z also belongs to the

interval between x and y in H, hence z belongs to convH(S), establishing that z belongs to A.

Hence A is indeed convex in G. Since the set A is finite and it contains the set S, the convex

hull of S in G is necessarily included in A, thus this convex hull is finite. This concludes the

proof of Proposition 1.

5. Proof of Theorem 1

5.1. Auxiliary results. We start this section with several auxiliary properties of triangle-

square flag complexes occurring in condition (ii) of Theorem 1. Throughout this and next sub-

sections, we will denote such triangle-square complexes by X, assume that they are connected,

and use the shorthand G ∶= G(X). We denote by X(C3) and X(C4) the triangle-square com-

plex consisting of a single triangle and a single square, respectively. Let X(H) =X(C3 +C4)

be the complex consisting of a triangle and a square sharing one edge; its graph is the house

H and with some abuse of notation, we call the complex itself a house. The twin-house

X(2H) is the complex consisting of two triangles and two squares, which can be viewed as

two houses glued along two incident edges or as a domino and a kite glued along two incident

edges (for an illustration, see Fig. 4, left). Let also X(Wk) and X(W −
k ) be the triangle-square

complexes whose underlying graphs are Wk and W −
k : the first consists of k triangles and the
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Figure 4. On the left, a twin-house (in black) included in a double prism

(Lemma 5.2). On the right, a double house (in black) included in a prism

(Lemma 5.3).

second consists of k − 2 triangles and one square. The complex X(CW3) consists of three

squares sharing a vertex and pairwise sharing edges (its graph is the cogwheel CW3). The

triangular prism X(Pr) = X(C3 ×K2) consists of the surface complex of the 3-dimensional

triangular prism (two disjoint triangles and three squares pairwise sharing an edge). The

double prism X(2Pr) consists of two prisms X(Pr) sharing a square (See Fig. 4, left). Fi-

nally, the double-house X(H + C4) = X(2C4 + C3) is the complex consisting of two squares

and a triangle, which can be viewed as a house plus a square sharing with the house two

incident edges, one from the square and another from the triangle (see Fig. 4, right). In the

following results, we use the notation G = G(X).

Lemma 5.1. If X is a triangle-square flag complex, then its 1-skeleton G does not contain

induced K2,3 and W −
4
.

Proof. If G contains K2,3 or W −
4
, then, since X is a flag complex, we will obtain two squares

intersecting in two edges, which is impossible. �

Lemma 5.2. If X satisfies the house condition, then any twin-house X(2H) of X is included

in X in a double prism X(2Pr).

Proof. Let u, v,w,x1, x2 be the vertices of one house and u, v,w, y1, y2 be the vertices of

another house, where the edge uv is common to the two squares uvx2x1 and uvy2y1, and

where the edge vw is common to the two triangles vwx2 and vwy2. By the house condition,

there exists a vertex a adjacent in G to x1, u,w that is not adjacent to x2, v. Analogously, there

exists a vertex b adjacent to u, y1,w that is not adjacent to y2, v. If a ≠ b, the graph induced

by a, b, u, v,w is either K2,3 if a ≁ b, or W −
4

otherwise; in both cases, we get a contradiction

with Lemma 5.1. Thus a = b, and since a ≁ v,x2, y2, the vertices a,u, v,w,x1 , x2, y1, y2 induce

a double prism. �

Lemma 5.3. If X satisfies the house condition, then any double-house X(H +C4) in X is

included in a prism X(Pr), i.e., G does not contain an induced double-house H +C4.

Proof. Suppose by contradiction that G contains an induced double house having

x, y, u, v,w, z as the set of vertices, where uvw is a triangle and xyvu and xuwz are two squares

of this house. By house condition, there exists a vertex a different from z (since y ≁ z) that is

adjacent to x, y,w and that is not adjacent to u, v. Thus, the vertices z, a,w,u,x induce either

K2,3 if a ≁ z or W −
4

otherwise. In both cases, we get a contradiction with Lemma 5.1. �
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Lemma 5.4. If X satisfies the house condition and does not contain X(W4), then X does

not contain X(W −
k ) for any k ≥ 5.

Proof. Suppose by way of contradiction that X contains X(W −
k ), where k is the smallest value

for which this subcomplex exists. Since, by Lemma 5.1, G does not contain W −
4
, necessarily

k ≥ 5. Denote the vertices of X(W −
k ) by q, x1, x2, . . . , xk where x1, x2, . . . , xk induce a cycle

and where q is adjacent to x1, . . . , xk−1 but not to xk. By the house condition applied to the

house induced by q, xk−1, xk, x1, x2, there exists p in G such that p ∼ xk−1, xk, x2 and p ≁ q, x1.

If p ∼ x3, then the vertices x3, p, x2, q, xk−1 induce W4 if x3 ∼ xk−1 (i.e., if k = 5), or W −
4

otherwise; in both cases, we get a contradiction. Thus p ≁ x3. Let j be the smallest index

greater than 3 such that p ∼ xj . Since p ∼ xk−1, j is well-defined. But then, the vertices

q, p, x2, . . . , xj induce W −
j with j < k, contradicting the choice of k. �

5.2. Construction of the universal cover and weak modularity. To prove the im-

plication (ii)⇒(iii) of Theorem 1, from now on, we suppose that X is a connected (but not

necessarily simply connected) triangle-square flag complex satisfying the (W4, Ŵ5), the house,

and the cube conditions. Following the proof of Osajda [32, Theorem 4.5], we will construct

the universal cover X̃ of X as an increasing union ⋃i≥1 X̃i of triangle-square complexes. The

complexes X̃i are in fact spanned by concentric combinatorial balls B̃i in X̃. The covering

map f is then the union ⋃i≥1 fi, where fi ∶ X̃i → X is a locally injective cellular map such

that fi∣X̃j
= fj, for every j ≤ i. We denote by G̃i = G(X̃i) the underlying graph of X̃i. We

denote by S̃i the set of vertices B̃i ∖ B̃i−1.

Pick any vertex v of X as the basepoint. Define B̃0 = {ṽ} ∶= {v}, B̃1 ∶= B1(v,G), and

f1 ∶=IdB1(v,G). Let X̃1 be the triangle-square complex spanned by B1(v,G). Assume that, for

i ≥ 1, we have constructed the sets B̃1, . . . B̃i, and we have defined the triangle-square com-

plexes X̃1, . . . X̃i and the corresponding cellular maps f1, . . . , fi from X̃1, . . . X̃i, respectively,

to X so that the graph G̃i = G(X̃i) and the complex X̃i satisfies the following conditions:

(Pi) Bj(ṽ, G̃i) = B̃j for any j ≤ i;

(Qi) G̃i is weakly modular with respect to ṽ (i.e., G̃i satisfies the conditions TC(ṽ) and

QC(ṽ));

(Ri) for any ũ ∈ B̃i−1, fi defines an isomorphism between the subgraph of G̃i induced by

B1(ũ, G̃i) and the subgraph of G induced by B1(fi(ũ),G);

(Si) for any w̃, w̃′ ∈ B̃i−1 such that the vertices w = fi(w̃),w
′ = fi(w̃

′) belong to a square

ww′uu′ of X, there exist ũ, ũ′ ∈ B̃i such that fi(ũ) = u, fi(ũ
′) = u′ and w̃w̃′ũũ′ is a

square of X̃i.

(Ti) for any w̃ ∈ S̃i ∶= B̃i ∖ B̃i−1, fi defines an isomorphism between the subgraphs of G̃i and

of G induced by B1(w̃, G̃i) and fi(B1(w̃, G̃i)).

It can be easily checked that B̃1, G̃1, X̃1 and f1 satisfy the conditions (P1),(Q1),(R1),(S1),

and (T1). Now we construct the set B̃i+1, the graph G̃i+1 having B̃i+1 as the vertex-set, the

triangle-square complex X̃i+1 having G̃i+1 as its 1-skeleton, and the map fi+1 ∶ X̃i+1 →X. Let

Z = {(w̃, z) ∶ w̃ ∈ S̃i and z ∈ B1(fi(w̃),G) ∖ fi(B1(w̃, G̃i))}.
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On Z we define a binary relation ≡ by setting (w̃, z) ≡ (w̃′, z′) if and only if z = z′ and one of

the following two conditions is satisfied:

(Z1) w̃ and w̃′ are the same or adjacent in G̃i and z ∈ B1(fi(w̃),G) ∩B1(fi(w̃
′),G);

(Z2) there exists ũ ∈ B̃i−1 adjacent in G̃i to w̃ and w̃′ and such that fi(ũ)fi(w̃)zfi(w̃
′) is

a square-cell of X.

Lemma 5.5. The relation ≡ is an equivalence relation on Z.

Proof. For any vertex w̃ ∈ B̃i, we will denote by w = fi(w̃) its image in X under fi. Since

the binary relation ≡ is reflexive and symmetric, it suffices to show that ≡ is transitive. Let

(w̃, z) ≡ (w̃′, z′) and (w̃′, z′) ≡ (w̃′′, z′′). We will prove that (w̃, z) ≡ (w̃′′, z′′). By definition

of ≡, we conclude that z = z′ = z′′. By definition of ≡, z ∈ B1(w,G) ∩B1(w
′,G) ∩B1(w

′′,G).

If w̃ ∼ w̃′′ (in G̃i), then by definition of ≡, (w̃, z) ≡ (w̃′′, z) and we are done. If w̃ ≁ w̃′′ and if

there exists ũ ∈ B̃i−1 such that ũ ∼ w̃, w̃′′, then by (Ri) applied to ũ, we obtain that u ∼ w,w′′

and w ≁ w′′. Since (w̃, z), (w̃′′, z) ∈ Z, we have z ∼ w,w′′. Moreover, if z ∼ u, then by (Ri)

applied to u, there exists z̃ ∈ B̃i, such that z̃ ∼ ũ, w̃, w̃′′ and fi(z̃) = z. Thus (w̃, z), (w̃′, z) ∉ Z,

which is a contradiction. Consequently, if w̃ ≁ w̃′′ and if there exists ũ ∈ B̃i−1 such that

ũ ∼ w̃, w̃′′ and fi(ũ) = u, then uwzw′′ is an induced square in G, and by condition (Z2), we

are done. Therefore, in the rest of the proof, we will assume the following:

(A1) w̃ ≁ w̃′′;

(A2) there is no ũ ∈ S̃i−1 such that ũ ∼ w̃, w̃′′.

Claim 1. For any couple (w̃, z) ∈ Z the following properties hold:

(A3) there is no neighbor z̃ ∈ B̃i−1 of w̃ such that fi(z̃) = z;

(A4) there is no neighbor ũ ∈ B̃i−1 of w̃ such that u ∼ z;

(A5) there are no x̃, ỹ ∈ B̃i−1 such that x̃ ∼ w̃, ỹ and y ∼ z.

Proof. If w̃ has a neighbor z̃ ∈ B̃i−1 such that fi(z̃) = z, then (w̃, z) ∉ Z, a contradiction. This

establishes (A3).

If w̃ has a neighbor ũ ∈ B̃i−1 such that u ∼ z, then by (Ri) applied to ũ, there exists z̃ ∈ B̃i

such that z̃ ∼ ũ, w̃. Thus (w̃, z) ∉ Z, a contradiction, establishing (A4).

If there exist x̃, ỹ ∈ B̃i−1 such that x̃ ∼ w̃, ỹ and y ∼ z, then yxwz is an induced square

in G. From (Si) applied to ỹ, x̃, there exists z̃ ∈ B̃i such that z̃ ∼ ỹ, w̃ and fi(z̃) = z. Thus

(w̃, z) ∉ Z, a contradiction, and therefore (A5) holds as well. �

We distinguish three cases depending of which of the conditions (Z1) or (Z2) are satisfied

by the pairs (w̃, z) ≡ (w̃′, z′) and (w̃′, z′) ≡ (w̃′′, z′′).

Case 1: w̃′ is adjacent in G̃i to both w̃ and w̃′′.

By (Qi), the graph G̃i satisfies the triangle condition TC(ṽ), thus there exist two vertices

ũ, ũ′ ∈ S̃i−1 such that ũ is adjacent to w̃, w̃′ and ũ′ is adjacent to w̃′, w̃′′. By (A2), ũ ≁ w̃′′,

ũ′ ≁ w̃, ũ ≠ ũ′.

If ũ ∼ ũ′, then by (Ti) applied to w̃′ and by (A3)&(A4), the vertices u,u′,w,w′,w′′, z induce

W5 in G. By TC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, ũ′. By (Ri) applied to ũ and ũ′,
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we get x ∉ {u,u′,w,w′,w′′} and x ∼ u,u′. From (A4)&(A5), we get x ≠ z and x ≁ z. Since G

satisfies the Ŵ5-wheel condition, there exists a vertex y of G adjacent to x,u,u′,w,w′,w′′, z.

By (Ri) applied to ũ, there exists ỹ ∼ w̃, ũ, x̃ and thus ỹ ∈ B̃i−1, contradicting the property

(A4).

Suppose now that ũ ≁ ũ′. Then i ≥ 2 and by QC(ṽ), there exists x̃ ∈ S̃i−2 such that

x̃ ∼ ũ, ũ′. From (A4)&(A5), x ≠ z and x ≁ z. Consequently, z,w,w′,w′′, u, u′, x induce a W −
6

,

contradicting Lemma 5.4.

Case 2: w̃ and w̃′ are adjacent in G̃i, and there exists ũ′ ∈ B̃i−1 adjacent to w̃′ and w̃′′ such

that u′w′w′′z is a square-cell of X.

By (A1)&(A2), w̃ ≁ w̃′′ and ũ′ ≁ w̃. By triangle condition TC(ṽ) for G̃i, there exists a

vertex ũ ∈ B̃i−1 different from ũ′ and adjacent to w̃ and w̃′. By (A3)&(A4), u ≠ z and u ≁ z.

By (A2), ũ ≁ w̃
′′.

If ũ ∼ ũ′, by (Ti) applied to w′, z,w,w′, u, u′,w′′ induce a W −
5

, contradicting Lemma 5.4.

Thus ũ ≁ ũ′. By quadrangle condition QC(ṽ) for G̃i, there exists a vertex x̃ ∈ S̃i−2 adjacent

to ũ and ũ′. From (A4)&(A5), x ≠ z and x ≁ z. By (Ti) applied to w̃′ and by (Ri) applied

to ũ′, we get that z,w,w′,w′′, u, u′, x induce a twin-house. By Lemma 5.2 there exists y in

G such that y ∼ w,w′′, u′, x and y ≁ u, z. By (Ri) applied to u′, there exists ỹ ∈ B̃i such that

ỹ ∼ ũ′, w̃′′, x̃. By (Si) applied to ũ, x̃ and to the square uxyw, we get ỹ ∼ w̃. Consequently,

ỹ ∈ S̃i−1, ỹ ∼ w̃, w̃
′′, contradicting (A2).

Case 3: There exist ũ, ũ′ ∈ B̃i−1 such that the vertex ũ is adjacent in G̃i to w̃, w̃′, the vertex

ũ′ is adjacent to w̃′, w̃′′, and uwzw′ and u′w′zw′′ are square-cells of X.

From (A1)&(A2), w̃ ≁ w̃
′′, ũ ≠ ũ′, ũ ≁ w̃′′, and ũ′ ≁ w̃. From (A3), u ≠ z ≠ u

′ and z ≁ u,u′.

If ũ ∼ ũ′, by (Ti) applied to w′ and by (Ri) applied to u,u′, the vertices z,w,w′,w′′, u, u′

induce a double-house, which is impossible from Lemma 5.3. Thus ũ ≁ ũ′.

By QC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, ũ′. By (A4)&(A5), x ≠ z and x ≁ z.

By (Ti) applied to w′ and by (Ri) applied to u,u′, the vertices z,w,w′,w′′, u, u′, x induce

CW3. Thus, by the cube condition, there exists a vertex y of G such that y ∼ x,w,w′′ and

y ≁ z,w′, u, u′. By (Ri) applied to x̃, there is ỹ ∈ B̃i such that ỹ ∼ x̃. By (Si) applied to ũ, x̃

and to the square uxyw, we have ỹ ∼ w̃. By (Si) applied to ũ′, x̃ and to the square u′xyw′′,

we get ỹ ∼ w̃′′. Consequently, ỹ ∈ S̃i−1, ỹ ∼ w̃, w̃
′′, contradicting (A2). �

Let S̃i+1 denote the equivalence classes of ≡, i.e., S̃i+1 = Z/≡. For a couple (w̃, z) ∈ Z, we

will denote by [w̃, z] the equivalence class of ≡ containing (w̃, z). Set B̃i+1 ∶= B̃i ∪ S̃i+1. Let

G̃i+1 be the graph having B̃i+1 as the vertex set in which two vertices ã, b̃ are adjacent if and

only if one of the following conditions holds:

(1) ã, b̃ ∈ B̃i and ã̃b is an edge of G̃i,

(2) ã ∈ B̃i, b̃ ∈ S̃i+1 and b̃ = [ã, z],

(3) ã, b̃ ∈ S̃i+1, ã = [w̃, z], b̃ = [w̃, z
′] for a vertex w̃ ∈ B̃i, and z ∼ z′ in the graph G.

Finally, we define the map fi+1 ∶ B̃i+1 → V (X) in the following way: if ã ∈ B̃i, then

fi+1(ã) = fi(ã), otherwise, if ã ∈ S̃i+1 and ã = [w̃, z], then fi+1(ã) = z. Notice that fi+1 is
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well-defined because all couples from the equivalence class represented by ã have one and the

same vertex z in the second argument. In the sequel, all vertices of B̃i+1 will be denoted with

a tilde and their images in G under fi+1 will be denoted without tilde, e.g. if w̃ ∈ B̃i+1, then

w = fi+1(w̃).

Lemma 5.6. G̃i+1 satisfies the property (Pi+1), i.e., Bj(v, G̃i+1) = B̃j for any j ≤ i + 1.

Proof. By definition of edges of G̃i+1, any vertex b̃ of S̃i+1 is adjacent to at least one vertex of

B̃i and all such neighbors of b̃ are vertices of the form w̃ ∈ B̃i such that b̃ = [w̃, z] for a couple

(w̃, z) of Z. By definition of Z, w̃ ∈ S̃i, whence any vertex of S̃i+1 is adjacent only to vertices

of S̃i and S̃i+1. Therefore, the distance between the basepoint ṽ and any vertex ã ∈ B̃i is the

same in the graphs G̃i and G̃i+1. On the other hand, the distance in G̃i+1 between ṽ and any

vertex b̃ of S̃i+1 is i + 1. This shows that indeed Bj(v, G̃i+1) = B̃j for any j ≤ i + 1. �

Lemma 5.7. G̃i+1 satisfies the property (Qi+1), i.e., the graph G̃i+1 is weakly modular with

respect to the basepoint ṽ.

Proof. First we show that G̃i+1 satisfies the triangle condition TC(ṽ). Pick two adjacent

vertices x̃, ỹ having in G̃i+1 the same distance to ṽ. Since by Lemma 5.6, G̃i+1 satisfies the

property (Pi+1) and the graph G̃i is weakly modular with respect to ṽ, we can suppose that

x̃, ỹ ∈ S̃i+1. From the definition of the edges of G̃i+1, there exist two couples (w̃, z), (w̃, z′) ∈ Z

such that w̃ ∈ B̃i, z is adjacent to z′ in G, and x̃ = [w̃, z], ỹ = [w̃, z′]. Since w̃ is adjacent in

G̃i+1 to both x̃ and ỹ, the triangle condition TC(ṽ) is established.

Now we show that G̃i+1 satisfies the quadrangle condition QC(ṽ). Since the properties

(Pi+1) and (Qi) hold, it suffices to consider a vertex x̃ ∈ S̃i+1 having two nonadjacent neighbors

w̃, w̃′ in S̃i. By definition of G̃i+1, there exists a vertex z of X and couples (w̃, z), (w̃′, z) ∈ Z

such that x̃ = [w̃, z] and x̃ = [w̃′, z]. Hence (w̃, z) ≡ (w̃′, z). Since w̃ and w̃′ are not adjacent,

by condition (Z2) in the definition of ≡ there exists ũ ∈ B̃i−1 adjacent to w̃ and w̃′, whence

x̃, w̃, w̃′ satisfy QC(ṽ). �

We first prove that the mapping fi+1 is a graph homomorphism (preserving edges) from

G̃i+1 to G. In particular, this implies that two adjacent vertices of G̃i+1 are mapped in G to

different vertices.

Lemma 5.8. fi+1 is a graph homomorphism from G̃i+1 to G, i.e., for any edge ã̃b of G̃i+1,

ab is an edge of G.

Proof. Consider an edge ã̃b of G̃i+1. If ã, b̃ ∈ B̃i, the lemma holds by (Ri) or (Ti) applied

to ã. Suppose that ã ∈ S̃i+1. If b̃ ∈ B̃i, then ã = [̃b, a], and ab is an edge of G. If b̃ ∈ B̃i+1,

then the fact that ã and b̃ are adjacent implies that there exists a vertex w̃ ∈ B̃i such that

ã = [w̃, a], b̃ = [w̃, b] and such that a ∼ b in G. �

We now prove that fi+1 is locally surjective for any vertex in B̃i.

Lemma 5.9. If ã ∈ B̃i and if b ∼ a in G, then there exists a vertex b̃ of G̃i+1 adjacent to ã

such that fi+1(̃b) = b.

24Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

1,
 F

eb
ru

ar
y 

10
, 2

01
2



Proof. If ã ∈ B̃i−1, the lemma holds by (Ri). Suppose that ã ∈ S̃i and consider b ∼ a in G. If ã

has a neighbor b̃ ∈ B̃i mapped to b by fi, we are done. Otherwise (ã, b) ∈ Z, [ã, b] ∼ ã in G̃i+1

and [ã, b] is mapped to b by fi+1. �

Before proving the local injectivity of fi+1, we formulate a technical lemma.

Lemma 5.10. Let (w̃, a), (w̃′, a) ∈ Z be such that (w̃, a) ≡ (w̃′, a). If (w̃, b) ∈ Z and b ∼ w′

in G, then w̃ ∼ w̃′, (w̃′, b) ∈ Z and (w̃, b) ≡ (w̃′, b).

Proof. First suppose that w̃ ≁ w̃′. Since (w̃, a) ≡ (w̃′, a), there exists x̃ ∈ S̃i−1 such that

x̃ ∼ w̃, w̃′ and wxw′a is an induced square in G. In G, b ∼ w,w′, thus b,w,x, a,w′ induce K2,3

if b ≁ a,x, W4 if b ∼ a,x, or W −
4

otherwise. In any case, we get a contradiction.

Suppose now that w̃ ∼ w̃′. If (w̃′, b) ∉ Z, then there exists b̃ ∈ B̃i such that b̃ ∼ w̃′ and

fi(̃b) = b. In G, wbw′ is a triangle, thus b̃ ∼ w̃ by condition (Ri) applied to b̃. This implies

that (w̃, b) ∉ Z. Consequently, (w̃, b), (w̃′, b) ∈ Z and (w̃, b) ≡ (w̃′, b) since w̃ ∼ w̃′. �

We can now prove that fi+1 is locally injective.

Lemma 5.11. If ã ∈ B̃i+1 and b̃, c̃ are distinct neighbors of ã in G̃i+1, then b ≠ c.

Proof. First note that if b̃ ∼ c̃, the assertion holds by Lemma 5.8; in the following we assume

that b̃ ≁ c̃. If ã, b̃, c̃ ∈ B̃i, the lemma holds by (Ri) or (Ti) applied to ã. Suppose first that

ã ∈ B̃i. If b̃, c̃ ∈ S̃i+1, then b̃ = [ã, b] and c̃ = [ã, c], and thus b ≠ c. If b̃ ∈ B̃i and c̃ = [ã, c] ∈ S̃i+1,

then (ã, b) ∉ Z, and thus c ≠ b. Thus, let ã ∈ S̃i+1.

If b̃, c̃ ∈ B̃i and ã ∈ S̃i+1, then ã = [̃b, a] = [c̃, a]. Since (̃b, a) ≡ (c̃, a) and since b̃ ≁ c̃, there

exists w̃ ∈ B̃i−1 such that w̃ ∼ b̃, c̃ and abwc is an induced square of G. This implies that b ≠ c.

If ã, b̃, c̃ ∈ S̃i+1, then there exist w̃, w̃′ ∈ B̃i such that b̃ = [w̃, b], c̃ = [w̃′, c], and ã = [w̃, a] =

[w̃′, a]. If b = c, then [w̃, b] = [w̃′, b] = [w̃′, c] by Lemma 5.10, and thus b̃ = c̃, which is

impossible.

If ã, b̃ ∈ S̃i+1 and c̃ ∈ S̃i, then there exists w̃ ∈ S̃i such that b̃ = [w̃, b] and ã = [w̃, a] = [c̃, a].

If w̃ ∼ c̃, then (w̃, c) ∉ Z and thus, (w̃, c) ≠ (w̃, b), i.e., b ≠ c. If w̃ ≁ c̃, since [w̃, a] = [c̃, a],

there exists x̃ ∈ S̃i−1 such that x̃ ∼ w̃, c̃ and such that acxw is an induced square of G. Since

w̃ and c̃ are not adjacent, by (Ri) applied to x̃, w and c are not adjacent as well. Since w ∼ b,

this implies that b ≠ c. �

Lemma 5.12. If ã ∼ b̃, c̃ in G̃i+1, then b̃ ∼ c̃ if and only if b ∼ c.

Proof. By Lemma 5.11, b ≠ c. If ã, b̃, c̃ ∈ B̃i, then the lemma holds by condition (Ri) applied

to ã. Note that from Lemma 5.8, if b̃ ∼ c̃, then b ∼ c. Suppose now that b ∼ c in G.

Suppose that ã ∈ B̃i. If b̃, c̃ ∈ S̃i+1, b̃ = [ã, b] and c̃ = [ã, c]. Since b ∼ c, by construction, we

have b̃ ∼ c̃ in G̃i+1. Suppose now that b̃ = [ã, b] ∈ Si+1 and c̃ ∈ B̃i. If there exists b̃′ ∼ c̃ in G̃i

such that fi(̃b
′) = b, then by (Ri) applied to c̃, ã ∼ b̃′ and (ã, b) ∉ Z, which is a contradiction.

Thus (c̃, b) ∈ Z and since c̃ ∼ ã, [c̃, b] = [ã, b] = b̃, and consequently, c̃ ∼ b̃. Therefore, let

ã ∈ S̃i+1.

If b̃, c̃ ∈ B̃i and ã ∈ S̃i+1, then ã = [̃b, a] = [c̃, a] and either b̃ ∼ c̃, or there exists w̃ ∈ S̃i−1 such

that w̃ ∼ b̃, c̃ and wbac is an induced square in G, which is impossible because b ∼ c.
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If ã, b̃ ∈ S̃i+1 and c̃ ∈ B̃i, then there exists w̃ ∈ B̃i such that b̃ = [w̃, b] and ã = [w̃, a] = [c̃, a].

By Lemma 5.10, (c̃, b) ∈ Z and b̃ = [w̃, b] = [c̃, b]. Consequently, c̃ ∼ b̃.

If ã, b̃, c̃ ∈ S̃i+1, there exist w̃, w̃′ ∈ B̃i such that b̃ = [w̃, b], c̃ = [w̃′, c] and ã = [w̃, a] = [w̃′, a].

If w̃ ∼ c̃ or w̃′ ∼ b̃, then b̃ ∼ c̃ because b ∼ c. Suppose now that w̃ ≁ c̃, w̃′ ≁ b̃ From previous case

applied to ã, b̃ ∈ S̃i+1 (resp. ã, c̃ ∈ S̃i+1) and w̃′ ∈ B̃i (resp. w̃ ∈ B̃i), it follows that w ≁ c and

w′ ≁ b. If w̃ ∼ w̃′, then a, b,w,w′, c induce W4 in G, which is impossible. Since [w̃, a] = [w̃′, a],

there exists x̃ ∈ S̃i−1, such that x̃ ∼ w̃, w̃′ and such that awxw′ is an induced square in G. If

x ∼ b, then by (Ri) applied to x, there exists b̃′ ∈ B̃i mapped to b by fi such that b̃′ ∼ x̃, w̃ and

thus (w̃, b) ∉ Z, which is a contradiction. Using the same arguments, we have that x ≁ c and

thus, a, b, c,w′, x,w induce W −
5

in G, which is impossible. �

We can now prove that the image under fi+1 of an induced triangle or square is an induced

triangle or square.

Lemma 5.13. If ã̃bc̃ is a triangle in G̃i+1, then abc is a triangle in G. If ã̃bc̃d̃ is an induced

square of G̃i+1, then abcd is an induced square in G. In particular, the graph G̃i+1 does not

contain induced K2,3 and W −
4
.

Proof. For triangles, the assertion follows directly from Lemma 5.8. Consider now a square

ã̃bc̃d̃. From Lemmas 5.8 and 5.11, the vertices a, b, c, and d are pairwise distinct and a ∼ b,

b ∼ c, c ∼ d, d ∼ a. From Lemma 5.12, a ≁ c and b ≁ d. Consequently, abcd is an induced

square in G.

Now, if G̃i+1 contains an induced K2,3 or W −
4
, from the first assertion and Lemma 5.12 we

conclude that the image under fi+1 of this subgraph will be an induced K2,3 or W −
4

in the

graph G, a contradiction. �

The second assertion of Lemma 5.13 implies that replacing all 3-cycles and all induced

4-cycles of G̃i+1 by triangle- and square-cells, we will obtain a triangle-square flag complex,

which we denote by X̃i+1. Then obviously G̃i+1 = G(X̃i+1). The first assertion of Lemma 5.13

implies that fi+1 can be extended to a cellular map from X̃i+1 to X: fi+1 maps a triangle ã̃bc̃

to the triangle abc of X and a square ã̃bc̃d̃ to the square abcd of X.

Lemma 5.14. fi+1 satisfies the conditions (Ri+1) and (Ti+1).

Proof. From Lemmas 5.11 and 5.12, we know that for any w̃ ∈ B̃i+1, fi+1 induces an isomor-

phism between the subgraph of G̃i+1 induced by B1(w̃, G̃i+1) and the subgraph of G induced

by fi+1(B1(w̃, G̃i+1)). Consequently, the condition (Ti+1) holds. From Lemma 5.9, we know

that fi+1(B1(w̃, G̃i+1)) = B1(w,G) and consequently (Ri+1) holds as well. �

Lemma 5.15. For any w̃, w̃′ ∈ B̃i such that the vertices w = fi+1(w̃),w
′ = fi+1(w̃

′) belong to

a square ww′u′u of X, there exist ũ, ũ′ ∈ B̃i+1 such that fi+1(ũ) = u, fi+1(ũ
′) = u′ and w̃w̃′ũ′ũ

is a square of X̃i+1, i.e., X̃i+1 satisfies the property (Si+1).

Proof. Note that if w̃, w̃′ ∈ B̃i−1, the lemma holds by condition (Si). Let us assume further

that w̃ ∈ S̃i. By Lemma 5.14 applied to w̃ and w̃′, we know that in G̃i+1 there exist ũ, ũ′ such

that ũ ∼ w̃ and ũ′ ∼ w̃′.
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Case 1. w̃′ ∈ S̃i−1.

If ũ′ ∈ B̃i−1, by (Si) applied to w̃′ and ũ′, we conclude that w̃w̃′ũ′ũ is a square in G̃i+1.

If ũ′ ∈ S̃i and ũ ∈ S̃i−1, then Lemma 5.14 applied to w̃, implies that ũ is not adjacent to

w̃′. Thus, by quadrangle condition QC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, w̃′. Hence,

w,w′, u, u′, x induce in G a forbidden K2,3,W
−
4

, or W4, which is impossible.

Suppose now that ũ′, ũ ∈ S̃i. By TC(ṽ), there exists x̃ ∈ S̃i−1 different from w̃′ such that

x̃ ∼ ũ, w̃. Since G does not contain W −
4

or W4, x ≁ u
′,w′ and the vertices u,w,w′, u′, x induce

a house. By the house condition there exists y in G such that y ∼ x,u′,w′ and y ≁ u,w. Since

x ≁ w′, by Ri applied to w̃, x̃ ≁ w̃′. Applying QC(ṽ), there exists z̃ ∈ S̃i−2 such that z̃ ∼ x̃, w̃′

and z̃ ≁ w̃. Since z̃ ∈ S̃i−2, z̃ ≁ ũ′ and thus by Ri+1 applied to w̃′, z ≁ u′. Consequently,

z ≠ y. Thus, from Lemma 5.13, xzw′w is an induced square of G and y,x, z,w′,w induce a

K2,3 if z ≁ y and W −
4

otherwise, which is impossible. Note that if ũ′ has a neighbor ũ2 in B̃i

mapped to u , then, exchanging the roles of ũ′ and w̃, we also get a contradiction. Suppose

now that neither w̃ nor ũ′ has a neighbor in B̃i mapped to u. Thus, (w̃, u), (ũ′, u) ∈ Z and

since w̃′ ∈ S̃i−1 is adjacent to w̃ and ũ′, (w̃, u) ≡ (ũ′, u). Consequently, w̃w̃′ũ′[w̃, u] is a square

of G̃i+1 which is mapped by fi+1 to the square ww′u′u.

Case 2. w̃′ ∈ S̃i.

If ũ ∈ S̃i−1 or ũ′ ∈ S̃i−1, then, exchanging the roles of w̃, w̃′, ũ and ũ′, we are in the previous

case.

If ũ ∈ S̃i, by TC(ṽ) there exists x̃ ∈ B̃i−1 such that x̃ ∼ w̃, ũ. Thus, in G there exists x ∼ u,w

and, since G does not contain W4 or W −
4

, x ≁ u′,w′. Applying the house condition, we get y

in G such that y ∼ u′,w′, x and y ≁ u,w. Applying the previous case to w̃, x̃ and the square

wxyw′ of G, we know that there exists ỹ ∈ B̃i such that w̃x̃ỹw̃′ is an induced square in G̃i+1.

From Lemma 5.14 applied to w̃′, we deduce that ỹ ∼ ũ′. Applying (Si) to x̃, ỹ and to the

square xyu′u, we get that ũ ∼ ũ′, thus w̃w̃′ũ′ũ is a square in G̃i+1. If ũ′ ∈ S̃i, then exchanging

the roles of w̃, w̃′, ũ, ũ′ we also get that w̃w̃′ũ′ũ is a square in G̃i+1.

Suppose now that w̃ has no neighbor in B̃i mapped to u and that w̃′ has no neighbor

in B̃i mapped to u′. Thus, there exist [w̃, u] and [w̃′, u′] in S̃i+1. By TC(ṽ), there exists

x̃ ∈ S̃i−1 such that x̃ ∼ w̃, w̃′. In G, x ∼ w,w′ and x ≁ u,u′ since G does not contain W −
4

or W4.

Applying the house condition, there is a vertex y in G such that y ∼ u,u′ and y ≁ w,w′. By

(Ri) applied to x̃, there exists ỹ in B̃i such that ỹ ∼ x and ỹ ≁ w,w′. If ỹ has a neighbor in B̃i

mapped to u, then applying the previous case to w̃, x̃ and the square wxyu, we conclude that

w̃ has a neighbor in B̃i mapped to u, which is impossible. Consequently, (ỹ, u) ∈ Z, and since

there is x̃ ∈ Si−1 such that x̃ ∼ w̃, ỹ and wxyu is an induced square in G, (ỹ, u) ≡ (w̃, u). Using

the same arguments, one can show that there exists (ỹ, u′) ∈ [w̃′, u′]. Since yuu′ is a triangle

in G, and since [w̃, u] = [ỹ, u] and [w̃′, u′] = [ỹ, u′], there is an edge in G̃i+1 between [w̃, u]

and [w̃′, u′]. Consequently, w̃w̃′[w̃′, u′][w̃, u] is a square of G̃i+1 satisfying the lemma. �

Let X̃v denote the triangle-square complex obtained as the directed union ⋃i≥0 X̃i with the

vertex v of X as the basepoint. Denote by G̃v the 1-skeleton of X̃v. Since each G̃i is weakly
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modular with respect to ṽ, the graph G̃v is also weakly modular with respect to ṽ. Let also

f = ⋃i≥0 fi be the map from X̃v to X.

Lemma 5.16. For any w̃ ∈ X̃v, St(w̃, X̃v) is isomorphic to St(w,X). Consequently,

f ∶ X̃v → X is a covering map.

Proof. In order to prove that f is a covering map from X̃v to X, it is enough to prove that for

any w̃ ∈ X̃, f ∣St(w̃,X̃v)
is an isomorphism between the stars St(w̃, X̃v) and St(w,X), where

w = f(w̃). Note that, since X̃v is a flag complex, a vertex x̃ of X̃v belongs to St(w̃, X̃v) if

and only if either x̃ ∈ B1(w̃, G̃v) or x̃ has two non-adjacent neighbors in B1(w̃, G̃v).

Let w̃ ∈ B̃i, i.e., i is the distance between ṽ and w̃ in G̃v, and consider the set B̃i+2. Then

the vertex-set of St(w̃, X̃v) is included in B̃i+2. From (Ri+2) we know that f is an isomorphism

between the graphs induced by B1(w̃, G̃v) and B1(w,G).

For any vertex x in St(w,X)∖B1(w,G) there exists an induced square wuxu′ in G. From

(Ri+2), there exist ũ, ũ′ ∼ w̃ in G̃v such that ũ ≁ ũ′. From (Si+2) applied to w̃, ũ and since

w̃ has a unique neighbor ũ′ mapped to u′, there exists a vertex x̃ in G̃v such that f(x̃) = x,

x̃ ∼ ũ, ũ′ and x̃ ≁ w̃. Consequently, f is a surjection from V (St(w̃, X̃v)) to V (St(w,X)).

Suppose by way of contradiction that there exist two distinct vertices ũ, ũ′ of St(w̃, X̃v) such

that f(ũ) = f(ũ′) = u. If ũ, ũ′ ∼ w̃, by condition (Ri+1) applied to w̃ we get a contradiction.

Suppose now that ũ ∼ w̃ and ũ′ ≁ w̃ and let z̃ ∼ w̃, ũ′. This implies that w,u, z are pairwise

adjacent in G̃v . Since f is an isomorphism between the graphs induced by B1(w̃, G̃v) and

B1(w,G), we conclude that z̃ ∼ ũ. But then f is not locally injective around z̃, contradicting

the condition (Ri+2). Suppose now that ũ, ũ′ ≁ w̃. Let ã, b̃ ∼ ũ, w̃ and ã′, b̃′ ∼ ũ′, w̃′. If ã′ = ã

or ã′ = b̃, then applying (Ri+2) to ã′, we get that f(ũ) ≠ f(ũ′). Suppose now that ã′ ∉ {ã, b̃}.

Then the subgraph of G induced by a′,w, a, b, u is either K2,3 if a′ ≁ a, b, or W4 if a′ ∼ a, b, or

W −
4

otherwise. In all cases, we get a contradiction.

Hence f is a bijection between the vertex-sets of St(w̃, X̃v) and St(w,X). By (Ri+2), ã ∼ b̃

in St(w̃, X̃v) if and only if a ∼ b in St(w,X). By (Ri+2) applied to w and since X and X̃v are

flag complexes, ã̃bw̃ is a triangle in St(w̃, X̃v) if and only if abw is a triangle in St(w,X). By

(Ri+2) and since X is a flag complex, if ã̃bc̃w̃ is a square in St(w̃, X̃), then abcw is a square

in St(w,X). Conversely, by the conditions (Ri+2) and (Si+2) and flagness of X̃v, we conclude

that if abcw is a square in St(w,X), then ã̃bc̃w̃ is a square in St(w̃, X̃v). Consequently, for

any w̃ ∈ X̃v, f defines an isomorphism between St(w̃, X̃v) and St(w,X), and thus f is a

covering map. �

Lemma 5.17. X̃v satisfies the house, the cube, and the Ŵ5-wheel conditions, and the graph

G̃v does not contain induced K2,3,W
−
4
, and W4. Moreover, if G is W5-free, then G̃v is also

W5-free.

Proof. Note that for any subgraph C ∈ {house, cube, K2,3,W
−
4
,W4,W5} of G̃v there exists

a vertex w̃ such that C is included in the star St(w̃, X̃v) of this vertex. From Lemma 5.16,

St(w̃, X̃v) is isomorphic to St(w,X), thus f(C) is isomorphic to C. Since G does not con-

tain induced K2,3, W −
4

, W4, the graph G̃v also does not contains these graphs as induced

subgraphs, and if G is W5-free, G̃v is also W5-free.
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Consider a house ũũ′w̃′w̃x̃ in X̃v where ũũ′w̃′w̃ is a square and ũw̃x̃ is a triangle. This

house is mapped by f to the house uu′w′wx in X. By the house condition in X, there exists a

vertex y ∈ G such that y ∼ u′,w′, x and y ≁ u,w. Since f is locally bijective, there exists ỹ ∼ x̃

such that f(ỹ) = y. Since f is an homomorphism from St(x̃, X̃v) to St(x,X), considering the

squares xyu′u and xyw′w, we get that ỹ ∼ ũ′, w̃′ and ỹ ≁ ũ, w̃. Thus, X̃v satisfies the house

condition.

Consider three squares x̃ã̃b′′ã′, x̃ã′̃bã′′, x̃ã′′̃b′ã in X̃v. By cube condition, in G there exists

a vertex y such that y ∼ b, b′, b′′ and y ≁ x,a, a′, a′′. Since f is locally bijective, there exists

ỹ ∼ b̃ such that f(ỹ) = y. Since f is an isomorphism from St(̃b, X̃v) to St(b,X), we get that

ỹ ∼ b̃′, b̃′′ and ỹ ≁ ã′, ã′′, x̃. When considering St(̃b′, X̃v), we get that ỹ ≁ ã. Thus, X̃ also

satisfies the cube condition.

Finally suppose that X satisfies the Ŵ5-wheel condition and consider W5 in G̃v made of a

5-cycle (x̃1, x̃2, x̃3, x̃4, x̃5, x̃1) and a vertex c̃ adjacent to all vertices of this cycle. Suppose that

there exists a vertex z̃ such that z̃ ∼ x̃1, x̃2 and z̃ ≁ x̃3, x̃4, x̃5, c̃. The vertices c, x1, x2, x3, x4, x5
are all distinct and they induce W5 in G. Since f is locally bijective and since x1 ≁ x4,

necessarily z ∉ {c, x1, x2, x3, x4, x5}. Since St(x̃1, X̃v) is isomorphic to St(x1,X), z ≁ x5, c.

Considering St(x̃2, X̃v), we get z ≁ x3. If z ∼ x4, x1zx4x5 is a square in St(x1,X), and

this implies that z̃ ∼ x̃4, a contradiction. By the Ŵ5-wheel condition for X, there exists

y ∼ c, z, x1, x2, x3, x4, x5 in G. Consider the neighbor ỹ of c̃ such that f(ỹ) = y. Since

St(c̃, X̃v) is isomorphic to St(c,X), ỹ ∼ x̃1, x̃2, x̃3, x̃4, x̃5. Considering the star St(x̃1, X̃v), we

conclude that ỹ ∼ z̃. Consequently, X̃v satisfies the Ŵ5-wheel condition. �

The fact that the complex X̃v is simply connected is a direct consequence of the following

more general result.

Lemma 5.18. Let Y be a triangle-square flag complex such that G(Y) satisfies the triangle

and the quadrangle conditions TC(v) and QC(v), for some basepoint v. Then Y is simply

connected. In particular, X̃v is simply-connected for any basepoint v ∈ V (X).

Proof. A loop in Y is a sequence (w1,w2, ...,wk ,w1) of vertices of Y consecutively joined by

edges. To prove the lemma it is enough to show that every loop Y can be freely homotoped

to a constant loop v. By contradiction, let A be the set of loops in G(Y), which are not

freely homotopic to v, and assume that A is non-empty. For a loop C ∈ A let r(C) denote

the maximal distance d(w,v) of a vertex w of C from the basepoint v. Clearly r(C) ≥ 2 for

any loop C ∈ A (otherwise C would be null-homotopic). Let B ⊆ A be the set of loops C

with minimal r(C) among loops in A. Let r ∶= r(C) for some C ∈ B. Let D ⊆ B be the set of

loops having minimal number e of edges in the r-sphere around v, i.e. with both endpoints

at distance r from v. Further, let E ⊆ D be the set of loops with the minimal number m of

vertices at distance r from v.

Consider a loop C = (w1,w2, ...,wk ,w1) ∈ E. We can assume without loss of generality that

d(w2, v) = r. We distinguish two cases corresponding to the triangle or quadrangle condition

that we apply to them.
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Case 1: d(w1, v) = r or d(w3, v) = r. Assume without loss of generality that d(w1, v) = r.

Then, by the triangle condition TC(v), there exists a vertex w ∼ w1,w2 with d(w,v) = r − 1.

Observe that the loop C ′ = (w1,w,w2, ...,wk ,w1) belongs to B – in Y it is freely homotopic

to C by a homotopy going through the triangle ww1w2. The number of edges of C ′ lying on

the r-sphere around v is less than e (we removed the edge w1w2). This contradicts the choice

of the number e.

Case 2: d(w1, v) = d(w3, v) = r−1. By the quadrangle condition QC(v), there exists a vertex

w ∼ w1,w3 with d(w,v) = r−2. Again, the loop C ′ = (w1,w,w3, ...,wk ,w1) is freely homotopic

to C (via the square w1w2w3w). Thus C ′ belongs to D and the number of its vertices at

distance r from v is equal to m − 1. This contradicts the choice of the number m.

In both cases above we get contradiction. It follows that the set A is empty and hence the

lemma is proved. �

5.3. Proof of Theorem 1. Since the hypercube condition implies the cube condition and

the hyperhouse condition implies the house condition, if X is a bucolic, then its 2-skeleton

X(2) satisfies (ii), thus (i)⇒(ii).

Using the results of previous subsection, we will show now that (ii)⇔(iii). Let X be a

connected triangle-square flag complex satisfying the local conditions of (ii). By Lemma

5.16, f ∶ X̃v → X is a covering map. By Lemma 5.18, X̃v is simply connected, thus X̃v is

the universal cover X̃ of X. Therefore the triangle-square complexes X̃v, v ∈ V (X), are all

universal covers of X, whence they are all isomorphic. Since for each vertex v of X, the

graph G̃v = G(X̃v) is weakly modular with respect to the basepoint v, we conclude that the

1-skeleton G(X̃) of X̃ is weakly modular with respect to each vertex, thus G(X̃) is a weakly

modular graph. Since X̃ is isomorphic to any X̃v, by Lemma 5.17, X̃ satisfies the same local

conditions as X. Thus X̃ satisfies the (W4, Ŵ5), the house, and the cube conditions. If,

additionally, X is simply connected, then the universal cover X̃ is X itself. Therefore, X

coincides with X̃v for any choice of the basepoint v ∈ V (X). Therefore, by what has been

proven above, G(X) is a weakly modular graph. This establishes the implication (ii)⇒(iii)

of Theorem 1.

Now we will establish the implication (iii)⇒(ii). Let X be a prism flag complex such that

G ∶= G(X) is a weakly modular graph not containing induced W4. Then G does not contain

induced K2,3 and W −
4

because G is the 1-skeleton of a triangle-square cell complex X(2).

From Lemma 5.18 we conclude that X(2) (and therefore X) is simply connected. Thus, it

remains to show that X satisfies the house, the cube condition, and the Ŵ5-wheel conditions.

First suppose that the triangle uvw and the square uvxy define in X a house. Then w is at

distance 2 to the adjacent vertices x and y. By triangle condition, there exists a vertex w′

adjacent to w,x, and y and different from u and v. If w′ is adjacent to one or both of the

vertices u, v, then we will get a forbidden W −
4

or W4 induced by u, v, x, y,w′. This establishes

the house condition.
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To prove the cube condition, let xyuv, uvwz, and uytz be three squares of X pairwise

intersecting in edges and all three intersecting in u. If x and w are adjacent, then the vertices

v,x,w,u, y, z induce in X a double house, which is impossible by Lemma 5.3 because X

satisfies the house condition. Hence x ≁ w and analogously x ≁ t and t ≁ w. If x is adjacent

to z, then x, y, u, t, z induce in G a forbidden K2,3. Thus x ≁ z and analogously y ≁ w and

v ≁ t. First suppose that d(x, z) = 2 in G. Since d(y, z) = 2, by triangle condition there

exists a vertex s adjacent to x, y, and z. From what has been shown before, s ≠ u, t, hence

y,u, z, t, s induce K2,3, W
−
4
, or W4 depending of whether s is adjacent to none, one or two

of the vertices u, t. Thus, d(x, z) = 3 and for the same reasons, d(y,w) = d(v, t) = 3. By

quadrangle condition there exists a vertex s adjacent to x,w, t and distinct from previous

vertices. Since d(x, z) = d(w,y) = d(t, v) = 3, s ≁ z, y, v. If s is adjacent to u, then s,u, v,w, z

induce a forbidden K2,3. This shows that in this case the vertices s, t, u, v,w,x, y, z define a

3-cube, establishing the cube condition.

Finally, we establish the Ŵ5-wheel condition. Notice that we can suppose that X satisfies

the cube and the house conditions and by Lemma 5.4 that X does not contain a X(W −
5
). Pick

a 5-wheel defined by a 5-cycle (x1, x2, x3, x4, x5, x1) and a vertex c adjacent to all vertices of

this cycle, and suppose that x0 is a vertex adjacent to x1 and x5 and not adjacent to remaining

vertices of this 5-wheel. If d(x0, x3) = 3, then by quadrangle condition QC(x0), there exists a

vertex y adjacent to x0, x2, x4 and not adjacent to x3. Then the vertices c, y, x2, x3, x4 induce

a W4 if y is adjacent to c, and a W −
4

otherwise. So, suppose that d(x0, x3) = 2. By triangle

condition TC(x0), there exists a vertex z adjacent to x0, x2, x3. Suppose that z ≁ c. If

z ∼ x1, then x2, x1, z, x3, c induce a forbidden W4. If z ∼ x5, the vertices x1, x2, c, x5, z induce

a forbidden W4 if z ∼ x1 or a W −
4

otherwise. If z ≁ x1, x5, the vertices z,x2, c, x5, x0, x1 induce

a forbidden W −
5

. Thus, z ∼ c. To avoid a forbidden W −
4

or W4 induced by z, c, x1, x0, x5, the

vertex z must be adjacent to x1 and x5. Finally, to avoid W4 induced by z, c, x3, x4, x5, the

vertex z must be adjacent to x4 as well. As a result, we conclude that z is adjacent to x0
and to all vertices of the 5-wheel, establishing the Ŵ5-wheel condition. This concludes the

proof of the implication (iii)⇒(ii).

Now, we will show that (ii)&(iii)⇒(i), i.e., that a flag prism complex X satisfying the

conditions (ii) and (iii) also satisfies the hypercube and the hyperhouse conditions. First

notice that any prism H (and in particular, any cube) of X induces a convex subgraph of

G(X). Indeed, if H is not convex, then by local convexity, we can find two vertices x, y of H

at distance 2 having a common neighbor outside H. Since x and y already have two common

(non-adjacent) neighbors in H, we will obtain in G(X) a forbidden K2,3,W
−
4
, or W4.

Hypercube condition. Let q1, q2, q3 be three k-cubes of X that share a common (k − 2)-

cube q and pairwise share common (k−1)-cubes qij. Note that qij∖q spans a (k−2)-cube and

qi ∖ qij spans a (k − 1)-cube. For a vertex x of q let xij be the unique neighbor of x in qij ∖ q.

Let xi be the second common neighbor in qi of the vertices xij and xik; xi is in qi∖ (qij ∪ qik).

By the cube condition, there exists a vertex x∗ such that x∗∼ x1, x2, x3 and x∗≁ x12, x13, x23,

and the vertices x∗, x, x12, x13, x23, x1, x2, x3 constitute a 3-cube qx of X. Since x2 ∈ I(x
∗, x12),
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since x2 ∉ q1 and since the cubes are convex, x∗ ∉ q1. For similar reasons, x∗ ∉ q2, q3. Now, for

another vertex y of q denote by y12, y13, y23, y1, y2, y3, y
∗ the vertices defined in the same way

as for x. From the definition of these vertices we immediately conclude that all xi, xij , yi, yij
are distinct and for all distinct i, j ∈ {1,2,3}, xij ∼ yij and xi ∼ yi hold if and only if x ∼ y.

Using the convexity of cubes, we show in the next lemma that any of the ver-

tices x,x12, x13, x23, x1, x2, x3 cannot be adjacent to any other vertex from the set

y, y12, y13, y23, y1, y2, y3.

Lemma 5.19. For any x, y ∈ q, for any distinct i, j, k, x ≁ yi, yij , xik ≁ yi, yij , yj and xi ≁ yj.

Proof. If x (resp. xik) is adjacent to yi or yij, then since x ∼ xij (resp. xik ∼ xi), either qi
contains a triangle, or qi ∖ qik is not convex. Since xik ∼ x and x ≁ yj, the convexity of qj
ensures that xik ≁ yj. Finally, the convexity of qi ensures that xi ≁ yj, since yj ∼ yij and

xi ≁ yij. �

Lemma 5.20. For any x, y ∈ q, for any distinct i, j, x∗≁ y, yi, yij .

Proof. First suppose by way of contradiction that x∗ is adjacent to y or yij. Since x∗ ∉ qi,

since x∗∼ xi, and since xi ≁ y, yij by Lemma 5.19, we get a contradiction with the convexity

of qi. Suppose now by way of contradiction that x∗∼ yi. If x ≁ y, then xi ≁ yi and since both

xi, yi ∈ qi are adjacent to x∗ ∉ qi, we obtain a contradiction with the convexity of the cube qi.

Now, suppose that x ∼ y. Then, xi ∼ yi, xij ∼ yij and the vertices xj, xij , yij , yi, xi, x
∗ define

a double-house; by Lemma 5.3, it implies that xj ∼ yij, contradicting Lemma 5.19. Thus,

x∗≁ yi. �

Lemma 5.21. The set {x∗ ∶ x ∈ q} spans a (k−2)-cube q′ of X and the vertices of q1∪q2∪q3∪q
′

span a (k + 1)-cube of X.

Proof. First note that since y1 ∼ y∗ and y1 ≁ x∗ by Lemma 5.20, we have that x∗ ≠ y∗. To

prove the first assertion of the lemma, since q is a (k − 2)-cube of X, it suffices to show that

x∗∼ y∗ if and only if x ∼ y.

First suppose that x is adjacent to y. Consider the three 2-cubes induced by the 4-

cycles (x1, x
∗, x2, x12, x1), (x1, y1, y12, x12, x1), and (x2, y2, y12, x12, x2) of G(X). By the cube

condition, they are included in a 3-cube of X, i.e., there exists a vertex s adjacent to x∗, y1,

and y2. Since qy is a cube, (y1, y12, y2, y
∗, y1) is an induced 4-cycle of G(X). Since G(X)

does not contain induced K2,3, W −
4

or W4, we conclude that s = y∗ or s = y12. Since x∗ ∼ s

and x∗ ≁ y12 from Lemma 5.20, s = y∗ and x∗ ∼ y∗. Conversely, suppose that x∗ ∼ y∗ and

assume that x ≁ y. Then xi ≁ yi and xij ≁ yij. Since xi, yi ∈ qi and since the cube qi is convex,

we conclude that d(xi, yi) = 2, (otherwise, (xi, x
∗, y∗, yi) would be a shortest path from xi to

yi). Since qi is a cube, it implies that d(x, y) = 2. Let z be a common neighbor of x and

y in the cube q and let qz be the 3-cube defined by the vertices z, z12, z13, z23, z1, z2, z3, z
∗.

Since z ∼ x, y, z1 ∼ x1, y1 and z∗ ∼ x∗, y∗. Consequently, the vertices x1, z1, y1, y
∗, z∗, x∗ define

a double-house, and from Lemma 5.3, it implies that x1 ∼ y1, a contradiction. Therefore,

x∗∼ y∗ if and only if x ∼ y, whence q′ is a (k − 2)-cube.
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From Lemmas 5.19 and 5.20, and since q′ is a (k − 2)-cube, the vertices of q1 ∪ q2 ∪ q3 ∪ q
′

span a (k + 1)-cube of X. �

Hyperhouse condition: Let q be a k-cube intersecting a simplex σ in an edge (1-simplex)

e = uv. Let G′ be the subgraph of G(X) induced by conv(q ∪ σ). By Proposition 3.1, G′ is

a finite graph satisfying the condition (iii). Let q = qu ∪ qv, where qu and qv are two disjoint

(k − 1)-cubes of q, one containing u and another containing v. If σ = e, then we are done.

So, suppose σ contains at least three vertices. Let H be the gated hull of σ. Then H is a

weakly bridged graph, thus H does not contain induced 4-cycles. On the other hand, the

convex hull of any three vertices of a cube contains a 4-cycle. Since q ∩ H is convex, we

conclude that q ∩H = {u, v}. Next, we will use some tools from the decomposition of fiber-

complemented graphs into prime graphs [4, 14]. For a vertex a ∈ V (H) let Fa be fiber of

a with respect to H: recall that Fa is the set of all vertices of G′ whose gate in H is the

vertex a. Since G′ is fiber-complemented, each fiber Fa(a ∈ V (H)) is gated. For a vertex

a ∈ V (H), let Ua = {x ∈ Fa ∶ ∃y /∈ Fa, xy ∈ E(G)}, and if b ∈ V (H) is a neighbor of a, let

Uab = {x ∈ Fa ∶ ∃y ∈ Fb, xy ∈ E(G)}. Let qu, qv, Fa, and Ua also denote the subgraphs induced

by these sets. Since cubes induce convex subgraphs of G(X), from the definition of the fibers

Fu and Fv we infer that qu is included in Fu and qv is included in Fv. Moreover, since q is a

cube and since u ∼ v, any vertex of qu has a neighbor in qv, and we conclude that qu ⊆ Uab

and qv ⊆ Uba.

Since the graph G′ is fiber-complemented, if a, b are adjacent vertices of H, then Uab = Ua.

Moreover, since any x ∈ Uab has exactly one neighbor in Uba, this gives rise to the following

natural mapping fab ∶ Ua Ð→ Ub that maps x ∈ Ua to the neighbor of x in Ub. Furthermore,

fiber-complementarity of G′ implies that if a, b are adjacent vertices of H, then Ua and Ub are

isomorphic subgraphs of G and fab is an isomorphism between Ua and Ub. Then the subgraphs

Ua are gated for all a ∈ V (H) and are mutually isomorphic; their union is isomorphic to the

graph H ◻ U , where U is any of Ua. Since Uu contains the (k − 1)-cube qu and Uv contains

the (k − 1)-cube qv, U contains a (k − 1)-cube q0. Hence σ ∪ q is included in H ◻ U (and

therefore in G′) in the prism σ◻ q0. This establishes the hyperhouse condition and concludes

the proof of the implication (ii)&(iii)⇒(i) of Theorem 1.

Finally, we establish the last assertion of Theorem 1. Let X be a flag prism complex

satisfying the (W4, Ŵ5), the hypercube, and the hyperhouse conditions. Then its 2-skeleton

Y ∶= X(2) is a triangle-square flag complex satisfying (W4, Ŵ5), the cube, and the house

conditions. Let X̃ be the universal cover of X. Then the 2-skeleton X̃(2) of X̃ is a covering

space of Y. But at the same time X̃(2) is simply connected (because the 2-skeleton carries

all the information about the fundamental group), so X̃(2) is the universal cover of Y. Since

X̃ is the prism complex of X̃(2) and X̃(2) = Ỹ satisfies the condition (ii) of Theorem 1, we

conclude that X̃ is a bucolic complex. This finishes the proof of Theorem 1.
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6. Proofs of Theorems 3 and 4

6.1. Proof of Theorem 3. Let X be a bucolic complex and let G = (V,E) be its 1-

skeleton. Pick any vertex v0 of G and let Bk(v0,G) be the ball of radius k centered at

v0. Since G is locally-finite, each ball Bk(v0,G) is finite. By Proposition 3.1 the convex

hulls conv(Bk(v0,G)), k ≥ 1, are finite. Hence V is an increasing union of the finite convex

sets conv(Bk(v0,G)), k ≥ 1. A subgraph G′ of G induced by a convex set of G satisfies the

condition (ii) of Theorem 2, thus G′ satisfies all other conditions of this theorem, whence G′

is bucolic. Hence each subgraph Gk induced by conv(Bk(v0,G)) is bucolic.

The prism complex X is an increasing union of the finite bucolic complexes X(Gk) of the

graphs Gk, k ≥ 1. Thus, to show that X is contractible, by Whitehead theorem, it suffices to

show that each complex X(Gk) is contractible. By condition (iii) of Theorem 2, the graph

Gk can be obtained via Cartesian products of finite weakly bridged graphs using successive

gated amalgams. The clique complexes of bridged and weakly bridged graphs are exactly

the systolic and weakly systolic complexes, therefore they are contractible by the results of

[29] and [32]. Cartesian products of contractible topological spaces are contractible, thus the

prism complexes resulting from the Cartesian products of prime graphs are contractible. Now,

if a graph G′ is a gated amalgam of two finite bucolic graphs G1,G2 with contractible prism

complexes X(G1),X(G2) along a gated subgraph G0 = G1 ∩G2 which also has a contractible

prism complex X(G0), then by the gluing lemma [9, Lemma 10.3], the prism complex X(G′)

of the bucolic graph G′ is also contractible. Therefore, for each k, the prism complex X(Gk)

is contractible. This concludes the proof of Theorem 3.

6.2. Proof of Theorem 4. Let X be a bucolic complex and let G = (V,E) denote the

1-skeleton of X. Let F be a finite group acting by cell automorphisms on X (i.e., any

f ∈ F maps isometrically prisms onto prisms). Then for an arbitrary vertex v of X, its orbit

Fv = {fv ∶ f ∈ F} is finite. Let Gv be the subgraph of G induced by the convex hull in G of the

orbit Fv. Since Fv is finite, the graph Gv is finite by Proposition 3.1. Moreover, as a convex

subgraph of G, Gv satisfies the conditions of Theorem 2(ii), hence Gv is bucolic. Clearly,

the prism complex X(Gv) of Gv is F -invariant. Thus there exists a minimal by inclusion

finite non-empty bucolic subgraph of G whose prism complex is F–invariant. Without loss

of generality, we denote this subgraph of G also by G and we assert that X(G) is a single

prism, i.e., G is the Cartesian product of complete graphs. We prove this assertion in two

steps: first we show that G is a box, (i.e., a Cartesian product of prime graphs), and then

we show that each prime graph must be a complete graph. By minimality choice of G as

an F -invariant bucolic subgraph, we conclude that each proper bucolic subgraph of G is not

F -invariant. Therefore, the first step of our proof is a direct consequence of the following

result.

Proposition 6.1. If G is a finite bucolic graph, then there exists a box that is invariant

under every automorphism of G.
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Proof. If G is a box, then the assertion is trivially true. Suppose now that G is not a box and

assume without loss of generality that each proper bucolic subgraph of G is not F -invariant.

By Theorem 2(iv), G is a gated amalgam of two proper nonempty gated subgraphs G′ and

G′′ along a common gated subgraph H0. Then we say that H0 is a gated separator of G.

Following [10], we will call U ′ ∶= G′ ∖H0 a peripheral subgraph of G if U ′ does not contain

any gated separator of G.

Since G is not a box, it contains at least one gated separator, and therefore G contains at

least one peripheral subgraph (indeed, among all gated separators of G it suffices to consider

a gated separator H0 so that G is the gated amalgam of G′ and G′′ along H0 and G′ has

minimum size; then G′∖H0 is a peripheral subgraph). Let U = {Ui ∶ i ∈ I} be the family of all

peripheral subgraphs of G, such that G is the gated amalgam of G′i and G′′i along the gated

separator Hi, where Ui =G
′
i−Hi and G′′i ≠Hi. Note that any automorphism f ∈ F of G maps

peripheral subgraphs to peripheral subgraphs, thus the subgraph ⋃i∈I Ui and the subgraph

H = ⋂i∈I G
′′
i induced by the complement of this union are both F -invariant subgraphs of G.

As an intersection of gated subgraphs of G, H is either empty or a proper gated subgraph of

G. In the second case, since gated subgraphs of G are bucolic, we conclude that H is a proper

bucolic F -invariant subgraph of G, contrary to minimality of G. So, H is empty. By the

Helly property for gated sets of a metric space [21], we can find two indices i, j ∈ I such that

the gated subgraphs G′′i and G′′j are disjoint. Since Hi ∩Hj ⊆ G
′′
i ∩G

′′
j , the gated separators

Hi and Hj are disjoint. But in this case, since Ui = G
′
i∖Hi is peripheral, we conclude that Hj

is contained in G′′i (analogously, Hi is contained in G′′j ). Thus Hi ∪Hj ⊆ G
′′
i ∩G

′′
j , contrary

to the choice of G′′i and G′′j . Hence G is a box. �

So, suppose that G is a box. Then the second assertion in the proof of Theorem 4 is an

immediate consequence of the following result.

Proposition 6.2. The graph G is the Cartesian product of complete graphs, i.e., X(G) is a

prism.

Proof. Let G = G1 ◻⋯◻Gk, where each factor Gi, i = 1, . . . , k, is a 2-connected finite weakly

bridged graph. By [20, Theorem B] every factor Gi is dismantlable. Since dismantlable

graphs form a variety –cf. e.g. [31, Theorem 1], it follows that the strong Cartesian product

G′ = G1 ⊠⋯⊠Gk is dismantlable. Observe that the finite group F acts by automorphisms on

G′. By the definition of the strong Cartesian product, any clique of G′ is included in a prism

of X(G). By [33, Theorem A], there exists a clique σ in G′ invariant under the action of F .

Since F acts by cellular automorphisms on X(G), it follows that F fixes the minimal prism

containing all vertices of σ (treated as vertices of G, and hence of X(G)). By the minimality

choice of G it follows that X(G) is itself a prism. �
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[10] Boštjan Brešar, Arboreal structure and regular graphs of median-like classes, Discuss. Math. Graph Theory

23 (2003), no. 2, 215–225. MR2070153 (2005f:05143)
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[13] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathe-

matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag,

Berlin, 1999. MR1744486 (2000k:53038)

[14] Marc Chastand, Fiber-complemented graphs. I. Structure and invariant subgraphs, Discrete Math. 226

(2001), no. 1-3, 107–141, DOI 10.1016/S0012-365X(00)00183-7. MR1801065 (2002i:05095)

[15] , Fiber-complemented graphs. II. Retractions and endomorphisms, Discrete Math. 268 (2003),

no. 1-3, 81–101, DOI 10.1016/S0012-365X(02)00682-9. MR1982390 (2004d:05169)

[16] Marc Chastand, François Laviolette, and Norbert Polat, On constructible graphs, infinite bridged graphs

and weakly cop-win graphs, Discrete Math. 224 (2000), no. 1-3, 61–78, DOI 10.1016/S0012-365X(00)00127-

8. MR1781285 (2002g:05152)

[17] Marc Chastand and Norbert Polat, On geodesic structures of weakly median graphs. I. Decomposition

and octahedral graphs, Discrete Math. 306 (2006), no. 13, 1272–1284, DOI 10.1016/j.disc.2005.10.034.

MR2237713 (2007c:05064)

[18] Victor Chepoi, Bridged graphs are cop-win graphs: an algorithmic proof, J. Combin. Theory Ser. B 69

(1997), no. 1, 97–100. MR1426753 (97g:05150)

[19] , Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000), no. 2, 125–179. MR1748966

(2001a:57004)

[20] Victor Chepoi and Damian Osajda, Dismantlability of weakly systolic complexes and applications (2009),

submitted, available at arXiv:0910.5444v1[math.GR].

[21] Andreas W. M. Dress and Rudolf Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987),

no. 1, 112–120, DOI 10.1007/BF01840131. MR915878 (89c:54057)

[22] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and

William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992.

MR1161694 (93i:20036)

36Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
17

1,
 F

eb
ru

ar
y 

10
, 2

01
2

http://pageperso.lif.univ-mrs.fr/~victor.chepoi/RetractsPCG.pdf
arXiv:0910.5444v1 [math.GR]


[23] Martin Farber and Robert E. Jamison, On local convexity in graphs, Discrete Math. 66 (1987), no. 3,

231–247. MR900046 (89e:05167)

[24] Mikhail Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer,

New York, 1987, pp. 75–263. MR919829 (89e:20070)

[25] Frédéric Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71

(2003), preprint, available at http://www.math.u-psud.fr/~biblio/ppo/2003/fic/ppo_2003_71.pdf.

[26] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354

(2002k:55001)

[27] Wilfried Imrich and Sandi Klavžar, Product graphs, Wiley-Interscience Series in Discrete Mathematics

and Optimization, Wiley-Interscience, New York, 2000. Structure and recognition; With a foreword by

Peter Winkler. MR1788124 (2001k:05001)

[28] John R. Isbell, Median algebra, Trans. Amer. Math. Soc. 260 (1980), no. 2, 319–362, DOI

10.2307/1998007. MR574784 (81i:06006)
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