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Multi-!ayer perceptrons (MLPs) are now widely used for pattern recognition tasks such as specch recognilion, 
liandvvritteu character recognition, face recognition, etc. They vvere proven to generalize well to unseeii dala. 
Anoliier kind of neural netvvorks, namely, self-organizing feature maps have also been applied occasionalIy in 
paLtern classification, but they vvere not that successful. In this study it is investigated how self-organizing feature 
inaps could be useful in combination vvith MLPs as a tool for initializing the vveights of a MLP. The purpose of the 
rcscarch \vas to reduce the amount of supervised training vvhich is required to train MLPs. 

PREPOZNAVANJE VZORCEV S KOHONENOVO MAPO iN Z VEČNIVOJSKIMI PERCEPTRONL Večnivojski 
perceptroni se v zadnjem času pogosto uporabljajo pri prepoznavanju vzorcev (na primer govora), prepoznavanju 
pisav, prepoznavanju obrazov in podobno. Druga vrsta nevronskih mrei, Kohonenove mape, so bile tudi občasno 
uporabljene pri reševanju podobnih nalog, vendar rezultati so bili slabši. V tem članku je obravnavana možnost 
inicializacije uteži skritega nivoja trinivtgskega perceptrona. Namen te raziskave je skrajšati čas učenja perceptrona. 

1 Kohonen Self-Organizing 
Feature Maps 

The self-organizing map belongs to the category of 
neural netvvorks that use unsupervised training. This 
means that each time a new input is presented to the 
map, the desired output is unspecified. This type of 
neural netvvorks is used to perform data compression, 
such as vector quantization and as it vk̂ ill be explained 
later, to reduce the amount of supervised training. 

A vector quantizer is a mapping, g, that assigns to 
each input vector Ič — (xi, X2i • • • > ^̂ ./v). a codebook 

*A young researcher, employed in PAREX, d.o.o. 

vector a = (cii, c,-2,..., ĉ jv) 

č,- = q{x) 

drawn from a finite set of codebook vectors 

Q - {či,Č2,.. .,ČM] 

vvhere M is the number of codebook vectors. The 
quantizer q is completely described by the set of code­
book vectors and it divides the input vector space into 
clusters 

Ci = {x:qix)=či] (1) 

of input vectors vvhich are mapped onto the i"* code­
book vector. The distortion caused by reproducing 
an input vector x by a codebook vector č; is given by 
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C> 1 ^ ^vi ; 

Figure 1: Locations of map vectors in a square latiice. 
Vtcior fHij can also he addressed as č„, where v — 
( i - l ) J + i . 

rf(ž^, č,), vvhere d is cissumed to be a Euclidean distance 
\vhich is defined by equation 2. 

d{x, Ci) 
\ 

N 

X^(i;n - Ci„)2 (2) 
n = l 

Kohonen's algorithm creates a vector quantizer by ad-
justing vectors which are typicaly arranged in a two-
dimensional grid (usually a square or a hexagonal lat-
tice). In this study square maps vvill be used (see fig­
ure 1) and the map vectors will be represented by their 
map coordinates {i, j). The vector at position (i, j) in 
the map vvill be addressed in two ways, 

• rfiij, {i, j) = (1 ,1) , . . . , (J, J ) 

1 , 2 , . . . , 7 x 7 • C, v 
where nTjj equals č(,_i)j^.y and I, J are the map sizes. 

The vector quantizer function q{x) corresponding 
with a Kohonen map selects the codebook vector č„ 
which is closest to ž': 

d{x, c„) = minrf(x, Cjt), k 
k 

l , 2 , . . . , J x J 

In order to create the best codebook vectors, an it-
erative training is performed. During each iteration, 
a neighbourhood is defined around each vector of the 
map, as shovvn in figure 2. The neighbourhood NE(t) 
slowly decreases with time. At the beginning, the map 
vector components are initialized to small random val-
ues. Then, the follovving iterative procedure is applied 
vvhenever a new input vector 'x{t) is presented {t is the 
iteration number). 

1. Computc the Euclidean distances d{'x(t),'5^,(1)), to 
aH nodes čv(<) according to the equation 2. 

2. Select the node producing the minimum distance 
as the vvinning node č„. 

Figure 2: Topological neighbourhood at different times 
as the feaiure map is formed. NEv(t) is the sei of 
nodes considered to be in the neighbourhood of a node 
č„ at time t. The neighbourhood is decreased in size as 
time increases. In this eiample, O < <i < <2-

3. Compute an updating factor a{t) and define a 
topological neighbourhood NEv{t). 

4. Update the map vectors belonging to the topo­
logical neighbourhood of the winning node. For 
the adaptation of a map vector č^ the follovving 
formula is used, 

Cknit + 1) = C i„ ( t ) + a{t){Xn{t) - Ckn{i)) 

vvhere n = 1, 2 , . . . , A''. 

The input vectors are taken from an input database, 
and are presented in a random order. The process 
is terminated as soon as the average distortion intro-
duced by the vector quantization does not drop any 
more. Parameter a(<) is initialized to a value betvveen 
zero and one, and is decreasing with time. 

In this study an exponential rule for adapting a and 
for determining the topological neighbourhood [Brauer 
and Knagenhjelm, 1989] was used. 

In order to use the Kohonen map for pattern classi-
fication, each map vector has to receive a label. The 
easiest way to achieve this is by applying the maxi-
mum a posteriory criterium: the labeled observations 
of a training set are presented to the map, and each 
node is labeled according to the number of observa­
tions of the different classes that vî ere assigned to that 
node. Once the map is labeled, it can act as a pattern 
classifier. 

The percentage of wrongly classified examples (the 
error rate) can be made as small as desired by intro-
ducing a large enough number of vectors. Ilovvever, 
as it vvill be explained later, the training of a large 
map can be very time consuming and it is likely that 
such a map vvill not generalize properly to the unseen 
examples. 
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train 
testi 
test2 

6 x 6 
74,55% 
73,35% 
75,47% 

9 x 9 
79,26% 
77,59% 
78,97% 

12 X 12 
81,02% 
79,45% 
79,85% 

15 X 15 
82,72% 
80,79% 
81,35% 

Table 1: Recogniiion raies on a BPC task, using dif-
ferent Kohonen maps. 

2 Radial Basis Function Net-
work 

A traditional back-propagation netvvork [Rumelhart et 
al., 1986] consists of nodes whose outputs are non-
linear, differentiable squashing functions (typically sig-
moid functions) / of the weighted sum of activations 
emerging from nodes on the previous layer. The out-
put of node i is computed as foUovvs, 

1.1 Results Using the Kohonen Ivlap 

The Kohonen map was tested as a pattern classi-
fier on a Broad Phonetic Classification (BPC) task 
of Dutch spoken utterances. Here are the following 
five classes of the BPC task: votuel, sonorant, frica-
tive, burst and closure. We have used a hand-labeled 
multi-speaker databcise of continuously spoken Dutch 
numerical strings, uttered by 30 different speakers (15 
male and 15 female). The databcise consists of 300 dif­
ferent utterances (10 from each speaker). For training, 
192 utterances from 24 speakers (8 from each speaker) 
are used and 108 utterances are used for testing. The 
test set is divided into 2 sets: itstl, a multi-speaker 
test set (the remaining 48 utterances from the training 
speakers), and tesiž, a speaker independent test set (60 
utterances from 6 new speakers). The speech signals 
were bandlimited to 4 kllz and sampled at a rate of 10 
kriz. A 20-dimensional feature vector was extracted 
every 10 ms by means of an auditory model [Martens 
and Van Immerseel, 1990]. To take into account the 
dynamic nature of speech, severa! successive frames 
were presented simultaneously at the input of the map. 
In particular, we have used a feature vector consisting 
of three input frames: the first two frames were con-
textual frames located 40 and 20 ms ahead of the third 
frame which was the one to be classified. Therefore, 
each input vector consisted of 60 elements. The map 
vectors vvere labeled according to the maximum a pos-
teriori criterium. The recognition rates for the differ­
ent data sets are very similar, indicating an excellent 
generalization to unseen data. However, the feature-
map cannot compete with a Multi-Layer Perceptron 
(MLP) trained by means of the back-propagation al-
gorithm [Rumelhart et al., 1986]. Such a MLP obtains 
a recognition rate of 87, 20% on the second test set 
[Depuydt et al., 1990]. The question was whether it 
vvould be possible to use the clusters obtained by the 
map to initialize the vveights of a feed-forward net, and 
consequently to improve the supervised training time 
of that netvvork. 

where io,j represents a connection vveight, ti;,o a bias 
variable, and yj an output from a previous layer. The 
argument of / defines the following hyperplane in the 
input space: 

Y^Wijyj -f-u îo = O 

The hyperplanes defined by the different nodes consti-
tute a set of clciss boundaries. 

Searching for other ways of using the back-
propagation algorithm, and thereby defining other 
kinds of class boundaries the idea of using radial basis 
function networks was introduced [Lowe, 1989]. The 
RBF netvvork contains a hidden layer of m RBF units 
represented by the centres čy. The output layer con­
sists of traditional summation units. Thus, the value 
of an output unit i is, 

m 

vvith / representing the sigmoid function, and $ j a 
RBF centered around a vector čj . Using the stan­
dard neural netvvork terminology, the above formula 
for calculating the output of the «"' output-layer node 
in response to the p"* input pattern, Oip can be stated 

In this study, a netvvork consisting of a hidden layer 
of Gaussian nodes is considered, therefore, functions 
$y are cissumed to be, 

n = l i " 

vvhere the parameters crjn represent the standard de-
viations of function ^j. The above netvvork could 
be trained using the back-propagation algorithm vvith 
gradients: 

dyj _ yjixk -Cjk) 
de j i 'jk 
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where "5j(||zp — čj\\) is addressed as yj. It was sug-
gested that a netvvork vvith RBF nodes could be 
trained by means of a layer-by-layer type of training 
(Gaussian nodes can be trained separately). In this 
čase a computationally efficient way of determining the 
optimal vveights to the output layer can be proposed 
[Renalds and Rohwer, 1989]. If yjp is the output of 
RBF j given training input Xp, then the output of 
output node i will be, 

For optimal vveights it holds that 

'P 

is ininiinal, where Oip is the desired value of the output 
node i. It can be shown [Renalds and Rower, 1989] 
that the optimal weights can be obtained as follows, 

< = Il(T.Oipykp)M;;^ (3) 

vvhere M is the correlation matrix of the RBF outputs 

^j' ='Y^yjpy'p 
p 

It is advised to use the pseudo-inverse of M to avoid 
possible singularities. 

3 Initialization of Gaussian 
Nodes 

With the error back-propagation algorithm, there is 
always a chance that the training gets trapped into 
a local minimum. The search of the optimal netvvork 
configuration can also be very tirne consuming. Es-
pecially the determination of an optimal number of 
hidden units is a long process since the training has to 
be repeated for different amounts of hidden units. If 
there are too many hidden units, the generalization ca-
pabilities of the netvvork might be reduced. If the num­
ber of hidden units is too low, the subspaces created 
by the netvvork nodes cannot adequately model the 
class boundaries. Therefore, a dimensionality analysis 
of neural netvvorks vvith one hidden layer of Gaussian 
liidden units and an output layer of conventional sum-
mation units was suggested [Weymaere and Martens, 
1991]. The vveights of the Gaussian nodes are ini-
tialized to values vvhich are obtained by a modified 

k-means clustering algorithm [Wilpon and Rabiner, 
1985] and the optimization procedure is performed in 
order to select the most efFective set of Gaussian no"des. 
By performing a modified k-means clustering it is pos­
sible to obtain a fair description of the input data items 
by a limited number of clusters, each one being rep-
resented by a centre and a standard deviation vector. 
This parametric representation of the clusters can be 
used to initialize the hidden layer. The clustering can 
either be performed globally or per class. In the lat-
ter čase [Weymaere and Martens, 1991], clusters are 
created for each class separately. During the k-means 
clustering the ceiitr- and standard deviation compo-
nents are obtained ior each class separately and for 
each number of clusters ( 1 , . . . , predefined maximum). 
The cluster members tend to converge to that part of 
the input space that is covered by the examples of that 
class. Then the optimization procedure is carried out 
to select the optimal number of clusters for each class. 
The selected clusters are used to initialize the hidden 
layer in an almost optimal way. 

We vvondered vvhether it vvould also be possible to 
initialize the Gaussian nodes from the clusters ob­
tained by a Kohonen map. A problem could be that 
the map vvas trained using ali examples of the BPC 
task, and consequently that the map vector distribu-
tion Wcis dominated by the dominating class (the vovv-
els). In order to perform a clustering per class, we 
vvould have to construct five different maps (one for 
each class). Another problem is that by retaining only 
a few clusters from the map, only parts of the input 
space vvill remain vvell modelled. This is different in 
čase of k-means clustering vvhere the smaller cluster 
configurations (less centres) are determined to provide 
the best coarse representation of the data distribution 
over the entire input space. Due to the two problems 
stated above, there vvas doubt about the sensibility of 
using the Kohonen map cluster centres for the initial­
ization of the Gaussian nodes. A property attributed 
to the Kohonen map is that it is not cis much affected 
by noise and training inconsistencies as the k-means 
clustering is. Furthermore, the amount of nodes rep-
resenting the different classes seems to be proportional 
to the number of examples of these classes in the train­
ing database. The map vectors tend to have the same 
distributions as the training database samples vvhich is 
not the čase for the clusters obtained by the k-means 
clustering algorithm. 

The k-means clustering procedure (or the Kohonen 
map training) starts by selecting a small subset of the 
full training databcise (e.g. 50 times the number of 
clusters that are to be created). Clusters can be cre­
ated globally or per class. In the former čase an evalu-
ation set is constructed vvhich reflects the same a priori 
cleiss probabilities as the full training databcise. In the 
latter čase subsets of the different class sets are cre­
ated. These sets (in čase of global clustering there is 
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only one) are used to determine the centres and stan­
dard' deviations of the candidate Gaussian units to be 
derived from the clusters. 

The computation of the standard deviations as-
signed to the map vectors is performed as follows: 

1. Compute exact cluster centres. In fact, the Koho-
nen map vectors divide the input space into clus­
ters (see equation 1), but a map vector is not nec-
essarily the centre of gravity of the cluster mem-
bers. 

2. Compute the standard deviations of the projec-
tions of the cluster members on the main cixes. 

3. Multiply ali computed standard deviations by 
the same factor, which is determined in such a 
way that about 80% of the cluster members were 
located inside Gaussian output ellipsoid corre-
sponding to a 0.5 output. 

Once the cluster centres and the standard deviations 
are known, the optimization procedure [Weymaere and 
Martens, 1991] can be carried out. The optimization 
process is performed in Up parallel paths. The param­
eter Up is fixed in the beginning of the optimization 
procedure. 

3.1 Results on the BPC Task 
In order to evaluate the results obtained by initializing 
the network's hidden layer starting from a Kohonen 
map, the recognition rates of the obtained networks 
were compared to those of the corresponding networks 
\vhich vvere initialized starting from the k-means clus-
tering algorithm. Two comparisons were made: global 
clustering and clustering per class. (The results of the 
latter clustering method, using k-means clustering are 
reported in [Weymaere and Martens, 1991]). Ali the 
experiments vvere performed with rip fixed to 3. 

• The global k-means clustering and the 6x6 Koho­
nen map training vvere performed on a database 
consisting of 1800 samples. The 1800 samples 
reflected the same class probabilities as the full 
training database. The recognition rates of the 
initialized networks (as a function of the number 
of hidden nodes) are depicted on figure 3. The 
Kohonen map training took 77 minutes of CPU-
time while k-means clustering took 75 minutes. 

• In čase of a clustering per class, 9 clusters per class 
(a 3 X 3 map in čase of Kohonen clustering) were 
computed. In both cases a set of 500 examples of 
the same class weis used for creating the clusters of 
that class. The recognition rates of the initialized 
netvvorks, as a function of the number of hidden 
units, are shown in figure 4. The training of the 
Kohonen maps now took about 9 minutes, while 

1 Giooa A Jiioudl 
K-.iieafis KoMcvv^ N'*)n 

. 0 

6 0 

5 0 

40 

30 

20 

10 

0 

\ 

1 p , > 

Ntmco' of nodes 

Figure 3: Comparison of the recognition rates of net-
works using 36 global clusters (creaied by k-means al-
gorithm/Kohonen map) to initialize Gaussian nodes. 
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Figure 4; Comparison of the recognition rates using 9 
clusters per class for k-means clustering and for Ko­
honen map in order to initialize the Gaussian nodes. 

the k-means clustering took no more than 2:20 
minutes of CPU-time. 

The Kohonen maps of sizes 12 x 12, 9 x 9 and 
7 x 7 (which were already trained see subsection 1.1) 
vvere used to create clusters for the initiaUzation of the 
Gaussian nodes. The parameter rip v/as fixed to three 
and the maximum number of nodes was 60. In table 2 
the recognition rates obtained by using three Kohonen 
maps for 30 and 60 hidden units are presented. The 
general conclusions are: 

1. Using k-means clustering or Kohonen map clus­
tering, it is possible to initialize MLPs with a 
Gaussian hidden layer to a near optimum point in 

30 nodes 
60 nodes 

144 clusters 
83,8% 
85,4% 

81 clusters 
84,1% 
84,4% 

49 clusters 
83,0% 
-

Table 2: Recognition rates on a BPC task for different 
numbers of clusters vihich initialize Gaussian nodes. 
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the weight space. The performance of the initial-
ized network can be as large as 85,4% vvhich is not 
far from the optimum performance of 89,20%, ob-
tained with traditional 3-layer MLP trained with 
EBP. 

2. The results obtained by clustering per class are 
substantially better than those obtained by global 
clustering (higher recognition rates and consider-
ably less CPU-time). 

3. The initial network performances obtained with k-
means clustering and Kohonen map training are 
essentially the same, be it that k-means clustering 
is computationally more efficient. This superior 
computational efficiency is mainly devoted to the 
fact that ali inter-sample distances required for k-
means clustering can be computed (and stored) in 
advance. Hovvever, this advantage is lost as soon 
as the cluster datasets become larger. 

4 Further training of the net 

Once the Gaussian nodes are initialized, further train­
ing of the net can be carried out using the gradient 
descent method. The problem is that it is difhcult 
to select proper learning rates and proper smooth-
ing factors (for the adaptation of the output nodes' 
weights and for the adaptation of the Gaussian nodes' 
weights). If the choice of these parameters is inade-
quate, training can e£isily lead to a sub-optimum. Very 
few tests vvere run until now and the obtained results 
could stili be improved. 

The netvvork with Gaussian units whose weights 
vvere obtained by our optimization procedure was 
tested on the three databeises (training databcise, test 
setl, test set2). The weights to the output units were 
obtained according to equation 3. The optimization 
procedure used bpc^o as the training set. Netvvorks 
with 20 and 30 Gaussian nodes obtained from a Koho­
nen map of 9 X 9 vvere used in this test. The netvvork 
whose hidden layer consisted of 20 Gaussian nodes was 
trained for 8 cycles with a batch size of 1500 (this 
means that weights are adapted after 1500 input exam-
ples are presented). The network vvhose hidden layer 
consisted of 30 Gaussian nodes was trained for 13 cy-
cles with the same batch size and for 20 additional 
cycles with a batch size of 3600 and a smaller learning 
rate. The results are presented in tables 3 and 4. 

5 Conclusion 

Experiments vvere carried out to investigate the ca-
pabilities of self-organizing feature maps (Kohonen 
maps) in a speech pattern recognition tcisk. The con-
clusions of these experiments is that alabeled Kohonen 

train 
testi 
test2 

before training 
82,48% 
80,58% , 
82,17% 

after training 
88,70% 
86,71% 
86,94% 

Table 3: Recognition rates on a BPC task, using the 
network with 30 Gaussian nodes. 

train 
testi 
test2 

before training 
81,58% 
80,21% 
81,80% 

after training 
87, 27% 
85,28% 
85,50% 

Table 4: Recognition rates on a BPC task, using the 
netvjork with 20 Gaussian nodes. 

map cannot compete with a feed-forvvard MLP trained 
on the same amount of labeled training examples. 

Aftervvards, it was investigated how Kohonen maps 
could be used to initiahze the vveights of a 3-layer 
MLP with a hidden layer of Gaussian units. It was 
found that initialization to a near optimum point in 
the weight space is feasible, especially if one starts 
from a set of small Kohonen maps each derived from 
examples of a particular output class. It was verified 
that Kohonen map clustering is a sensible alternative 
to k-means clustering, a technique vvhich was intro-
duced by Weymaere and Martens (1991) for the ini­
tialization of Gaussian netvvorks. 

The EBP-training of the initialized Gaussian net­
vvorks lead to essentially the same recognition rates 
ets vvere obtained with standard MLPs [Depuydt et 
al., 1990]. Hovvever, the initialization algorithm yields 
three major advantages: 

1. The danger of getting trapped into a local mini­
mum is reduced. 

2. The required dimension (size) of the netvvork can 
be determined vvithout the need for EBP-training. 

3. The training of the initialized netvvork takes much 
less CPU-time than the traditional EBP-training 
of randomly initialized MLPs. 
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