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Abstract

We derive an O(n2)-time algorithm for calculating the genus distribution of a given
3-regular Halin graph G; that is, we calculate the sequence of numbers g0(G), g1(G),
g2(G), . . . on the respective orientable surfaces S0, S1, S2, . . . . Key topological features
are a quadrangular decomposition of plane Halin graphs and a new recombinant-strands
reassembly process that fits pieces together three-at-a-vertex. Key algorithmic features are
reassembly along a post-order traversal, with just-in-time dynamic assignment of roots for
quadrangular pieces encountered along the tour.

Keywords: genus distribution, Halin graph, partitioned genus distribution, gram embedding, outer-
planar graph, topological graph theory.

Math. Subj. Class.: 05C10

1 Introduction
A Halin graph [20] is constructed from a plane tree T with at least four vertices and no 2-
valent vertices by drawing a cycle thru the leaves of T in the order they occur in a preorder
traversal of T . Any wheel graph Wn (for n ≥ 3) is a Halin graph. Every Halin graph can
be obtained by iterative splitting of the hub of a wheel and of some of the resulting vertices.
Although some of the graphs obtained by splitting the hub of a wheel are non-planar, every
planar graph so obtained is a Halin graph, since splitting a vertex of a tree yields a tree.

The outer cycle of a Halin graph is the cycle corresponding to the traversal of the leaves
of the inscribed tree. [Since a Halin graph is 3-connected, its planar embedding is unique
up to reversal of orientation, as per Whitney’s theorem.] In the Halin graph of Figure 1, the
outer cycle has length eight.
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Figure 1: A Halin graph for a 14-vertex tree with 8 leaves.

Genus distributions

DEF. The genus distribution for graph G is the sequence
γdist(G) : g0(G), g1(G), g2(G), · · ·

where gi(G) denotes the number of embeddings of G in the orientable surface Si of genus
i. In reckoning the number of embeddings of the graph G in the surface S, we regard two
embeddings ι : G → S and ι′ : G → S as the same if there is an extension of the identity
automorphism 1G : G → G to an orientation-preserving autohomeomorphism h : S → S
such that ι ◦ h = ι′ or, equivalently, if the two embeddings of G correspond to the same
rotation system (see [19]).

Calculating the genus distribution of a graph requires determining not only its minimum
genus and its maximum genus, but also the number of embeddings of every possible genus.
Table 1 gives the genus distributions of some familiar graphs, each of which is small enough
that its genus distribution can be calculated by hand using ad hoc methods.

Table 1: Genus distributions of some familiar graphs.

graph G g0(G) g1(G) g2(G) g3(G) g4(G) · · ·
K4 2 14 0 0 0 . . .

bouquet B2 4 2 0 0 0 . . .
dipole D3 2 2 0 0 0 . . .
K3,3 0 40 24 0 0 . . .

K2 × C3 2 38 24 0 0 . . .

The study of genus distributions began with [16]. Some of the early papers, such as [9]
and [18], were devoted to calculating genus distributions for all the graphs in a recursively
constructible sequence. Other early papers, such as [33] and [7], were concerned with sta-
tistical properties of the distribution. A solution to a genus distribution calculation problem
can be either a formula or a polynomial-time algorithm.

Lists of some previous papers on genus distributions have appeared in [10], [15], [17],
and [29]. Papers published (or written) subsequently include the following: [4], [6], [5],
[11], [12], [22], [23], [30], and [31].

Graph amalgamations and bar-amalgamations

In general, amalgamating two graphs means identifying a subgraph in one of them to
an isomorphic subgraph in the other. Figures 2 and 3 illustrate vertex-amalgamation and
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edge-amalgamation, respectively, which are the two simplest kinds of amalgamation of
two graphs.

=*V

Figure 2: Vertex-amalgamation of two graphs.

=*E

Figure 3: Edge-amalgamation of two graphs.

A bar-amalgamation of two (disjoint) graphs G and H is obtained by joining a vertex
u of G to a vertex v of H with a new edge. It is denoted here by G ∗̄H . Figure 4 shows a
bar-amalgamation.

=
u v

*

Figure 4: Bar-amalgamation of two graphs.

Proposition 1.1 ([16]). Let G and H be (disjoint) connected graphs, and let u and v be
vertices of G and H , respectively. Then

γdist(G ∗̄H) = deg(u) · deg(v) · γdist(G) ◦ γdist(H)
where ◦ means the operation of convolution on two sequences.

Seeking a useful algorithm

The objective herein is to derive a quadratic-time algorithm for calculating the genus
distribution of any 3-regular Halin graph. The focus is not merely on proving the existence
of such an algorithm, but on developing an algorithm that can by executed (albeit tediously)
by hand for graphs with 10-20 vertices and rather quickly by a computer for graphs with a
significantly larger number of vertices.

The terminology used here is consistent with [19] and [1]. For additional background
(with some terminological differences), see [3], [28], or [37]. All of our graph embeddings
here are cellular and orientable. A graph is taken to be connected, unless one can infer
otherwise from the immediate context. Here we refer to a face-boundary walk as an fb-
walk.

Thanks to Imran Khan for creating the genus-distribution computer program (based on
the Heffter-Edmonds algorithm) used in the course of this research.

2 Known results concerning genus distributions
Although calculating the maximum genus γmax(G) of a graph G is possible in polynomial
time [8], calculating the minimum genus γmin(G) is NP-hard [36], and calculating the
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genus distribution γdist(G) is clearly at least as hard as calculating the minimum genus.
Accordingly, rather few genus distributions are known. A survey of genus distributions,
including average genus, is given by [10].

The most familiar such kinds of ladder graphs whose genus distribution formulas are
known are as follows:

closed-end ladders [9] (derived 1984) See Figure 5.

circular ladders and Möbius ladders [26] See Figure 6.

Ringel ladders [35] See Figure 7.
By systematic use of iterated amalgamations [29] of double-edge-rooted graphs, self-edge-
amalgamations [30], and edge-addition surgery [11], the calculation of formulas for these
ladder graphs has been substantially simplified. Moreover, these recently developed tech-
niques have produced quadratic-time algorithms for various generalizations of ladders, in
which arbitrary graphs of known partitioned genus distribution (see §4) lie between the
rungs.

Figure 5: The closed-end ladder L4.

Figure 6: Circular ladder CL4; and Möbius ladder ML4.

Figure 7: Ringel ladder RL4.

A recent paper [13] presents a quadratic-time algorithm for the calculation of the genus
distribution of any 3-regular outerplanar graph (see Figure 8). It uses a post-order traversal
(see §3) and edge-amalgamations [29]. A subsequent paper [30] uses vertex-amalgamations
[17] to derive a quadratic-time algorithm for 4-regular outerplanar graphs. Whereas out-
erplanar graphs are of tree-width 2, Halin graphs are of tree-width 3 (see [2]), which is
intuitively a reason for anticipating the necessity for a more complicated analysis. Restric-
tions to 3-regularity or 4-regularity generally simplify the analysis of a genus distribution
problem.

Some genus-distribution deriviations use a formula of Jackson [21] based on the theory of
group representations. Bouquets, which are graphs with a single vertex and a number of
self-loops (see Figure 10) were the first class to be so derived [18] .
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Figure 8: A 3-regular outerplanar graph.

Figure 9: A 4-regular outerplanar graph.

Figure 10: Bouquets B1, B2, and B3.

Another such class is dipoles, which are graphs with two vertices and a number of edges
joining them (see Figure 11). Their genus distributions are given by [32] and [24]. Yet
another is fans, which are graphs obtained by joining a path graph to a single new vertex
(see Figure 12). Their genus distributions were derived by [6].

Figure 11: Dipoles D1, D2, and D3.

Figure 12: Fans F3 and F5.
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3 Quadrangulating a plane Halin graph
In deriving the genus distribution of Halin graphs, the critical problem was to invent a
new form of decomposition of a plane Halin graph into “atomic” fragments whose genus
distributions are known, a new form of amalgamation, and an order of reassembly that
reconstructs the Halin graph from the atomic fragments. In this section, we concentrate on
the decomposition and the reassembly.

Taking the inscribed tree of a Halin graph as a spanning tree, an edge of a Halin graph
is a tree-edge if it lies in the inscribed tree and a cycle-edge if it lies on the outer cycle. A
leaf-edge is a tree-edge that is incident at a vertex of the outer cycle. A vertex is called a
cycle vertex if it lies on the outer cycle, or an interior tree-vertex otherwise.

We regard the vertices and the edges of the given plane Halin graph as black. We
observe that since H is a Halin graph, there is exactly one cycle edge on each polygonal
face of the plane embedding. The decomposition is a 4-step process.

Step 1. In each cycle edge of the Halin graph, insert a red midpoint. This is illustrated in
Figure 13.

Figure 13: Halin graph plus red midpoints on the exterior cycle.

Step 2. Join each red vertex v to all of the non-leaf vertices on the boundary of the face in
whose boundary v lies, as illustrated in Figure 14.

Figure 14: Halin graph plus all of the red edges.

Proposition 3.1. The red and black edges together triangulate the region inside the exterior
cycle of a plane Halin graph G.
Proof. The black edges create a set of polygons (whose number equals the cycle rank
β(G)). Each of these polygons is triangulated by the red edges.
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Proposition 3.2. Every black tree edge lies on two of the triangles formed by Steps 1 and 2.

Proof. Every tree edge lies on two of the polygonal faces of the plane Halin graph (by the
Jordan curve theorem). In each of those polygonal faces, it lies on one and only one of the
triangles.

Step 3a. For each black tree edge, we pair the two incident triangles into a quadrangle.

Step 3b. We assign (unseen) colors blue, green, and brown to the tree edges, so as to
form a proper edge 3-coloring. This is possible because any tree of maximum degree 3 is
edge-3-colorable (via greedy algorithm).

Step 3c. We visibly color each quadrangle with the unseen color of the tree edge that
bisects it. The coloring of the quadrangles is a proper 3-coloring of the part of the plane
inside the exterior cycle of the Halin graph, because of the way it is induced by the proper 3-
edge-coloring of the tree. (This property will not be used, but it is interesting nonetheless.)

Figure 15: Quadrangulation of a plane Halin graph.

Step 4. Separate the quadrangulated map into quadrangles, and label the interior tree-
vertices.

u

w

v x

z

y

Figure 16: Separated quadrangles of a plane Halin graph.
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Reassembling a Halin graph from its quadrangles: a puzzle

The success of our method of calculation the genus distribution in the subsequent sec-
tions depends on our ability to reassemble the plane Halin graph from its separated quad-
rangles in a manner consistent with a puzzle now to be described. The genus distributions
of the quadrangular fragments is known, and it will be shown that we can calculate the
genus distribution of any graph that can be constructed from quadrangular fragments, ac-
cording to the rules of this puzzle. After giving the rules for this puzzle, we consider the
outcome of three attempts at its solution.

Quadrangulation puzzle for a plane cubic Halin graph H → S0

1. Each quadrangle Q is regarded as an initial fragment.
2. An RR-path on a fragment boundary is a 2-path with two red edges, from a

red vertex through a black vertex to another red vertex.

3. Initially, all RR-paths are said to be live.

4. A legal move is initiated by choosing a vertex v such that v is previously
unchosen, at least one fragment at v is a quadrangle, and all three RR-paths
through v are live RR-paths.

If these three conditions are satisfied, then the three fragments that meet at
v are merged into a single (larger) fragment. If there is more than one live
RR-path on the boundary of the merged fragment, then all but one of the
live RR-paths are deemed to be dead.

5. You LOSE if you run out of legal moves before the map is fully reassem-
bled. This happens whenever there occurs an unmerged vertex w such that
either there is a dead RR-path through w, or none of the fragments meeting
at w is a quadrangle.

6. You WIN the game by reassembling the plane map.

Attempt 1. Start with a merger at v. There are three live RR-paths on the boundary of
the merged fragment. You LOSE, because RR-paths through two of the unmerged vertices
u,w, x become dead.

u

w

v
x

z

y

live RR-path

Figure 17: Attempt #1.
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Attempt 2. First choose u and then choose v. There are two live RR-paths on the boundary
of the merged fragment. You LOSE, because the RR-path through one of the unmerged
vertices w, x becomes dead.

u

w

v
x

z

y

live RR-path

Figure 18: Attempt #2.

Attempt 3. Start with u,w, y, z. You LOSE, since after there is a merger at v or x, there
will be no quadrangle at the remaining unmerged vertex.

u

w

v x

z

y

Figure 19: Attempt #3.

Solution: post-order traversal

The post-order for the vertices of a plane tree is the order produced when one traces
the boundary of the only region and calls out the name of a vertex only the last time it is
visited. For the tree in Figure 20, the post-order is z, y, x, u, v, w.

u y
v x

w z

Figure 20: Post-order traversal.
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Solution for the quadrangulation puzzle

1. As a root for the inscribed tree of the Halin graph, choose any leaf-vertex.
(Must be a leaf to win.)

2. Choose vertices in the order in which they occur on a post-order traversal
of the tree.

SOLUTION to puzzle in Figure 16: post-order as shown in Figure 20.

z y x u v w

u

w

v x

z

y u

w

v x

z

y

u

w

v x

z

y

u

w

v x

z

y

u

w

v x

z

y u

w

v x

z

y

Figure 21: Solving the puzzle with post-order traversal.
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Theorem 3.3. Using the post-order of the interior tree-vertices as the order of merger
solves the quadrangle puzzle for any plane cubic Halin graph.

Proof. When the post-order is used, every RR-path through every vertex that follows the
vertices of the fragment remains live. It also ensures that there is at least one quadrangle
incident on each of those subsequent vertices.

REMARK Quadrangulation and using the post-order solves the generalized puzzle for any
Halin graph. The generalized algorithm is not presented only because its details are far
lengthier than for the 3-regular case.

4 Partials and productions for Halin graphs
When a graph G has one or more of its vertices or edges designated as roots, its genus
distribution can be partitioned according to the ways in which face-boundary walks are
incident on the roots. The components of such partitions are called partials. A surface-
by-surface inventory of the values of the partials is called a partitioned genus distribution.
Such partitioning has been a crucial step in most of the calculations of genus distributions.

Here is a general paradigm for calculating of the genus distribution of the graphs in a
given graph family F by various kinds of graph amalgamation. The tricky part is that all
of these requirements must be satisfied in coordination with the others.

• Prescribe a set A of rooted graphs as atomic fragments and a set M of merging
operations, such that every member of F can be constructed by iterative application
of the merging operations to the atomic fragments. We denote the closure ofA under
M as A. Thus, F ⊆ A.

• A procedure is designed to determine, from any graph G in A, the sequence of ap-
plication of operations fromM to atomic fragments and to others constructed earlier
in the sequence, by which graph G can be obtained.

• An appropriate set of partials is developed for the rooted graphs in A.

• For each operation µ ∈M there is to be developed a set of rules, called productions,
is developed, that prescribe the values of the partials of any graph in A from the
values of the partials for the fragments that contribute to its construction under the
operation µ.

Example 4.1. For the closed-end ladders and for the other kinds as well, the atomic frag-
ments are doubly edge-rooted cycle graphs. The only operation for closed-end ladders is
edge-amalgamation, and the order of application is linear. For the circular ladders and the
Möbius ladders, there is an additional operation of self-edge-amalgamation, to be applied
last. For the Ringel ladders, the additional operation is edge-addition, to be applied last.

Example 4.2. For the cobblestone walks (see [9]), the atomic fragments are doubly vertex-
rooted cycle graphs. The only operation is vertex-amalgamation. The order of application
is linear.
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Example 4.3. For the 3-regular outerplanar graphs [12], the atomic fragments are doubly
edge-rooted cycles. The operations are edge-amalgamation and root-popping on a singly
edge-rooted graph. The order of operations is the post-order of a tree. For the 4-regular
outerplanar graphs, the atomic fragments are doubly vertex-rooted cycles. The operations
are vertex-amalgamation and root-popping. The order of operations is again the post-order
of a tree.

Atomic fragments and merging operations for Halin graphs

The atomic fragments for constructing cubic Halin graphs are the quadrangular frag-
ments obtained as in §3. We regard them here as doubly vertex-rooted. We denote this set
of atomic fragments by AH . The only operation is merging three fragments at an interior
vertex of the tree, in such a manner that either there is a surviving RR-path through the
vertex of the fragment that is last (among the vertices of the fragment) in the post-order, or
the Halin graph is fully reassembled.

Order of mergers for Halin graphs

The order of mergers of fragments is according to the post-order of the tree.

Partials for cubic Halin graphs

For a doubly vertex-rooted cubic Halin graph (G, u, v), with the roots u and v inserted
at the midpoints of adjacent edges, we split gi(G) into six partials. Here is what they count:
dd′ Each of the roots u and v lies on two distinct fb-walks. One and only one of these

fb-walks traverses both roots.
dd′′ Each of the roots u and v lies on two distinct fb-walks. Both of these fb-walks

traverse both roots.
ds′ Root u lies on two distinct fb-walks. One of these fb-walks traverses root v twice.
sd′ Root v lies on two distinct fb-walks. One of these fb-walks traverses root u twice.
ss1 A single fb-walks traverses roots u and v twice. The occurrences of each root are

consecutive.
ss2 A single fb-walks traverses roots u and v twice. The occurrences of the two roots

alternate.

These configurations are illustrated in Figure 22.

ss1 ss2sd'ds'dd"dd'

u uuuuu

v v vvvv

Figure 22: The 6 double-rooted partials for a 3-way pie-merge.
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Proposition 4.1. Let G be any graph that is homeomorphic to a cubic graph, and let its
vertex roots u and v be 2-valent endpoints of a pair of edges that are adjacent at a 3-valent
vertex. Then the six partials dd′, dd′′, ds′, sd′, ss1, and ss2 completely partition the genus
distribution of G.
Proof. In every embedding of G, since u and v lie on a pair of edges that are adjacent
at a 3-valent vertex, there is necessarily an fb-walk on which both of them occur. Thus,
if both roots lie on two different fb-walks, dd′ and dd′′ are the only possibilities. If one
lies on two different fb-walks and the other on only one fb-walk, then ds′ and sd′ are the
only possibilities. If both roots occur twice on the same fb-walk, then either (ss1) the
occurrences of each root are consecutive, or (ss2) they alternate.

Productions for cubic Halin graphs

For cubic Halin graphs, we merge three graphs at a time, exactly as for the puzzle, so
that one of them is a quadrangle Q = K4 − e, with its two roots inserted at the midpoints
of the two quadrangle boundary edges that meet at the vertex to be merged. Envisioning
this configuration at a small pie cut into three slices, we call the a 3-way π-merge. It is
illustrated in Figure 23.

A
Q

X

B
v
v

v v
r

s
z

y

s'

t'
t

r'

Figure 23: A 3-way π-merge ((A, r, s), (B, t, r′), (Q, s′, t′))→ (X, y, z) at vertex v.

Proposition 4.2. In a 3-way π-merge (A,B,Q) → X at vertex v, each rotation system ρ
for X is consistent with exactly two rotation systems for fragment A and exactly two for
fragment B.
Proof. If rotation system ρ is consistent with a given rotation system ρA of fragment A,
then it is also consistent with the rotation system of A obtained from ρA by reversing the
rotation at v. A similar observation holds for fragment B.

Suppose that p1, p2, . . . , ps is a set of partials or subpartials for a genus distribution. A
production for a given surgical operation that transforms either a graph embeddingX → Si

(or a tuple of graph embeddings) into a set of graph embeddings of the graph Y is a rule of
this form:

pji (X) −→ c1p
1
fj
1 (i)

(Y ) + · · ·+ ctp
s
fj
s (i)

(Y )

The left side is called the antecedent, and the right side is called the consequent. The
meaning is that the operation transforms a single embedding of graph X of type pj on the
surface Si into a set of embeddings of the graph Y , of which ck are of type pk on the surface
Sfj

k(i)
, for each i, j, and k. A drawing is usually used as an aid in deriving the production

and in proving its correctness. The names of the graphs and their roots can be suppressed
when there is in context no ambiguity.
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Example 4.4. One of the productions for the π-merge of doubly vertex-rooted graphs
(A, r, s), (B, t, r′) and (Q, s′, t′) into (X, y, z) is

dd′i(A, r, s) ∗ dd′′j (B, t, r′) −→ 2dd′i+j(X, y, z) + 2ss2i+j+1(X, y, z)

It means that a type-dd′ embedding (A, r, s)→ Si and a type-dd′′ embedding (B, t, r′)→
Sj combine into two type-dd′ embeddings (X, y, z)→ Si+j and two type-ss2 embeddings
(X, y, z)→ Si+j+1. The relevant drawing is shown in Figure 24.

Figure 24: Prod #2: dd′i ∗ dd′′j −→ 2dd′i+j + 2ss2i+j+1.

Theorem 4.3. The following 36 productions are a complete set of rules for calculating the
genus distribution of the graph that results from a π-merge of three graphs in AH .

1. dd′i ∗ dd′j −→ dd′i+j + 2dd′′i+j+1 + ss2i+j+1.

2. dd′i ∗ dd′′j −→ 2dd′i+j + 2ss2i+j+1.

3. dd′i ∗ ds′j −→ 2dd′i+j + 2ss2i+j+1.

4. dd′i ∗ sd′j −→ 2sd′i+j + 2ss1i+j+1.

5. dd′i ∗ ss1j −→ 4sd′i+j .

6. dd′i ∗ ss2j −→ 2ds′i+j + 2sd′i+j .

7. dd′′i ∗ dd′j −→ 2dd′i+j + 2ss2i+j+1.

8. dd′′i ∗ dd′′j −→ 4dd′′i+j .

9. dd′′i ∗ ds′j −→ 4ds′i+j .

10. dd′′i ∗ sd′j −→ 4sd′i+j .

11. dd′′i ∗ ss1j −→ 4ss1i+j .

12. dd′′i ∗ ss2j −→ 2dd′i+j−1 + 2ss2i+j .

13. ds′i ∗ dd′j −→ 2ds′i+j + 2ss1i+j+1.

14. ds′i ∗ dd′′j −→ 4ds′i+j .

15. ds′i ∗ ds′j −→ 4ds′i+j .

16. ds′i ∗ sd′j −→ 4ss1i+j .

17. ds′i ∗ ss1j −→ 4ss1i+j .

18. ds′i ∗ ss2j −→ 2ds′i+j−1 + 2ss1i+j .

19. sd′i ∗ dd′j −→ 2dd′i+j + 2ss2i+j+1.
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20. sd′i ∗ dd′′j −→ 4sd′i+j .

21. sd′i ∗ ds′j −→ 2dd′i+j−1 + 2ss2i+j .

22. sd′i ∗ sd′j −→ 4sd′i+j .

23. sd′i ∗ ss1j −→ 4sd′i+j−1.

24. sd′i ∗ ss2j −→ 2dd′i+j−1 + 2ss2i+j .

25. ss1i ∗ dd′j −→ 4ds′i+j .

26. ss1i ∗ dd′′j −→ 4ss1i+j .

27. ss1i ∗ ds′j −→ 4ds′i+j−1.

28. ss1i ∗ sd′j −→ 4ss1i+j .

29. ss1i ∗ ss1j −→ 4ss1i+j−1.

30. ss1i ∗ ss2j −→ 4ds′i+j−1.

31. ss2i ∗ dd′j −→ 2ds′i+j + 2sd′i+j .

32. ss2i ∗ dd′′j −→ 2dd′i+j−1 + 2ss2i+j .

33. ss2i ∗ ds′j −→ 2dd′i+j−1 + 2ss2i+j .

34. ss2i ∗ sd′j −→ 2sd′i+j−1 + 2ss1i+j .

35. ss2i ∗ ss1j −→ 4sd′i+j−1.

36. ss2i ∗ ss2j −→ 2dd′′i+j−1 + dd′i+j−2 + ss2i+j−1.

Proof. The correctness of each of these productions is a matter of recombining the strands
as prescribed by the π-merge. The 36 figures corresponding to these productions are given
by [14].

Computational Complexity

Theorem 4.4. For |VA| = k and |VB | = m, there is an O(km)-time algorithm for cal-
culating the partitioned genus distribution of the resulting graph X of a 3-way pie-merge
(A,B,Q)→ X of graphs whose maximum degree is 3.

Proof. The number of non-zero partials of a cubic graph G with p vertices is in O(p),
since the maximum genus cannot exceed β(G)/2. For each non-zero-valued partial of A
and each non-zero-valued partial of B, only one production is applied, and the time for the
application of a single production is in O(1).

Corollary 4.5. The post-order traversal using the 36 productions corresponding to the six
partials yields an O(n2) algorithm for the genus distribution of a cubic Halin graph with
n vertices.

Proof. Let H have quadrangular fragments Q1, . . . , Qf of respective cardinalities q1, . . . ,
qf . The number of non-zero-valued partials in the π-merge of a k-vertex fragment A with
an m-vertex fragment B and a quadrangular fragment Qi is at most a constant multiple
of k + m. Since each pair of initial quadrangular fragments is merged only once during
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the reassembly of the Halin graph, it follows that the number of steps is at most a constant
multiple of the sum ∑

i 6=j

qiqj

where qi is the number of non-zero partials of the quadrangular fragment Qi. However,∑
i6=j

qiqj < (q1 + q2 + · · ·+ qf )2

The conclusion follows.

5 Sample Calculation
In this section, we show the work needed to calculate the genus distribution of the Halin
graph of Figure 1.

Merger at z

Graph A (K4 − e):
i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Graph B (K4 − e):
i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Merged Graph K4: Use Productions 1, 6, 31, and 36.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at y

Merged Graph K4: Just like the merger at z.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at x

Graph A (result from merger at z):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14
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Graph B (result from merger at y):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merged Graph: Use 25 productions (all those without the partial ss1).

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 40 4 12 12 0 2 70
2 0 16 48 48 32 40 184

Merger at u

Merged Graph: K4: Just like the merger at z.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merger at v

Graph A (result from merger at x):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 40 4 12 12 0 2 70
2 0 16 48 48 32 40 184

Graph B (result from merger at u):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 4 4 4 0 2 14

Merged Graph: Use 30 productions.

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 112 4 28 12 0 2 158
2 544 96 544 352 80 112 1728
3 0 64 448 448 704 544 2208
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Merger at w

Graph A (result from merger at v):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 112 4 28 12 0 2 158
2 544 96 544 352 80 112 1728
3 0 64 448 448 704 544 2208

Graph B (K4 − e):

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 0 0 0 0 0 2 2

Merged Graph: final result

i dd′i dd′′i ds′i sd′i ss1i ss2i gi
0 2 0 0 0 0 0 2
1 144 4 60 4 0 2 214
2 1440 224 1632 224 56 144 3720
3 1024 1088 4800 1088 1088 1440 10528
4 0 0 0 0 896 1024 1920

6 Conclusions

We have demonstrated the usefulness of the paradigm given at the beginning of §4 in deriv-
ing a practical algorithm for the genus distribution of cubic Halin graphs. To be practical,
in the sense intended here, the number of partials needed should be relatively small.

To calculate the genus distribution of a family of graphs, under this paradigm, one first
designs a recursive specification of that family, that is, a finite set of base graphs and a
finite set of operations whose iterative application can construct any graph in the family.
One then derives a set of production rules for obtaining the partitioned genus distribution
of the result of the applying any operation from the partitioned genus distributions of the
operands.

There are problems whose general solution seems to require exponentially large effort,
but which can be solved in polynomial-time for cases in which something is bounded.
A familiar result in topological graph theory is that whereas Thomassen [36] proved that
determining the minimum genus of a graph is NP-hard, Mohar [27] proved that for every
possible orientable surface Si, there is a linear-time algorithm to decide whether a given
graph is embeddable in that surface.

Shortly after the presentation of this paper, the author derived, for any fixed treewidth
and maximum degree, a quadratic-time algorithm [15] to calculate the genus distribution
of any graph conforming to those bounds. This algorithm is less than practical, since
the numbers of partials and productions increase exponentially with the treewidth and the
maximum degree.
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