
Volume 28 Number 1 April 2004

Special Issue:
Agent Based Computing

Guest Editor:
Gabriel Ciobanu
Marcin Paprzycki
Shahram Rahimi

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Rudi Murn, Jožef Stefan Institute

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagić (Bosnia and Herzegovina)
Vladimir Bajić (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Franc Novak (Slovenia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Yugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jiří Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

 Informatica 28 (2004) 1 1

Introduction
Recent years can be characterized by a constantly
increasing interest in software agents and agent systems.
In order to increase the number of avenues through
which researchers working in these areas can exchange
ideas, we have proposed a special session devoted to
Agent Based Computing (ABC), which took place during
the 7th SCI Conference in Orlando, Florida in July, 2003.
Our initiative was successful. We have received 18
submissions, out of which, after careful refereeing, we
have selected 9 which were then presented and published
in conference proceedings. Unfortunately, the length of
papers allowed to be published was limited to 6 pages.
Since, realistically speaking, it is difficult to present a
complete picture of ones work on 6 pages, we have
started to look for a journal to publish full papers. Thanks
to professor Matjaz Gams, we have found it in the
Informatica journal, and we would like to use this
occasion to express our gratitude to Professor Gams.

This Special Issue consists of nine papers. The initial
four are devoted to lower level functionalities and tasks
involved in agent system development. First,
Representing agents and their systems: a challenge for
current modeling languages by Renato Levy and James
Odell, argues that while many of the evolutionary aspects
of agent modelling can accomplished by extending
current modelling languages such as UML 2.0; the
revolutionary aspects, however, will probably require
new approaches. In the second, An XML-based
serialization of information exchanged by software
agents, Sînică Alboaie, Sabin Buraga and Lenuţa Alboaie
propose an XML-based model that can be used in
serialization of objects processed by mobile agents. The
third paper, A task-oriented compositional mobile agent
architecture for knowledge exchanges between agencies
and agents, by Hong Zhou, Shahram Rahimi, Yufang
Wang, Dia Ali and Maria Cobb discusses how task-
oriented compositional structure allows assembly of new
mobile agents from existing components. Finally, in
Towards a modeling methodology for fault-tolerant
multi-agent systems, Sehl Mellouli, Bernard Moulin and
Guy W. Mineau present an overview of agent oriented
software engineering methodologies, and propose some
guidelines towards a modeling methodology for fault-
tolerant MAS.

The remaining five papers involve practical applications
of agent technology. In System administration using
software agents, Shahram Rahimi and Santosh
Ramakrishna introduce ABSA; an agent-based solution
to automated system administration that supports
multiple system administration features such as domain-
wise administration, automated error handling and
default system configuration. Collaborative translation
with mobile agents, by Eric Sanchis, Jean-Louis Selves
and Zhao Yang Pan proposes a lightweight peer to peer
architecture based on mobile agents which implement a
model of mobility called actual mobility, applied to

collaborative translation. In Human-agent interaction:
case studies in human supervised UAV, Henry Hexmoor
and Srinivas Battula offer case studies of empowering
agents with adjustment of cognitive notions of autonomy
and trust that enable them to have social abilities in
interacting with a human supervisor. Their application
domain is control of unmanned aerial vehicles. Paper by
Marcin Paprzycki, Austin Gilbert, Andy Nauli, Minor
Gordon, Steve Williams, and Jimmy Wright, entitled
Indexing agent for data gathering in an e-travel system,
discusses the problem of indexing information available
on the Internet with the ultimate goal of delivering
personalized content to users of an agent-based travel
support system. Finally, in Multi-agent system case
studies in command and control, information fusion and
data management, Frederick Sheldon, Thomas Potok and
Krishna Kavi discuss three different agent-based
development projects: (1) distributed command and
control (DCC) in fault-tolerant, safety-critical responsive
decision networks, (2) agents discovering knowledge in
an open and changing environment, and (3) lightweight
distributed data management (DM) for analyzing
massive scientific data sets. These case studies are used
to characterize the fundamental commonalities and
benefits of agent based systems in light of experiences
gathered during their deployment.

We would like to thank our referees: Dia Ali, Giacomo
Cabri, Maria Cobb, Sabin Corneliu Buraga, Stan
Franklin, Violetta Galant, Henry Hexmoor, Sofiane
Labidi, Vincenzo Loia, Armin R. Mikler, Fred Petry,
Tomas E. Potok, Stanisław Stanek, Ron Sun, and
Tatyana Yakhno for their diligent work. Without their
effort we would not be able to complete this special
issue.

Gabriel Ciobanu, Marcin Paprzycki and Shahram Rahimi

2 Informatica 28 (2004) 1 Introduction

 Informatica 28 (2004) 3–11 3

Representing Agents and their Systems: A Challenge for Current
Modeling Languages
Renato Levy
Intelligent Automation, Inc.
7519 Standish Place, Suite 200, Rockville, MD 20855 USA
rlevy@i-a-i.com

James Odell
James Odell Associates
3646 W. Huron River Drive
Ann Arbor, MI 48103 USA
email@jamesodell.com

Keywords: Systemic, Agents, Multi-agent systems, UML, AUML, model, modeling languages, modeling notation

Received: July 15, 2003

Leading-edge organizations are now developing systems that employ autonomous, interactive entities,
or agents. [1; 2] Compared to its predecessors, the agent-based approach is evolutionary. However, its
usages could be revolutionary. This paper begins by presenting some of the differences and similarities
between agents and previous approaches. We then discuss some of the challenges for using current
modeling approaches to represent agent-based systems. Our position is two folded: many of the
evolutionary aspects of agent modeling can accomplished by extending current modeling languages
such as UML 2.0; while the revolutionary aspects, however, will probably require new approaches.

1 Introduction
Advances on technology and on system’s theory
(non-linearity, complexity and chaos theory) has led
to engineers to challenge problems which had been
deemed intractable for a number of years. These
problems are usually NP-hard in high order, which
makes even the development of efficient heuristics a
very complex challenge. Observation of how nature
deals with problems of such complexity led to a
different approach to software development, known
as agent-based software, which has been successful in
developing solutions for such problems. The agent-
based software paradigm has established itself as viable
approach for developing software directed towards
control and simulation of complex systems.

Figure 1 illustrates one way of thinking about the
evolution of programming paradigms. Originally, the
basic unit of software was the complete program where
the programmer had full control. The program’s state
was the responsibility of the programmer and its
invocation determined by the system operator. The term
modular did not apply because the behavior could not be
invoked as a reusable unit in a variety of circumstances.

As programs became more complex and memory
space became larger, programmers needed to introduce
some degree of organization to their code. The modular
programming approach employed smaller units of code
that could be reused under a variety of situations. Here,
structured loops and subroutines were designed to have a
high degree of local integrity. While each subroutine’s
code was encapsulated, its state was determined by

externally supplied arguments and it gained control only
when invoked externally by a CALL statement. This
was the era of procedures as the primary unit of
decomposition.

In contrast, object orientation added to the modular
approach by maintaining its segments of code (or
methods) as well as by gaining local control over the
variables manipulated by its methods. However in
traditional OO, objects are considered passive because
their methods are invoked only when some external
entity sends them a message.

Software agents have their own logical thread of
control, localizing not only code and state but their
invocation as well. Such agents can also have individual
rules and goals, making them appear like “active objects

Figure 1: Evolution of programming approaches [3].

�����
������		
��

��
������
�����
������		
��

�������
������		
��

�����
��
�
������		
��

����������	������
��
�

�����
��

��
�
�����

��
�
�������
�� ������� ������

 !������
�	�������

 !������

 !������
 !������
�"�##���

 !������ ��������

������� �������

��������

��������

4 Informatica 28 (2004) 3–11 R. Levy et al.

with initiative.” In other words, when and how an agent
acts is determined by the agent.

At each evolutionary step, then, various modeling
languages were created to aid system developers. The
latest and most popular graphical language is the Unified
Modeling Language (UML) developed by the Object
Management Group (OMG). As agent based systems
starts their transition from university and research labs
into mainstream engineering, grows the necessity for
appropriate graphical languages and tools to support it.
Since agent technology can be viewed as an evolution on
previous technologies, it would be reasonable to believe
that agent-based languages can be based on previous
approaches — at least in part. However, the way in
which agents can be used for application systems is far
richer than earlier approaches. Here, we may also need
to develop new languages to accommodate the agent-
based approach, in addition to adopting and modifying
pre-agent languages.

The rest of this paper is organized as follows: In
section 2 we present the philosophical differences
between agent systems and their predecessor software
engineering paradigms. Section 3 demonstrates how
these philosophical differences impact our ability to
represent such systems in current modeling languages,
and specifically in UML. In section 4, we proposed a set
of alternative representations that are able to solve some
of the previous modeling limitations and in section 5 we
present a study case in which some of the challenges and
proposed solutions are debated. Section 6 concludes this
paper with an invitation for an open debate about the
issues raised.

2 Philosophical Differences
Agents are commonly regarded as autonomous entities,
because they can watch out for their own set of internal
responsibilities. Furthermore, agents are interactive
entities that are capable of using rich forms of messages.
These messages can support method invocation—as well
as informing the agents of particular events, asking
something of the agent, or receiving a response to an
earlier query. Lastly, because agents are autonomous
they can initiate interaction and respond to a message in
any way they choose. In other words, agents can be
thought of as objects that can say “No”—as well as
“Go.” Due to the interactive and autonomous nature of
agents, little or no iteration is required to physically
launch an application. Van Parunak summarizes it well:
“In the ultimate agent vision, the application developer
simply identifies the agents desired in the final
application, and the agents organize themselves to
perform the required functionality." [3] No centralized
thread or top-down organization is necessary since agent
systems can organize themselves.

However, several other key areas exist that
differentiate the agent-based approach from traditional
approaches such as OO. The list below describes some
underlying concepts that agent-based systems can
employ. None are universally used by agents: active
object systems may use them as well. Furthermore, no

agent system is required to use all of them. This list
merely provides a “menu” of features that agent systems
can —and often do — employ.

Decentralization: Objects can be thought of as
centrally organized, because an object's methods are
invoked under the control of other components in the
system. Yet, some situations require techniques that are
decentralized and self-organized. For example, classical
ballet requires a high degree of centralization called
choreography, while at the other extreme the processes of
nature involve a high degree of individual direction.
However, most businesses require a balance of
standardized procedures and individual initiative: one
extreme or the other would be detrimental to the
business.

Supply-chain systems can be planned and centrally
organized when the business is basically stable and
predictable. In unstable and unpredictable environments,
supply chains should be decentralized and self-organized
(an option not supported by commercial supply-chain
systems today). Agent-based environments can employ
both centralized and decentralized processing. While
agents can certainly support centralized systems, they
can also provide us with the ultimate in distributed
computing.

Multiple and dynamic classification: In OO
languages, objects are created by a class and, once
created, may never change their class or become
instances of multiple classes (except by inheritance).
Agents can provide a more flexible approach. For
example, a particular agent can be a person, employee,
spouse, landowner, customer, and seller all at the same
time or at different times. When the agent is an
employee, that agent has all the state and procedural
elements consistent with being an employee. If the agent
is terminated from his or her job, the employment-related
state and procedural elements are now longer available to
the agent. Whether employed or not, the agent is still the
same entity—it just has a different set of features. The
ability to express roles and role changes is not new to
OO. However, most OO languages do not directly
support this mechanism (even though UML does).

Furthermore, agents might play different roles in
different domains. When you go to work, you play the
employee role. When you return home, you change
roles—for example, playing the spouse role. OO
languages do not directly support such domain-
dependent mechanisms that are necessary for agent-
based environments. The single-class OO approach is
efficient and reliable; the multiple and dynamic approach
provides flexibility and more closely models our
perception of the world. Agents can use either approach;
the choice belongs to the system designer.

Instance-level features: The features possessed by
each object are defined by the object’s class—a benefit
enjoyed by agents as well. However, each agent may
also acquire or modify its own features, i.e., features that
are not defined at the class level, but at the individual
agent (or instance) level. In other words, if an individual
agent has the ability to learn, it can change its own
behavior— permitting it to act differently that any other

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 5

agent. If an agent can change itself, it can add (as well as
subtract) features dynamically. For example, with
genetic programming software, agents are created
genetically. Here, each parent contributes some portion
of an offspring agent's genetic string—much in the same
way that occurs in nature. This approach is particularly
popular in one area of agent-based systems known as
artificial life. (Artificial life is the study of man-made
systems that exhibit the behavioral characteristic of
natural living systems. It models life-as-we-know-it
within the larger picture of life-as-it-should-be.)

Emergence: The interaction of many individual
agents can give rise to secondary effects where groups of
agents behave as a single entity. For example, ant
colonies, flocks of birds, and stock markets have
emergent qualities. Each consists of individual agents
acting according to their own rules and even cooperating
to some extent. Yet, ants colonies thrive, birds flock, and
markets achieve global allocations of resources—all
without a central cause or an overall plan. Agents can
possess just a few very simple rules to produce
emergence. In fact, when constructing agent-based
systems, starting out with simple agents is important,
because emergence is then easier to understand and
harness. More complexity can be added over time to
avoid being overwhelmed.

Since traditional objects do not interact without a
higher level thread of control, emergence does not
usually occur. As more agents become decentralized,
their interaction is subject to emergence—either positive
or negative. This phenomenon is both the good news and
bad news for large multiagent systems.

Analogies from nature: The autonomous and
interactive character of agents more closely resembles
natural systems than do objects. Since nature has long
been very successful, identifying analogous situations to
use in agent-based systems is sensible. For example,
agents can die when they lack supportive resources. In
supply-chain manufacturing, when a manufacturing-cell
agent cannot operate profitably, it dies of "malnutrition."
Furthermore, another manufacturing cell could come by
and scavenge useful bits from the newly dead cell.

Agents can exhibit properties of parasitism,
symbiosis, and mimicry. They can participate in "arms
races" where agents can learn and outdo other agents.
Agents can participate in sexual (and asexual)
reproduction that can incorporate principles from
Darwinian and Lamarckian evolution. Agent societies
can exhibit political and organizational properties—
whether they are organized, anarchic, or democratic. In
short, nature can provide a rich trove of ideas for
multiagent system design.

3 Current Notation Challenges

Representing automated systems with currently available
notations is known to be problematic. The excessive need
for English notes in the modeling notation is one primary
indication of such inadequacies. Modeling languages that

communicate to a narrow set of system developers and
do not communicate to others is a problem for
communication among developers in general. These
limitations have already triggered a revision process in
UML (known as UML 2.0), which tries to remove some
of these current limitations. Furthermore, FIPA has
recently launched a Modeling Technical Committee
which will develop an agent-based notation called
AUML (Agent-based Unified Modeling Language).
With agent-based systems, modeling languages are even
more challenging because of the richness of representing
agents and their systems. In this section, we discuss
various aspects of agent-based systems and where
graphical modeling languages might be useful to
conceptualize and communicate about these systems.
First, we begin by examining various aspects of intra-
agent requirements. Second, we examine modeling
language opportunities that represent agents interacting
with other agents. Lastly, we consider the role of the
environment in agent-based systems and potential areas
for modeling languages.

3.1 Intra-Agent Modeling
Agents are autonomous entities and therefore must be
able to manage their own thread of control. This
management can consist of simple rules and procedures.
More elaborate agents, however, can include belief-
desire-intention (BDI) mechanisms and learning
capabilities. Expressing some of these features
graphically is already occurring.

Agent makeup: A common requirement for
developers of agent-based systems is to specify the way
in which an agent is composed. For instance, [4] suggest
extensions to UML that expresses features, such as state
attributes, actions, capabilities, perception, constraints,
and available services.

However, agent might consist of other kinds of
structures, such as classes, components, packages, as
well as other agents. Here, UML class, component, and
package diagrams can be employed to depict these
notions.

Agent activities and goals: A new aspect that agents
bring to modeling is that each agent can seek multiple
goals and perform multiple tasks. These goals and tasks
are pursued by the agent via the roles that the agent
assumes when interacting with other agents. At first, this
representation may look like no more than the equivalent
to an aggregation pattern in a class diagram, which can
be easily represented in UML. However, an agent’s
relationship with its goals and tasks is not as simple as an
object aggregation. The autonomicity of an agent
frequently promotes that such agents may not pursue a
given goal or task, even though it might be included in its
realm of specification.

Although one could extrapolate that it is easy enough
to include zero as a valid quantity for a given goal/task,
which would indicate that such goal/task might never be
pursued, the semantics of the notation would have been
changed from its original meaning.

6 Informatica 28 (2004) 3–11 R. Levy et al.

Several existing diagrams could model some of these
situations. For example, a UML activity and state
diagram could depict an agent’s activities flow of control
or state-based nature [5]. Goals, goal hierarchies, and
goal-task implications could be depicted using notations
defined in MESSAGE [6]. However, these goal-related
diagrams have not reached a great acceptance.

Dynamic adaptability: Different than objects,
agents can have the ability to modify their own behavior.
Goals and tasks can be added and removed, as new
features are acquired, learned, or considered obsolete for
the environment. Despite the actual methodology used to
implement the learning process, the needed
representation for this feature was not present on
standard object-oriented modeling. Dynamic adaptability
can also include when, and, where a role be
acquired/learned.

Using analogy: Analogies from nature, including
human social psychology can be useful to aid designing
MAS. For example, modeling techniques would be
useful for depicting notions such as single cell animal,
the shared environment of cell structures within cell, the
communication environment within a cell; a cell-to-
internal-structure relation. The forthcoming section on
Environmental Modeling will help with most of these
concerns.

3.2 Inter-Agent Modeling
In a MAS, agents interact with other agents.
Furthermore, to make multiagent systems scaleable,
some form of agent grouping must be provided.

Agent interaction: Social systems consist of sets of
interdependent role behaviors, providing a collective
pattern in which agents play their parts, or roles. The
limitations of the current notation become even more
visible, when the need to represent inter-task
relationships is present. To illustrate this argument, let’s
assume that an agent of type A can enroll as either,
buyer, broker or seller in a particular negotiation, but it
can only assume one of these tasks for a particular
negotiation.

To further complicate the modeling, several
negotiations may be active at any particular moment.
Since these multiple tasks may need to access common
information at the agent level, it is important to
determine how access to common values is controlled
and prioritized. Observe that in standard software
engineering the modeler hardly ever reaches this level of
detail, leaving to the implementer to guarantee
correctness. In this case, however, the correctness is not
at the implementer’s level, but rather is an aspect of the
system being modeled. UML sequence and activity
diagrams [7] are one mechanism for depicting
interactions using roles (See Fig. 2.). However, much
still remains to be done in this area. For example,
depicting role changes and role constraints still remains a
challenge.

seller-rfp

Buyer Seller

refuse-1

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline:�
8/8/99 at�

12:00 hours
x

x

xrefuse-2

Figure 2: Interaction protocol involving buyer and seller
agents.

Agent populations: Agent-based systems are no

longer contained within the boundaries of single, small-
agent groups. A group is a set of agents that are related
via their roles, where these relationships must form a
connected graph within the group. Groups can range
from small “work cells” to large organizations and
institutions. To meet the demands of large-scale system
implementations, groups of agent must interact with
other agent groups, as well as affect individual agents.

Representing groups, roles, and agent dependencies
would be useful in developing MAS. Castelfranchi [8]
has defined several forms of agent dependency that can
be expressed graphically using a UML-based
dependency diagram. Ferber [9] presents graphical
approach of his AALAADIN software to represent
groups, as well as their membership and interface points.
However, much still remains to be done in this area. For
example, a way of defining the mechanisms and
environment for a group is still not very well developed.
However, the forthcoming Environment Modeling
section might shed some light on this.

Other: The shared environment of agents with
groups, the communication environment between groups,
and group-to-agent relations, is also an area for
examination. It will be address in the next section on
Environmental Modeling.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 7

3.3 Environmental modeling
Another issue in which agent based systems differ from
traditional OO object is in the way the agents interact
with each other. Agents don’t have direct access to other
agents; instead they use the environment in which they
are immersed to transmit messages to other agents. As an
agent executes, it modifies its environment either directly
(sending messages that other agents can listen) or
indirectly (by altering some of the environment aspects
which other agents can sense).

In this fashion the environment plays the role of a
Petri dish, setting the rules with which those agents will
interact. Due to its vital role, it is important to describe
precisely such environment since a slight change could
impact the results of the agent system in unpredictable
ways. Currently there are no standardized ways to
describe this important feature, and to differentiate it
from the agent code itself.

Without an environment, an agent is effectively
useless. Cut off from the rest of its world, the agent can
neither sense nor act. An environment provides the
conditions under which an entity (agent or object) can
exist. It defines the properties of the world in which an
agent will function. Designing effective agents requires
careful consideration of both the physical and
communicational aspects of their environment.

Physical Environment: The particular kind of
environment that biological agents (animals and plants)
require for survival is referred to as their ecological
niche. While artificial agents can have different
requirements for survival, they still require an ecological
niche, or physical environment, to support them. The
physical environment provides those principles and
processes that govern and support a population of
entities.

Principles: For agents, principles of the physical
environment can be thought of as laws, rules, constraints,
and policies that govern and support the physical
existence of agents and objects. However, currently
there are no modeling languages that can express the
basic characteristics for an agent environment [10; 11]:
accessibility, determinism, diversity, controllability,
volatility, temporality, locality, and medium. Perhaps,
no graphical techniques can adequately express any of
these characteristics. However, some thought should go
into whether or not modeling languages might be useful
to the MAS developer.

Processes: In an agent environment, a primary
purpose of processes is to implement the environmental
principle. For example, the gravitational field is a
principle that can be implemented with a process that
attracts entities in a prescribed manner. In other words,
the falling of an apple to earth can be regarded as the
process of gravity in action. Different physical
environments will be required for different kinds of
agents—and vice versa. With artificial agents, much
more than physics is happening because much of the
environment is information intensive. In many defense-
related agent systems, the information-intense
environment includes satellite telemetry, body- and

vehicle-based communications technology, and
geographic positioning grids. In agent-based supply
chains, information about orders and resources is a major
component of the system.

To support the varied information requirements of
such agent-based systems, a common processing
platform would be useful and would consist of:
application support, communication and transportation,
physical linkage, agent management system, agent
platform security manager, agent platform
communication channel. Indeed several agent platforms
have been develop to support the implementation of such
agent systems (OpenCybele, JADE, Zeus, Voyager,
aglets just to name a few) each with its own strengths and
weaknesses.

In order to detail which features are more relevant
for the MAS under development and assist implementers
in selecting the correct tools, it is fundamental for the
developer to be able to express the relationship of the
agents with their environment as well as the structure of
each agent. Again, few graphical techniques can
adequately express many of these requirements. Yet,
some thought should go into whether or not modeling
languages might be useful to express these requirements
to a MAS developer. For example, the UML
deployment, component, and class diagrams might be
useful here.

Communication Environment: While an agent can
operate by alone, the increasing interconnections and
networking require a different kind of agent—one that
can communicate effectively with other agents. A
communication environment provides two things. First,
it provides the principles and processes that govern and
support the exchange of ideas, knowledge, information,
and data. Second, it provides those functions and
structures that are commonly employed to enhance
communication, such as roles, groups, and the interaction
protocols between roles and groups. In short: The
communication environment provides those principles,
processes, and structures that enable an infrastructure for
agents to convey information.

In rich multiagent societies (MAS), several
principles are required to facilitate the communication
environment. These would include: communication
language, interaction protocols, coordination strategies,
social policies, and culture.

An agent’s communication environment provides
processes that enable agents to interact productively. In
particular, it must provide: interaction management,
language processing and policing, coordination strategy
services, Directory service, mediation services, policy
enforcement service, social differentiation, and social
order1.

Providing techniques for modeling both
communication principles and processes are highly
important to the functioning success of any large-scale
MAS. As mentioned earlier, UML sequence and activity

1 The agent communication channels are defined as part
of the physical environment. The communication
environment uses those channels to convey information.

8 Informatica 28 (2004) 3–11 R. Levy et al.

diagrams are two mechanisms for depicting interactions
using roles.

4 Notation Proposition

4.1 Intra-agent modeling
In this paper, we propose the modeling of agents as
classes, with a new set of associations towards their
roles, which in turn can be defined as classes or
components. Figure 3 shows a possible diagram to
represent the relationship between an agent and its roles.
In this diagram, the agent uses the UML implements
association on a different manner then the original way
intended by OO. Our proposed agent-modeling notion of
classes has no parallel with actual implementation but
rather the concept of independent structure. Hence the
notion of an implementation association is somewhat
different in which it qualifies the agent as capable of
assuming the target role.

The diagram below has other notation propositions,
which can be observed as the relationships between the
roles themselves. One may observe two proposed
standard associations between roles. The «prevents»
association means that while an agent is performing a
given role, within a context (i.e., a specific interaction
between agents), it becomes illegal for such an agent to
perform the other role in the same context. These
associations are unilateral, which forces us to indicate
twice when the association is mutual exclusive.

Figure 3: Proposed Class Diagram for Agents

The diagram above also demonstrates two new

concepts that are important for multi-agent descriptions.
The first concept is the presence of a variable. This
variable does not represent a real variable in the
implementation sense but rather an agent feature that is
observable by its roles. The second concept is a concept
of condition. A condition is a clause that holds
relationships between an agent and one of its possible
roles. In the example above the condition will hold true,
when the agent’s notary feature is false. The consequence
of the condition becoming true is the associations with
the roles, which in the case shown forbids the agent to
assume the broker role.

There is a slight but significant difference between
the «prevents» and the «forbids» association. The
«forbids» association impedes the execution of a role in
any context, which has a much broader effect then the
former one. The dual for the «prevents» and «forbids»
associations would be the «permits» and «allows»
associations respectively. One can certainly anticipate the
needs of other standard associations such as: obtain,
reset, removes, and others, which are yet to be explored.

Figure 4: Class Diagram with Environment description

4.2 Environment Modeling
Our proposal for environment modeling is also based on
the UML class diagram. Once more the modeling makes
no inference on the implementation implication of
classes but rather the encapsulation concept that they
assume. In our proposed modeling the global
environment is represented as wrapper around local
environments. Figure 4 demonstrates a simplistic
environment to simulate bacteria growth. In this
environment, two sugary solutions are placed in vials that
share an osmotic membrane. The relationship that
describes the osmosis process between the two sub-
environments is clearly defined as dependant on the
mechanics of the osmosis class. Each sub-environment
has its own grid that controls the amount of sugar
available in a certain coordinate.

 The model environment indicates that an agent has
to perform a “sense sugar” role in order to receive
information about the current concentration of sugar in
its location. In contrast any agent in this environment
immediately knows the concentration of O2 without the
need to an interaction. From the aggregate symbol in the
diagram above one can conclude that the grid is actually
a part of the vial sub-environment, but it has
encapsulated some unique behavior, as it is in this case
the way the sugar diffuses in the syrup.

5 Example
The purpose of this chapter is to demonstrate how even a
simple example real example can become a challenge for
notion languages when the richness of the system is to be
fully described such as needed when describing agent
systems.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 9

5.1 Case Study Description
The case study demonstrated is based in the United
Nations Security Council resolution process and was
used as a debate example in the FIPA Modeling
Technical Committee.

Description: The UN Security Council (UN-SC)
consists of 15 members, where 5 are permanent members
and the others are rotated from the members of the
United Nations according with the rules of the
organization. Members become the Chair of the Security
Council in turn monthly.

To pass a UN-SC resolution, the following procedure

would be followed:
(1) At least one member of UN-SC submits a

proposal to the current Chair;
(2) The Chair distributes the proposal to all

members of UN-SC and set a date for a vote on the
proposal.

(3) At a given date that the Chair set, a vote from
the members is made;

(4) Each member of the Security Council can vote
either FOR or AGAINST or ABSTAIN;

(5) The proposal becomes a UN-SC resolution, if at
least nine members voted FOR, and no permanent
member voted AGAINST (veto power).

(6) The members vote one at a time.
(7) The Chair calls the order to vote, and it is

always the last one to vote.
(8) The vote is open (in other words, when one

votes, all the other members know the vote)
(9) The proposing member(s) can withdraw the

proposal before the vote starts and in that case no vote on
the proposal will take place.

(10) All representatives vote on the same day, one
after another, so the chair cannot change within the vote
call; but it is possible for the chair to change between a
proposal is submitted until it goes into vote, in this case
the earlier chair has to forward the proposal to the new
one.

(11) A vote is always finished in one day and no
chair change happens on that day. The chair sets the date
of the vote.

(12) There is no change in the composition of the
Security Council during the entire voting process.
Proposals that cannot be voted in time are automatically
withdrawn and should be resubmitted (or not) when the
new composition of the Security Council is reestablished.

One must observe that the procedure above was

defined for a case study of agent-oriented modeling, and
it does NOT necessary represents the reality.

5.2 Notation Challenges
Even in this simple system, one can identify several
notions that can be problematic in modeling language
representations.

The first notation challenge is to clearly represent the
group organization within the Security Council amongst

the several agents, (i.e., permanent/temporary members,
chair) and how agents (members) join or leave their
groups.

The second problem is how to demonstrate the
cyclical nature of the voting process without creating a
lifeline for each member and even more how to describe
the temporary attributions of a member while it is
occupying the “chair” role.

Other notation challenges are due to the possible
combinations of allowed/disallowed membership/chair
change during different moments in the process. The
multitude of combinations forces us to create a modeling
format that supports this flexibility and yet clearly
defines which paths of execution are possible.

5.3 Proposed Diagrams
The diagrams presented in this section were our proposed
solution to this study case as presented in the FIPA
modeling Technical Committee forum.

Our solution for the case study presented was
composed of four diagrams. The first diagram [Figure 5]
presents the Security Council (SC) environment with its
two groups and indicates each member by name
(members were current when the solution was crafted).

Figure 5: UN-Security Council Environment

One of the drawbacks pointed out in our solution
was the lack of a process description by which temporary
members are rotated (or even that this rotation is a
necessary feature of the system). In order to introduce
this notion, the SC environment has to be defined as a
sub-environment of the whole United Nations
environment. Other solutions presented in the forum,
which have modeled the environment with a group
membership focus, were able to express this process in a
clearer fashion.

The intra-agent representation of our solution was

entirely based on the functional perspective of the
member agent. For a full description of the agent’s
internal structure other perspectives are necessary such as
goal orientation (how the agent would use the available
roles to pursue a given goal), social relationship (how the
instantiation of role varies the membership in the defined
groups of the system) and even in case of software
systems, the implementation perspective which describes
each of the classes used to implement the agent and the
relationship between these classes on a software
engineering view.

10 Informatica 28 (2004) 3–11 R. Levy et al.

Figure 6: Intra-Agent functional description

In object-oriented systems, typically only the
implementation perspective is used and notions of the
functional perspective are merged into the diagram. Due
to the complexity of agent systems (and its use to explain
and predict model behaviors in non-software oriented
domains) a clear separation and indication of the
perspective of the diagram becomes quintessential. To
our knowledge this kind of diagram (with small
nomenclature and notation changes) seems to be the most
homogenous between the ones used to describe agents
systems.

Figure 7: Chair rotation interaction diagram

Figure 7 and Figure 8 show the chair rotation
process and the proposal voting process in an interaction
diagram format (sequence diagram in UML). In our
proposal we have tried to keep the notation as close as
possible with the newer version of UML (2.0), altering
and extending only when necessary.

One of the extensions was the usage of parameters to
define a specific individual in a lifeline that represents a
group in which the individual is member. The usage of
agent conditions (current chair) or message-defined
values allows the representation of the group as a whole
in the lifeline, and at the same time isolates the addressed

individual in the group, promoting a temporary
bifurcation of the lifeline.

Figure 8: interaction diagram for proposal voting

The lifeline bifurcation (present in UML 2.0 without
parameters) has been criticized as being visually
cumbersome when several blocks (alt, loops, …) are
involved.

The second extension is expressed in Figure 7, to
indicate the change/add of role in which a SC-member
becomes the new chair of the Security Council.

The final extension is only to create the optional
block representation (marked by an opt label in the block
construction). This type of block, which does not exist in
UML 2.0, indicates that actions within the block may or
not happen (as a block). This simple extension allows the
consolidation of two very similar interaction paths and
hence the simplification of the overall interaction
diagram.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 11

Discussions with the FIPA modeling technical
committee have raised the concern that the relationships
between different interaction diagrams are not clear in
our solution. Other authors in the forum have presented
Workflow/Activity based diagrams that were developed
to present the overall scheme between these diagrams.

6 Conclusion
In this paper we have presented some of the challenges
of modeling and notation of agent based systems and
how they differ from standard object oriented systems.
We have also proposed a notation format for the
presented challenges that are compliant with an extended
view of UML.

This paper has no intention to try to determine the
best notation for agent systems. The intention is rather to
present the need and stir the debate on this issue that is
currently active in the Agentlink and FIPA forums.

Acknowledgement

We would like to acknowledge NASA for funding this
effort in standardization of AUML notation as part of the
project under contract NAS2-02003 and the collaboration
of NASA’s technical representative Ms. Michelle Eshow
in our efforts.

Our thanks to Radovan Cervenka, Hong Zhu and
Misty Nodine, for their collaboration in the definition
and discussion of the study case presented which was
extracted from the discussion in the FIPA Modeling TC
forum, where each researcher presented their own
solution.

References
[1] HPLabs, http://www.hpl.hp.com/agents/
[2] BritishTelecom-

http://more.btexact.com/projects/agents.htm
[3] Parunak, H. Van Dyke, "’Go to the Ant’:

Engineering Principles from Natural Agent
Systems," Annals of Operations Research, 75, 1997,
pp. 69-101.

[4] Huget, Marc-Philippe, “Agent UML Class Diagrams
Revisited,” proceedings of the AgeS 2002
Workshop, Bolognia, 2002.

[5] Odell, J., H.V.D. Parunak, and B. Bauer,
Representing Agent Interaction Protocols in UML,
in Agent-Oriented Software Engineering, P.
Ciancarini and M. Wooldridge, Editors. 2001,
Springer: Berlin. p. 121-140.

[6] Evans, R., et al., MESSAGE: Methodology for
Agent-Oriented Software Engineering. 2001,
EURESCOM Project P907, Deliverable 3.

[7] Odell, J., H.V.D. Paranak, and B. Bauer, “Extending
UML for Agents,” in Proc. of the Agent-Oriented
Information Systems Workshop at the 17th National
conference on Artificial Intelligence, G.W. Yves
Lesperance, and Eric Yu, Editor. 2000, workshop
proceedings: Austin, TX. p. 3-17.

[8] Castelfranchi, C., “Engineering Social Order,”
Nordic Journal of Philosophical Logic, 2002. (to
appear).

[9] Ferber, J. and O. Gutknecht, “A meta-model for the
analysis and design of organizations in multi-agent
systems,” in Third International Conference on
Multi-Agent Systems (ICMAS'98). 1998. Paris,
IEEE Computer Society.

[10] Weiss, G., ed. Multiagent Systems: A Modern
Approach to Distributed artificial Intelligence. 1999,
MIT Press: Cambridge, MA.

[11] Russell, S. and P. Norvig, Artificial Intelligence: A
Modern Approach. 1995, NJ: Prentice-Hall

12 Informatica 28 (2004) 3–11 R. Levy et al.

 Informatica 28 (2004) 13–22 13

An XML-based Serialization of Information Exchanged by Software
Agents
Sînică Alboaie
Institute of Theoretical Computer Science, Romanian Academy and Iaşi branch
abss@iit.iit.tuiasi.ro

Sabin Buraga and Lenuţa Alboaie
Faculty of Computer Science, “A.I.Cuza” University of Iaşi, Romania
{busaco,adria}@infoiasi.ro – http://www.infoiasi.ro/~busaco/

Keywords: Software Agent, Serialization, XML, Distributed Resources

Received: July 15, 2003

In this paper, we present an agent-based object-oriented solution to access the Web distributed
resources. We describe Omega – an agent framework viewed as a hierarchical space of a set of
distributed objects that models the Web resources. Also, we propose an XML-based model that can be
used as a universal manner for serialization of the objects processed by the (mobile) agents. The
serialization mechanism can use the Simple Object Access Protocol (SOAP) serialization facilities, also.

1 Introduction
The primary goal of Tim Berners-Lee's vision of the
Semantic Web [5, 12] is to develop different mechanisms
to automatically exchange, by the software entities,
knowledge on the Web instead of the conventional
manner used for accessing distributed resources.

 To do this, computer scientists need to achieve
the following:

 To understand the semantic mechanism of all
kinds of queries, and what kind of components
the process of questioning the Web formally
consists of;

 To rigorously capture, represent or symbolize
the knowledge contained on the Web.

To accomplish this goal, we are designing and

implementing a framework – Omega [2, 3] – for agent
software development viewed as a tree-like space of a set
of distributed objects that models the Web resources by
using XML (Extensible Markup Language) [7, 9]
constructs. The Omega system offers a flexible
framework for building agent-oriented distributed
applications on the Web (see details in section 2 of this
paper).

To assure the Web scalability, independently
designed programs (especially Web agents) must be able
to exchange and to process the meaning of data and
metadata in an independent manner. Semantic
interoperability can be completed only if different users
(agents, tools, other Web clients, etc.) interpret XML –
the actual lingua franca of the World-Wide Web
computing entities – documents in the same way.

The Omega framework offers an addressing
space for the Web objects and a mechanism for remotely
accessing the Web distributed resources (objects). In
section 2.2 of the paper we’ll present the internal
architecture of the Omega system, its functionality and
base classes. A script-like language is provided, in order
to implement an active (execution) part of the system and
to integrate the Omega object space with notions such as
execution thread, function, instruction, data types (see
details in section 2.3).

To enable the flexible querying and accessing
mechanisms about the distributed Web resources, we
must offer a facility for serialization – in an independent
way – of the data and metadata (objects) processed by
the Omega agent system. In section 3, we investigate
different possibilities of serialization given by the XML
family of mark-up languages [9, 24]. Some of the
drawbacks due of the lack of a description language
regarding the objects’ properties can be elegantly
resolved by XML. Also, a SOAP-based serialization
mechanism is presented and some advantages of the
SOAP protocol are discussed (see section 3.2).

Even our approach can be used in the context of
Web services discovery and description infrastructures,
the paper does not intend to discuss these issues.

From the authors’ point of view, the
serialization of the Web objects can be considered as a
flexible way to exchange information between software
agents. Related multi-agent environments are presented
in section 4 and some possible further development
directions are exposed in the last section of the paper.

14 Informatica 28 (2004) 13–22 S. Alboaie et al.

2 Omega Agent Framework

2.1 Motivation
We can consider as the fundamental resources

that computers expose to the software components (i.e.
operating system, applications) or users the following
items: computing capabilities, (volatile or non-volatile)
memory, local and remote data (documents), metadata
(different descriptions about several properties of the
resources: content, structure, layout/interface, dynamics,
security issues, etc.).

Of course, there are other modalities to describe

these properties without using XML-based assertions, but
with the penalty of the platform and software
independence. Obviously, these documents (including
XML resources) are made to be read and processed in a
distributed system (the Web itself). To easily access and
obtain the knowledge contained by a specific document,
a universal mechanism/model – based on the XML
family – must exist to accomplish that. This is the
seminal idea of the Semantic Web [5, 12].

WWW Space as a Distributed Hypermedia System
Also, the World-Wide Web space can be viewed as a
distributed hypermedia system that uses Internet
technologies (i.e. TCP/IP protocol family) – a global
system of heterogeneous networked computers.
Advances in networking and Internet/Web technologies
are leading to a network-centric computing model, and
the Web and Internet itself, of course, are evolving into
the infrastructure for global network computing. By
populating this infrastructure with object-based
components and combining them in various ways, we
can enable the development and deployment of
interoperable distributed object systems on the Web.

The object model provides the ability to mimic
real world processes in a fluid, dynamic and natural
manner. The Web space allows for objects to be
distributed to servers thereby centralizing access,
processing, and maintenance, provides a multiplexing
interface to distributed objects, and allows thin-clients
(e.g., mobile phones or handheld devices). We can safely
now state that Web + Object integration is a viable
reality [24]. This is emphasized by different software
organizations and companies – especially in the e-
business domain – that are using Web-enabled
distributed object technology, in the form of intranets and
extranets, to solve their computing problems, and the
emergence of an industry that provides Web and object
interfaces to distributed object tools [4].

From the CGI Approach
to a Distributed Object Infrastructure
But the Web didn't start out this way. Network-centric
object computing is the result of a logical technological
evolution. As originally conceived, it was driven by
hypertext documents called Web pages or HTML

documents [5, 9]. Initially, Web pages had static content
(rich text and graphics at first, complex multimedia
information later), and were interlinked. Browser
applications running on user PCs or workstations were
used to retrieve documents stored on Web servers.
Helper applications supplemented the browser, handling
other document types such as Word, PostScript, PDF
(Portable Document Format) or different graphics, video,
and audio formats. Web pages soon begun to include
dynamic content as helper applications, called plug-ins,
were integrated into the browser and CGI (Common
Gateway Interface) scripts enabled users to input data to
a Web server and access Internet services (i.e. data
queries). Finally, programmatic content was added, on
the client side, via Java applets, VBScript and JavaScript
programs, to provide further interactive functionality and
modify content in-place. These languages and techniques
enable richer documents (e.g., animation and Web forms
generated on-the-fly). Note that programmatic content
can also include server-side execution of code such as
accessing a remote database service (i.e. SQL queries)
via specific Web application platforms (from CGI
programs to PHP, ASP.NET or ColdFusion applications).

Prior to the addition of programmatic content,
the Web was based on a client/server computing model
which lacked scalability, common services, security, and
a development environment needed to develop and
deploy large-scale distributed applications. CGI scripts
are not scalable because each requires a separate server-
side process to handle each client request, services are
limited to accessing database servers via CGI scripts,
transaction information (such as credit card information)
is not encrypted, and the programming model offered by
HTML/HTTP using CGI and a three-tiered system is
limiting.

With the advent of Java, and the distributed
object infrastructures CORBA/IIOP and OLE/DCOM,
the stage was set to evolve the Web from a document
management system to a platform for distributed object
computing and electronic commerce.

Bringing distributed objects to the Web offers
the following advantages (to name only few of them):

 extensibility (e.g., for applications, services, and
APIs built from objects, objects can easily be
replaced or added);

 cross-platform interoperability;
 independent software development;
 reusable software components;
 componentware;
 network services;
 better utilization of system resources.

Existing legacy applications can even co-exist

with distributed objects through the use of object
wrappers. The interface could either be the client browser
or browser-like with super-positioned distributed object
infrastructures.

Mobile Agents
An important step towards Internet/Web Computing is
represented by the mobile computations. A mobile

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 15

object, usually called an agent when operating on behalf
of a user, is a downloadable, executable object that can
independently move (code and state) at its will – the
mobile agent is not bound to the system in which it began
the code execution and can travel from one node (host)
on a network to another. Agent technology can be
considered as a natural extension of object technology;
conceptually, agents support a much richer and complex
range of capability than objects, such as adaptability,
cooperation, autonomy, negotiation and delegation [6,
17]. These capabilities give the possibility to build a
sophisticated, expandable, maintainable, and distributed
computing environment.
 Mobile agents present the following main
attributes [6, 15]:

 reactivity – the ability to respond to changes
within agent environment;

 autonomy – the mobile agent is able to exercise
control over its own actions (decisions);

 goal-oriented – the agents have a planned
itinerary, they do not simply act in response to
the environment;

 communicative – the ability to communicate
with other agents, by exchanging information
(knowledge); in this sense, agents present a
collaborative behavior is order to achieve a
common goal with other agents of the
environment;

 temporal continuity – persistence of identity and
state over long periods of time;

 adaptability – being able to learn and improve
with experience;

 mobility – the mobile agents can transport
themselves from one machine to another, in a
self-directed manner.

Mobile agents provide a way to think about

solving software problems in a networked environment
that fits more naturally with the real world. Mobile
agents can be used to access and manage information that
is distributed over large areas [6].

The main benefit is that the software
components can be integrated into a coherent and
consistent software system – e.g. a multi-agent system –
in which they work together to better meet the needs of
the entire application (utilizing autonomy,
responsiveness, pro-activeness and social ability).

The mobile agent architecture provides the
“framework within which mobile agents can move across
distributed environments, integrate with local resources
and other mobile agents, and communicate the results of
their activities back to the user. This framework can then
be used to build mobile agents that perform user-driven
tasks to fulfill distributed information management
goals.” [6]

Taking this notion further, the mobile agents
could be used to monitor the network activities and
provide input to QoS (Quality of Service) and global
optimization mechanisms. They could be used during
negotiation (with representative agents) to solve different
constraint optimization problems.

One key research area is to provide security
against malicious agents (who intend to access local
resources or can carry a virus) and malicious hosts (who
can alter the agent code/state or read private
information).

Current mobile agent systems [17] – available
as commercial or open-source applications – are
implemented in different programming languages, such
as C++, Java, Tcl, Scheme or Python.

2.2 Internal Architecture of the Omega
System

Overview
Omega is an agent-based system that offers a tree-like
addressing space for the Web objects and different
techniques to remotely access the Web distributed
resources (viewed as objects) [2, 3]. Each object
processed by Omega can be viewed as a collection of
objects included in that one. The links (edges) between
the vertices of the tree are given by the aggregation
relationship exposed by the object-oriented
methodologies.

To emphasize the aggregation relationship, we
attach to each object a name or an index, and in this way
we can uniquely refer each object of the tree by its
name/index (viewed as an identifier). Each object will
have a unique list of the identifiers that represent its
“address” in the addressing space used by the Omega
agents. An identifier can be considered as an IName
object (at the implementation level, an IName object can
be viewed as an object-tree path or a list of object
identifiers). By using a tree of objects, we can structure
more easily the distributed resources for a given local
web (such as a cluster or an intranet).

Functionality
We choose to use an interpreted environment for our
multi-agent model and distributed object structure. Using
such an environment, it was easier to consider
serialization and various execution control
mechanisms [11] which are contributed to the
implementation of the Omega distributed object system.

Omega offers a distributed object structure, and
its initial goal was to determine some good
representations of data, types, instructions, functions and
objects of an object-oriented language that can be used as
a programming language for mobile agents. The result of
this effort is a system written in C++ that is able to unify
the notions behind the object-actor duality, namely the
duality between passive and active objects [1]. From this
point of view, Omega offers an infrastructure able to
support Web-based distributed applications [18] (e.g.,
software agents used in clusters or Grid).

 As an example, let us consider the problem of a
system in which someone from a location A wish to
obtain in real time data from another location B. There is
more than one solution, and we present here just two
possibilities [2]:

16 Informatica 28 (2004) 13–22 S. Alboaie et al.

 Using the multi-agent paradigm, we create two
agents in A: an agent for the information point,
and an agent to be sent at the location B in order
to obtain the information needed to be
communicated to the location A. This approach
is used in the design of Omega [3].

 Another way of solving this problem is to create
a Web site at B (providing different server-side
solutions [9] – i.e. CGI scripts or Java servlets)
or a client/server application using a proprietary
(TCP/IP-based) protocol [10].

We can observe that the first solution (the multi-

agent approach) is more scalable and closer to follow
certain good rules for programming design.

By using the multi-agent paradigm, a system
can be easily divided into small entities with control over
their interactions. Moreover, we can get a more flexible
and adaptable approach (in our example, we can have a
more adaptable way of presenting the information at the
location A). This flexibility is a part of the client task, as
opposed to the Web approach where we require more
tasks for the server. In the case of using a client/server
solution (with a proprietary communication protocol),
some problems come from the high cost of the system
design and maintenance.

The solutions that use C++ (networking,
DCOM, CORBA) or even Java/C# are quite complicated
and they are, in many cases, inappropriate for an open
system, as the Internet – and Web, also – is. At the
moment, for the generic problem of our example, a
client/server solution is more popular in industry (in
many cases based on HTML or XML). The later
approach is adopted by Web services [18, 25] scenarios,
also.

From the object-oriented paradigm's
perspective, Omega can be seen as an object hierarchy
that ensures a unitary way of programming, with an
implementation of a name-service (presented in [2]) that
is consistent for the resources (objects) that it makes
available. The Omega system offers serialization
mechanisms and garbage collection, also.

Omega Classes
The IObject class is the base-class for every other
class that has memory regions stored within a local
system. Every object and function that needs a store
space in Omega will use IObject. In this way, Omega
assures a space model provided by a common distributed
memory. This model is based on the existence of a given
node of an IObject’s tree, which is easily addressable
from the network.

Omega system offers a number of object types
which provide functionality to the following classes:

 String class,
 Number class,
 List class,
 Control agent-execution class (i.e. support for

virtual threads, scripting languages etc.).

Figure 1: Omega objects

Within the Omega framework, data types are

represented by different classes such as IString,
INumber, IOmegaStack, IOmegaList,
IOmegaQueue that are derived from the IObject
generic class (see also Figure 1).

Omega offers two categories of data types [3]:

 Simple data types – have no components (i.e.
INumber, IString, etc.)

 Compound data types – represent a mix-up of

two or more simple types (e.g., IName,
IOmegaList, IAThread).

A compound data type can be considered as an

“array” or a “struct” (very similar with the struct used
in the standard C language).

In our approach, the string data type
(IString) is not similar to the common concept of the
“string'” type (present in all modern programming
languages). At the implementation level, Omega system
will use for IString another manner to store the
content of a string (we do not use XML Schema's
xsd:string – see details in [13]).

2.3 Omega Language

For the object system presented above, we provide an
active (execution) part, which is the implementation of a
scripting language that is using Omega objects. We can
integrate the object space with notions such as execution
thread, function, instruction, data types to be modeled
with the help of IObject abstraction. The execution
threads represented by an IAThread object (actor
thread) will have a current execution context in which it
can keep the local names and a global name list of the
task (a task has more execution threads, some objects
have attached execution threads, and they have the same
name list from the task they belong to).

To simplify the development of a high-level
control language, we are started from a data-type model
that had IString, INumber, IThread, and
IObject as base types and various types derived from
IOmegaActor (this class is derived from IActor).
The system is able to initialize and execute
IOmegaActor objects.

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 17

Therefore the Omega object environment and
the OmegaKernel mini-interpreter provide [2]:

 A data model (base type-system, the

construction of new objects),
 An address space (every object has its own

address consistent at the Internet – by using the
TCP/IP stack – level),

 Techniques to implement the high-level
programming level statements (e.g., if,
while, or goto).

The Omega system is able to execute small

(“scripting”) programs. We present below such a
program called test program – new IObjects are
created. At runtime everything is reduced to a creation of
new IObjects in the distributed space of objects.

A simulation of while statement
OmegaTrace ("Test begin")
OmegaTrace could be used
for debugging purposes
BeginActor (SimulateDoWhile)
BeginActor initializes
an independent actor thread
NewINumber i 0
label begin
Inc i
OmegaTrace ("i++ in SimulateDoWhile")
LessThenGoTo i 2 begin
EndActor
SimulateDoWhile ()
OmegaTrace ("Test end")

The language provided by the Omega
framework is similar to an assembler language and may
be easily extended with other instructions. The main
syntactic construct is similar to a function (method) call.
An important step was to create a mechanism for
representing data structures, statements and objects under
the same abstraction (IObject) that is a network shared
entity.

3 Serialization Mechanism

All classes derived from IObject must implement the
serialization (marshalling) and deserialization
(unmarshalling) methods. The process of building of the
new data types is based on the fact that an IObject has
a member of the IOmegaList type. That member
contains associated links which are instances of the
derived classes. In this manner, the serialization of the
new types of objects can be automatically accomplished
by Omega via members' serialization and the call of the
overloaded own methods. Of course, for several types of
objects – e.g. IOmegaSocket used for usual BSD-like
socket operations [10], such as bind(), listen(),
accept() or connect() – the serialization and

deserialization activities can not be viewed as a proper
solution.

For each access to a sharable object, a proxy-
object is created, using the RPC (Remote Procedure Call)
mechanism [9]. This proxy-object is placed in the same
tree of the target object. In the tree of the accessed object,
a stub-object is created, too. The stub will contain meta-
descriptions about the sharable object and will be derived
from IObject. The stub-object will be a member of the
sharable object, to allow us to remotely access the stub.
In this way, the system will be able to keep updated
versions of the different object trees. To obtain the
serialized form of an object, the RPC-like mechanism is
able to transmit the URI (Uniform Resource
Identifier) [9, 25] of that object. As a response, the
system will get the serialized forms of the object and of
the proxy-object as well, if it is possible. The Omega
system is responsible to regularly update the proxy-
objects.

The object serialization does not imply the
serialization of the whole sub-tree that has as root the
object in cause. For an object, only the serialization of
the object itself and of the IName list of its children is
done.

3.1 XML-based Serialization

The process of the Omega’s object serialization uses
XML-based constructs. We use the XML namespaces
defined by the XML Schema specification (see [13]) to
retain the primary types of the data exchanged by agents
in the serialization and deserialization processes.

 An example is following (we are using an
IString object):

<?xml version="1.0"?>
<IString>
 <name xsi:type="xsd:string">
 Hello from Omega
 </name>
</IString>

The Omega encoding style is based on the usual

XML Schema's data types [13]. All data types used
within the Omega system of agents must either be taken
directly from the XML Schema or derived from Omega
data types (see section 2.2).

The XML Schema specification (see Datatypes
section from [13]) does not offer the possibility to
express data types as XML elements, but only as
attributes. To address this, the Omega framework
declares a schema, called OMEGA-ENC, used to define an
XML element for each data type (see the example
below).

<OMEGA-ENC:int id="int1">
 33
</OMEGA-ENC:int>

18 Informatica 28 (2004) 13–22 S. Alboaie et al.

Example
An example of Omega object serialization follows:

<element
 name="local_address_type"
 type="...">
 <simpleType
 name="local_address_type"
 base="xsd:string">
 <enumeration
 value="tree_id" />
 <enumeration
 value="unique_name" />
 </simpleType>
</element>
<element
 name="local_address"
 type="..." />
 <complexType
 name="local_address">
 <element
 name="la_type"
 type="local_address_type" />
 <element
 name="la_value"
 type="xsd:string" />
 </complexType>
</element>

<IName>
 <IOmegaDomain>
 ...
 </IOmegaDomain>
 <!-- info about local addr. -->
 <local_address>
 <la_type>
 tree_id
 </la_type>
 <la_value>
 1
 </la_value>
 </local_address>
 <local_address>
 <la_type>
 unique_name
 </la_type>
 <la_value>
 member_name
 </la_value>
 </local_address>
 <!-- other similar constructs... -->
</IName>

These XML elements could be used to extend the
functionality of the Omega system with new data types.

We can note the Omega system only proposes the

presented XML-based manner of object serialization, but
does not interdict other mechanisms – e.g. SOAP-based
serialization – to be adopted for data serialization.

3.2 SOAP-based Serialization

SOAP – or other protocols that use the RPC over XML
approach (e.g., XML-RPC) – will be used to transport
the serialized data. SOAP looks to be the right solution
because of the great support it gets from different
companies and organizations.

Short Description
SOAP (Simple Object Access Protocol) [14, 25] is a
simple lightweight protocol used for XML-based
structured and strong-type information exchange in a
decentralized, distributed environment. The protocol is
based on XML and consists of three parts:

 An envelope that describes the contents of the

message and how to use it;
 A set of rules for serializing data exchanged

between applications;
 A procedure to represent remote procedure

calls, that is the way in which queries and the
resulting responses to the procedure are
represented.

Similar to object distribution models (e.g., IIOP

and DCOM) [4], SOAP can invoke methods, services,
components, and objects on remote servers. However,
unlike these protocols, which use binary formats for the
calls, SOAP uses a text format (Unicode), with the help
of XML, to structure the nature of the exchanges.

SOAP can generally function with several
protocols, such as FTP (File Transfer Protocol) or SMTP
(Simple Mail Transfer Protocol), but it is particularly
well-suited for the HTTP (HyperText Transfer Protocol)
[9, 25]. It defines a reduced set of parameters that are
specified in the HTTP header, making it easier to pass
through proxies and firewalls. The use of SOAP over
HTTP also enables resources already present on the Web
to be unified by using the natural request/response model
of HTTP protocol. The only constraint is that a SOAP
message via HTTP must use the MIME (Multi-purpose
Internet Mail Extensions) [9, 25] type text/xml.

Also, SOAP protocol can help in activities of
message exchange and routing and agent communication
by integrating well-known actual standards (e.g., The
Foundation of Intelligent Physical Agents – FIPA agent
standard [23]).

The actual SOAP implementations are available
for a broad range of programming languages, such as
C++, C#, Java, Perl, PHP or Python.

SOAP vs. CORBA
Although SOAP was initially intended as a remote
method invocation protocol running over the Internet and
using XML messaging, the SOAP protocol is not just
another Common Object Request Broker Architecture
(CORBA) [4, 20].

SOAP presents the subsequent significant
improvements [14, 16]:

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 19

 Human readability – SOAP does not expose a
binary format like CORBA Internet Inter ORB
Protocol (IIOP); even if SOAP is mainly
projected to be read by machines and to give
support for Web services, human readability is
very useful for debugging purposes and rapid
and simple implementations;

 Simple installation – because SOAP is based on
HTTP and XML, the protocol can be
implemented with slight effort by using
existing processing libraries for XML and
HTTP; contrary, CORBA requires complex
software packages and does not provide a
commonly accepted bootstrapping mechanism.

The SOAP protocol has the potential to become

the connecting point between heterogeneous distributed
platforms and architectures, such as Sun ONE, Microsoft
.NET, Perl or PHP scripting applications.

SOAP Data Model
SOAP is based on a simple object-oriented data model.
The SOAP data model consists of structured objects
having certain properties and a type. The SOAP
specification allows, through a set of unambiguous rules,
alternative syntax forms for embedded and referenced
objects. Objects can be embedded if there exists only one
referenced to them; otherwise they are linked [14, 25].

SOAP does not provide its own schema
language. For this, the protocol uses XML Schema [13]
for validation of the syntactical correctness of SOAP
serialization model. Also, SOAP serialization fits fine
into Unified Modeling Language (UML) modeling [20].
Even if SOAP describes instance serialization only, the
UML meta-model can be utilized to serialize UML
models using SOAP serialization syntax [16]. This can
be a helpful feature in the activity of multi-agent system
design.

In [16], the SOAP-based serialization
mechanism is discussed in conjunction to Resource
Description Framework (RDF) and the related Semantic
Web activity. Also, RDF assertions can be used to store
certain metadata about existing objects [8].

Example
A short example is following, when a request to invoke a
remote method of an object is made and a response that
contains the result is returned. The invoked method
returns the services provided by a given node (agent) of
the system.

 The SOAP request can be (first five lines are
HTTP header fields followed by the SOAP envelope
marked-up in XML; the SOAPAction field specifies
the action to be executed on the remote site):

POST /omega/interface HTTP/1.1
Host: 193.231.30.197
Content-type: text/xml
Content-length: nnn
SOAPAction: urn:omega.ro:Omega:#getSrv
<SOAP-ENV:Envelope

 xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/
 soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/
 soap/encoding/">
 <SOAP-ENV:Body>
 <o:getSrv
 xmlns:o="urn:omega.ro:Omega">
 <node ip="193.231.30.225">
 thor.infoiasi.ro
 </node>
 </o:getSrv>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 A possible response (on success) can be the
following (first three lines denote the response given by
Web server, followed by SOAP data – in this case an
XML-based document that contains the list of the
existing agents and additional information about them):

200 OK
Content-type: text/xml
Content-length: mmm
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/
 soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/
 soap/encoding/">
 <SOAP-ENV:Body>
 <o:listSrv
 xmlns:o="urn:omega.ro:Omega">
 <service desc="...">
 <stateInformation>
 ...
 </stateInformation>
 <securityInformation>
 ...
 </securityInformation>
 <transportProfile>
 ...
 </transportProfile>
 </service>
 <service desc="...">
 <stateInformation>
 ...
 </stateInformation>
 <securityInformation>
 ...
 </securityInformation>
 <transportProfile>
 ...
 </transportProfile>
 </service>
 <!-- other information -->
 </o:listSrv>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

20 Informatica 28 (2004) 13–22 S. Alboaie et al.

Using gSOAP for Data Serialization
We are using an existing tool named gSOAP [21], which
is able to generate the code for serialization from a user-
defined specification.

Most toolkits for C++ Web services adopt a
SOAP-centric view and offer APIs for C++ that require
the use of class libraries for SOAP-specific data
structures. This often forces a user to adapt the
application logic to these libraries. In contrast, the
gSOAP compiler tools provide a unique SOAP/XML-to-
C/C++ language binding to ease the development of
SOAP/XML Web services and clients in C and/or C++
languages.

The compiler enables the integration of (legacy)
C/C++ programs, embedded systems, and real-time
software in SOAP applications that share computational
resources and information with other SOAP applications,
possibly across different platforms, language
environments, and disparate organizations located behind
firewalls.

4 Related Work

Although there is not a formal framework for multi-agent
systems development, due to dependence on application
domains, it has been that the construction of these
systems requires a different approach from that of
conventional software systems development.

We are aware of multiple platforms developed
both in academia and software industry companies [17].
This confirms that many computer scientists are
considering the agent-oriented software as a possible
paradigm, designed and implemented especially in very
dynamic environments (such as World-Wide Web
space). We can give different examples of frameworks
and tools used to develop multi-agent systems (for more
details, see [17]), some of them using the Internet open
standards:

 Tryllian's ADK (Agent Development Kit) – an

agent-based business integration platform,
designed and built in Java, XML and JXTA
with a modular architecture and a unique mobile
component approach;

 Toshiba's Bee-gent (Bonding and Encapsulation
Enhancement Agents) – a CORBA-based
communication framework intended to provide
co-operative processing in the advanced
network society;

 FIPA-OS – a Java component-based layered
toolkit enabling rapid development of FIPA
(Foundation for Intelligent Physical Agents)
compliant agents;

 Grasshoper – an open-source CORBA-based
platform that allows software agents to move
between different fixed and wireless computing
systems and to execute various tasks in the
process; this platform provides support for
MASIF (Mobile Agent System Interoperability

Facility) – a standard specification developed by
the Object Management Group (OMG) [20];

 JADE (Java Agent DEvelopment Framework) –
a widely used agent platform that can be
distributed across heterogeneous machines and
that can be configured via a remote GUI
(Graphical User Interface);

 Xraptor – a simulation environment for
continuous virtual multi-agent systems written
in C++ for UNIX platforms that allows studying
the behavior of agents in different 2- or 3-
dimensional worlds.

Another interesting approach is Agentcities – a

world wide initiative designed to help realize the
commercial and research potential of agent based
applications by constructing an open distributed network
of platforms hosting diverse agents and services [19].

However, the existing implementations have not
convinced the whole community or do not cover or
provide certain facilities desired by programmers or final
users. Some proprietary solutions, though well
developed, are not built as open systems and can not be
easily extended or modified. On the other hand, we were
not impressed by the available open-source platforms.
Therefore, from the authors' point of view, it was more
useful and interesting to design and implement new
systems, hoping that they will cover and combine better
features.
The existing multi-agent platforms use different
approaches for communication between agents, by using
low-level communication protocols (TCP/IP, SMTP and
HTTP) or standard high-level languages – such as
KQML (Knowledge Query Manipulation Language)
[6, 17]. One of the noticed difficulties is to design a
platform-independent inter-agent communication
language.

The Omega system presents an advantage, by
adopting an XML-based platform-independent approach
in serialization and exchanging information between
agents. The SOAP model is more flexible and easy to use
than CORBA or DCOM solutions. Some of the Omega's
facilities could be also integrated, for example, into the
MAIS (Mobile Agents Information System) – a platform
for creating dynamic clusters [15].

5 Conclusion

We have used the design principles of the distributed
systems to develop our own software platforms and ideas
related to the multi-agent paradigm and actor spaces (see
also [1, 11]). From this point of view, the Omega project
represents an infrastructure able to support the agent-
oriented programming and to assure an XML-based
flexible way for object serialization.

 The paper focused on different platform-
independent methods of exchanging information between
the entities of a multi-agent infrastructure – Omega –
presented in section 2.2. The Omega project can be
viewed as a platform for developing distributed object

AN XML-BASED SERIALIZATION OF... Informatica 28 (2004) 13–22 21

middleware components [4]. Omega proposes a
distributed object structure, and its initial goal was to
determine some good representations of data, types,
instructions, functions and objects of an object-oriented
language that can be used as a programming language for
mobile agents. The language provided by the Omega
environment is a simple scripting language described in
section 2.3.

To proper exchange information between the
entities of a multi-agent system, an XML-like messaging
solution is proposed. All classes within the Omega
system must implement certain serialization
(marshalling) and deserialization (unmarshalling)
methods. The process of the Omega’s object serialization
uses XML-based constructs and is detailed in section 3.1.
Another method for object serialization is the use of
SOAP-based serialization (see section 3.2).

Using these approaches, the Omega multi-agent
system could integrate different Web services or could be
integrated into complex distributed architectures such as
Grid [18].

As a further research work, the proposed model
for serialization will be used to exchange knowledge
(using RDF, DAML+OIL or OWL assertions, for
example) [8, 9, 12, 25] between intelligent Web agents.
This research direction can be viewed as an effort to give
support for Semantic Web projects [12, 21].

Also, we intend to experiment an XML-based
version of the Omega language to be used to exchange
mobile code of the software agents coded within the
Omega framework.

References

[1] G. Agha, C. Callsen (1993) Actor Spaces: An Open
Distributed Programming Paradigm, Proceedings of the
4th ACM Symposium on Principles and Practice of
Parallel Programming, ACM Press

[2] S. Alboaie, S. Buraga, L. Alboaie (2002) An
XML-based Object-Oriented Framework for Developing
Software Agents, Scientific Annals of the “A.I. Cuza”
University, Computer Science section, Tome XII, “A.I.
Cuza” University Press, Iaşi, Romania, pp.109--134

[3] S. Alboaie, G. Ciobanu (2002) Designing and
Developing Multi-Agent Systems, in International
Symposium on Parallel and Distributed Computing
(ISPDC) Proceedings, Scientific Annals of the “A.I.
Cuza” University, Computer Science section, Tome XI,
“A.I. Cuza” University Press, Iaşi, Romania, pp.142--153

[4] D. Bakken (2001) Middleware, in Encyclopedia of
Distributed Computing, Kluwer Academic Press

[5] T. Berners-Lee (1999) Weaving the Web, Orion
Business Books, London, UK

[6] J. Bradshow (1997) Software Agents, AAAI Press

[7] T. Bray et al. (eds.) (2000) Extensible Markup
Language (XML) 1.0 (Second Edition), World-Wide
Web Consortium’s Recommendation, Boston:
http://www.w3.org/TR/REC-xml

[8] S. Buraga, S. Alboaie, A. Alboaie (2003) An
XML/RDF-based Proposal to Exchange Information
within a Multi-Agent System, in D. Grigoraş et al. (eds.),
Proceedings of NATO Advanced Research Workshop on
Concurrent Information Processing and Computing,
IOS Press (to appear)

[9] S. Buraga (2001) Web Technologies (in Romanian),
Matrix Rom, Bucureşti, Romania

[10] S. Buraga, G. Ciobanu (2001) Programming
Workshop in Computer Networks (in Romanian),
Polirom, Iaşi, Romania

[11] C. Callsen (1997) Open Distributed Heterogeneous
Computing, PhD Thesis, University of Illinois at Urbana-
Champaign

[12] J. Davies, D. Fensel, F. van Harmelen (eds.) (2003)
Towards the Semantic Web, John Wiley & Sons

[13] D. Fallside (ed.) (2001) XML Schema, World-Wide
Web Consortium’s Recommendation, Boston:
http://www.w3.org/TR/xmlschema-0/

[14] C. Gorman (2001) Programming Web Services with
SOAP, O'Reilly and Associates

[15] D. Grigoraş et al. (2002) MAIS – The Mobile Agents
Information System Support for Creating Dynamic
Clusters, in Proceedings of ICA3PP, Beijing, China

[16] S. Haustein (2001) Semantic Web Languages: RDF
vs. SOAP Serialization, Proceedings of Semantic Web
Workshop, Hongkong, China

[17] E. Mangina (2003) Review of Software Products for
Multi-Agent Systems, AgentLink.org:
http://www.agentlink.org

[18] L. Moreau (2002) Agents for the Grid:
A Comparison with Web Services (Part I: the transport
layer), IEEE International Symposium on Cluster
Computing and the Grid Proceedings, IEEE Press

[19] * * *, Agentcitites Network:
http://www.agentcities.net/

[20] * * *, Object Management Group Activity:
http://www.omg.org/

[21] * * *, Semantic Web:
http://www.semanticweb.org/

[22] * * *, SOAP Software:
http://www.soapware.org/

22 Informatica 28 (2004) 13–22 S. Alboaie et al.

[23] * * *, The Foundation of Intelligent Physical Agents
(FIPA): http://www.fipa.org/

[24] * * *, Web Object Integration:
http://www.objs.com/survey/web-object-
integration.htm

[25] * * *, World Wide Consortium’s Technical Reports:
http://www.w3.org/TR/

 Informatica 28 (2004) 23–30 23

A Task-Oriented Compositional Mobile Agent Architecture for Knowledge
Exchanges Between Agencies and Agents

Hong Zhou, Yufang Wang, Dia Ali and Maria Cobb
Department of Computer Science and Statistics
University of Southern Mississippi
Hattiesburg, Mississippi, USA 39406-5601
hong.zhou@usm.edu

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Carbondale, Illinois, USA 62901
rahimi@cs.siu.edu

Keywords: Mobile Agent, Compositional, Task Oriented, Knowledge Exchange, AgentBee, Intelligence.

Received: August 7, 2003

This paper presents a task-oriented compositional mobile agent architecture named AgentBee. In this
architecture, the mobile agent is in fact a task component. Each task component is recursively formed from
sub-task components together with information defining the relationships among sub-task components and
supplementing data. At the lowest level of this composition there exist primitive task components which are
conceptually indivisible. Such a task-oriented compositional structure allows easy modifications of mobile
agents. Thus, not only can it facilitate knowledge exchange between mobile agents and agencies, but also
it can enhance the assembly of new mobile agents from existing components.

1 Introduction And Background

A mobile agent, because of its nature, has to deal
with heterogeneous environments in which
unexpected conditions may arise. This is the case for
our geospatial data conflation project. One goal of
our project aims at providing an automatic geospatial
data conflation system in which geospatial data is
stored in different databases at different locations and
maintained by different organizations. The
geospatial data exist in a variety of forms, such as
different image files, VPF dataset, GML files, Oracle
Spatial Information Management (SIM), etc. Mobile
agents play an important role in this project in that
they migrate among these databases searching for
data conflicts and performing data conflation upon
finding such conflicts. The challenge arises when the
mobile agents have to deal with all the different
geospatial data forms at different locations. Even
more challengingly, new data forms may be
introduced in at any times. One reasonable solution
is to arm the mobile agent with all knowledge to deal
with all possible conditions known so far. However,
the following possible cases motivate us to search for

another approach. First, one advantage of employing
mobile agents in this project is to save networking
bandwidth. Carrying all knowledge in a mobile agent
would reduce this advantage. Second, since the
databases are maintained by different organizations,
some organizations may introduce new data forms or
use new platforms that are unknown to the mobile
agent. Third, different organizations may provide
different computation libraries that only work well
locally. In this case, the mobile agent needs to know
how to use local facilities for better efficiency and
quality.

The above challenge is in fact concerned with how
the mobile agent accomplishes its tasks when
unexpected conditions arise. It is obvious that this
challenge could be answered if the mobile agent
could update it itself by obtaining new functions from
the agency for the unexpected conditions. For
example, suppose that the mobile agent has two
functions illustrated in Java as the following:

public void readImage(String fileName);
public void doConflation();

24 Informatica 28 (2004) 23–30 H. Zhou et al.

Suppose that the function readImage could only read
in tiff and other image formats other than jpeg. If at
one agency the given file is in jpeg format, then the
readImage function fails there. However, once the
mobile agent can obtain from the agency another
readImage function that can read in jpeg files to
replace/strengthen the existing readImage function,
the problem is solved easily. In a similar manner, if
the doConflation function of the mobile agent could
not generate satisfactory results due to the new image
content, the mobile agent could switch the
doConflation function to another one obtained from
the local agency if available.

It is noted that if the function readImage and
doConflation are represented as objects in the mobile
agent, they can be easily replaced with more
powerful ones. In fact, both readImage and
doConflation are two procedures that the mobile
agent needs to execute to accomplish its goal and can
be represented as two task components inside the
mobile agent. This concept leads to our task-oriented
compositional mobile agent architecture that is
featured with high structural and functional
flexibility, and adaptation.

Currently, most available mobile agent packages
emphasize mobility, security, communication, and
efficiency aspects of agents [11,12,13,14,15,16],
while the learning ability, which is the major factor
for flexibility and adaptation of the agents, is
neglected. Nevertheless, there are few agent
architectures in which the learning ability and
knowledge exchange have been addressed. The
compositional design strategy introduced by Brazier
is one of these architectures that seem promising in
enhancing knowledge exchange for multi-agent
systems [1,2,3,4]. For more about Brazier’s
compositional agent design strategy, please refer to
the references [1] and [2].

We employed Brazier’s compositional design
strategy to help analyze and construct our task-
oriented compositional mobile agent architecture.
Since the primary purpose of mobile agents is to
perform a sequence of tasks on behalf of a client, we
combine Brazier’s process composition and
knowledge composition to form a task composition
approach such that there is only one fundamental
component in our agent architecture: the task
component. We named this mobile agent
architecture AgentBee.

In AgentBee, each task component is recursively
formed from sub-task components, together with
information defining the relationships among them.

At the lowest level of this composition, there exist
primitive task components which are composed of
some basic functions. Because the exchanges of task
components can be achieved easily, such a task-
oriented compositional structure allows easy
modifications and adjustments for mobile agents,
hereby facilitating knowledge exchange between
agents and agencies.

The rest of the paper is organized as the following.
Section 2 formally defines the AgentBee architecture
and its primary components. Section 3 describes the
knowledge exchange processes between agencies and
agents. Section 4 illustrates how AgentBee can be
used in our project. In section 5 we discuss the
advantages and disadvantages of AgentBee. Finally,
in section 6 we draw a short conclusion on AgentBee.

2 AgentBee Architecture

Considering the fact that mobile agents have to
perform a set of tasks, AgentBee defines a mobile
agent to be a task component that is composed of a
group of sub-task components. Each task component,
other than primitive task components, is constructed
recursively from an assembly of sub-task components
together with information defining the relationships
among sub-task components and supplementary data.
Each task component is defined individually with its
own functionalities, inputs, outputs, and the
relationships among its sub-task components. A
primitive task component is not composed of any
other components, but is composed of some basic
information and functions.

In this section, we formally define task components,
mobile agents, and agency’s knowledge storage in
the AgentBee architecture.

2.1 Task Component
Task components are the fundamental components in
the proposed architecture. A specific task component
is defined to be an independent working unit that can
accomplish a specific function given its required
input is supplemented. A task component T is
composed of multiple sub-task components and can
be expressed as:

T = {<Ti>, <Ij>, C, D} | T0
T0 = {P, D}

• <Ti> represents a set of n sub-task components

inside the parent task component T, where n > 0,
and i = 1,2,…,n. Each Ti has a name that

A TASK-ORIENTED COMPOSITIONAL… Informatica 28 (2004) 23–30 25

uniquely identifies it inside T. <Ti> is the
function component of T.

• <Ij> represents a set of m Information Objects
which provide the sub-task components with
data to use and rules to obey. This set may or
may not be empty (m >= 0). There are two
major categories of Information Objects. One
category provides rules (Rule Information
Object), and the other provides supplemental
data (Data Information Object). <Ij> is the data
component of T.

• C represents the Control Object. C is the flow
control component in T. A control object can be
viewed as a table holding the following
information: 1) the executing order of the sub-
task components, 2) the number of times each
sub-task component should be executed at its
turn, and 3) the identity of the required
Information Object for each sub-task component.
When C does not specify the identities of the
Information Objects for a sub-task component Ti,
the Information Objects required by Ti become
the input requirements of T. The following
example table helps explain the structure of C.

Table 1. Sample structure of a Control Object

Ti

Execution
Times

Information
Objects

T1 1

I11 ,I12

T2

1

I21

T1

 1

I11 ,I12

T3 2

Table 1 gives an example of control object C. In
Table 1, task component T has three sub-task
components T1, T2, and T3. The execution order
of the sub-tasks is T1, T2, T1, T3 and they are
separately executed in that order 1, 1, 1, and 2
times. The required information Objects for T1
are I11 and I12, and for T2 is I21. C does not link
any Information Objects for T3. Suppose T3
does require an information Object such as I31
which does not exist in T, then I31 becomes the
input requirement of T, i.e. T requires an
Information Object as input to supply T3.

• D represents the domain component in T that at
least distinguishes the task component’s
functionality, required input (Information

Objects), and output. D is primarily composed
of Dp and Ds. Dp represents the primary domain
that defines the task component’s functionality,
required input, and output. Ds represents the
sub-domain that declares the implementation
level of this task component. Here,
“implementation level” is a user-defined
property that specifies the efficiency (and/or
quality) of the task component. Besides Dp and
Ds, D could contain other describing information
about the task component. For example, to
platform dependent task components, D can
contain information to specify on what platforms
this task component could generate quality
result. Dp is mandated to exist to define the
domain. Nevertheless, the existence of Ds is
optional but could greatly help in distinguishing
the task component. If two task components
have the same primary domain Dp but different
Ds, then the two task components must be able to
accomplish the same function with the same
input, but in different ways and probably with
different efficiencies and/or qualities. Therefore
Ds could be used to help pick the best candidate
from multiple task components all of which have
the same Dp. Since T’s functionality is defined
by <Ti> in order, one way to determine the
primary domain D of T is based on the primary
domains of sub-task components <Ti> that are
organized in a specific order. For example,
given the T and C in Table 1, suppose T1, T2, and
T3 have domain D1, D2, and D3. Then T’s
primary domain Dp is defined as D1pD2pD1pD3p

2,
where D3p

2 corresponds to the fact that T3 is
executed twice.

• The vertical bar | represents the disjunctive
relationship OR such that T may or may not be a
primitive task component.

• T0 represents a primitive task component. A
primitive task component is conceptually atomic,
i.e. indivisible. It is designed to achieve only
one simple function.

• P represents the specific function of the primitive
task. It is the function component in T0.

The above notation states that a task component
either is composed of a set of other task components,
information objects, and domain information, or is
just a primitive task component. It is important to
observe that the above definition is very basic. It
only depicts the foundation of AgentBee, but leaves
great space for further expansions. The following
expression further defines the relationship between
the sub-task components and the Information Objects
inside T.

26 Informatica 28 (2004) 23–30 H. Zhou et al.

S Ti + [Ij],

states that the execution of a sub-ask component Ti
with input [Ij] ([Ij] represents zero or more
Information Objects) generates result S. It is
important here to note that [Ij] may be from the
Information Object subset <Ij> that is in the same
task component T as Ti is, or it is dynamically
supplemented to Ti.

Inside the parent task component T, each of the sub-
task components can work independently from each
other by definition. However, without proper
organization, the final result of the parent task T is
unpredictable. Thus the control object C becomes
extremely important because it is C that organizes the
sub-task components in order to accomplish T’s
functionalities. The same set of sub-task components
can be organized in different ways to make T behave
totally different. Also, with different Information
Objects, the sub-task components can achieve
different results. Thus, <Ti>, <Ij>, and C all are
important for T to function properly.

2.2 Mobile Agents’ Structure
Mobile agent A, in this architecture, is treated as a
task component with an extra mobility sub-task
component in its sub-task set. This means that mobile
agent A includes a specific sub-task component
which is dedicated to the mobility of the agent:

 A = {<Ti>, <Ij>, C, D}.

Thus, a mobile agent is basically a task component
with the ability to migrate from one agency to
another. For the mobile agent to migrate to multiple
agencies, the sub-task component for mobility
appears multiple times in the Control Object and
each time with a different Information Object linked.

2.3 Agency’s Knowledge Storage
In AgentBee, each agency includes a knowledge
storage. In this paper, we only discuss the
architecture of the agency’s knowledge storage, and
skip its rest parts. The knowledge storage KB of an
agency is composed of two layers and can be
expressed as:

 KB = R({<T> m})

• {<T>m} represents the bottom layer that is

composed of a bank of task components. It
represents the knowledge contents of KB. The
size of the knowledge storage depends on the
size of the bank of task components. Since

agency does not move, the bank of task
components could be fairly large. Besides, there
must be some redundancy in {<T>m}. Here,
“redundancy” means that the same task
component appears as an independent
component in {<T>m} and at the same time
exists in another task component as a sub-task
component. For example, Ta exists as a sub-task
component of TA. Meanwhile, both Ta and TA co-
exist independently in {<T>m}.

• R represents the top reasoning and interface layer
that communicates with the mobile agents and is
powered with reasoning abilities to analyze and
process agent requests (AR). The agent request
(AR) is sent to R by the mobile agent and
contains information about mobile agent task
components and the reason for the request. R is
expressed as a function which uses the lower
layer of KB and AR to produce its response. The
response is generated in the form of knowledge
exchange. For example, suppose the AR
indicates that the request is to obtain a task
component able to read jpeg image files for
agent A, if the KB has such a task component,
then R produces the response that is providing
the task component to agent A. The complexity
of KB lies in R. R could be fairly complex to
include an expert system or could be fairly
simple to only provide task components in
response to the agent request.

3 Knowledge Exchange Scenarios

Since one major advantage of mobile agents is to
save networking bandwidth, the size of the
knowledge that a mobile agent carries should be
optimized. Hence in AgentBee, mobile agents only
carry small amounts of knowledge, while using
agencies’ knowledge facilities to perform intelligent
actions. They carry only the minimum required
knowledge as their local knowledge contents when
they first start. The agency knowledge storages are
the primary knowledge resources. Since mobile
agents work inside the agency environments, we
define that knowledge exchanges in AgentBee only
happen between the agency and the mobile agent.
There is no direct knowledge exchanges among
mobile agents. This definition may be too restrict
because direct agent-agent communications can
happen, however such a definition does help simplify
the construction of AgentBee at this time.

Structural flexibility leads to functional flexibility.
The compositional and task-oriented structure allows

A TASK-ORIENTED COMPOSITIONAL… Informatica 28 (2004) 23–30 27

the mobile agent’s contents to be modified easily. A
component in the mobile agent could be switched in
and out. This switch-in and switch-out process is in
fact a knowledge exchange process in AgentBee. In
AgentBee, two basic types of knowledge exchanges
are defined. They are information exchange and
function exchange.

3.1 Information Exchange
Ij in T can be modified to change the state of a task
component. This process is called information
exchange in AgentBee and can be expressed as:

 S’ Ti + [Ij’].

The above expression states after the modification on
Ij so that Ij becomes Ij’, the original result that Ti
achieves is changed (in some cases however, S’ = S,
i.e not changed). It is important to point out here that
the information exchange does not have any impact
on the domain value D of T.

3.2 Function Exchange
Changes to <Ti> alter the functional capability of T,
and can be expressed as:

 Tj

i E(Ti, Tj), when Dj = Di.
Ti(Tj) E’(Ti, Tj), when Dj = Di.

• Tj

i E(Ti, Tj) represents a task component
replacement process in which Ti is replaced with
Tj. Tj

i states that Tj replaces Ti to fulfill the same
task as Ti, but maybe in a different way.

• Ti(Tj) E’(Ti, Tj) represents a task component
supplementation process in which Tj is bounded
with Ti so that Ti now has the ability of Tj besides
its original ability.

• Dj = Di states the domain rule. Dj represents the
domain of Tj and Di represents the domain of Ti.
Domain rule requires that only when the primary
domain of Dj is the same as the primary domain
of Di, i.e. Tj can achieve what Ti can with the
same input but in a different way, E(Ti, Tj) and
E’(Ti, Tj) can happen. Domain rule guarantees
that after function exchange between Ti and Tj,
the original functional goal of Ti is not changed,
though how it is achieved may be different.

Since every component is composed of sub-
components, the function exchanges are actually
simple plug-in and/or plug-out procedures. A simple
similar view of this process is the part exchange of a
car. When the front tires of a car wear out, we
change the front tires with new tires. In a similar
way, when a sub-task component is incompetent, we

change this sub-task component. However, the
organization of the sub-task components is kept the
same. Because the higher level components are
usually much more complicated than the lower level
ones and therefore finding matched components in
high levels may be difficult, it is useful to keep the
function exchanges processed at as low a level as
possible. The component-based architecture ensures
that function exchanges between two task
components T1 and T2 can always be completed at a
lower level as long as the function exchanges on each
sub-task component of T1 and T2 can be performed.
Thus with proper design, all function exchanges can
be eventually processed at the level of primitive task
components. Also, the compositional structure allows
easy identification of the sub-task component(s) that
require exchanging, and this process can also be
traced to one or more primitive task components.

4 Project Case Study

In this section, we discuss how we can employ the
AgentBee architecture to solve some critical issues in
our data conflation project. As discussed in section
2, AgentBee structure is flexible for further
expansions. In the case of our project, we expand the
AgentBee structure to provide customized mobile
agent system. Also, only the function exchange is
discussed in the project case study.

4.1 Long-Term/Short-Term Knowledge
In its lifetime, the mobile agent continues to learn.
Some knowledge obtained may last for a long time or
even the lifetime of the mobile agent, while some
may be temporary. For example, some knowledge is
necessary only for working at a specific agency.
Thus, such knowledge should be temporary for the
mobile agent and may be discarded right before it
leaves this agency. Two types of knowledge based
on how long they last are introduced into AgentBee.
One type is long-term knowledge, and another is
short-term knowledge. Since knowledge is
interpreted in the form of task components, by simply
introducing Dt (stands for the type of the task
component T) in D, each task component is easily
marked as either long-term or short-term.

In our geospatial data conflation project, solving
system equation is a commonly used routine. When
the mobile agent finds any data conflicts, it performs
a set of processes including solving system equations
to solve the conflicts. The mobile agent has a built-in
task component (Ts) for solving system equation. Ts
is developed to work with different platforms and

28 Informatica 28 (2004) 23–30 H. Zhou et al.

therefore it can not achieve the highest efficiency at
all agencies. The databases are distributed at
different locations and on computers of different
platforms. On one Unix computer, the very efficient
library ATLAS [17] for solving system equation is
installed. Now an agency specific task component
Ts’ is developed on this agency using this efficient
library to solve system equations. Since Ts has great
impact on the conflation efficiency, this agency
demands that every mobile agent has to use the Ts’ to
solve system equations if the implementation level
(Ds) of the Ts of the mobile agent is lower than the
implementation level of Ts’. Thus, function
exchanges happen at this agency. Ts’ is short-term
knowledge because it only works on this specific
agency. Hereby, the mobile agent discards Ts’ before
it leaves this agency and continues to use its own Ts
at next agency.

4.2 New Data Forms
Mobile agents work in a distributed environment in
which each database and agency may be maintained
by different organizations. Each organization adds
new data, modifies existing data, and develops new
algorithms to improve the conflation performance
and quality. Currently, there are various ways to
store geospatial data, such as VPF, GML, Oracle
SIM, etc. It is possible that each agency stores data
in its own preferred way. Also, one type of data used
in our project is image. The images that are created
and/or collected by each agency may be in different
formats. Thus it becomes difficult for the mobile
agents to be aware of all the possible data types
beforehand. Therefore, each agency is responsible to
develop new conflation task components for the new
data type or forms it introduces in. Whenever a
mobile agent meets an unknown data type at an
agency, it demands the agency for a proper conflation
task component. Here again, function exchanges
happen. If the newly obtained task component is not
agency dependent, the mobile agent carries this task
component with it and updates each other agency
with this component. In this sense, the mobile agent
spreads out the new knowledge among agencies.

4.3 Automatic Agent Creation
In our project, mobile agents play the most critical
role. They travel among various agencies to update
the databases automatically. Frequently, mobile
agents for new tasks (hereby with new functions) are
required to be generated. Thus, an automatic agent
creation facility is a big plus to our project. The
compositional architecture enhances the automatic
creation of mobile agents. Once the user knows what
the mobile agent will do, the user can browse the list

of the task components of the agency and collect
some of them based on their specifications. This
collection is then organized hierarchically to
assemble the desired mobile agent. There are 3 basic
steps for automatic agent creation.
• Step 1 is to specify the tasks of the mobile agent.

This is a top-down task decomposition process.
In this process, each task of the mobile agent is
decomposed into a sequence of multiple sub-
tasks, and then each sub-task could be further
decomposed into a sequence of sub-sub-tasks.
This decomposition process continues until the
user decides that there is no need for further
decompositions. Thus, a hierarchy tree of task
specifications is built up and the root is the
mobile agent itself.

• Step 2 is to specify the required data and rules
for each task in the hierarchy tree.

• Step 3 is a down-top process. Starting from the
bottom of the hierarchy tree built in step 1, the
user finds a corresponding task component in the
agency for each leave of the tree. Also, based on
the date/rules specified in step 2 for each leave,
the user adjusts the existing Information Objects
in the task components or creates new ones for
them. These bottom level task components are
then organized to construct the one-level higher
task components of which Information Objects
are again adjusted or newly created.
Furthermore, these “one-level higher” task
components are organized to construct other task
components that are of even higher levels. Such
a construction process proceeds until the mobile
agent is constructed.

In fact, this mobile agent assembly process not only
helps the creation of new mobile agents, but also
helps secure the system. If users of different system
privileges could only browse specific groups of task
components in the agency to create mobile agents, a
user with limited privileges could only create mobile
agents of limited functions.

5 Discussion

While mobile agent technology is drawing more and
more attentions because of its great potentials in
various applications, the intelligence issue of mobile
agent technology begins to show its importance in the
success of this technology [5,6,7,8,9]. However, so
far the research works on the intelligence issue of
mobile agent technology is far away from enough to
properly show its importance. To our best
knowledge, there still exists no mobile agent design

A TASK-ORIENTED COMPOSITIONAL… Informatica 28 (2004) 23–30 29

that is specifically for the mobile agents to become
more intelligent. Meanwhile, our geospatial data
conflation project needs an intelligent mobile agent
system that could deal with unexpected conditions.
Thus, we propose the task-oriented compositional
mobile agent architecture AgentBee that can facilitate
knowledge exchanges between mobile agencies and
agents.

In AgentBee, a task component T (except T0) is
composed of four components: Control Object C,
Domain D, a set of Information Objects, and a set of
sub-task components. Each sub-task component can
fulfill a specific task, but they have to be organized in
order to accomplish the parent component’s task.
This organization is dependent on the Control Object
C. Thus, C is the central control of T. In the process
of knowledge exchange, since the identity of T must
not be changed, D is therefore unchangeable. In the
current AgentBee architecture, C is also not
changeable because changes to C may change what T
can achieve and therefore change D. Only the
Information Object set and the sub-task component
set of T can be modified or exchanged.

The task-oriented compositional structure allows the
function exchanges to be as simple as plug-in/plug-
out processes. This is the advantage of this
compositional mobile agent architecture. In the
information exchanges, the modification of any
Information Objects is a much more complicated
process. An Information Object (I) contains data or
rules. There exists uncertainty in what data/rule in I
should be modified and how to make the
modifications. To identify what data/rule in I should
be modified, the agent request AR has to be very
definite such that the reasoning layer R in the agency
knowledge storage can make the identification. How
to modify the Information Object is a decision of R.
Thus, there exists a great amount of reasoning
intelligence in R. Due to the space limitation, we do
not discuss R in detail in this paper. Nevertheless,
there exist restrictions for modifications of
Information Objects so that such modifications will
never change the domain of the task component.

We defined that function exchanges can happen only
when the domain rule is met, i.e. the two involved
task components have the same Dp value. However,
it is possible that the mobile agent ends up obtaining
an unwanted and inferior component by the function
exchange. Thus, it is important to differentiate task
components of the same Dp value if they have
different capabilities. For example, Dr can be added
into D to represent the RANK value of each task
component. Higher Dr stands for more advanced

capability. So, with the introduction of Dr, we could
extend domain rule such that not only must the two
involved task components have the same Dp value,
but also the task component from the agency should
have higher Dr value compared to the task component
from the mobile agent.

Knowledge sharing and exchanges among agents are
necessary for intelligent mobile agents. For
simplicity, knowledge exchanges are limited only
between agencies and agents in AgentBee. The
knowledge exchanges among agents can be realized
based on the same domain rule if the agents
themselves can have the intelligences to analyze the
agent requests. However, it is an overhead for
mobile agents to carry the intelligence for analyzing
agent requests.

Even though the compositional architecture of
AgentBee has various advantages, it does impose
some negative effects on the mobile agent system
design. As the mobile agent technology becomes
more and more popular, eventually there will be one
or more standards adopted for this technology.
Currently, two technology standards proposed for
mobile agents, MASIF and FIPA, are gradually
accepted [10,18,19]. However, none of the two
standards address the knowledge exchange issue.
Meanwhile, AgentBee is specifically designed for
structural flexibilities and knowledge exchanges, it
does not accommodate to either standard.

As the mobile agent obtains more and more
knowledge, its size becomes larger and larger. This
impacts the transportation efficiency of the mobile
agent. Some of the knowledge the mobile agent is
carrying becomes useless and should be discarded.
Also, when the mobile agent carries multiple task
components for the same functionality, it has to select
one from them to achieve this functionality at every
agency. This decision-making process could
degenerate the performance of the mobile agent.

6 Conclusion

Intelligence in mobile agents is a neglected but
important issue. Nevertheless, it is relatively difficult
to realize the intelligence in mobile agents. One
reason is that mobile agents are continuously
traveling in different environments; their structures
have to be flexible and subject to modifications for
knowledge acquisitions. AgentBee is compositional
in that its basic components are exchangeable, i.e.
subject to modifications. This greatly enhances the

30 Informatica 28 (2004) 23–30 H. Zhou et al.

knowledge exchanges between the agents and the
agency, especially and specifically the function
exchanges.

7 Acknowledgement

This work is partially supported by the project
“Intelligent Database Agents for Geospatial
Knowledge Integration and Management” which is
funded by the NIMA, University Research Initiative
Award # NMA201-00-1-2004.

8 References

[1] F.M.T.Brazier, C.M. Jonker, J. Treur, N.J.E.
Wijngaards, “Compositional Design of a Generic
Design Agent,” Design Studies Journal, 22:439-471,
2001.
[2] F.M.T.Brazier, C.M. Jonker, J. Treur, “Principles
of Compositional Multi-Agent System
Development,” Proceedings of the IFIP’98
Conference IT & KNOWS, 1998.
[3] F.M.T.Brazier, B.D. Keplicz, N.R. Jennings, J.
Treur, “Formal Specification of Multi-Agent
Systems: a Real-World Case,” Proceedings of the
First International Conference on Multi-Agent
Systems, ICMAS'95, MIT Press, pp 25-32, 1995.
[4] F.M.T.Brazier, N.J.E.Wijngaards, “Automated
(Re-)Design of Software Agents,” Proceedings of the
Artificial Intelligence in Design Conference 2002,
Kluwer Academic Publishers, pp 503-520, 2002.
[5] D. Kotz, R. S. Gray, “Mobile Agents and the
Future of the Internet,” ACM Operating Systems
Review, 33(3):7-13, August 1999.
[6] Danny B. Lange and Mitsuru Oshima, “Seven
Good Reasons For Mobile Agents,” Communications
of the ACM, 42(3):88-89, March 1999.
[7] T. Magedanz, K. Rothermel, S. Krause,
“Intelligent Agents: An Emerging Technology for
Next Generation Telecommunications?”
Proceedings of IEEE INFOCOM ´96, pp. 464-472,
San Francisco, USA, March 24-28, 1996
[8] T. Magedanz, R. Popescu-Zeletin, “Towards
Intelligence on Demand - On the Impacts of
Intelligent Agents on IN,” Proceedings of 4th
International Conference on Intelligent Networks
(ICIN), pp. 30-35, Bordeaux, France, December 2-5,
1996.
[9] M. Breugst, T. Magedanz: “Mobile Agents -
Enabling Technology for Active Intelligent Network
Implementation,” IEEE Network Magazine, 12(3):53-
60, Special Issue on Active and Programmable
Networks, August 1998.

[10] P.K.Menelaos, F.G.Chatzipapadopoulos, I.S.
Veieris, G. Marino, “Mobile Agent Standards and
Available Platforms,” Computer Networks, 31:1999-
2016, 1999.
[11] http://mole.informatik.uni-stuttgart.de/mal/pre-
view/preview.html.
[12] http://dsonline.computer.org/agents/agentspro-
jects.htm.
[13] http://www.ikv.de/products/grasshopper.
[14] http://www.trl.ibm.co.jp/aglets.
[15] http://www.objectspace.com/voyager.
[16] http://www.merl.com/projects/concordia.
[17] http://math-atlas.sourceforge.net/.
[18] http://www.fipa.org.
[19] ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf.

 Informatica 28 (2004) 31–40 31

Towards a Modelling Methodology for Fault-Tolerant Multi-Agent Systems

Sehl Mellouli, Bernard Moulin and Guy W. Mineau
Department of Computer Science and Software Engineering,
Laval University, Quebec, G1K 7P4 Canada
Email:{sehl.mellouli, bernard.moulin, guy.mineau}@ift.ulaval.ca

Keywords: methodology, multi-agent systems, design

Received date: August 18, 2003

Multi-Agent Systems (MAS) can be applied to a wide range of applications such as organizational,
Internet, adaptive, or FIPA compliant applications. Developing such systems requires agent software
engineering methodologies. To this end, many methodologies have been proposed such as Gaia (for
organizational or Internet applications), ADELF (for adaptive applications) or SABPO (for FIPA
compliant applications). However, no methodology has been proposed to deal with fault-tolerant MAS.
In fact, agents are prone to failures, and thus are MASs. So, the MAS may not reach its objectives in
case of agent failure. Hence, it is important to check a MAS design in order to prevent agent failures, so
that we reduce failure risk at run time. The aim of this paper is to present an overview of agent oriented
software engineering methodologies and to propose some guidelines towards a modelling methodology
for fault-tolerant MAS.

1 Introduction

Most Multi-Agent Systems (MASs) operate in an
environment in which many troublesome situations
might occur during execution. Some of these situations
could lead agents to fail. Meanwhile the MAS must
continue to operate despite this failure in order to
achieve its tasks. So, the MAS has to be tolerant to
agent failure, and thus must be fault tolerant. This is
what is called a Fault-tolerant Multi-Agent system.

Developing a MAS requires software engineering
methodologies. We can refer to object oriented
methodologies such as UML [20] or agent oriented
methodologies such as GAIA [22], ADELF [1] or
SABPO [4]. They propose, in general, common phases
that are analysis and design phase, and use common
concepts such as role, autonomy, and communication.
Since we aim at studying agent methodologies in order
to define a modeling methodology that wil be used to
build fault-tolerant MAS, we propose to study nine
methodologies and identify the modeling phases that
are relevant to our goal.

Knowing that four main sources of faults are identified
when developing a software system [10]:

• Inadequate software specification
• Software design error
• Processor failure
• Communication error

Our intended methodology deals with agents faults at
design level, so that the two first main sources of
faults are addressed as will be discussed in Section 3.

This paper is organized as follows. In section 2, we
present an overview of agent-oriented software
engineering methodologies. In section 3, we propose
guidelines towards a modelling methodology for faut-
tolerant multi-agent systems. Section 4 concludes.

2 Overview of agent-oriented

software engineering
methodologies

Multi-agent systems can be applied to solve problems
in various domains such as organizational [22], FIPA
complianr applications [4], and Internet related
domains [24]. To this end, several methodologies have
been defined to develop MAS, such as GAIA [22],
SABPO [4], and ADELF [1]. We found that most of
the studied methodologies have similar phases or use
similar modelling techniques. So we present in this
section an overview of nine agent-oriented software
engineering methodologies: MAS-CommonKADS,
GAIA, extension of GAIA for Internet applications,
SODA, AALAADIN, Adelf, SABPO,
MESSAGE/UML and Tropos, in order to extract
commonalities between them so that we can propose
some guidelines towards a modelling methodology for
fault-tolerant MAS (Section 3).

32 Informatica 28 (2004) 31–40 S. Mellouli et al.

2.1 The MAS-CommonKADS
methodology
MAS-CommonKADS [11] is a Multi-Agent System
design methodology based on the CommonKADS
methodology [19]. It has three phases: the
conceptualization phase, the analysis phase, and the
design phase.

2.1.1 The conceptualization phase
The conceptualization phase helps developers to
understand the problem to be solved. The main outputs
of this phase are two models: use cases (based on
actors), and MSC (Message Sequence Charts) used to
describe interactions between different actors.

2.1.2 The analysis phase
The second phase is analysis. It carries out a
requirement specification of the MAS through the
development of five models: the agent model, the task
model, the coordination model, the knowledge model,
and the organization model.

1. The Agent model consists of identifying types
of agents, describing them and determining
their instances.

2. The task model consists of a task

decomposition, goals determination, and the
identification of tasks ingredients.

3. The coordination model consists of describing

the interactions and coordination protocols
between agents. It shows the dynamic
relationships between them.

4. The knowledge model is carried out by the

expertise model. This model consists of
determining the application knowledge model
and the problem solving knowledge. The
application knowledge model consists of the
domain knowledge, the inference knowledge
and the task knowledge. The domain
knowledge represents the declarative
knowledge of the problem modelled as
concepts, properties, expressions and
relationships using OMT [18]. The inference
knowledge represents the inference steps
performed to solve a task. The task
knowledge represents the order of the
inference structures. The problem solving
knowledge specifies how the inference is
carried out.

5. The organization model represents the

organization in which the MAS will be
deployed and the software organization of the
MAS. It shows the static or structural
relationships between the agents. It is based
on the OMT notation (aggregation,
inheritance). This model is the specification
of the structural relationships between human
and/or software agents, and the relationship
with the environment.

2.1.3 The design phase
The third phase is design. It carries out the design
model. This model consists of the agent network
design, the agent design and the platform design.

1. The agent network design determines the
infrastructure of the MAS-system according
to the network, knowledge and coordination
facilities. The network facilities are for
example the agent name service, the
registering and subscription service, the
security level, the encryption and
authentification, the transport/application
protocol and the accounting service. The
knowledge facilities are the ontology server
and the knowledge representation language
translators. The coordination facilities are the
available coordination protocols, the protocol
servers and the group management facilities.

2. The agent design consists of agents where each

agent is subdivided in modules for user-
communication, agent communication
(inferred from the coordination model),
deliberation and reaction (from the expertise,
agent and organization models), and external
skills and services (from the agent, expertise
and task models).

3.The platform design is the selection of the

needed software and hardware to implement
the MAS.

2.2 The Gaia methodology
The Gaia [22] methodology is applicable to a wide
range of multi-agent systems where agents are
cooperative and in which the system is closed. It is
composed of two main phases: the analysis phase and
the design phase. These two phases are preceded by
the requirement statement.

2.2.1 The analysis phase

TOWARDS A MODELLING METHODOLOGY... Informatica 28 (2004) 31–40 33

The objective of the analysis phase is to understand
the system and its structure. To this end, two models
are proposed: the role, and the interaction models. In
the role model, an organization is seen as a collection
of roles that stand in certain relationships to one
another. The interaction model presents the links
between roles. It consists of a set of protocol
definitions, one for each type of inter-role interaction.

2.2.2 The design phase
The objective of the design phase is to transform the
analysis models into a sufficiently low abstraction
levels in order to implement the MAS. This phase
generates three models that are the agent model, the
services model, and the acquaintance model.

• The agent model identifies the agent types and
instances. It is defined using a simple agent
type tree, in which leaf nodes correspond to
roles and other nodes correspond to agent
types. The agent instances that will appear in
a system are documented by annotating agent
types in the agent model.

• The services model identifies the main services

that are required to achieve the agent role. It
specifies the main properties of these
services. A service corresponds to an agent’s
function.

• The acquaintance model defines the

communication links that exist between
agents. They do not define which messages
are sent or when they are sent. They only
indicate that communication pathways exist.
It is a graph whose nodes correspond to agent
types and arcs correspond to communication
pathways.

2.3 Extension of Gaia for Internet
Applications
Gaia is suited for closed systems. Somehow, a wide
range of MAS applications are used in open
environments such as the Internet. Gaia has been later
adapted to deal with open environments. In [24], it is
proposed to use coordination model to apply Gaia to
Internet applications.

In Gaia, the organization structure of the system is
static; neither the number of agents nor their inter-
agent relationships change at run time [24]. The agents
globally exhibit cooperative behavior; they have a
global goal and do not exhibit competitive or self-
interested behaviors. A coordination model is

exploited in the context of designing MAS to be used
on the Internet. It makes it possible to enact social
laws in the system and to control the execution of
foreign and self-interested agents. It provides a formal
framework in which the interaction of a set of
concurrent activities can be expressed. It consists of
three elements: the coordinables (the agents), the
coordination media (semaphores, monitors, channels,
blackboards, etc.) and the coordination laws
(communication language, and coordination language
that is a set of interaction primitives and their
semantics).

The coordination models can be divided into two
categories: a data-driven category in which agents
interact with the external world by exchanging data
structures through the coordination media, which
basically acts as a shared data space, and a control-
driven category in which coordination is done via
well-defined input/output ports. The presence of the
coordination media implies that it is no longer
necessary to determine all the interaction links
between all the possible agents that can access to the
application and to define all the possible interaction
protocols. An agent can be unbound so that it doesn't
know with which agent it will interact. The
coordination media can be programmed so that the
interaction between two agents becomes dynamic. It is
also possible to constrain the behavior of the agents
during their interactions, or to monitor and control all
the interactions between agents. The coordination
media enforces whatever social laws have to be
respected by the agent system in order to carry out the
social tasks.

By adding the coordination media to Gaia, the
expected output of the analysis phase are well-defined
role and interaction models, in addition to a well-
defined model of social laws. The expected output of
the design phase are an agent and a service models
detailed enough in order to implement the agents. In
addition, the behavior of the coordination media
should make it possible to implement the coordination
media, whatever media is actually exploited.

2.4 SODA
The SODA [17] methodology is suited for internet-
based systems. It consists of two phases, the analysis
phase and the design phase. During the analysis phase,
the application domain is studied and modelled, the
available resources and the technological constraints
are listed, the fundamental application goals and
targets are pointed out. The design phase deals with
the representation of the abstract models obtained
during the analysis phase.

34 Informatica 28 (2004) 31–40 S. Mellouli et al.

2.4.1 Analysis phase
The analysis phase generates three models that are: the
role model in which the application goals are modelled
in terms of the tasks to be achieved, the resource
model in which the application environment is
modelled in terms of the services available, and the
interaction model in which the interactions involving
roles are represented.

In the role model, the tasks are expressed in terms of
the responsibilities they involve, the competencies
they require, and the resources they depend upon. The
tasks are classified as either individual or social ones.
Each individual task is associated with an individual
role. A role is defined in terms of responsibilities.
Social tasks are assigned to groups. Groups are
defined in terms of both the responsibility related to
their social task and the social roles participating in the
group. A social role describes the role played by an
individual within a group.

In the resource model, the services express
functionalities provided by the agent environment to
the multi-agent system such as querying a sensor and
verifying an identity. Each service is associated with
an abstract resource, which is firstly defined in terms
of the services it provides. Each resource defines
abstract access modes (permissions), modelling the
different ways in which the corresponding service can
be exploited by agents.

The interaction model presents interactions involving
roles, groups and resources in terms of interaction
protocols. An interaction protocol associated with a
role is defined in terms of the information required and
provided by the role in order to accomplish its
individual task. An interaction protocol associated
with a resource is defined in terms of the information
required to invoke the service provided by the resource
itself, and by the information returned when the
invoked service has been brought to an end, either
successfully or not. An interaction protocol associated
with a group governs the interactions among social
roles and resources in order to enable the group to
accomplish its social tasks.

2.4.2 The design phase
The design phase enable the designer to create three
models: the agent model in which individual and
social roles are mapped upon agent classes, the society
model in which groups are mapped onto societies of
agents, and the environment model in which resources
are mapped onto infrastructure classes. In the agent
model, an agent class is defined as a set of one or

several roles. It is characterized by the tasks, the set of
permissions, and the interaction protocols associated
with its roles. In the society model, each group is
mapped into a society of agents. An agent society is
characterized by the social tasks, the set of
permissions, the participating social roles, and the
interaction rules associated with its groups. In the
environment model, resources are mapped onto
infrastructure classes.

2.5 The AALAADIN methodology
AALAADIN [6] is a generic meta-model for multi-
agent systems. The core concepts of AALAADIN are
roles and groups. A group is defined as a set of agents.
A role is defined as an abstract representation of an
agent function, a service or an identification within a
group. In AALAADIN, the agents are defined by their
functions in an organization, that is by their roles and
the set of constraints which they must accept in order
to be able to play these roles. Agents can play different
roles in different groups. AALAADIN's
methodological approach consists in determining first
the group structure by identifying all the roles and
interactions that can appear within a group, and second
the MAS organizational structure, that is the set of
group structures expressing the design of a multi-agent
organization scheme.

2.6 ADELF, a methodology for adaptive
multi-agent systems engineering
ADELF [1] is suited for adaptive multi-agent systems
in which the environment is unpredictable and the
system is open. A strong adaptation is the ability that
the system must possess in order to take into account
unpredictable events and to react to evolutionary
environments. In adaptive multi-agent systems, the
agents are involved in cooperative interactions.
ADELF proposes three workflows: the requirements
workflow, the analysis workflow and the design
workflow.

2.6.1 The requirements workflow
In the requirements workflow, ADELF provides a
model composed of the target system (by a set of
keywords), and the system environment. This
workflow focuses on what may be in interaction with
the studied system in terms of passive or active entities
or constraints. It requires a characterization of data
flows and interactions between passive or active
entities and the system. These interactions are
expressed by collaboration and sequence diagrams
[20].

2.6.2 The analysis workflow

TOWARDS A MODELLING METHODOLOGY... Informatica 28 (2004) 31–40 35

In the analysis workflow, ADELF proposes to first
identify the agents by performing a domain analysis to
produce a preliminary class diagram. Each agent has
to be analyzed as a system. Second, it proposes to
study the interactions between the different entities as
a set of sequence diagrams (like in AUML [15]) and
activity diagrams which explain the possible
interactions between the different entities within the
system at each level.

2.6.3 The design workflow
In the design workflow, ADELF defines the agent
model and the Non Cooperative Situations model
(which could be related to exceptions in classical
programs). The agent model represents the
relationships between agents. The non cooperative
situation model deals with the non cooperative
situations that are situations in which the multi-agent
system cannot reach its objectives. In addition, the
design phase produces the architecture of the system in
terms of blocks, classes, agents and interactions.

2.7 SABPO: A Standard Based and
Pattern Oriented Multi-Agent
Development Methodology
A MAS behaves like a social organization in which
each agent plays a specific role. The FIPA standards
define the required services to construct MASs
working in open environments and define interaction
patterns in order to build robust organizational
structures. Any attempt of methodology development
should take the FIPA standards as a basis [4]. In FIPA
based agent systems, agent interactions are specified
using the pre-defined FIPA interaction protocols.
SABPO [4] tries to identify required interaction
protocols based on the system requirements during the
analysis phase. The approach is composed of an
analysis phase and a design phase.

2.7.1 The analysis phase
In the analysis phase, the following models are
developed: the role model and the interaction model.
The role model identifies the roles and responsibilities
of these roles in order to satisfy the organization's
global goals. SABPO introduces two roles that comply
with the FIPA abstract architecture. These roles are
'Directory Service Provider' and 'Ontology Service
Provider'. The interaction model defines the
interaction protocols between agents. These
interactions are documented using AUML [15].

2.7.2 The design phase
In the design phase, three models are developed: the
ontology model, the agent model and the detailed

interaction model. The ontology model extends the
ontology knowledge obtained during the analysis
phase.

The agent model defines the agent types and assigns
the roles defined in the analysis phase to the agent
types. The detailed interaction model maps the
interaction protocols identified in the analysis phase to
the FIPA specifications.

2.8 Agent oriented Analysis using
Message/UML
MESSAGE [3] stands for: Methodology for
Engineering Systems of Software AGEnts. It proposes
five model views that are: the organization view, the
goal/task view, the agent/role view, the interaction
view and the domain view. The organization view
(OV) shows concrete entities (agents, organizations,
roles, resources) of the system and its environment,
and coarse grained relationships between them
(aggregation, power, and acquaintance relationships).
The goal/task view (GTV) shows goals, tasks,
situations and dependencies between them. The
agent/role view (ARV) focuses on the individual
agents and roles. In the interaction view (IV) a
designer must, for each interaction between
agents/roles, show the initiator, the collaborators, the
motivator, the relevant information supplied/achieved
by each participant, the events that trigger the
interaction, and other relevant effects of the
interaction. The domain view (DV) shows the domain
specific concepts and relations that are relevant to the
system under development.

The analysis process is based on a refinement
approach. The system is viewed as a set of
organizations that interact with resources, actors, or
other organizations. Actors may be human users or
other existing agents. The modelling process starts by
building the organization and the goal/task views.
These views act as inputs to creating agent/role and
domain views. Finally, the interaction model is built
using inputs from the other views.

2.9 The Tropos software development
methodology: process, models and
diagrams
The Tropos methodology [9] is based on key features
that are agents, goals, and plans. The phases of the
methodology are early requirements, late
requirements, architectural design, detailed design, and
implementation. The early requirement phase
identifies actors and their goals. The late requirements
introduces the system-to-be as an actor that interacts

36 Informatica 28 (2004) 31–40 S. Mellouli et al.

with other actors. In the architectural design more
system actors are introduced and are assigned sub-
goals. The detailed design defines the system actors in
further details, including specifications of
communication and coordination protocols. The
implementation transforms the system into code
compatible with the JACK platform [2].

3 Towards a Modelling

Methodology for Fault-Tolerant
Multi-Agent Systems

To design a fault-tolerant multi-agent system, we need
to define a methodology that considers common agent
concepts such as role, task, goal, etc., and also specific
concepts dealing with fault-tolerance. To this end we
first present the main commonalities of the different
methodologies that we have reviewed in order to
identify common agent concepts. Second, we present
specific concepts of fault-tolerant multi-agent systems
that we need to introduce to the proposed modeling
methodology.

3.1 Commonalities between MAS
methodologies
The MAS design methodologies presented in section 2
share common phases (analysis and design). However,
no methodology has specified a development phase to
implement the designed MAS. To this end, they only
refer to object oriented methodologies. In addition,
most of the methodologies share concepts such as role,
group, interaction and environment, despite the fact
that some methodologies are specialized in particular
domain applications such as decision support.

A summary of the different models proposed in the
reviewed methodologies is presented in what follows:

1. MAS-CommonKDAS:
• Analysis: agent, task, coordination,

knowledge, organization
• Design: design

2. Gaia:

• Analysis: role, interaction
• Design: agent, services, acquaintance

3. Soda

• Analysis: role, resource, interaction
• Design: agent, society, environment

4. Internet Applications

• Analysis: Gaia analysis models + social
laws

• Design: Gaia analysis models +
coordination

5. AALAADIN

• Analysis: possible roles, interactions,
structure of groups

• Design: agent organization

6. ADELF
• Analysis: environment, class diagram,

sequence diagram, activity diagram
• Design: agent, non cooperative

situation model, system architecture

7. SABPO
• Analysis: role, interaction
• Design: ontology, agent, detailed

interaction

8. Message/UML
• Analysis: organization, goal/task,

agent/role, interaction, domain
• Design: none

9. TROPOS
• Analysis: actors and their goals, the

system-to-be
• Design: actor systems

We notice that there are 48 models proposed by the
different methodologies we examined. The agent
model and the interaction model (interaction,
communication or cooperation models) appear in all
the reviewed methodologies. Moreover, the role model
and the organization model appear in six
methodologies. These models count for 32 models out
of 48. Since we aim at developing a MAS modeling
methodology that is as general as can be, we will
consider them in our methodology for fault-tolerant
MAS. We will also consider the environment diagram
in our methodology since two methodologies (SODA
and ADELF) use it, and we showed its importance
when designing a MAS [14] [12].

But first, let us summarize the major concepts referred
to by the different methodologies, and their
definitions, tha tare presented hereafter:

• Agent: An agent is a computational process that
implements the autonomous, communicating
functionality of an application. Typically,
agents communicate using an Agent
Communication Language [8].

TOWARDS A MODELLING METHODOLOGY... Informatica 28 (2004) 31–40 37

• Task: A task refers to a set of coherent activities
that are performed to achieve a goal in a
given domain [5].

• Goal: A goal is a set of states of the world that

an agent is committed to achieve/maintain.
Therefore a goal is a situation, but not all
situations are goals. A set of states of the
world can be seen as a goal if there is an
agent committed to achieving/maintaining
this set of states [8].

• Interaction: The communication pattern

performed by instances playing the roles to
accomplish the task. [21]

• Collaboration: Collaboration is concerned with

the interactions between agents in a multi-
agent system. It is based on the relationships
between the individual agents' mental
structures and the system's (also seen as an
agent) collective mental structure [8].

• Environment: The environment of an agent

refers to all the elements that are external to
the agent. One can distinguish the social
environment of A (the agent that it knows)
from its physical environment (the material
resources that can be perceived by the agent
or used by its effectors) [8].

• Organization: An organization provides a

framework for activity and interaction
through the definition of roles, behavioral
expectations and authority relationships (e.g
control) [7]. Also, from [22] we have that an
organization is a collection of roles, that stand
in certain relationships to one another, and
that take part in systematic, institutionalized
patterns of interactions with other roles.

• Role: The characteristic and expected social

behavior of an agent. A role can interact with
another role [8]. Another definition of a role
is a set of tasks grouped semantically [13].

• Resource: a resource defines an abstract access

mode, modelling the different ways in which
the service it provides can be exploited by
agents [8].

• Group: A group is a set of two or more agents

that are related via their role assignments,
where these relationships must form a
connected graph within the group. Agents

and Roles are associated with Groups to
provide context. [16]

3.2 Modelling Methodology for Fault-
Tolerant Multi-Agent Systems
This methodology review has led us to the idea that it
is possible to propose a modelling methodology for
Fault-Tolerant Multi-Agent Systems that groups the
major development phases and concepts used by agent
oriented software engineering methodologies found in
the literature. This methodology is composed of two
phases: analysis and design. For each phase, we will
present its diagrams and how they can help to design
fault-tolerant multi-agent systems.

A multi-agent system interacts with its environment,
so we need a model to represent the environment; this
is done in the environment model. Each agent in the
system has one or more roles to play. So we need to
define the different roles that will be played by the
agents; this is done in the role model. Each role
interacts with another role, so we have to model roles
interactions; this is done in the interaction model.

So the analysis phase has at least the following
models:

• An environment model that describes the
environment and its evolution over time. The
environment model structures the
environment as a set of discrete situations
described by sets of parameters. We can
identify, during the design phase, particular
situations that could lead agents to failure,
and propose solutions to overcome the
undesirable situations long before
implementation, which reduces considerably
the subsequent cost of system repair
(maintenance). We can identify also
situations that the MAS has to reach in order
to achieve its objectives. These are goal
situations.

• A role model that specifies the different roles

that will be played by agents. A role can be
seen as a set of tasks grouped semantically
[13]. Each situation in the environment model
could generate an agent failure. However, all
identified roles must be fulfilled despite this
failure, requiring a reassignment of roles
between the remaining agents, which implies
that the MAS organization is dynamic.
Furthermore, relationships between roles do
not change since they are defined according
to the nature of the tasks composing the roles.
Hence, the role model describes the tasks and

38 Informatica 28 (2004) 31–40 S. Mellouli et al.

the necessary protocols between them; while
the agent model, defined in the design phase
(below), presents how roles can be
dynamically assigned to agents.

• An interaction model that specifies both how

roles interact with each other according to the
protocols used in the interactions.

Each agent will be assigned one or more roles. So we
need a model to represent agents and their roles; this is
done in the agent model. An agent has to communicate
with other agents. So we need to model agent
communication; this is done in the communication
model. Also, agents has to collaborate with each other.
So we need a model to represent agent collaboration;
this is done in the collaboration model.

So the design phase has at least the following models:

• An agent model that shows the agents' social
roles and relationships. In the agent model,
we focus on assigning and determining agents
roles and agent relations. In fault tolerant
MAS, we can sometimes use replicated
agents to replace unavailable agents [10]; at
other times, we cannot. To overcome this
situation, agents can see their roles changing
in order to fulfill the missing roles. We have
to propose guidelines to decide how to assign
unfilled roles to existing agents or how to
modify roles so that the overall system still
accomplishes its tasks.

• A communication model that specifies the

communication paths between agents,

• A coordination model that specifies the
protocols used to coordinate agents' actions.
These protocols can be inferred from the
interaction model.

The different proposed models consider all agent
concepts presented above as showed in what follows:

• environment model: environment, goal
• role model: role, task, organization
• interaction model: interaction
• agent model: agent, group
• communication model: resource
• collaboration model: collaboration

Moreover, we may need to provide this methodology
with other models that were not considered in the
kernel so that it will be useful for a wide range of
applications. By doing so, we hope to propose a

flexible and easily adaptable methodology. We will
address this issue in a forthcoming paper.

4 Conclusion

Many agent oriented software methodologies were
proposed in the literature. However, none of these
methodologies are fully suited for the design of fault-
tolerant multi-agent systems. To overcome this
problem, we presented in this paper an overview of
agent oriented software engineering methodologies
and identified some models that could compose the
kernel of a modelling methodology for fault-tolerant
MAS. This kernel is composed of two phases: analysis
and design. Each phase produces a set of models as
introduced above.

As future work, we wish to develop guidelines to help
the knowledge engineer to produce the different
models of the kernel. We also wish to address the
problem of finding a formal representation of these
models as one of our longer term objective is to
develop a modeling environment that would
encompass some automatic validation feature that
would provide additional help to the system designer.
For this, we will consider existing formalisms such as
those proposed in AUML [15].

This work defines the basis to define an agent-oriented
methodologies for fault-tolerant multi-agent systems.
The different proposed models consider the different
agent concepts presented above. This make this
methodology genereic and appliable to a wide range of
applications.

5 References

[1] Bernon, C., Gleizes, M.P., Peyruqueou, S., Picard,
G. ADELF, a Methodology for Adaptive Multi-Agent
Systems Engineering. Workshop Notes of the Third
International Workshop Engineering Societies in the
Agents World. Madrid, Spain (2002) 21--34

[2] Busetta, P., Onnquist, R., Hodgson, A., Lucas, A.
JACK Intelligent Agents-Components for Intelligent
Agents in Java. Technical Report TR9901, AOS
(1999)

[3] Caire, G., Coulier, W., Garijo, F. J., Gomez, J.,
Pavon, J., Leal, F., Chainho, P., Kearney, P. E., Stark,
J., Evans, R., Massonet, P. Agent Oriented Analysis
Using Message/{UML}. Agent Oriented Software
Engineering (AOSE) (2001) 119-135

TOWARDS A MODELLING METHODOLOGY... Informatica 28 (2004) 31–40 39

[4] Dikenelli, O., Cenk Erdur, R. SABPO: A
Standards Based and Pattern Oriented Multi-Agent
Development Methodology. Workshop Notes of the
Third International Workshop Engineering Societies in
the Agents World. Madrid, Spain (2002) 57--70

[5] Duursma, C., Olsson, O., Ulf, S. Task Model
Definition and Task Analysis Process. Technical
Report KADS-II/VUB/TR/004/2.0. Esprit Project
P5248, Free University Brussels and Swedish Institute
of Computer Science (1994)

[6] Ferber, J., Gutknecht, O. A meta-model for the
analysis and design of organizations in multi-agent
systems. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS98),
Paris, France,(1998) 128-135
[7] Ferber, J., Gutknecht, O., Michel, F. From Agents
to Organizations: an Organizational View of Multi-
Agent Systems. Third International Conference on
Autonomous Agents and Multi-Agent Systems,
Sydney, Australia (2003)

[8] FIPA Methodology Glossary:
www.pa.icar.cnr.it/~cossentino/FIPAmeth/glossary.ht
m

[9] Giunchiglia, F., Mylopoulos, J., Perini, A. The
tropos software development methodology: processes,
models and diagrams. Proceedings of the second
international joint conference on Autonomous agents
and multiagent systems, Bologna, Italy (2002) 35-36

[10] Hagg, S. A Sentinel Approach to Fault Handling
in Multi-Agent Systems. Proceedings of the Second
Australian Workshop on Distributed AI, in
conjunction with the Fourth Pacific Rim International
Conference on Artificial Intelligence (PRICAI'96).
Cairns, Australia, (1996)

[11] Iglesias C. A., Garijo, M., Centeno-Gonzalez J.,
Velasco, J. R. Analysis and Design of Multiagent
Systems Using {MAS}-Common {KADS}. Agent
Theories, Architectures, and Languages (1997) 313-
327

[12] Mellouli, S., Mineau, G., Moulin, B. Multi-Agent
Systems Design.Workshop Notes of the Third
International Workshop Engineering Societies in the
Agents World. Madrid, Spain (2002) 127-138

[13] Mellouli, S., Mineau, G., Moulin, B. Towards An
Agent Modelling Methodology for Fault-Tolerant
Multi-Agent Systems. The Fourth International
Workshop Engineering Societies in the Agents
World", October, London, United Kingdom (2003)

[14] Mellouli, S., Mineau, G., Pascot, D. The
integrated modeling of multi-agent systems and their
environment. Proceedings of the first international
joint conference on Autonomous agents and
multiagent systems. Bologna, Italy (2002) 507--508

[15] Odell., J., Parunak., H., Bauer, B. Extending
UML for Agents. Proceedings of the Agent-Oriented
Information Systems Workshop at the 17th National
conference on Artificial Intelligence. (2000)

[16] Odell, J., Van Dyke Parunak, H., Fleischer, M.
The Role of Roles. Journal of Object Technology,
January-February, Vol.2, No. 1 (2003) 39-51

[17] Omicini, A. SODA: Societies and Infrastructures
in the Analysis and Design of Agent-Based Systems.
Workshop on Agent Oriented Software Engineering.
(2000) 185-193

[18] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., Lorensen, W. Object-Oriented Modeling and
Design. Prentice-Hall International Editions, New
Jersey (1991)

[19] Schreiber, A., Wielinga, B. J., Akkermans, J. M.,
Van de Velde, M. A comprehensive methodology for
KBS development. Deliverable DM1.2a KADS-II/
M1/RR/UvA/70/1.1, University of Amsterdam,
Netherlands Energy Research Foundation ECN and
Free University of Brussels.

[20] UML. Unified Modelling Language.
http://www.uml.org.

[21] UML 1.5 Specification:
www.omg.org/technology/documents/formal/uml.htm.

[22] Van Lamsweerde, A., Leiter, E. Handling
Obstacles in Goal-Oriented Requirements
Engineering. IEEE Transactions on Software
Engineering, Vol. 26, No. 10, October (2000) 978-
1005

[23] Wooldridge, M., Jennings, N. R., Kinny, D. The
Gaia Methodology for Agent-Oriented Analysis and
Design. Journal of Autonomous Agents and Multi-
Agent Systems, volume 3, number 3. Kluwer
Academic publishers (2000) 285--312

[24] Zambonelli, F., Jennings, N. R., Omicini, A.,
Wooldridge, M. Agent-Oriented Software Engineering
for Internet Applications. Coordination of Internet
Agents: Models, Technologies, and Applications.

40 Informatica 28 (2004) 31–40 S. Mellouli et al.

Springer-Verlag: Heidelberg, Germany. A. Omicini
and
F. Zambonelli and M. Klusch and R. Tolksdorf (2000)
326-346

 Informatica 28 (2004) 41–49 41

System Administration Using Software Agents
Shahram Rahimi and Santosh Ramakrishna
Department of Computer Science, Southern Illinois University
Mail Code 4511, Carbondale, Illinois – 62901, USA.
{rahimi, srama} @cs.siu.edu

Keywords: Agents, System administration, Distributed systems.

Received: August 15, 2003

The increasing complexity and difficulty of system administration has been long recognized. Studies
indicate that because of the difficulty and complexity, the cost of administering systems is ten times the
cost of the actual hardware. Here, we present ABSA; ABSA is an agent-based solution to automated
system administration. ABSA architecture is introduced to minimize the cost of administering computers
in multi platform networks and to provide a simple, consistent, expandable and integrated system
administration tool. ABSA system supports important system administration features such as domain-
wise administration, automated error handling and default system configuration besides others.

1 Introduction
Networks maintained by many sites today contain tens to
hundreds of computers. Managing such a sizeable
collection of computers and their software is a
challenging task, generally referred to as system
administration. Majority of the tasks performed by a
system administrator on a day to day basis include
ensuring all hardware and software is in working order,
managing user accounts, dealing with the security
threats, backups, software upgrades, maintenance,
recovery from system failure and ensuring an adequate
supply of resources such as swap and disk space.
Performing all these tasks manually can prove to be very
difficult, especially when dealing with a sizable
collection of computers. Majority of the day to day
activities performed by system administrators are
procedural and recurring and hence a burden to the
system administrator [1]. This complexity and difficulty
of system administration has been long recognized.
Studies indicate that because of complexity, cost per year
of administering systems is much higher than the cost of
the actual hardware itself [2]. While system
administration is challenging and burdensome, most of
the tasks performed by an administrator can be
automated to great extent. Moreover there is a limit on
the number of systems that can be maintained by an
administrator, which highlights the need for a scalable
approach.

In this paper, we present an agent-based architecture to
facilitate and automate the system administration tasks.
Distinctiveness of agents such as autonomous nature,
intelligence, perseverance, adaptability, and of course
mobility are most appropriate for their use in our
architecture. The mobile nature of agents allows keeping
minimum essential environment on the remote host that
is just enough to allow execution of agents on it. This
avoids the concentration of the operations in a single
computer; instead, it uses the computing power of other

computers by distributing the tasks. Moreover, using java
agents in ABSA provides the system with platform
independency which further distinguishes ABSA from
other tools available in the market.

The remaining parts of the paper are organized as
follows. First, a brief background on different system
administration approaches and software agents is given
in section 2. Then the general architecture of the system
is presented in section 3. In section 4, we describe the
implementation and the tools used. Finally, a brief
summary concludes the paper.

2 Background
In this section, we briefly review the current centralized
system administration approach and discuss some of the
existing tools that aid system administrators.

2.1 Centralized System Administration
Recently, there has been considerable amount of research
to replace the traditional ad hoc system administration by
client/server based applications, which aim to centralize
the process. These centralized applications use mainly
two protocols, the Simple Network Management
Protocol (SNMP) and the Common Management
Information Protocol (CMIP). Both protocols follow a
client/server approach with managers invoking
operations on management programs. They also provide
mechanisms for reporting events by management
programs. However, there are fundamental differences
between these two protocols. CMIP offers a much richer
set of protocol operations both on manager and on
management. However SNMP is a simpler tool for and is
more popular in the market.

SNMP, CMIP, and related approaches to network and
system administration are centralized paradigms based

42 Informatica 28 (2004) 41–49 S. Rahimi et al.

on the client/server architecture. These solutions require
gathering all management functionality in a central
manager which causes complexity and lower
performance. Moreover, they do not address
heterogeneity of the platforms. Scalability is another
disadvantage of centralized approach, which loses
performance to the size of the network.

2.2 Analysis of existing System
Administration Tools

Automated administration of systems is becoming
increasingly important due to the associated costs. Some
work has been done in this regard to either partially
automate the tasks or develop tools to aid administrators.

“Software Update via Mobile Agent Based
Programming” [3] is one such approach for automated
updating of software on the systems. This model has
some limitations such as platform dependency.
Moreover, the software has to be maintained on the
server, which causes centralization of considerable
amount of the tasks and hence a bottleneck. As a second
example, we can name “The Igor System Administration
Tool” [4] a tool for performing administration tasks
simultaneously on numerous hosts. Although it eases the
task of system administration, it does not deal with
automation of system administration and it focuses on
UNIX systems only.

“Central System Administration in a Heterogeneous
UNIX Environment: GeNUAdmin” [5] is another
example. In this tool, configuration profiles for clients
are maintained on the central server and clients are
configured based on their profile on the server.
Administrators have to modify the configuration files on
the server to manage the clients. The modifications are
automatically transferred to the client systems. Its
disadvantages are that it may cause inconsistency among
configuration files on the server and the actual client
configuration and also it is for UNIX systems only. Our
last example is “WEBMIN: A Web-Based System
Administration Tool for UNIX” [6], which is a web
based tool for configuring UNIX systems. This one does
not support platform independency either.

All the above tools are based on client-server
architecture. This makes them less scalable since all the
administrative tasks are done on a single computer.

2.3 Software Agent Technology
A definition of “software agent” that many agent
researchers might find acceptable is: a software entity
which functions continuously and autonomously in a
particular environment, often inhabited by other agents
and processes [7]. The requirement for continuity and
autonomy derives from our desire that an agent be able to
carry out activities in a flexible and intelligent manner
that is responsive to changes in the environment without
requiring constant human guidance or intervention. In

general, software agents are differentiated from other
applications by their added dimensions of mobility,
autonomy, and the ability to interact independent of their
user's presence.

There are two types of agents, namely stationary agents
and mobile agents. Stationary agents are permanently
attached to a place (node), while mobile agent can move
from one place to another. An agent is said to be
strongly mobile if its entire code and execution state
move with it.

In our architecture, we use stationary agents for
management purposes and mobile agents to distribute the
system administration tasks among the computers in the
network. Agent technology provides a fresh scalable
approach to system administration, which avoids the
difficulties of the traditional client-server approach.

3 Agent-Based System
Administration

3.1 General System Architecture
In this section, we present the architecture and the
behaviour of ABSA. We divide the computers present in
a network into two categories, namely the central
manager node, from which we manage other nodes in the
network, and the client nodes that are managed by the
central manager node. The central manager node is
responsible for receiving the administration requests,
analysing the requests and dispatching necessary agents
to appropriate client machines to carry out the request(s)
and report the status.

 Figure 1 System Architecture

Within this overall architecture, there exist multiple
agent classes, both stationary and mobile, and including

IA PA SA RA

RM AM

ClientClient Client

 Internet

 User
Account

Backup

Central Manager Node

SYSTEM ADMINISTRATION USING... Informatica 28 (2004) 41–49 43

both intelligent, and less intelligent software agents.
Central manager node has different stationary agents
within itself to perform the necessary tasks. The only
mobile agents in this architecture are the Action Agents
which migrate to the client nodes to perform the
requested tasks. We refer the reader to Figure 1 for the
following discussion of the architecture in a network of
heterogeneous systems.

Figure 1 illustrates the general system architecture.
Before progressing to describe how the system operates,
we list different agents that at this moment are used in
the system together with a brief description of each.

Internet Agent (IA): It receives administration
requests and also requests for the status of submitted
tasks via internet and is actually the server side for web-
based GUI. The IA is a stationary agent on the central
manager node. For each submitted task IA generates
unique ID that could be used at a later time to find the
status of the task. IA sends the submitted administration
requests to the Processing Agent and status related
requests to Report Agent.

Processing Agent (PA): Receives requests from
IA. PA deciphers if the task is one time task or a
scheduled task. If the task is scheduled one, it is sent to
the Scheduler Agent, else it is sent to the Request
Manager using appropriate protocols. It is also a
stationary agent on central manager node.

Scheduler Agent (SA): It is a stationary agent on
the central manager node. Responsible for generating
requests to the Request Manager for scheduled tasks and
managing the tree data structure used to keep information
about the scheduled tasks.

Request Manager (RM): Maintains the request
queue on a priority basis. It could receive requests from
PA or SA depending on the type of the task. It is
stationary agent on the central manager node.

Agent Manager (AM): Responsible for
generating mobile agents in the system to carryout the
requested tasks. It receives a task from the RM and
generates an appropriate action agent to perform the task.
It then moves the action agent to the client on which the
task has to be carried out. AM is again a stationary agent
on the central manager node.

Report Agent (RA): It is a stationary agent on the
central manager node. RA is responsible for maintaining
status of the tasks being managed by the AM. RA also
maintains the log file for all the submitted tasks and their
current status. RA processes the log file and provides
results for status related queries by IA.

Action Agent (AA): These are mobile agents

generated by the AM to perform the requested task. AA
is a broad term given to a set of task-oriented agents.
There are different action agents for different tasks. AA

migrates to the client machine, performs the requested
task and informs AM about the status.

Figure 2 Hierarchies of Action Agent Classes

As stated earlier, there are different action agents for
different tasks. Figure 2 shows the Hierarchies of Action
Agent classes. At the highest level we have Action
Agents that could perform tasks independent of the
operating systems. As we traverse hierarchy of action
agent classes downwards, we have action agents which
are very specific to operating system. The user account
agent class under sun action agents is specific to sun
operating system while the user account agent class
under windows action agents class is specific to windows
operating system. Action agents are sent out to the target
systems based on the type of the operating system
installed on it.

3.2 System Behaviour
At this stage of the system implementation, we have only
focused on automation of major routine tasks such as
managing user accounts, backup, upgrading application
software, applying patches, antivirus updates and
checking printer status. This section describes a typical
scenario that utilizes the above named agents for system
administration.

As it was mentioned earlier, the Processing Agent
receives requests from the Internet Agent. Since these
requests may be simultaneous, the PA maintains a FIFO
queue for the inputs. It decodes the task requests and
sends them to the Scheduler Agent or the Request
Manager based on the type of the task, using appropriate
protocols. If the task needs to be scheduled, it would be
send to SA; otherwise, one time tasks are sent to RA.

The IA provides a web-based GUI and is used for
submitting tasks as well as viewing their status. Upon
submission of a task request, the user is given a unique

Action Agent

UNIX Action Agent

Windows Action Agent

Generate
Report

Backup

User

Account

……….

Sun Action Agent

Linux Action Agent

……….

 User

Account

Backup

Generate
Report

Generate
Report

Backup

User

Account

……….

44 Informatica 28 (2004) 41–49 S. Rahimi et al.

task ID. The task ID is generated based on the current
time (including month and year, in order to generate a
unique ID), and the user can later use this ID to obtain
the status of the submitted task. The IA gets the status of
the task from the Report Agent.

The Scheduler Agent preserves a two level tree structure
in which the first level contains the hostnames of the
computers in the network and the second level includes
the scheduled tasks for each computer. Each node in the
first level of the tree, in addition to the hostname, holds
the next immediate scheduled task. The next level of the
tree maintains the list of the scheduled tasks to be
performed on each host. This is illustrated in Fig. 3.
Whenever a scheduled task is picked for operation or a
new task is added to the tree, the SA searches the second
level to find the next immediate task for each node and
place it at the first level by the hostname. This is done in
order to reduce the search time.

Figure 3 Scheduler Agent Data Structure

The Request Manager receives the task requests from PA
(one time tasks) or SA (scheduled tasks). It maintains a
priority queue of the requests. The priorities are assigned
based on the origin and the significance of the requests.
If the origin of a request is a regular user, its priority is
less than that of a request from the administrator. In
addition, the priority of an “antivirus definitions
updating” task is higher than the priority of a “create user
account” request. The system has a default priority
setting; however, the administrator can change these
priorities.

The Agent Manager has a threshold on the number of
Action Agents it can maintain at a time. When the
number of AAs in the system is less than the threshold,
the AM accepts new tasks from the RM and creates
appropriate AAs to be dispatched to the corresponding
client computers. After creating an AA, the AM sends its
task request to the RA which assigns the “in progress”
status to the task. Upon completion (or failure), AA
reports the status to the AM (either “completed” or

“error” with a code number). AA will be suspended after
completion of its task. AM then updates the status of the
task with RA.

As it was mentioned, there is a different AA for each of
the tasks. For instance, for creating a user account we
have User Account AA, for updating antivirus definitions
we have Antivirus AA and so on. AAs are the only
mobile agents in the system and most of them have some
level of intelligence.

An example of one time task such as create user account
will go through the following sequence of agents in the
order specified: IA followed by PA, RM, AM, AA and
RA. An example of scheduled task such as backup will
also go through the same sequence of agents except that
SA is in between PA and RM since it considered a
scheduled task.

Domain-wise Administration
One of the key features of ABSA is its support for
domain-wise system administration. In case of large
computer networks, computers are logically grouped
together to form domains. The domains themselves can
be grouped together to form a higher level domain. This
logical grouping of systems makes domain
administration tasks possible. For instance the
administrator could create a user account for a particular
domain, which can be used on all the computers in that
domain.

We now discuss how domain-wise administration is
achieved in ABSA. We maintain the domain information
of the network in a tree structure. As shown in Fig. 4
each node in the tree contains a domain name, a domain
ID and the list of all the users allowed administering the
systems in that domain.

Figure 4 Domain Information Data Structure

From figure 4, users with ID 4 and 5 have same
administrative rights for the domain siu.edu and all the
domains under it. User with ID 3 can administer
computers in cs.siu.edu domain and the domains below
it; user with ID 6 can administer computers in domain
sag.cs.siu.edu. Users with rights for a domain cannot
administer systems in the higher levels; viz. user with ID

siu.edu
ID: 1

User ID: 4, 5

cs.siu.edu
ID: 2

User ID: 3, 9

ee.siu.edu
ID: 3

User ID: 1, 2

cp.siu.edu
ID: 4

User ID: 8, 11

sag.cs.siu.edu
ID: 5

User ID: 8, 6

Null Null

Client - A

1 AM Backup
(Daily)

Client - J

12 AM Antivirus Update
(Weekly – Sunday)

Client - X

3 AM Backup
(Daily)

4:30 AM
Kernel
Patch

(Weekly –
Monday)

2 AM
Check Log

Files
(Daily)

4 AM
Check
Printer
Status
(Daily)

5 AM

Backup
(Daily)

1 AM
Kernel
Patch

(Weekly -
Sunday)

2:30 AM
Kernel
Patch

(Monthly -
1st)

2 AM Anti
virus

update
(Monthly -

15th)

SYSTEM ADMINISTRATION USING... Informatica 28 (2004) 41–49 45

6 cannot administer computers in cs.siu.edu or siu.edu
domain. ABSA gives the granularity of granting users to
perform only a subset of administrative tasks. The
following paragraph discusses how this granularity is
achieved.

When a user submits a task, user enters the domain name
he/she is willing to administer; the system obtains this
domain name and his/her user ID. We then perform a
traverse on the domain information data structure (shown
in Fig. 4), find the domain’s node, and check if the user
is allowed to administer the systems in the domain, if the
user is not authorized to perform the requested task in
that domain, his or her request will be denied.
Furthermore to set up user permissions, we maintain a
profile for each user. Each entry in this profile contains a
domain ID followed by a 32 bit number, each bit of this
number determines whether a user is allowed to perform
a particular task or not depending on whether the bit is
set or reset. If the user is allowed to perform a particular
administration task on a domain (after checking the
domain information data structure), his or her profile is
checked for that particular domain ID and whether he or
she is authorized to carry out the particular task that he is
submitting. Depending on the result of the profile check,
his/her request may be accepted or denied. All the above
checks are performed by Internet Agent before accepting
the user request.

Default System Configuration
ABSA supports configuration of computers from scratch
(computers installed with an operating system and an
agency to support agents). Administrator maintains a
default configuration profile for every domain, which
specifies the steps to be carried out and the agents to be
sent out. This default configuration profile can be used to
configure computers from scratch.

Automated Error Handling
ABSA can read the system logs generated by Windows
and UNIX operating systems and take appropriate
actions in response. The system logs generated by
operating systems are in response to events such as
information, warning and error. At this stage of the
system implementation, we are handling only the error
events. As discussed earlier on every client we have an
agency operating, Monitor Agent in the agency reads
these system logs at regular intervals of time which is a
configurable parameter.

We now discuss how the automated error handling
works. The Monitor Agent checks to see if there are any
new errors in the log file from the previously read time.
If any new errors are found the Monitor Agent
communicates with the Internet Agent about the error.
The central manager then performs a check in its
knowledge base to see if it has a similar error in its
knowledge base and the solution for the error. If no
match is found for the error in the central manager’s
knowledge base the error is reported to the administrator.

If a match is found appropriate agent is sent from the
Agent Manager to fix the error. The whole picture of
automated error handling can be viewed as the Monitor
Agent on the client submitting a task request and the
central manager node processing the task request.

Autonomous Software Management
Another important feature that is supported by ABSA,
which is at its early stages of implementation, is
Autonomous Software Management. Autonomous
Software Management allows application software to be
deployed by the users independently in a controlled form
as specified by the administrator. Administrators need
only to prepare the software once for the system and then
leave the entire deployment and maintenance to the
system itself. This greatly reduces the workload of
administrators and also improves the process of software
deployment significantly.

Here is how Autonomous Software Management is being
implemented in ABSA. At the central manager node we
have Software Manager Agent (not shown in Figure 1),
which is a central control application for software
management, linked to an SQL database. Administrator
has to pre-configure each software by packaging it into a
JAR file [11] which contains a Manifest file [12]. Using
this format allows the package to be digitally signed for
security and at the same time allows the package to be
compressed. The SQL database is used to consolidate
information pertaining to each package, this information
is called an installation profile. Each of these profiles
contains a variable and a fixed component, where
variable component can be modified by users after
application has been installed while the fixed component
cannot. Users may use a web-based interface to look up a
particular package available for installation on the server.

At the client end, Monitor Agent (discussed earlier),
collaborates with the Software Manager Agent to
automate the process of software deployment. Monitor
Agent is controlled by Software Manager Agent to
perform tasks on the computer in which it resides. This
agent monitors applications to ensure that their
installation profile is properly adhered. It also monitors
usage statistics such as how often the application is used.
Moreover adjustments made by the user to the variable
component of installation profile are also noted, so that
the default installation profile, stored on the server, is
updated.

 In order to facilitate the operation of the ABSA
architecture across multiple operating systems, the choice
of implementation tools are vital.

4 Implementation Tools
The system is being implemented in Java and over
Grasshopper agent environment, while the knowledge
bases of the intelligent agents are being written in Java
Expert System Shell (JESS). The choice of Grasshopper

46 Informatica 28 (2004) 41–49 S. Rahimi et al.

platform and JESS were based on a comparative study of
existing tools and environments [8]. Version 0.2 of the
system is actually functioning and is being tested at this
time.

Grasshopper is implemented completely in Java and is
designed in conformance with the Object Management
Group’s Mobile Agent System Interoperability Facility
(MASIF). The platform can be enhanced with an add-on,
which is compliant with the specification of the
Foundation for Intelligent Physical Agents (FIPA) [9].

JESS is a rule engine and scripting environment written
entirely in Java. Jess is Java implementation of CLIPS
expert system shell and is a scripting environment, from
which objects can be created and methods can be called
without compiling any Java code [10]. Java provides
APIs for network communications, implements threads,
remote procedure calls, web request processing, and also
gives the system the advantage of platform
independence. Therefore ABSA is capable to manage
networks of different operating system platforms.

Now, we further extend this discussion to important data
structures followed by some implementation details for
each of the agents in the system.

One of the important data structure used in the
architecture is the synchronized circular shared buffer.
This buffer is used by all the stationary agents in the
system to communicate with one another. Since the
buffers are shared between concurrently running agents,
only one agent should be allowed to access the buffer in
order to maintain the buffer consistency. Java provides
APIs to synchronize access of objects, which allows only
one thread to access an object at a time. We use this
synchronization and create synchronized circular shared
buffer objects for communication.

Another important data structure is the tree structure used
by Scheduler Agent, which was discussed earlier. We
now extend the discussion to implementation details of
the agents in the system.

Internet Agent: It is a Java Servlet which
responds to web requests. IA communicates with PA and
RA using Datagram Sockets. Using sockets for
communication provides us with the advantage of having
IA either on the central manager node or on a different
web server and still be able to communicate with PA and
RA. For administration related requests, IA first verifies
if the necessary parameters to carry out the task are
correct and consistent, then it concatenates the received
parameters in a particular sequence and passes it on to
PA. For status related requests, IA passes the received
status related query to RA and displays the output
generated by RA to the user.

Moreover multiple task requests can be batched together
in a file. IA can accept batch files and pass on a request
for each of the tasks in the batch file to PA. Batching is

 very convenient especially when a task has to be
performed on multiple hosts, such as fixing bugs,
installing patches, holiday shutdown etc.

Processing Agent: Receives requests from IA

using Datagram Sockets. It decodes the task to be
performed and then passes the task request to SA or RM
depending on the task type using synchronized circular
shared buffer object.

Scheduler Agent: It reads from the shared buffer

object of PA and writes it into the tree data structure
(discussed earlier). SA processes the tree in such a way
that the tree always holds the next task to be performed at
the first level. At the scheduled time, SA writes the
request to the shared buffer object of RM.

Request Manager: It reads from the shared buffer

objects of PA and SA, and maintains a priority queue. It
shares this priority queue with AM. AM reads the
topmost request from this queue.

Agent Manager: It invokes an appropriate agent
class for the task and migrates the agent to the client
using Grasshopper Agent Platform. It also writes the
status of the tasks to shared buffer object of RA.

Report Agent: It reads from the shared buffer

object of AM and updates the log file for the task status.
RA can search the log file for a task ID, tasks on a
particular host and tasks submitted on a particular day.

Action Agents: They are mobile agent classes.

Each AA is specific to the task and to the operating
platform on which the task has to be performed.

Figure 5 illustrates UML sequence diagram, depicting
the flow of control between agents. This diagram
describes the timing sequence of method calls between
different classes. The flow of control is initiated by user
request to IA. The arrows in the sequence diagram
correspond to the method calls.

All the stationary agents shown in the UML diagram
(Fig. 5) are java threads running in parallel. These agents
communicate with each other using either datagram
sockets or circular shared buffers as discussed earlier.
The UML sequence diagram also depicts some of the
important methods used. Flow control starts with a web
request from user to IA either for performing a task or to
know the status of a submitted task. The doPost method
of IA handles these user requests and the getTaskID
method generates a unique task ID for each task request.
The send method of IA transfers the user request either to
PA or RA depending on the type of the user request.
After sending the request to PA or RA, IA waits to
receive new requests.

The send method of IA corresponds to the receive
method in PA which receives the task request.

SYSTEM ADMINISTRATION USING... Informatica 28 (2004) 41–49 47

Figure 5 UML Sequence Diagram

Upon receiving the request, the decode method of PA
determines the type of the task and calls appropriate
method of the GenericDS class.

The writeToMPI method of PA writes this request to
shared buffer of SA or RM depending on the task
(scheduled or unscheduled).

Figure 6 ABSA: Main Interface

IA

init

doPost

getTaskID

send

PA

run

receive

decode

createDS

writeToMPI

receive

GenericDS MPI_SA SATreeSA

run

isReadable

addTask

processTree

taskAvailable
ToPerform

writeToMPI

MPI_RM RM

run

isReadable

processQueue

isWritable

MPI_AM AA

status

AM

run

isReadable

createAgent

report

MPI_RA

run

RA

isReadable

process

48 Informatica 28 (2004) 41–49 S. Rahimi et al.

Let us assume that the task is a scheduled one such as
performing a backup. The SA reads the task request from
the top of the buffer and adds it to SATree using addTask
method. The SATree is processed by processTree method
of SA to arrange the tasks in such a way that the next
task to be performed on the host is at the first level of the
tree as discussed earlier.

The taskAvailableToPerform method of SA periodically
checks the SATree to find if any tasks are available to
perform; if available the requests are written to shared
buffer of RM.

RM reads the requests from the buffer shared with SA
and PA and uses its processQueue method to rearrange
the tasks in the queue on a priority basis. The priority
queue maintained by RM is the shared buffer to AM. The
isWriteable method of RM writes the task request to this
priority queue.

The AM reads the priority queue maintained by RM
using isReadable method. This method always reads the
topmost task in the priority queue. For each task read,
AM creates the appropriate AA and migrates it to the
client to perform the task. AA upon completion of the
task, reports the status to AM. AM writes the status of
the performed task to the shared buffer of RA using its
report method. RA reads the shared buffer using
isReadable method and writes the status of the task to the
log file, maintained by itself using the process method.
 The process method also sorts the log file based on the
task ID.

Figure 6 shows the web-based GUI of ABSA. System
Administrators can log in from anywhere in the world
and use the system. Upon choosing a task, the user gets
an interface with parameters specific to that particular
task, Figure 7 shows the interface for create user account.

Figure 7 ABSA: Create User Account Interface

5 Conclusion
This paper presents ABSA, a new tool for automation of
system administration based on a novel agent-based
architecture. System administration by itself is a
challenging area; besides, the added complexity of
working with different platforms in a heterogeneous
environment is immense. ABSA v0.2 was preliminarily
evaluated against few current centralized approaches for
automation of system administration tasks and the results
were promising. The performance tests were based on the
following criteria: expandability, extent of automation,

error rate of the overall architecture, overall security of
the architecture, multiplexing (distributing) of tasks, and
ease of use.

The performance of ABSA v0.2 architecture was better
than other approaches in many of the criteria’s used for
the evaluation. ABSA approach was highly scalable
compared to other approaches. Upon increasing the
number of computers in the network, the performance of
ABSA was relatively steady, while the performance of
other centralized administration approaches fell due to
increased load on the central server. ABSA system does
not maintain client configuration files on the central

SYSTEM ADMINISTRATION USING... Informatica 28 (2004) 41–49 49

manager node as compared to other approaches, thus
avoids any possibility of inconsistency between the client
and the central manager. The user interface of ABSA is
very friendly and is independent of the operating
platform, which allows administrators familiar with only
one operating platform to administer systems of other
platforms as well.

ABSA has few disadvantages such as security of the
agents in the system. One more disadvantage of ABSA is
that it needs to keep up with new releases of operating
systems. Moreover, since ABSA supports multiple
operating systems, maintenance may be needed more
frequent compare to other systems. Although ABSA has
some limitations, the advantages outnumber these
disadvantages.

References
[1] Miller and Donnini, “Relieving the burden of system
administration through support automation” Proceedings-
of-the-Fourteenth-Systems-Administration-Conference-
LISA-XIV. 2000: 167-80

[2] Gartner Group. A white paper on Gartner group’s
next generation total cost of ownership methodology,
1997.

[3] L. Bettini, R. De Nicola, M. Loreti, “Software Update
via Mobile Agent Based Programming,” Publication:
2002 ACM 1-58113-445-2/02/03

[4] “The Igor System Administration Tool”, Tenth
USENIX System Administration Conference Chicago,
IL, USA, Sept. 29-Oct 4, 1996.

[5] “Central System Administration in Heterogeneous
UNIX Environment: GeNU Admin” LISA, pp. 1-8,
September 19-23, 1994

[6] “WEBMIN: A Web-Based System Administration
Tool for UNIX” USENIX Annual Technical Conference,
San Diego, California USA, June 18-23, 2000.

[7] Y. Shoham, “An overview of agent-oriented
programming”, Software Agents, ed J. M. Bradshaw.
Menlo Park, Calif.: AAAI Press. 1997.

[8] S. Rahimi, R. Angryk, J. Bjursell, M. Paprzycki, D.
Ali, M. Cobb and K. Kolodziei, “Comparison of Mobile
Agent Frameworks for Distributed Geospatial Data
Integration,” Proceeding of the 4th Agile Conference on
Geographic Information Science, Brno, Czech, pp. 643-
655, 2001.

[9] Grasshopper Programmer’s Guide, URL:
http://www.grasshopper.de.

[10] Jess- the Java Expert System Shell, URL:
http://herzberg.ca.sandia.gov/jess.

[11] Using JAR Files: The Basics.
http://www.java.sun.com/docs/books/tutorial/jar/basics/i
ndex.html.

[12] Understanding the Manifest,
http://www.java.sun.com/docs/books/tutorial/jar/basics/
manifest.html.

50 Informatica 28 (2004) 41–49 S. Rahimi et al.

 Informatica 28 (2004) 51–60 51

Collaborative Translation with Mobile Agents
Eric Sanchis, Jean-Louis Selves and Zhao Yang Pan
Laboratoire Gestion et Cognition . IUT Ponsan - Université Paul Sabatier.
115, route de Narbonne. 31077 - Toulouse - Cedex. France
Email: sanchis@iut-rodez.fr, selves@meph.iut-tlse3.fr, zhaoyang.pan@libertysurf.fr

Keywords: mobile agents, actual mobility, peer to peer application, intermediate design object.

Received: August 15, 2003

 In many intellectual or industrial fields, it is frequent that groups of actors have to collaborate in order
to look for and to find solutions to new or old problems. The geographical distribution of the users
imposes the use of a common software platform as transparent as possible. Having stated the
hypothesis that the emergence of new solutions could arise by the co-location of potential solutions, we
propose a lightweight peer to peer architecture based on mobile agents which implement a model of
mobility called actual mobility.

1 Introduction

The information sharing became with Internet an
essential practice of numerous playful [22], [14] and
professional activities such as collaborative working and
Concurrent Engineering [3], [21], [24].

Many experiments in industrial and research fields
showed that collaborative work by way of Internet
allows:

- a better coordination between the two
operating modes of the users: individual work and
collective work

- a faster and broader integration of human,
material and informational resources coming from
various horizons

- it makes easier the communications and the
management of information and documents. That is
possible when the systems used by the various users are
compatible.

However, without calling into question the beneficial
effects brought by the computer networks on the practice
of collaborative work, it is easy to notice that computer
means (Internet included) do not solve all the problems.
Indeed, the combination of several factors condition the
collaborative activity of a group of people such as the
domain area, the size and mode of functioning of the
group and the tools used.

For instance, the domain of application imposes
more or less strong constraints on the confidentiality of
the documents exchanged as well as their lifespan. In
Concurrent Engineering the confidentiality must be
strong and the lifespan of the documents created is
generally important. In the educational field, the
application that we will describe hereafter does not
require a strong confidentiality and the documents
created have a rather short life.
The size and the mode of functioning of the group or
groups of users have also a very important influence, in

particular on the characteristics of the communication
protocols used. Multimedia file sharing applications or
computer resources sharing as SETI@home [1] make a
very significant number of users interact compared to an
educational application where only a class of a few
dozens of students are concerned.

Certain applications favour simultaneous interactions
between the users, the others encourage asynchronous
interactions.

Finally, the competences of the users and the results
expected from their collaboration will condition the
choice of one or several tools.

We will illustrate the consideration of the whole of
these aspects in an educational environment with a
software infrastructure allowing a group of students to
practise a foreign language by means of the collective
translation of texts.

The next section of this paper presents some general
solutions adopted in the educational world as well as the
global functioning of our application of emergent
translation. Section 3 gives an overview of the main
concepts introduced by the application model and
describes its architecture. Design and implementation
choices relative to the mobility of the agents and their
architecture are discussed in section 4. The next section
presents a scenario which will illustrate the execution of
the whole. Finally, the last section presents the
application software.

2 A Collaborative Application in an
Educational Context

2.1 Related works
In the educational field, new collaborative tools
appeared, associating mainly web technologies and peer-
to-peer (P2P) architectures. This association presents
various forms: the use of a P2P centered generic
architecture [5], interconnection of collaborative tools

52 Informatica 28 (2004) 51–60 E. Sanchis et al.

with a general purpose like Groove [9] or the packaging
of suitably selected communication tools [4].

The purpose of the Edutella project [18] is to specify
and implement a set of generic services based on the
RDF metadata concept and the JXTA P2P framework.
This infrastructure [8] is composed of a set of XML
based communication protocols and provides a set of
functionalities useful for the implementation of P2P
applications. An Edutella application, whatever field it
concerns (educational or other), uses three layers of
software: JXTA architecture, Edutella services and the
software specific to the application.

Applications using non-specialized collaborative
tools or an assembly of communication tools aim first at
increasing the interactions between the participants, who
communicate in an instantaneous way and have a shared
workspace. Users are geographically scattered and
interact in a synchronous or asynchronous way. The
main functionalities integrated in this type of
collaborative tools are chat function, contact list
management, calendar, whiteboard and file sharing. This
combination of communication tools offering a
maximum interactivity is supposed to guarantee the
largest efficiency.

2.2 A Collaborative Translation
Application

The design of our collaborative application is based on
different premises. Indeed, we think that in certain
applications, the interactivity between the users must be
perfectly controlled. This aspect is particularly important
when the main objective of the application is to allow a
student to lead a personal work suitably while benefiting
from the work of the other participants. It requires
certain constraints on the tools to be used. In particular,
collaborative tools integrating natively the chat function
or giving to all the users a shared space as whiteboard do
not seem adapted to the educational objective previously
expressed.

Compared to the tools introduced above, our
application called CTA (Collaborative Translation
Application) has the following characteristics:

- it provides the means necessary to the control
of the services of communication between the users

- its software infrastructure is light.
This application works as follows: a language

teacher publishes a text to be translated intended for an
open class of students. The expression open class means
that 1) students can be geographically scattered, 2)
anonymity covers the identity of the students, 3) users
outside the class of the teacher can participate in the
collective activity of translation.

Students can download the text to be translated and
can publish a proposition of translation. Then, each
participant (teacher or student) has the possibility of
reaching the translations suggested by the others. Indeed,
we make the assumption that 1) the development of a
translation may be considered as a process of search of a
solution through interactions among several actors, 2) the

emergence of a better translation produced by a student
can occur by the presence on its site of a set of co-
located translations produced by other participants.
Two main services are implemented by the CTA
software infrastructure:

- the tracing of the original document to be
translated and recovery by the teacher of the translations
suggested by the students

- the recovery by a student of the translations
suggested by the other students.

On the other hand, to favour the integration of new
tools within a group of users, at least two conditions
seem necessary 1) the software infrastructure must be
light, 2) it must disturb as little as possible the practices
and working methods of each one.

To satisfy the first condition, an application must
offer few but well defined services i.e. the usefulness of
which must be obvious. To satisfy the second, the
functioning of the application must be asynchronous: that
means that the user asks for the execution of a service
but that it does not remain blocked until its termination.

That led us to the following software architecture:
each user (teacher or student) reaches the application via
a content management system. All these autonomous
systems are interconnected by means of a specialized
communication layer.

The next section introduces the concept of Intermediate
Design Object and describes the application architecture.

3 Application Model

3.1 Intermediate Design Objects
Introduced in Concurrent Engineering by Jeantet and
Boujut [10], the Intermediate Design Objects (IDO) are
all the concrete and abstract objects which are produced
or used during the action of design and which connect
tools, procedures and actors. The great applicability of
the IDO concept allowed us to define a minimal model of
an IDO but perfectly operational within the framework
of a collaborative educational activity.

IDO structure - The model of IDO we have chosen
contains two parts: a main element, called document
which is the visible part to the users of the IDO, and a
composite part called history, which is partially or totally
masked to users according to the application.

For the user, the document corresponds to the main
aspect of the IDO. Indeed, it is this element which
triggers the actions of the users (consultation,
modification, additional contributions). In CTA, the
document is composed of the text to be translated
supplied by the teacher.

The second element synthesizes all the enrichments
which were brought to the first component by the
members of the project, the history of the possible copies
and its movements. In other words, it summarizes in a
global and synthetic way the state of evolution of the

COLLABORATIVE TRANSLATION WITH... Informatica 28 (2004) 51–60 53

IDO at a given moment. In CTA, a history is composed
of two parts: 1) a translation possibly suggested by a
student, 2) the log file memorizing all the operations
carried out.

Services - In CTA, four services were defined on the
IDO: the get service, change service, propagation
service and retropropagation service.

Get service allows a student to download the text to
be translated. This service uses a simple mechanism of
file transfer. The log file of the downloaded document is
modified by the get service.

Change service is a local service authorizing the
creation or the modification of a translation. This service
modifies the two parts of the history of an IDO.

The propagation service is usable only by the
teacher. It enables him to create the tree of diffusion of
the text to be translated and to retrieve the propositions
of translation of the students. This service provides a
vertical / hierarchical treatment of the IDO.

The nature of the CTA architecture also authorizes a
horizontal / peer to peer treatment of the IDO. The
retropropagation service makes it possible to each
student to analyse the history of its local IDO, to reach
the IDO of the other students and to acquire a copy of
their translation.

Propagation and retropropagation services are
implemented using mobile software agents.

3.2 CTA Framework
The CTA includes two parts: the user interface and the
mobile agent layer (Figure 1).

Mobile Agent Application

WAS WASWAS

Language teacher Student Student Student

Figure 1 - CTA architecture.

We use a web application server (WAS) as user
interface. A WAS is an important part of more powerful
systems called web content management systems
(WCMS). A WCMS provides all the tools necessary to

- the creation, edition, modification and storage
of contents intended for the publication on the web,

- the management of the permissions of the
users and

- the management of the interface with the user.
In CTA, the user interface allows the language teacher
and students 1) to publish original texts and translations,
2) to transparently interact with the mobile agent layer
when propagation and retropropagation services are
used.

The Mobile Agent Application is a communication
layer which interconnects web applications servers.

To structure this layer, three models are usable [7]:
 - remote code invocation (often called
client/server model): the local code calls remote code
which executes the requested service and returns the
results to the local code,
 - remote code evaluation: the local code sends
the code to be executed on the remote site which
evaluates the received code, returns the results to the
local code and suppresses the received code,
 - mobile agents: the local code sends an
autonomous code to the remote site which executes it.
During its execution the received code has the possibility
to transfer itself on another site.

We chose the third model to build the CTA
communication layer. Section 4.3 will precise the
different reasons of this choice.

To implement propagation and retropropagation
services the mobile agent layer manages and executes
two classes of active entities 1) the mobile agents
launched by users, 2) the mobile agent servers which
receive incoming mobile agents and manage their local
execution.

The next section will describe two main characteristics of
this layer: a lightweight peer to peer architecture and the
actual mobility model.

4 Mobile Agent Application
The designer of distributed applications has two main
models of architecture: the client / server model and the
P2P model.

In the client / server model the client and the server
have completely different functionalities. Let us take two
examples: the telnet client program makes it possible for
a user to be connected to a remote machine when it runs
a telnetd server process. In the client / server model the
server process is called daemon because this program
must run continuously. In a web application, a browser is
a client program which interacts with a web server.

In the P2P model, two communicating programs
implement the same features. In fact, there is no client
program and server program anymore but a single
program offering a client function and a server function.
To be more precise, a P2P program implements several
communication protocols and offers for each one of them
the client and server aspects.

In CTA, the retropropagation service authorizes
teacher and students to play a symmetric role.
Consequently, their agent counterparts act as a client and
/ or a server. Thus, it was natural to choose a peer to peer
architecture.

4.1 A Peer to Peer Architecture
Peer to peer systems are generally used by a large
number of users to share files and they offer two main
services 1) a file search service and 2) a file transfer
service. Furthermore, to increase independence and
anonymity of the participants the most sophisticated P2P

54 Informatica 28 (2004) 51–60 E. Sanchis et al.

applications establish an additional level of
interconnection called overlay network [23].

The file search service is one of the most delicate
parts to design and implement because it determines the
global performances of the application. Indeed, some
P2P applications are used simultaneously by several tens
of thousands of users and it is often complex to find a
peer system able to provide the requested file.

The CTA mobile agent layer doesn't need a complex
file search service because the history part of each IDO
contains all information necessary to retrieve the other
translations. Besides, the number of users is relatively
small and the level of anonymity needed do not require
an overlay network.

Broadly speaking and by analogy with classical peer
to peer systems the mobile agent layer provides two
services: a contact management service and a file
transfer service.

4.2 Agent Architecture
The agent term refers to various concepts which
resemble each other but do not correspond to only one
definition. For example, in Computer Science, numerous
fields of research use the notion of software agent either
as concept, or as tool, or as both: artificial intelligence,
artificial life, distributed systems and distributed
applications, applications related to the new economy (e-
applications), concurrent engineering, etc. Generally, an
agent is considered as an entity possessing a certain
number of properties very different in nature such as
intelligence, autonomy, mobility, proactivity, flexibility,
sociability, perception or replication [11], [12], [6]. We
can notice that all the properties are not of the same
nature (autonomy and mobility are two very different
properties) and that they can be divided in two broad
classes: attributes and qualities [20].

An attribute materializes a property of an agent,
reduced to a mechanism, a software device perfectly
known or with adaptable parameters. The main
consequence of this is that an agent has or does not have
an attribute. Mobility, replication and the perception of
agents or the perception of sites are examples of
attributes.

A quality can be simply defined as a behaviour, an
aspect of an object or an entity that cannot be measured.
Autonomy, intelligence, sociability, proactivity are
examples of qualities. Qualities are difficult to measure
as they are manifold. Consequently, there are various
complementary models for a quality: for instance, there
are several models of autonomy. There cannot be one
definition of a quality.

In CTA we use the term agent 1) as a set of
attributes and 2) as a structuring unit. Indeed, the aim of
the application does not require to provide the agents
with complex properties like qualities.

Attributes - For modularity and reusability we
distinguish attributes closely related to the task assigned
to the agent and attributes that are independent.

Three attributes were integrated into an agent:
mobility, replication and host perception. These
attributes and their implementation are independent of
the task allocated to the agent.

Mobility allows an agent to migrate to others sites.
Mobility is the most important attribute of our agents.
Thus, this property will be described in the next section.

Replication allows an agent to create a clone of itself
locally. Section 5 illustrates the use of local replication.

Host perception is an attribute necessary for the
agents to move.

Structuring unit - A CTA software agent possesses a
dual architecture (Figure 2):
 - a sub-system which implements what concerns
the achievement of the task assigned to the agent : the
discovery, the analysis and the transfer of the IDO
 - a sub-system which implements the three
attributes mentioned above.

Task

Attributes

IDO Management

Mobility
Replication

Host Perception

Figure 2 - Agent architecture.

4.3 Mobility Models
Mobility is a property which was particularly studied and
implemented since the middle of the Nineties [25], [13],
[15]. This interest was caused by the design of new
applications using Internet and the inadequacy of the
communication models used until then.

Indeed, at that time, the applications were structured
on the remote code invocation model which used a great
part of the bandwidth. To decrease the number of
exchanged messages and to improve performances and
the dynamic of the applications, White [25] showed that
it was preferable that the client software agent moves on
the site of the server entity. Thus, the client agent
interacts locally with the server, then, when the treatment
is finished it returns on its original site. Only the code of
the agents is transmitted and not data of the server.

Today this mechanism is the center of many
applications where a client software agent visits several
sites in an independent way.

Mobility brings about interesting solutions to several
problems met with the implementation of numerous
applications [17]:

- a decrease of the network traffic,
- a use of common language or common

execution environment, masking the heterogeneity of
the platforms,

- a more natural modelling of entities occurring
in applications,

- associated to a mechanism of agent
replication, it improves fault tolerance.

COLLABORATIVE TRANSLATION WITH... Informatica 28 (2004) 51–60 55

We identified three mobility models which structure
the architecture of a mobile agent application: actual or
virtual mobility, proactive or reactive mobility and
strong or weak mobility [2].

Actual mobility vs virtual mobility - There is a strong
analogy between actual mobility and message sending:

- the message is sent to a remote host
- after a good reception by the receiver, the

message is deleted on the local host.
In the actual mobility, all or parts of the mobile

agent code are sent to the remote host and then removed
from the local host. The advantage of the actual mobility,
our choice, is that no specific agent component stays on a
visited host.

In the virtual mobility a copy of the agent
components is downloaded (and not transported) on the
remote host and executed. There is a strong similarity
between remote code evaluation and virtual mobility.
The major difference is a greater independence of the
remote code execution in virtual mobility.

Proactive mobility vs reactive mobility - In proactive
mobility the agent asks when and where it wants to go.
In reactive mobility, the local execution engine or the
user decides when and where the agent must move. In
the former case, agent mobility is also called agent
migration by analogy with the process migration
mechanism integrated in a few operating systems. In the
latter case agent mobility will be called user reactive
mobility.

Several mobile agent systems implement proactive
and user reactive mobility such the Aglet system [16]:
the Aglet ATP (Agent Transport Protocol) provides a
dispatch request and a retract request.

Our mobile agent application uses only proactive
mobility.

Strong mobility vs weak mobility - In strong mobility
the execution context of the agent (mainly the stack and
the program counter) must be captured and sent to the
remote host. This one uses this execution context to
resume the execution of the agent at the point where it
stopped on the local host. The implementation of strong
mobility requires the use of non standard execution
engines (modified Java Virtual Machine or modified Tcl
interpreter).

Weak mobility means that only code and data of the
agent are moved on the remote host. A part of these data
is used to restart the execution of the agent at a particular
point of its code. Our mobile agents are structured
according to the model of weak mobility. Contrary to
strong mobility, weak mobility does not require any
particular modification of the local and remote execution
engines.

We are going to describe a scenario in a general way
which will illustrate the dynamic brought by mobile
agents.

5 Translation in Progress
The teacher publishes a text for translation. It is
registered in a document called ot (Original Text). The
history part of document ot is kept in a file ot.hty. When
a student wants to download the file ot a get request is
sent to the host known by the student which keeps this
file. The service memorizes in the history of each file ot
(ot.hty) all the get requests which it received. For each
get request the user's IP address is recorded. We suppose
for simplicity that there is only one user per host.

When a user creates a translation tt (Translated
Text), the change service modifies the appropriate file
ot.hty. Consequently, a file ot.hty contains two kinds of
information: copies (get) and modifications (change).

CHANGE, ttc

ot

ot

ot

GET

GET

Language Teacher Student B User C

Host A Host B Host C

Student D

CHANGE, ttd

GET
ot

Host D

Figure 3 - A simple scenario.

In the scenario (Figure 3), Student B downloads file

ot on Host B : the file ot.hty kept on Host A contains the
line: GET Host B

The duplicated document ot on host B can also
"receive" get requests. On host C, user C interested in
the file ot present on the site of Student B, downloads the
text for translation from the site Host B (file ot.hty on
Host B contains the line: GET Host C) and publishes its
own translation ttc.

The main consequence of the independent
duplications of the file ot is that a teacher cannot know
the location of all the copies of his document. To be able
to build a map of the ot diffusion and to retrieve the
translations suggested by the students, the language
teacher uses mobile software agents. Figure 4 illustrates
the work of mobile agents when the language teacher
uses the propagation service.

Replication

Replication

[1]

[2]
[3]

[8]

[7]

[5]

Host D Host B Host A Host C

A0

A0

A0

A1

A0 A1

A1 A2

ot.hty

ot.hty, ttc

ot.hty, ttd

A1

A2

A2

[4]

[6]

Figure 4 - Propagation service.

56 Informatica 28 (2004) 51–60 E. Sanchis et al.

According to a policy previously defined (from
events or at a regular interval of time), the language
teacher launches a mobile software agent to analyse the
local history of the document ot. The file ot.hty contains
the set of users having requested a copy of ot: in our
example, Host A sent a copy of ot to Host B and Host D.
The software agent analyses the ot.hty file and duplicates
itself as necessary. Each clone (A0 and A1) goes towards
a different implied host. When clone A1 arrives on Host
B [2], it analyses the local file ot.hty, creates a clone A2
which goes to Host C [7] and returns to Host A with the
local history file ot.hty [6]. When clone A2 arrives to
Host C, it finds a translation ttc and returns to Host A
with the local files ot.hty and ttc [8].

With the different ot.hty files, the language teacher is
able to build a map of the ot file propagation and to
retrieve the translations scattered in the network. This
process is completely asynchronous.

There are a few differences between the executions
of retropropagation service and propagation service.
When User C starts the retropropagation service the
mobile agent analyses the local file ot.hty and navigates
according to the contents of the remote files ot.hty which
have been read (Figure 5). Students are supposed to be
interested only in the translations and not in the history
parts of the IDO. Thus, only ttd is downloaded on Host
C.

[1]

Host D Host B Host A Host C

A0

[2]

[3]

[5]

A0

A0

ttd

[4]

A0

A0

Figure 5 : Retropropagation service used by User C.

6 CTA Software

6.1 User Interface
We chose Zope [26] as CTA user interface. Zope is an
open source web application server created by Digital
Creations. In addition to a web server, Zope provides
many tools for content management and information
publishing on the web: it integrates its own database
compatible with the SQL language and its own
programming language.

Applications designed with Zope have an Internet
oriented interface, i.e. all the possible actions are
accessible via a simple Internet browser. This implies the
use of a language interpretable by these browsers. The
HTML (HyperText Markup Language) is sufficient to

present static information, but in our application the
information shown differ in every execution. Thus, the
HTML is not appropriate. Zope makes it possible to
create dynamic web pages with its own specific
language: the DTML (Document Template Markup
Language). The DTML is closely related to the HTML
from which it derives. The DTML makes it possible to
directly generate interpretable HTML code by any
browser.

Zope is a multiuser software. That means that a Zope
administrator can create users each one having a name
and a password, groups of users, and to give them
specific permissions.

Zope is essentially written in Python [19], a
powerful object oriented scripting language.
Consequently another strong point of Zope is its great
compatibility with many operating systems and the
developed applications are easily portable when the
system is changed.

Lastly, when Zope shows its limits, the use of
external methods written in Python by the programmer
himself, makes it possible to provide the applications
with innovating functionalities and impossible to
complete with a Zope environment only. In the CTA
application, this one does not allow to resolve all the
problems and to make all the treatments which one
would want. That is why a supplementary software layer
totally written in Python was added.

6.2 Mobile Agent Layer
During the execution of the application, the user who
directs the progress of the collaborative work, i.e. the
teacher, can at any time start a propagation. That means
that he will be able to retrieve documents located on the
machines of the other users of the application, i.e. the
students, thanks to mobile agents. On each machine
(including the teacher’s machine) where the application
is launched, a server is running and waits for the
connection requests. When the teacher starts the
propagation, a mobile agent is created and will migrate
from host to host, from server to server, so as to fill its
task.

Eventually, the propagation is transparent for all the
users of the application including the teacher who has
only to press on a button to launch this functionality.

The retropropagation has a functioning similar to the
propagation, the main difference being situated at the
level of its activation place. Indeed, all the users except
the teacher can activate this function The aim is the
same, i.e. retrieving the documents from the machines
participating in the application.

As well as propagation, retropropagation is
transparent to all the users.

6.3 IDO Implementation
The application makes the distinction between three sorts
of documents: user documents, propagated documents
and history files.

COLLABORATIVE TRANSLATION WITH... Informatica 28 (2004) 51–60 57

User document is to be understood as a document
downloaded from a machine or modified by the user on a
machine. The download is explicitly done by the user. At
the start of the application a user document is created by
the teacher. Once registered, this document becomes
accessible to all the students who can download it on
their own machines. When it is downloaded on a
machine, an associated history file is then created. It is
the user document which circulates when (retro)
propagation takes place between the different machines.

A propagated document is a document which is
brought by a mobile agent from a remote machine. These
documents are stored in a special directory. The name of
a propagated document contains the IP address of the
machine it comes from or the name of the user it belongs
to.

A history file is associated to a user document. This
file has an ‘.hty’ extension (Section 4) and its name is
similar to the user document it corresponds to. For
example, for a user document called ‘‘Appli’’ the
associated history file will be called ‘‘Appli.hty’’. This
file contains the events that occurred to the user
document.

Three kinds of events can be found in a history file
(Figure 6):

- a user document is downloaded from a remote
machine. Consequently, a history file is created and the
PARENT event is added into it.
The PARENT event has one argument: the IP address of
the source machine from which the user document
comes.
Here is an example of a full PARENT line:

PARENT 192.168.2.30
This line means that the user document has been
downloaded from the machine which IP address is
192.168.2.30.
It will be noticed that one and only one PARENT line
can be found in a history file because a user document
can only come from one place
 - the user document is modified by the user
(change service).
The MODIFIED event is then added to the history.
The MODIFIED event has one argument: the IP address
of the current machine.
Here is an example of a full MODIFIED line:

MODIFIED 192.168.2.32
The user document has been modified on the machine
which IP address is 192.168.2.32.
 - a remote machine has just downloaded the
user document that is on our machine (get service).
The GET event is then added to the history.
The GET event has one argument: the IP address of the
machine which has downloaded the user document.
Here is an example of a full GET line:

GET 192.168.2.29
The user document has been downloaded by the machine
which IP address is 192.168.2.29.

PARENT 192.168.2.30

MODIFIED 192.168.2.32 GET 192.168.2.29
MODIFIED 192.168.2.32

Figure 6 - History file.

Figure 6 shows an example of a complete history file
with all the lines presented above. The user (a student) is
working on the machine which IP address is
192.168.2.32.

The file containing the text to be translated has been
downloaded from machine 192.168.2.30 (1st line). The
file has been modified by the student (2nd line), then the
original document (and not the student’s translation) has
been downloaded by a student on machine 192.168.2.29.
Finally, the last line of the history file indicates that the
local student has changed his translation.

6.4 Using CTA
For a user (teacher or student) to use CTA, it is necessary
that

- the daemons of the Zope application are
running,

- the user is registered by Zope server.
Then, the user has access to the home page of the

application by means of a browser by indicating the
appropriate URL, for example:

http://localhost:8080/Translation
The user gets the screen shown on Figure 7.

The interface is as simple as possible so that it is
perfectly clear and intuitive even for an occasional user.
Working with the CTA software is reduced to a simple
local navigation to make the application accessible to
most users. This simplicity was the objective followed
since its design (cf. Section 2.2).

Figure 7 - CTA home page.

The user must log as teacher (first button) or student
(second button) with a password.

If the user logs as teacher he gets the screen shown on
Figure 8.

58 Informatica 28 (2004) 51–60 E. Sanchis et al.

Figure 8 - Teacher home page.

He gets a window where he will insert the text to be
translated. Then he will indicate the name of the
document. This name will be visible for students.

Three buttons are available:
- one to start propagation, which allows him to

retrieve the different translations accessible
- one to consult the list of the retrieved

translations (Figure 9)
 - a reset button.

After retrieval, the teacher gets the translations suggested
by the students participating in the application (Figure 9).
The teacher’s screen also displays the names of the
participants. There is no anonymity for the teacher. He
can check the translation of a particular student by
clicking on the corresponding document name.

Figure 9 - After a propagation.

If the user logs as student he gets a different screen
(Figure 10).

Figure 10 : Student home page.

The student must establish a connection to a Zope server
before where a user document is stored, i.e. the text to be
translated. This server can be the teacher’s server or
another machine. When the connection is established, the
name of the user document appears and by clicking on
this name, the user retrieves this document.

When the student presses the Translation button a
window appears with the text to be translated. The
student can start his own translation and saved it.

The next button launches the retropropagation and
its action is to retrieve the other students’ translations
already available.

The last button (Consult) allows the student to
consult these translations (Figure 11). The anonymity is
kept: only the IP address is displayed.

Figure 11 - After a retropropagation.

7 Concluding Remarks
The use in situation of the CTA prototype allowed us

to learn the following lessons: when only the
propagation service is used in the application, actual
mobility is perfectly adapted. No code relating to the

COLLABORATIVE TRANSLATION WITH... Informatica 28 (2004) 51–60 59

mobile agents remains present on the computer systems
of the students.

On the other hand, when the propagation and
retropropagation services are jointly used, each site has
to possess the mobile agent part and the agent server
part, which makes it less interesting to delete the code of
the agents having finished their execution. Consequently,
effective mobility is less efficient.

In addition, the prototype suffers from limitations
intrinsic to certain technical and conceptual choices: the
use of mobile agents introduces security problems not
completely solved and the peer to peer architecture is
sensitive to the volatility of participating computer
systems.

A significant improvement of the prototype would
be to introduce additional mechanisms for a better
managing of this volatility.

The CTA implementation revealed several positive
aspects. The using, the modelling and the implementing
of the IDO concept gave us complete satisfaction. This
concept resulting from Concurrent Engineering was
easily adaptable to an application belonging to a different
field. Programming by mobile agents allowed an elegant
implementation of the asynchronous mechanisms
necessary to an application which had to be as light and
transparent as possible.

7.1 Acknowledgement
I would like to thank G. Vayssie and O. Peron for their
contribution to the development of the CAT Software
and the English teachers H. Lamouliatte and O. Depitre.

8 References

[1] D.P. Anderson, J. Cobb, E. Korpella, M. Lebofisky,

D. Werthimer, "SETI@home: An Experiment in
Public-Resource Computing", Communication of
the ACM, Vol. 45, No 11, November 2002, pp. 56-
61.

[2] G. Cabri, L. Leonardi, F. Zambonelli, "Weak and
Strong Mobility in Mobile Agent Applications", 2nd
International Conference and Exhibition on the
Practical Application of Java (PAJAVA 2000),
Manchester (UK), April 2000.

[3] D.E Carter, B. Stilwell Baker, Concurrent
Engineering, The Product Development
Environment for the 1990s, Addison-Wesley,
1991.

[4] K. Curran, "Peer-to-peer networking Collaboration
Within Education", Journal of Educational
Multimedia and Hypermedia (2002) 11 (1), pp 21-
30.

[5] http://edutella.jxta.org
[6] O. Etzioni, D. S. Weld, "Intelligent agents on the

Internet: Fact, Fiction, and Forecast", IEEE
Expert 10(4): pp 44-49, 1995.

[7] A. Fuggetta, G. P. Picco, G. Vigna, "Understanding
Code mobility", IEEE Transactions on Software
Engineering, Vol. 24, No 5, May 1998, pp. 352-
361.

[8] L. Gong, "JXTA: A network Programming
Environment", IEEE Internet Computing, Vol. 5,
No 3, May-June 2001, pp. 88-95.

[9] http://www.groove.net
[10] A. Jeantet, J.F. Boujut, Conception de produits

mécaniques, M. Tollenaeree, chap. 5, Paris,
Hermes, 1998.

[11] N. Jennings, M. Wooldridge, "Software Agents",
IEEE Review, January 1996, pp 17-20.

[12] N. Jennings, K. Sycara, M. Wooldridge, "A
Roadmap of Agent Research and Development" in
Autonomous Agents and Multi-Agent Systems, 1,
pp 275-306, Kluwer Academic Publishers, Boston,
1998.

[13] D. Johansen, R. van Renesse, F. B. Schneider,
"Operating system support for mobile agents",
Proceedings of the 5th Workshop on Hot Topics in
Operating systems, May 1995, pp. 42-45.

[14] G. Kan, "Gnutella", in Andy Oram ed., Peer to
Peer: Harnessing the Power of Disruptive
technologies, pp 94-122, O'Reilly, 2001.

[15] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, G.
Cybenko, "AGENT TCL: Targeting the Needs of
Mobile Computers", IEEE Internet Computing,
Vol. 1, No 4, July-August 1997, pp. 58-67.

[16] D.B. Lange, M. Oshima, Programming and
Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

[17] D.B Lange, M. Oshima, "Seven Good Reasons for
Mobile Agents", Communication of the ACM, Vol.
42, No 3, March 1999, pp. 88-89.

[18] W. Nejdl and all, " EDUTELLA: A P2P Networking
Infrastructure Based on RDF", WWW2002, May 7-
11, 2002, Honolulu, Hawaii, USA.

[19] http://www.python.org
[20] E. Sanchis, "Designing new Agent Based

Applications Architectures with the AGP
Methodology", WETICE, 1st International
Workshop on Theory and Practice of Open
Computational Systems (TAPOCS 2003), June 9-
11, 2003, Linz, Autriche

[21] J.L. Selves, E. Sanchis, Z. Y. Pan, "New products
development within a Concurrent Engineering
environment Knowledge and Software Tools",
IEPM'01, Proceedings for the International
Conference on Industrial Engineering and

60 Informatica 28 (2004) 51–60 E. Sanchis et al.

Production Management, Quebec City (Canada),
August 20-23, 2001.

[22] C. Shirky, "Listening to Napster", in Andy Oram
ed., Peer to Peer: Harnessing the Power of
Disruptive technologies, pp 21-37, O'Reilly, 2001.

[23] J. Touch, "Overlay networks", Computer networks,
3, (2-3), 2001, pp. 115-116.

[24] A. Ward, J.K. Liker, J.J. Cristiano, K. Duward,
Sobek, II, "The second Toyota Paradox: How
Delaying Decision Can Make Better Car Faster",
Sloan Management Review, Spring 1995, pp.
43-41.

[25] J.E White, "Telescript Technology: Mobile Agents",
General Magic White Paper, in Bradshaw J.
Software agents, AAAI/MIT Press, 1996.

[26] http://www.zope.org

 Informatica 28 (2004) 61–67 61

Human-Agent Interaction: Case Studies in Human Supervised UAV
Henry Hexmoor and Srinivas Battula
Computer Science and Computer Engineering, University of Arkansas,
Fayetteville, AR 72701, USA.
{Hexmoor, sbattul} @uark.edu

Keywords: Agents, Autonomy, Trust, Collaboration, Help

Received: August 15, 2003

In this paper we offer case studies of empowering agents with adjustment of cognitive notions of
autonomy and trust that enable them to have a more socially adept interaction with a human supervisor.
The application domain is control of unmanned aerial vehicles. Agents learn to change autonomies as
they observe they learn the relationship between their assumed autonomy and performance. Agents also
learn to change their reliance on human supervision as it takes different lengths of time.

1 Introduction
Human-Agent Interaction (HAI) is an emerging area of
research in agent-based systems. In general, agent-based
computing has been beneficial in four areas and human-
agent interaction is found in all of these areas. First,
agents are used in automation of dirty, dull, and
dangerous as well as tedious, boring, and routine tasks to
relieve humans of such duties [6]. Examples in this area
can be found in agents embodied in desktop assistants [8]
or intelligent in service of humans. Human supervisors
benefit greatly from delegating tasks to such agents [5].
Secondly, agents are used to produce an improved human
sense of “presence” for humans collaborating in
physically disparate locations. Examples in this area are
found in agents in knowledge management tasks like
war-rooms and human users benefit from agents who
proxy for their human counterparts. Third, agents can be
used in democratisation of computing, services, and
support. Examples in this area are agents in municipal
functions such as the department of motor vehicles or
public libraries and virtual museums. Here, the public
enjoys the benefits of agent services. Fourth, agents are
used in reduction of redundancy and overlap due to
competition. Research in this area can increase
collaboration between agent collectives such as in
institutions, organizations, and teams. Examples in this
area are found in agents that facilitate tracking and
sharing power or telecommunication services. In human-
agent interaction, agents might be cognitive assistants
capable of discovering human preferences, personality,
and emotions. With this, agents will gain human trust
along with permission to assure increased autonomy
while providing greater human control. Agents will also
form social networks that will facilitate their greater
ability to work together and to collaborate. We envision
agents that will be socially adept. This contributes to
robustness and adaptability of collaborative enterprises.
Theories and models of human-agent interaction are
needed as part of collaborative enterprises to provide
foundations for constructing systems able to work with
each other and with the people using them.

 In complex tasks where humans and agents share
control and both make decisions, human-agent
interaction must accommodate mixed initiatives. Agents
that allow human intervention in their actions are said to
have adjustable autonomy [1, 2, 4]. Here an agent’s
autonomy can be varied dynamically. Adjustable
autonomy holds the promise of lowering human
controller’s burden of continuously controlling the agent
and alleviates the agent from dependence on the human
controller. The delays involved in making a decision on
behalf of the agent and conveying it to the agent may
decrease the agents’ performance. Time-critical systems
cannot afford this delay and in some cases a medium
quality decision made by an agent in time will be
superior to a high quality decision by a human-controller
which may not be timely. However, there are situations
where not all decision-making autonomy can be given to
an agent based on the assumption that an agent makes
good decisions.

Trust is an important social notion between humans and
agents. Humans must trust agents they supervise and
much needs to be in human acceptance and trust on agent
decisions. In this paper we will explore the inverse issue,
that of trust as a form of agent reliance on quality and
timeliness of human input. We also present reliance as a
form of granting power to the human controller.

In mixed teams of humans and agents, interactions that
require agents and humans issuing request form one
another must be designed to account for human cognitive
factors. Agent request issued to a human must account
for contextual connotations of the request. This was similar
to the goal of DARPA’s pilot’s associate program and the more
recent MICA program. Large-scale teams of semi-autonomous
vehicles were intended to be controlled by a relatively small
number of human operators. In this paper we report on a
machine learning scheme for asking for helping from a
human when agent-controlled UCAV pilots need
assistance from a human piloted UCAV. Each situation

62 Informatica 28 (2004) 61–67 H. Hexmoor et al.

requires a different request phrase. The phrases embody
the context of the situation and the human interpretation
of the request.

In the rest of this paper we will begin by describing our
implemented testbed that we used to experiment with
adjustable autonomy and human-agent interaction [9].
We will then present a few empirical results and end with
concluding remarks.

2 Testbed
Our simulator consists of a mountainous terrain with
SAM’s and a number of UCAV’s that fly over them [3].
All the UCAV’s are partially autonomous agents whose
autonomy can be adjusted by the human controller
dynamically. UCAV’s starting from the base, fly over the
mountainous terrain to reach their destination. UCAV’s
and SAM’s have a visible region within which they can
attack one another. Hit probability is the probability of
the UCAV being hit by the SAM’s. If the hit probability
of a UCAV crosses a certain limit the UCAV’s are
considered to be shot-down by the SAM’s and they
disappear from the simulator. In addition, if two UCAV’s
are in coalition the hit-probability of both the UCAV’s
decreases by a factor due to the confusion of the SAM(s).
A SAM tries to hit the plane as soon as it enters its
visible region. When a UCAV comes across a SAM in its
course to reach the destination it may Start Avoiding the
SAM by itself or may ask help from other agents to
attack the SAM. The UCAV initially tries to avoid the
SAM until its hit probability crosses a certain limit.
When the hit probability crosses a limit, it requests for
help from other agents. Hit probability of an UCAV is
proportional to the number of SAM’s that have UCAV in
their Visible region. Each Agent gets its turn
sequentially. A cycle is completed when all the agents
get their turn once. The cycle continues until all the
agents reach their destination [10].

The following are the 10 states that govern the behaviour
of an agent in the simulator:

1. Fly to Target: This is a default state. In this state
the agent’s goal is just to reach the destination

2. See SAM: The agent enters this state as soon as
it sites a SAM in its visible region. In this state
the agent reasons whether to avoid SAM by
itself or to seek help.

3. Start Avoiding: The agent enters this state when
it is in the visible region of a SAM and can
avoid the SAM by itself.

4. Waiting for Help: The agent enters this state if
the hit-probability crosses a certain limit and its
better to seek help from other agents than avoid
by itself. In this state the agent waits for help
from other agent.

5. Offering Help: The agent enters this state when
any other agent of the system is waiting for
help. In this state the agent offers help, which

may be accepted or rejected by the help-needing
agent.

6. Being Helped: The agent enters this state when
one of the agents has agreed to offer help and it
is willing to accept it.

7. Helping: The agent enters this state when
another agent accepted help offered by this
agent and it is on its way to help the agent.

8. Helping and See SAM: The agent enters this
state when it is helping another agent and on its
way sites a SAM itself.

9. Helping and Avoiding SAM: This state is a result
state to the previous one.

10. In Coalition: When an agent helps another agent
the helping agent and the helped agent form a
Coalition. They break the Coalition only after
both of them are out of any of the SAMs visible
region. The hit-probabilities of the planes
decrease considerably with the two agents in
coalition.

The following are the set of permissions that an agent
requires to operate completely autonomous in the system.
Attack SAM: The agent needs to have this permission set
to attack a SAM as soon as it sites it.

1. Attack SAM: The agent needs to have this
permission set to attack a SAM as soon as it
sites it.

2. Avoid SAM: The agent needs to have this
permission set to avoid SAM by itself. An agent
that doesn’t have permission to avoid enters
Waiting for Help state

3. Get Help: The agent needs this permission set to
accept help offered by other agent. An agent
that doesn’t have this permission has no choice
of selecting the helping agent.

4. Offer Help: The agent needs this permission set
to offer help to other help-needing agents.

5. Help: The agent needs to have this permission
set to help other agents when another agent
accepts it

Human controller sets the permissions of an agent
initially when an agent is created. The more permission’s
the agent has the more autonomous is the agent. For
example, if an agent wants to attack a SAM and doesn’t
have the permission to perform the action it has to get
permission from the human controller. Human controller
can give the agent permission to attack, or deny
permission. In addition, if an agent is given all the

Figure 1 Help Scenario

HUMAN-AGENT INTERACTION: CASE... Informatica 28 (2004) 61–67 63

permissions and later if the human agent wants to change
it he can do so by changing the agent’s autonomy
dynamically.

When an agent asks for permission from the human
controller to act in a particular situation the human
controller has to make quick and wise decisions that
improve the system performance. The human controller
can be in two states Busy (i.e., responding to another
agent) or Idle. The agent has to wait until the human
controller makes a decision and conveys the decision to
it. In our simulator the overall system performance
increases with the decrease in average hit-probability of
the agents. When an agent enters the Visible region of a
SAM the hit-probability increases with time until the
agent gets out of the visible region by avoiding SAM or
another agent comes to rescue. The agent’s hit-
probability at each cycle is recorded. The hit-probability
of an agent can be as low as 0.0 when it is not in visible
region of any of the SAM’s or as high as 0.8, which we
set as a higher limit on hit-probability. Agent’s which
have hit-probability of greater than 0.8 are considered
shot down by the SAM’s.

Cumulative Hit-Probability (CHP) of an agent is the sum
of hit-probabilities of the agent in each cycle through out
the simulation run (i.e. from the time the agents took off
from the base until they reach their destination) divided
by the number of cycles the agent has hit-probability
greater than 0.0. Average Hit-Probability (AHP) is the
average of the cumulative hit-probabilities of each agent.

CHP =
n

p
l

i
i∑

=1 AHP =
m

chp
m

j
j∑

=1

• “pi” is Hit-Probability of agent at cycle i
• “n” is the number of cycles in which hit-probability

of the agent is greater than 0.0
• “l” is the total number of cycles in a simulation run
• “chpj” is cumulative Hit-Probability of agent j
• “m” is the number of agents

Agents that require permission from the human controller
add permission message to a queue from which the
controller first selects it and gives the permission or
denies the permission. There is a delay involved from the
time the agent adds the permission message to the queue
and gets a response from the human controller. The
factors that affect the delay are

1. The number of permissions asked by other
agents

2. The human computer interaction system
3. The efficiency of the human controller (we

ignored this in our simulator)
Here some important questions arise.

1. How long should the agent wait for the human
permission

2. Should the agent take over control and make an
autonomous decision.

The permissions given by the human controller are
recorded in the agent’s history together with the hit-
probability of the agent when the permission is given and
cycle number. Other agents use these permissions when
they are in a similar situation. Two agents are considered
to be in a similar situation if they require the same kind
of permission, the permission given is not more than 30
cycles old and the hit-probabilities are close. Permissions
given to an agent that are 30 cycles old become invalid.

The delay in communication between the human
controller and the agent deters the performance of the
system. With the increase in number of agents the
number of decision’s to be given by the human controller
increases and this degrades the performance of the
system further. So we have set an upper limit on the
waiting time beyond which further waiting of the agent
has degrading effects.

To make a decision autonomously the agent needs to
know:

• when should it Start Avoiding,
• when should it Wait for help,
• when should it offer help,
• when should it accept help,
• when should it help

The predefined rules set to the above actions are:
• An agent starts Avoiding when it sites a SAM

and its hit-probability <= 0.2.
• An agent waits for help when it is avoiding a

SAM and its hit-probability > 0.2.
• An agent offers help when it is in Fly to Target

state and some other agent needs help.
• An agent, which is waiting for help, accepts

help if another agent offers it.
• An agent helps another agent that accepted its

help offer.

After waiting for a maximum time limit the agent
chooses to follow one of these rules. The agent’s
decision may not be convincing in all situations. In those
cases the human controller can interrupt the agent and
gives his decision to the agent.

3 Experiments and Results
In this section, we will discuss results for adjustable
autonomy as well as trust. We begin with four adjustable
autonomy scenarios discussed.

3.1 Adjustable Autonomy

The x-axis in Figures 2 to 5 represents the number of
agents taking part in a simulation run and the y-axis
represents the hit-probability averaged over of all agents
in the scenario. Figure 2 shows the average hit-
probabilities of 2, 3 and 4 agents when all the decisions
have been autonomous, i.e., without human control.

64 Informatica 28 (2004) 61–67 H. Hexmoor et al.

Permissions required to make autonomous decisions by
an agent are given to each agent. From the figure we can
observe that the average hit-probability remains almost
constant. All agents follow a predefined rule set in
making a decision.

Figure 3 shows the average hit-probabilities of 2, 3 and 4
agents when the human controller makes all the
decisions. i.e., the agents are completely controlled by
the Human. We observe that the average hit-probability
increases with the increase in number of agents. With
increased number of agents, the human controller is
flooded with more requests from agents for permissions.
Therefore, the delay in making a decision increases the
hit-probability for the waiting agents. The increase in hit-
probability is more between 3 and 4 agents than between
2 and 3 agents. Figures 4 and 5 shows changes in average
hit-probability when the agent’s autonomy can be
adjusted dynamically. We have considered two cases in
which the autonomy of the agent will be varied
dynamically. In the first scenario, an agent doesn’t wait
for the human controller’s decision and makes an
autonomous decision based on the rule set and continues
with it. However, if the human controller feels that the
agent did not make a wise decision he can override it
with his decision and ask the agent to proceed according
to the new decision.

Figure 2. Agent Controlled

Figure 3. Human Controlled

Figure 4 shows the average hit-Probabilities of 2, 3 and 4
agents.

The second scenario is where the state of an agent can’t
be changed or a decision made once can’t be reverted.
Here we have set an upper limit on the number of waiting

cycles the agent waits before making an autonomous
decision. If the human controller feels that the agents can
be given more autonomy he can decrease or increase the
waiting cycles. In figure 5 we observe that the hit-
probability increases with increase in number of agents
but this increase is considerably less than the increase in
figure 3 in which the human controller makes all the
decisions.

Figure 4. Autonomous Decision made by Agent, which
can be reverted by human controller later.

Figure 5. Autonomous Decision made by agent after

waiting for certain time limit, which can’t be reverted by
human controller.

Reasoning about reliance as a form of trust between
human and agent is another method to manage adjustable
autonomy where the human controller has the most
control over the agents. This is presented next.

3.2 Reliance

Let’s consider that the human controller doesn’t have
control over the agents but all the agents presume that a
human controller’s decision is superior to a decision
made by them. To reiterate, the delay involved in giving
a decision increases with the number of requests, agents
cannot wait for the human’s decision beyond a certain
point, which may increase their hit-probabilities. Agents
conceive of a Global Human Reliance Value (GHRV) for

0.123 0.119 0.123

0.06

0.09

0.12

0.15

0.18

2 3 4

Number of Agents

A
ve

ra
ge

 H
it-

P
ro

ba
bi

lit
y

0.131
0.145

0.183

0.06

0.09

0.12

0.15

0.18

2 3 4

Number of Agents

A
ve

ra
ge

 H
it-

P
ro

ba
bi

lit
y

0.065 0.068
0.077

0.06

0.09

0.12

0.15

0.18

2 3 4

Number of AgentsA
ve

ra
ge

 H
it-

P
ro

ba
bi

lit
y

0.091

0.108

0.135

0.093

0.115

0.145

0.06

0.09

0.12

0.15

0.18

2 3 4

Number of Agents

A
ve

ra
ge

 H
it-

P
ro

ba
bi

lit
y

30 Waiting Cycles 50 Waiting Cycles

HUMAN-AGENT INTERACTION: CASE... Informatica 28 (2004) 61–67 65

human decisions with a maximum value of 5 [11].
GHRV gives a measure of the degree of trust agents has
over the human controller [12]. The reliance increases if
the human controller responds to a request and decreases
if the human controller fails to respond to a request in
time (say 40 waiting cycles). Agents wait for human
controller’s decision for a certain period of waiting
cycles based on the reliance value and on the social
power authority that we discuss below. If the reliance
value is low, agents wait for a small period before
making an autonomous decision. Social power is a direct
consequence of reliance. Power exercised by Human
controller on agents is of two forms:

1. Authority leads to power, which is exercised by
an authority.

2. Expert knowledge leads to power gained by
expert solutions and suggestions.

In our simulator agent’s waiting time is governed by the
following equation:

Maximum_Waiting_Cycles = I + GHRV * 5

Where I is the number of waiting cycles agent waits
initially when it has no reliance on Human controller.
Therefore, each agent waits for at least I waiting cycles
before making an autonomous decision even when the
reliance value is 0. The value of I is dependent on
Authority form of power. With more authoritative power
agents wait more time before making an autonomous
decision. Power of expertise is directly proportional to
GHRV. When human controller gives a decision the
value of GHRV is incremented by 1. So in cases when a
human controller is flooded with requests he fails to
respond to some of the requests, which decreases the
GHRV. With less GHRV agents that require permission
wait less before making an autonomous decision. This
considerably decreases the number of waiting cycles
agents wait for a permission and unsuccessful in getting
the human controller’s response. Human controller will
be less effective in influencing the agents with the
decrease in GHRV. Figure 5 shows the effect of
authoritative power on the hit-probability. With more
authority agent’s ability to make an autonomous decision
is narrowed and hit-probability increases with the
increase in number of agents as human controller fails to
respond to all the requests in time.

As we have already mentioned human controller’s
decision is stored in the agents’ history. Two agents in a
similar situation can use the same response of the human
controller. In addition agents also have Agent-Agent
reliance values among them. Each agent’s reliance on
other agents is maintained in an Agent-Agent Reliance
Value (AARV) array. Agent-Agent reliance value also
varies between 0 and 5. An agent first interacts with
other agent it relies on most to check if that agent has
received a response from the human controller to
perform the same action. The other agent responds to the
agent’s request as follows

1. Returns 0 if the human controller has not given
permission to perform the action

2. Returns 1 if the human controller has given
permission to perform the action

3. Returns 2 if it couldn’t find it in its history

Reliance value increases by 1 in the first two cases where
the agent returns 0 or 1. It decreases by 1 if the agent
returns 2 i.e. agents rely more on an agent that provides
them with information that is useful in making an
autonomous decision. The following figures illustrate the
number of interactions between agents and the number of
human-agent interactions and how average hit-
Probability is affected when Agent-Agent and Human-
Agent reliance is considered. In figure 6 we can observe
that the average hit-probability increases with increase in
the number of agents. The average hit-probabilities in
this case are very much similar to the average hit-
probabilities of figure 5. Figures 7 and 8 give the number
of interactions between human-agent and agent-agent.
With increase in the number of agents the interactions
between agents increase rapidly, however there is not
much increase in the human-agent interactions.

Figure 6 Average Hit-Probabilities of agents when
agent-agent and human-agent trust is considered

3.3 HELP

This section evaluates the effectiveness of agents help
requests on other agents. In some systems helping agents
incur cost on the receiving agent for the help given by
them. Altruist and benevolent agents for example help
others without incurring any costs. In such a system
where there are no costs incurred on help-receiving
agents the following factors effect cooperation between
agents [7].

1 Social normative factors
2 Emotional factors
3 Strategic factors.

Human Controller gives feedback for each request by the
agent based on the accuracy of the request made in a
particular situation. Some agents require help with
greater degree than other agents.

The preferences are based on:
1. The state of the agent receiving help e.g.: if two

agents have hit probabilities 0.1 and 0.5 then the

0.084

0.104

0.126

0.06

0.09

0.12

0.15

0.18

2 3 4

Number of AgentsAv
er

ag
e

H
it-

Pr
ob

ab
ilit

y

66 Informatica 28 (2004) 61–67 H. Hexmoor et al.

11

27

57

0

20

40

60

80

100

2 3 4

Number of Agents

N
um

be
r o

f A
ge

nt
-

A
ge

nt
 In

te
ra

ct
io

ns

helping agent is going to help the agent with higher
Hit-probability.

2. The risk involved in helping an agent e.g.: if helping
an agent puts this agent into risk then the agent may
avoid helping such an agent

3. The relation-ship with the receiving agent e.g.: the
agent’s relationship with the helping agent.

Five different situations where agents seek help from
other agents are considered. Human controller gives
feedback for each request made by agents in a particular
situation.

The five situations are:
Situation 1 - Agent doesn’t see SAM and its not attacked
Situation 2 -- Agent doesn’t see SAM but attacked
Situation 3 - Agent sees SAM and being attacked
Situation 4 - Agent sees SAM and attacked closely
Situation 5 - Agent attacked very closely

The five different help requests considered are:
1. Mayday
2. I want help
3. I need help
4. I may need help
5. Can I get assistance?

A ‘Mayday’ request needs immediate attention than a
‘Can I get assistance?’ request. The feedback given by
the Human controller is recorded in a two-dimensional
feedback array. Feedback is given on a scale of -10 to
+10. Figure 2 shows a feedback array generated during a
simulation run.

Feedback given by Human Controller for Situation3 and
request “I need help” is +6, which is highest in the row.
The next time an agents comes across Situation3 it
announces the request “I need help” as it received the
best feedback. Similarly, when a situation similar to any
of the above five arises the help-needing agents
announce a request that got the best feedback.

4 CONCLUSION

The aim of human-agent interaction is to design
interfaces and cognitive approaches that increase access
of human and agent over one another’s decision making
process. In this paper we have presented results of
experimentations with endowing agents with social
abilities. A few tradeoffs are shown in adjustable
autonomy of agents. Here we observe that level of
human control can be increased while preserving agent
performance. Dynamic adjustment of agent wait cycles
for a human decision as well as experience an agent
gains from waiting are two specific methods we have
explored. We defined a form of trust between agents and
humans we called reliance. With this we showed how
agents may reason over timeliness and significance of
human guidance. We also showed how agents must find
appropriate phrases when requesting ask from their

human counterpart. The results are promising and show
the way to similar methods.

Figure 7 Number of interactions between human
controller and agent.

Figure 8 Number of agent-agent interactions

5 Acknowledgements

This work is supported by AFOSR grant F49620-00-1-
0302.

 Mayday I want
help

I need
help

I may
need
help

Can I get
Assistance

Situation1 -8.0 -6.0 -2.0 2.0 7.0

Situation2 -7.0 -2.0 2.0 7.0 3.0

Situation3 -1.0 2.0 6.0 1.0 -5.0

Situation4 2.0 8.0 3.0 -1.0 -6.0

Situation5 9.0 6.0 0.0 -2.0 -8.0

16

21

24

0

5

10

15

20

25

30

2 3 4

Number of Agents

N
um

be
r o

f A
ge

nt
-

H
um

an
 In

te
ra

ct
io

ns

HUMAN-AGENT INTERACTION: CASE... Informatica 28 (2004) 61–67 67

References

[1] G.A. Dorais, R.P Bonasso, D. Kortenkamp, B. Pell,

and D. Schreckenghost, 1998. “Adjustable
Autonomy for Human-Centered Autonomous
Systems on Mars”, In Proceedings of the First
International Conference of the Mars Society.

[2] M. A. Goodrich, D. R. Olsen jr., J. W. Crandall, and
T. J. Palmer, 2001. “Experiments in Adjustable
Autonomy”. In Proceedings of the IJCAI-01
Workshop on Autonomy, Delegation, and Control:
Interacting with Autonomous Agents.

[3] H. Hexmoor, and X. Zhang, 2002. “Socially
Intelligent Air Combat Simulator”, In Proceedings
of The Seventh Pacific Rim International
Conference on Artificial Intelligence, (PRICAI-02),
Tokyo, Japan.

[4] P. Scerri, D. Pynadath, and M. Tambe, 2002.
“Towards adjustable autonomy for the real-world”.
Journal of AI Research (JAIR), Volume 17, Pages
171-228.

[5] D. Shapiro, 2001. “Value-driven agents”, Ph.D.
thesis, Stanford University, Department of
Management Science and Engineering.

[6] P. Maes, 1994. “Agents that Reduce Work and
Information Overload”. Commun. ACM 37,7, 31-40

[7] P.Rizzo,A.Cesta and Maria Miceli,1995. On Helping
Behavior in Cooperative Environments, Published in
Proceedings of the International Workshop on the
Design of Coopertive Systems, pp 96-108

[8] M. Huhns and M. Singh, 1998. “Personal
Assistants,” In IEEE Internet Computing, Vol. 2,
No. 5: Sept-Oct 1998, pp. 90-92, IEEE press.

[9] P. Scerri and N. Reed, 2001. “Designing Agents for
Systems with Adjustable Autonomy”. The IJCAI-01
Workshop on Autonomy, Delegation, and Control:
Interacting with Autonomous Agents.

[10] H. Hexmoor and S. Battula ,2003. “Towards
Collaboration between Human and Social Agents
that mind Human Social Personality”. International
Symposium on Collaborative Technologies and
Systems. (to appear)

[11] S. Marsh, 1992. “Trust and reliance in multi-agent
systems: a preliminary report”. In Proceedings of the
4th European Workshop on Modeling Autonomous
Agents in a Multi-Agent World, Rome.

[12] Y.T. Tang, P. Winoto & X. Niu, 2002.
“Investigating Trust between Users and Agents in a
Multi agent Portfolio Management System: a
Preliminary Report”. In the Workshop on business
agents and the semantic web, Fifteenth Canadian
Conference on Artificial Intelligence.

68 Informatica 28 (2004) 61–67 H. Hexmoor et al.

 Informatica 28 (2004) 69–78 69

Indexing Agent for Data Gathering in an e-Travel System
Marcin Paprzycki, Austin Gilbert, Andy Nauli, Minor Gordon, Steve Williams and Jimmy Wright
Computer Science Department
Oklahoma State University
Tulsa, OK 74106, USA
{marcin, austirg, nauli, minorg, stw, jimmyww}@cs.okstate.edu

Keywords: content management, Internet, software agents, data indexing, ebXML registry/repository

Received: October 12, 2003

In this paper we discuss the problem of indexing information available on the Internet with the ultimate
goal of delivering personalized content to users of an Internet-based travel support system. We
introduce the form of index tokens that will be stored in the system and describe an agent-based
subsystem designed to support the indexing function. Finally, we discuss the search agent that was
developed to provide the system with index tokens and fueled experimentation with the proposed design.

1 Introduction
In the past decade the travel services market has
developed a hugely diverse presence on the Internet, in
terms of both resources offered (hotel rooms, rental cars,
dinner reservations, golf tee times, “general tourist
information,” etc.) and approaches to offering them (e.g.
aggregation, personalization, mobile delivery). For
instance, a simple search using the keyword hotel on
Google search engine returns about 82,500,000 hits
sorted by their rank. Thus, as in most other domains, the
potential travel services user must often deal with one of
the crucial problems inherent in information diversity:
the lack of an encompassing catalogue through which the
content of interest may be located. Most, if not all,
Internet search engines provide only a non-categorized
and mostly non-intuitive means of locating and
representing data. Furthermore, search results in the
travel domain (as well as any other domain) are likely to
include too many hits unrelated to actual travel choices.
The Google and Yahoo directories are representative
attempts to organize access to, and presentation of, many
types of data including travel data, however, for instance,
they provide no organized booking interface for the data
they offer. Additionally, they do not provide any realistic
means of personalization of content delivery. Finally, the
Google directory consists of a mixture of travel resource
types and geographical categories (see [24] for more
details) that does not necessarily constitute the best way
of supporting travelers. On the other hand, some of the
major travel sites such as Expedia, Travelzoo, etc.
organize and attempt to personalize a limited subset of
travel data (typically airline, car, hotel reservation as well
as cruise and vacation package arrangements), based on a
limited number of large providers and content stored in
tailor-made databases within the system. Here, the mass
of information stored on independent Internet sites is
completely ignored. Thus, we believe that neither search
engines nor the large travel sites are currently capable of
providing a complete support to a modern day traveler.

Ideally, a travel support system should act as a filtering
and organizing intermediary between travel consumers
and travel suppliers [6]. Its primary function [2] is to find
the travel information that is most relevant to a given
customer at a given moment and deliver it in a well-
organized and intuitive way [5, 7, 15, 25]. In order to
support this content-delivery role, the system must
explore the Internet and other sources dynamically
constructing and managing a supply of travel content
from known and previously unknown providers [2, 8, 23,
24, 26].

In exploring the potential of such a travel support system,
we have followed a two-pronged approach. First, since
travel support is a paradigmatic example of the
application of agent technology [19, 20], we have
decided to utilize software agents as the framework of
our system [2]. Second, as an information broker
between travel content suppliers and end users (travelers)
we must carefully consider the means by which we will
structure the information within the system, in order to
deliver the most relevant and accurate travel choices to
the consumer [4, 5, 29]. We believe that one of the more
promising approaches to structuring information from
diverse sources is to apply index-based techniques
similar to those described in [13] (with references
available there). This approach should allow us to
effectively deal with data available from multiple sources
across the Internet in such a way that pertinent
information may be efficiently and accurately selected
and delivered to consumers. Note that in our work we are
primarily interested in personalized delivery of travel
related informational content rather than booking of
travel arrangements.

The aim of our paper is twofold. First, we describe an
indexing method for storing the travel content. Second
we present an agent subsystem that is devoted to
management of index tokens in the central repository.

70 Informatica 28 (2004) 69–78 M. Paprzycki et al.

Finally, we briefly describe a simple search agent that
has been developed to search the Internet for the travel
content and to deliver index tokens to the system.

2 Content management problem
In order for an e-travel support system to accurately
reflect available travel options and information, a robust
strategy for obtaining this content from sources on the
Internet and managing it within the system is required.
Existing content provision systems typically approach
this problem in one of two ways:

- by aggregation: retrieving beforehand all
information that the system will possibly need in the
future, and organizing it in databases in a predefined
(by humans) format for future retrieval,

- by selection: indexing information to maintain a
“map” as to what information (and where) is
available on the Internet, and retrieving the actual
content only as it becomes necessary to satisfy user’s
queries.

Most online travel content gateways (e.g. Expedia,
Travelersadvantage, etc.) employ the first method,
storing the majority of browsable content locally and
calling out to the primary source systems on the Internet
(e.g. those run by travel providers such as airlines) for
verification of locally-cached information (e.g. verified
flight schedules, seat availability and ticket prices). The
main advantage of this approach is the immediate local
availability of content; interestingly, this is also a
disadvantage, in that it leads to the problem of “data
coherency.” In addition, the amount of data that has to be
necessarily stored locally and continuous local
processing necessary for aggregation systems to operate
makes them extremely resource intensive.

The majority of search engines (e.g. Yahoo, Interia,
Lycos, etc.) take a hybrid approach, aggregating only a
limited store of data (such as page headers and a few
selected / cashed pages) necessary to support the search
function. This approach attempts at striking a balance
between the amount of content stored locally, frequency
of local information updates and the precision of the
search function. Rudimentary content organization and
differentiation available in browsers combined with the
relative freshness of data are a reasonable means for
satisfying typical content searches (i.e. where the content
changes infrequently); however, this approach is wanton
when applied to travel-oriented services where the
freshness of content is of paramount importance.

Our e-travel system fully embraces the second approach
to content management (by selection) by attempting to
develop a well-organized and highly cross-referenced
index of Internet-based content (for a description of a
number of similar systems see [1, 10]). The proposed
system dynamically utilizes remote content by
referencing local indices – pointers. It focuses on the
classification of content instead of the content itself, as in

a library catalog (or in yellow pages), only storing
enough information in indices to satisfy user queries.
This approach eliminates the above mentioned problem
of data coherency and is aimed at reducing the overall
amount of data stored and managed locally. The
downside of this approach is that the actual content must
always be retrieved from a remote site. If a content
provider becomes unreachable, the e-travel system is
unable to retrieve the information and thus fails to fulfill
the user’s request. We have faced such a situation during
our system’s development process when a remote site
providing reverse geo-coding for full addresses ceased to
offer geo-coding services, leaving us with a much less
desirable choice for our GIS subsystem (see section 5.1).
More generally, any latency in communication with the
primary content provider is reflected in the performance
of the system. Nevertheless, in designing the e-travel
system we felt that the advantages of accurate indexing
combined with ability to deliver up-to-the-minute
information and possible optimization of local resource
utilization (resources can be utilized to provide user with
personalized content rather than to manage copious
volumes of data) outweighed the disadvantages of
remotely-stored content. We also expect that an approach
based on indexing will improve the limited queries
options and result displays caused by traditional database
logic and principles [1, 13].

3 Agent-based travel support system

3.1 History
The initial design of the travel support system was
presented in [2, 23, 26] and while it is being constantly
modified (this paper represents such a modification), the
general idea of dividing the functionality into two
coordinated subsystems, one handling content
management and the other content delivery [6], remains
unchanged. In this paper we concentrate on the content
management aspects of the system. Further details about
the systems and in particular the proposed content
delivery functionalities can be found in [2, 7, 8, 15, 24].
The initial development of the system was initiated using
the Grasshopper agent platform [9], however quickly
realized that it did not fully supported the FIPA [5]
standards at that stage of its development. We have
therefore switched to the JADE agent platform [14],
which is built around the FIPA standards.

3.2 Sources of content indices

The travel options and information that is presented by
the e-travel system originates from two types of sources
on the Internet: verified and unverified. Verified sources
are referred to as Verified Content Providers (VCP). This
designation implies a degree of conformance to expected
standards of accuracy, format, and availability of
described travel options. Content from VCPs can be
either fed directly to the system or gathered by search

INDEXING AGENT FOR DATA... Informatica 28 (2004) 69–78 71

Figure 1: Information gathering and indexing; 1 – flow of index tokens originating from the VCPs, ready for insertion
to the registry, 2 – flow of index tokens resulting from the Internet searches

agents, as described in [2]. In the first case we assume
that the incoming index tokens (pointers to available
information) are both in the required format and
complete, and thus can be immediately stored in the
system without further processing. In the second case,
the acquired content indices may be incomplete and/or
require further processing. When dealing with unverified
sources the situation is similar to the latter case with an
added component of necessary verification and
deconfliction of remote information. At this stage of
system design we will omit these last two issues of
verification and deconfliction, assuming they have been
successfully resolved. Let us note, that the proposed
approach allows us to address one of the important
research issues raised by Nwana and Ndumu in [20]; how
to deal with dynamically changing content and form of
the Internet-based information. Here, we assume that the
VCPs are in contractual agreement with the travel agency
and either they will continue to deliver index tokens in
prescribed format, or any changes in their site design will
be communicated to our system, allowing it to be
adjusted accordingly. Since the VCPs are the primary
sources of the information, changes occurring in the
remaining sites do not threaten the functioning of our
system. Furthermore, this approach allows us to avoid
most questions related to the reliability of Internet-based
information. Finally, since the VCP provided information
is assumed to be trustworthy, we can rely on them as the
source of accurate information delivered to the user,
while other, unverified, sources can be utilized only as
supplementary resources. Regardless of source, the
acquired indices are stored in the central registry for later
access by the content delivery functions of the system.
When the user requests information, a relevant content
pointer is either found in the registry and the process of
content extraction from the provider(s) is initiated (while
additional search agents may be released to the Internet
seeking additional content relevant to the query; in order
to focus our presentation we will omit discussing this
possibility), or a new index search and acquisition is

forced in order discover relevant content (from both
VCPs and unverified sources). Since the case of complete
tokens being delivered directly by the VCPs is trivial
(only an indexing agent is required to receive them and
correctly store in the system), for the remaining part of
this paper we will concentrate our attention on the tokens
resulting from the Internet searches.

3.3 Semantics
Ideally, the content management subsystem should shield
the rest of the e-travel system from the supply / retrieval
mechanics of the travel content. Additionally, it should
allow the content delivery functions of the systems to
operate on the assumption that travel information is
accurately classified. In theory, this would require the
content management subsystem to semantically
“understand” the information it keeps track of [8, 15, 25].
Here we have to acknowledge that currently available
technology does not support this assumption of semantic
“understanding” (its foundations are being developed,
but are not widely accepted and thus cannot be assumed).
In the absence of such technology, our system attempts
the next best substitute. We apply a predefined
categorical overlay to the travel information managed by
the system, and allow the entire system to tune the
accuracy of this overlay (e.g. with user, agent and
supplier feedback, as described in [6]), with the
ostensible goal of simulating real semantic classification.
In addition, we pay close attention to the efforts initiated
by the Open Travel Alliance that attempts at introducing
a hierarchical description of the “world of travel” and
most important processes taking place there [22] (see
also [24] for more details). Note that, while currently not
operating on the semantic level, most of the functions of
the proposed system can be adjusted to involve, for
instance, RDF / OWL based ontology / semantics [11].

VCPs

unverified
sources

index registry

1

2

2 indexing
agent

search
agent

search
agent

Internet

72 Informatica 28 (2004) 69–78 M. Paprzycki et al.

4 Structure of index tokens
The e-travel system relies heavily on the accuracy and
completeness of local content indices. They must be
succinct enough to be easily acquired and stored, yet
verbose enough to satisfy all of the requirements of both
content management and content delivery subsystems.
Consider the following scenario: a user wishes to make
travel arrangements to visit Mt. Rushmore, a historical
monument. The user must first travel to South Dakota
(requiring a means of transportation), and perhaps find a
place to stay (hotels in the area). She may also wish to
know about local restaurants or other places of interest.
In order to satisfy the user’s request for travel
arrangements, the system must initially make two major
distinctions based upon the query alone: location (South
Dakota) and desired destination/attraction (Mt.
Rushmore). In addition, the e-travel system must also be
able to resolve multiple providers of content relating to
Mt. Rushmore, in order to find those indices, which will
eventually yield the most desirable response for the user
(for the purpose of this paper we skip the question of
content provider ranking, which is one of the possible
ways of dealing with potential information overload).

Our current design of indices evolved from our early
attempts to develop a classification system of the world
of travel content [2], and was adapted to satisfy the above
requirements. We now describe an index as a tuple
consisting of:

 (<provider>,<type>,<location>,<?notes?>)

Here, the ?notes? component is added to the tuple to
support of various administrative functions necessary
when dealing with data delivered by the search agents
(for more details see Section 5). Let us now look into the
provider, type and location fields of the tuple in more
detail.

4.1 The provider component
The provider component describes the means of
accessing travel resources on the Internet. It is stored in
the form of a Uniform Resource Identifier (URI). This
URI describes the access method for the resource, the
location of the resource, and any marker data that may be
unique to this resource within the provider. In addition to
explicitly identifying the transport protocol, the protocol
section also (directly or indirectly) identifies the access
methods of the server. For example, http:// and ota://
each have their respective access methods (hypertext and
Open Travel Alliance protocols). Other possible
protocols include edi:// and soap://. The URI also
contains the host name to communicate with using this
protocol. Let us also note that our system is capable of
efficiently dealing with situation when multiple providers
supply information pertinent to a given travel resource.
In this case multiple index tokens varying only in the
provider component will be “co-stored” in the repository
for efficient retrieval (for more details see [30]).

4.2 The type component
The type component of a tuple describes the position of a
travel resource in the taxonomic hierarchy of all
resources (e.g. Accommodations -> Hotels -> Chains).
The system will utilize this information to filter out
content that for some reasons (i.e. in the context of a
given query, or for a particular user) is not pertinent to a
user's needs. Thus, it is the focal point for the proto-
semantic division of travel information. For example: if
the user is interested in hotels, an agent will be able to
retrieve only hotel indices from the repository. Current
version of our hierarchical taxonomy for the type
component is derived from the modified Yahoo!
directory of Travel and the Open Travel Alliance [22]
XML Schemas (see also [24] for more details). The
content type is intended to define the relationships
between travel resources.

4.3 The location component
Geography and location are key factors for determining
the relevance of indexed travel resources to a particular
user’s travel plans. The location component must be
flexible enough to support the multiple ways it may be
utilized. Location information must be specific enough to
differentiate between different sites. It must be
hierarchical so that organizational relationships between
sites at different locations on different levels (continent,
country, state, city, et al.) can be surmised (e.g. the
destination is in a different country). Given these criteria,
our initial design of the location component consists of: a
taxonomic description based on the ISO-3166 standard,
which defines the continent, country, state or province,
and city; and the latitude and longitude for exact
locations and proximity searches. These are represented
in the ebXML hierarchy [21]. However, in the tuple itself
we store the geographical information in the form of a
(latitude, longitude) pair. This form as been selected due
to the need of processing geospatial information beyond
simple information that a given place of interest is, for
instance, located in Claremore, Oklahoma, United States.

The type/location/provider tuple as described above,
located in hierarchical structures representing resources
and geospatial locations, is the basis of the classification
scheme to be utilized by all of the functions of the travel
support system, from the retrieval of content from travel
suppliers on the Internet to the delivery of travel choices
to the end user. It is with these functions in mind that we
proceed to manifest the tuple on the implementation
level, and, we hope, provide an efficient means of
communicating travel content. Let us also observe that
the proposed schematic solves the, above indicated,
problem of the Google directory [24]. In our approach
we are able to untangle the geospatial information from
the travel resource information by providing two separate
but complimentary “looks” at our data. In this way, we
are also making an initial step toward developing
ontology of travel.

INDEXING AGENT FOR DATA... Informatica 28 (2004) 69–78 73

Figure 2: Proposed architecture for indexing travel data from the Internet.

The following is an example of a complete index token
that is ready to be stored in the system (the ?notes? filed
is omitted, but in this case it would contain information
that the token is complete and no further processing is
required):

(edi://www.drp_sushi_palace.com/, restaurant,
(25’45’’, 34’67’’))

Here, information about a restaurant is available at
www.drp_sushi_palace.com and the communication
protocol with that site is edi:// and the location of the
restaurant is 25’45’’, 34’67’’ (the details of the ISO-3166
location will be retrievable from the position of the token
in the geo-tree structure in the registry, while the
restaurant is positioned within a hierarchical structure of
types). Once a complete index token is successfully
inserted into the registry, it is ready for processing by the
content delivery subsystem (as described in [2, 7, 8, 15,
24]) and can be utilized to prepare responses to user
queries. To implement the storage of index tokens, we
have decided to utilize the turned to the ebXML Registry
/ Repository (for an extended discussion of index storage
see [21, 30]).

5 Index acquisition
We now consider the actual process of index acquisition.
As indicated above, there are two separable sources of
index tokens: VCPs that feed complete indices directly to
the system (this relationship is pre-defined by agreements
between selected providers and the e-travel system); and
search agents, which explore both the remaining VCPs
and other repositories on the Internet. Tokens acquired
by search agents may or may not be complete, and if
their source is unverified, the content referred to should
be validated and deconflicted (in the case when there is

no way to verify the information, the ?notes? field will
be utilized to store such an information so that in the
content delivery subsystem such information can be
treated accordingly, when delivered to the user). Within
the system all incoming tokens (from the VCPs and
search agents) are received and handled by an indexing
agent, which inserts them into the registry. Incomplete or
not yet validated tokens are marked as such in the
?notes? field of the index tuple. Furthermore, incoming
tokens may have various priority levels, also indicated in
the ?notes? field. For instance, tokens acquired by the
search agents for a user currently interacting with the
system will have to be made ready for use (completed,
and if necessary validated and deconflicted) as quickly as
possible, while other tokens (it is assumed that in a fully
operational system search agents continually traverse the
Internet in search of travel-related information, similarly,
for instance to the Google-bots) may be processed when
the system is “idle.” Thus the content management
subsystem, as we described it so far, consists of index
tokens being fed directly by the VCPs and search agents
that find location of pertinent travel related content and
generate index tokens; furthermore we have one or more
indexing agents that store index tokens in the registry
(number of indexing agents will depend on the scalability
needs of the system). The JADE-based implementation
of our system helps facilitating agent interactions. First,
communication between the search agents and the
indexing agent(s) (as well as all other inter-agent
communication) is facilitated using ACL messages
which are implemented in compliance of the FIPA
standard. Second, search agents can locate indexing
agent by simply querying the JADE Directory
Facilitator. The following code snippet illustrates the
method invoked to achieve this goal:

74 Informatica 28 (2004) 69–78 M. Paprzycki et al.

When this method returns, the variable index will be
pointing to the Agent Identifier of the indexing agent.

5.1 The GIS agent
As noted above, the location component of the index
token tuple is to be represented as a (latitude, longitude)
pair. Typically, geospatial data available on the Internet
is not represented in such form. Thus most index tokens
delivered by the search agents will not have the correct
form; typically an empty location field and a note
specifying token’s incompleteness in the ?notes? field.
To deal with this situation as well as to support a number
of other important functions in the content delivery
subsystem a GIS agent has been developed. In the
context of this paper, the main role of the GIS agent is to
fill the (latitude, longitude) data of the index token. This
is the standard reverse geo-coding function, where the
input is an address (found within a web resource by the
search agents) and output is the (latitude, longitude) pair.
Current implementation of the GIS agent relies on
external party to provide reverse geo-coding
functionality. As mentioned above, initially we were able
to locate a service which provided the required
functionality free of charge, however, shortly after
completing the initial implementation of the GIS-agent,
this service was discontinued. Thus, in our subsequent
experiments we have utilized the
http://mapper.acme.com site. This website accepts the
request for GIS queries interactively (e.g. using a form
and an input box). This can be easily transformed using
Java’s HttpURLConnection class. The form is
submitted using the get method and thus it can be
represented as a URL by appending the base address of
the website with parameter and value pair of intended
queries, e.g.

http://mapper.acme.com/find.cgi?zip=74075.

While, obviously, this particular service is only of
limited capability – it accepts only ZIP codes and only of
locations in US – this level of detail provided by a free of
charge system was satisfactory for our proof of concept
system. Obviously, in a real system geospatial
information would have to be more precise than one that
is based solely on ZIP codes. Such information is
available (including locations outside of United States)

and can be easily incorporated into our system.
Unfortunately, services delivering robust reverse geo-
coding are not freely available and we have decided to
continue utilizing the ZIP-code only service for the time
being.

Summarizing, in the current implementation of the
content management subsystem, the GIS agent receives
the ZIP code information from the indexing agent (send
as an ACL message) and contacts the acme.mapper.com
site to obtain the (latitude, longitude) pair (our
implementation utilizes a slight shortcut as the search
agents deliver also the ZIP code instead of a token with
an empty location field; this latter solution that was
postulated above requires implementation of auxiliary
agents; see Sections 5.2). The resulting information is
send back to the indexing agent (again, as an ACL
message) which then completes the token and inserts it in
the repository. Overall, the simplified schema of the
system has been depicted in Figure 2.

As noted earlier, in a travel support system, there is a
need for a much broader support for geospatial data
processing. For instance, it will be necessary to respond
to distance oriented queries, such as “how far is it from a
given restaurant X to a given movie theater Y,” or
“which restaurants are within a given distance of hotel
Z.” These functions can either be implemented inside of
the same GIS agent or each of the particular sub-
functions can be implemented as a separate GIS agent.
While the second solution seems to follow more closely
the spirit of agent system development (where separate
functions are represented by separate agents), and the
particular GIS functions are naturally separated by the
content management and delivery subsystems, the final
decision for the agent-based implementation of the
geospatial functions will be made in the next iteration of
system development.

5.2 Auxiliary agents
As discussed above, one of the problems in indexing data
originating from the Internet is the need for dealing with
incomplete index tokens returned by the search agents.
No agent can acquire information that is simply not
available. As indicated above, the majority of content
providers do not provide geospatial information in the
form desired by our system. Rather they feature an
address (complete or partial). Thus the system will have
to properly manage incomplete index tokens (at this
stage we will consider any token gathered from an
unverified source as incomplete). To achieve this goal,
incomplete tokens are flagged as incomplete in the
?notes? field, assigned priority and inserted into the
registry. They are then processed by token completion,
validation, deconfliction (CVD) agents. These agents
traverse the registry and process the incomplete or
unverified tokens. As an example let us consider the case
of a token that is missing the location data. It is known
who is the provider of the data, the type is also known (it
is a hotel), while the location field contains no data and

INDEXING AGENT FOR DATA... Informatica 28 (2004) 69–78 75

the ?notes? field specifies an incomplete token with high
priority. The CVD agent will therefore create an instance
of a query agent. This agent will communicate with the
content provider (using the specified protocol available
from the provider field) and establish that the hotel in
question is the Fairmont Hotel in San Francisco and
recover its street address (from the provider, or from a
different content provider discovered during separate
web-searches). This information will be returned as an
ACL message to the CVD agent responsible for
managing this particular token. The CVD agent will then
contact (via an ACL message) the above described GIS
agent (see [2, 23, 26] for more details) where reverse
geo-coding will result in the (latitude, longitude) pair.
This information will be then inserted it into the token
and the flag signifying an incomplete token will be
removed from the ?notes? field, thus making it a full
member of the registry. While, currently, this
functionality is not yet implemented, its implementation
is one of our next goals in the development of the
system.

6 Content gathering
The difficult problems of content indexing and retrieval
are representative of a crucial issue confronted in
Internet-related research: how to introduce
“understanding” to machine-web interaction. One of the
reasons that many online content gateways choose the
aggregation approach to content management is because
it is easier to implement, despite its resource-
intensiveness. The more “intelligent”, selective approach
of indexing content for later utility requires an in-depth,
machine “understanding” of the content in order to
reliably utilize it.

6.1 Interpreting sources
In recent years there has been a resurgence of interest in
ontologies as a way of dealing with the problem of
machines “understanding” the semantics of information
on the web. Many claim that agents with ontologies will
be the next breakthrough technologies for web
applications [11]. This has been the thrust of the
Semantic Web project [27] – the development of an
ontology-described content infrastructure that will allow
machines to interpret semantics as opposed to mere
syntax. This capability has been realized in web pages
hosted by several organizations. According to the DAML
Crawler [4], as of the time of our writing, there are
semantically 21,025 annotated web pages. Unfortunately,
this number is negligible compared to the total of 7
billion web pages on the Internet. Therefore, today, it is
not realistic to assume that agents can simply understand
the web-content.

The design of our e-travel system takes into account the
eventual existence of a semantically-described web; and,
in particular, development of a complete and generally
accepted ontology of travel, but it does not rely on it.
Rather, we plan to implement an intermediate solution

that allows us to depend on agent “understanding” only
within the e-travel system, a working assumption which
is supported by adapting the perimeter of the system (i.e.
the index acquisition system) to simulate semantic
gathering [11, 27].

One of the typical approaches to developing agents with
the necessary functionalities is through topical web
crawlers [16]. Topical web crawlers take advantage of
knowing the context of the query to differentiate between
the relevant and irrelevant web pages. Web pages are
considered to be relevant if their similarity value satisfy a
given threshold. Similarity value is calculated based on
lexical analysis of the web page.

Another approach to semantic understanding of the web
is through application of wrappers. For example,
information agents in Heracles [13] are trained to locate
meaningful information in the web pages by being shown
examples consisting of web pages labeled with markers
to indicate where the information is located. These
examples are then used to develop a set of wrappers that
are subsequently utilized in intelligent searches.

6.2 Simple search agent
While acknowledging that the above described
techniques are already relatively sophisticated and new
techniques are constantly being developed, for the
purpose of our demonstrator system we have decided to
pursue a more simplistic approach. Note, however, that
we rely here on one of the important advantages of
agent-based system design. Our search agents were
implemented to verify the design of the system, to fill-in
the registry with tokens, to pursue initial efficiency and
scalability studies. As the system matures, our simple
search agents will be replaced by more sophisticated
agents and the system will continue its work without any
additional changes.

The search agent must be designed so that it can classify
a web page into the correct travel resource and finding
necessary information to create its index token. Our
approach is to use a simple statistical method to calculate
the similarity of a web page to a set of given keywords
(or query). This statistical method compares the content
of the web page with keywords that represent a travel
resource. The similarity value of the web page and the
keywords are then computed. This value is then used to
decide if the given web resource matches the travel
resource. In implementing this functionality we have
utilized existing software.

In designing our search agent, we utilized several
software packages. Assume that our agent accessed a
web page. First, the HTML Parser [12] was used to strip
out all HTML-based formatting instructions. The
stripped-out HTML page was then fed to the Apache
Lucene [3] for statistical analysis. The statistical analysis
process begins with applying a lower case filter, which
turns all words into lower case. The second step consists

76 Informatica 28 (2004) 69–78 M. Paprzycki et al.

of removing the stop-words (words with no meaning e.g.
the, than, of, which, were, are, etc.). This allows us to
reduce the size of the index file. The list of stop words
was based on [28]. In the third step, Porter Stem Filter
[19] was applied to convert words into their basic form
(e.g. running into run, watches into watch). The final
step was to compute the statistical similarity of the
filtered content to the travel resource keywords provided
to the system. The Apache Lucene package includes all
these steps. It also implements the vector space model to
calculate the similarity value. The vector space model
works by comparing the frequency of words that appear
in the document with a set of given keywords using the
formula:

where tdij denoted the ith term in the vector for the
document j, tqik denotes the ith term in the query vector k
and n number of unique terms in the data set.

We have experimented with the above described simple
search agent in two ways. First, to obtain some indication
of the approach’s accuracy, for this purpose we have
implemented a GUI front end to communicate with
JADE agents. As expected, the simplicity of the
approach yielded disappointing results, with correct
identification only about 25% of the visited web pages
when a single keyword was used. At the same time these
results seem promising, as much better recognition rates
are obtainable (more details about our experiments and
their results can be found in [18]). More importantly, we
were able to develop a working system in which search
agents scavenged the web and produced index tokens.
These index tokes were completed through interactions
between the indexing agent and the GIS agent. Finally,
the indexing agent was able to utilize the Java API for
XML Registry (JAXR) to insert completed tokens into
the ebXML Reiztry /Repositiry.

7 Concluding remarks
In this paper we have reported on our progress in
developing an agent-based travel support system. Our
principal motivation for attempting to implement a
realistic agent system was to establish the potential and
limitations of a more general class of agent-based
systems. In this we follow the methodological lead of
Nwana and Ndumu [20] who have stressed the
importance of the implementation and experimentation
phases of agent system development. We are also
challenged by the fact that all the past projects have been
limited in scope [13, 19, 25, 29] or abandoned in early
stages of development.

At the time of writing of this paper we have implemented
(1) the hierarchical classification schemes for the type
and the location components and instantiated them in the

ebXML registry / repository [21, 30]; (2) the simple
search agent, the indexing agent and the GIS agent; (3)
communication between them. In this way we were able
to perform initial experiments with inserting and storing
tokens in the registry.

These initial experiments indicate that we will have to
rethink the way in which the index tokens are stored and
operated on. For still unknown reasons we have run into
a number of problems with the ebXML
Registry/Repository. While all necessary operations
worked well when its native GUI interface was used, we
were constantly running into problems when combining
the Repository with the JAXR and other insertion
techniques. Some of these problems were of technical
nature e.g. hanging registry, runaway threads etc., but
many were also related to scalability e.g. attempting to
instantiate the complete ISO-3166 classification for the
United States in the Repository proved impossible. Since
it seems unlikely that the Registry/Repository scalability
issues were related to hardware shortcomings (a 2.4 Ghz
Pentium-4 server with 1 Gbyte of RAM was used), we
tend to believe that this may be a problem with the
currently existing ebXML implementation. Establishing
this fact was one of the important lessons learned from
our experiments. This will force us to re-evaluate the
token storage technology before the next step in system
design and implementation. Observe, however, that while
the token storage technology may change, this will not
affect other parts of the system.

Obviously, we recognize the drawbacks of relying on
third-party GIS subsystem as the primary source for
latitude and longitude information (limited to US and
Canadian address only). However, as indicated above,
we consider such drawbacks to be insignificant during
the system development time. Finally, our categorization
of the world of travel (the hierarchy used to structure the
information stored in the type field) is primarily based on
the Yahoo! catalog and the work of the Open Travel
Alliance (OTA) [22] and, obviously it needs to be re-
thought and improved on the basis of our experiments.

This leads us to the obvious fact that there exist a large
number of research and/or practical issues that need to be
addressed in the near future. Let us list some of them
(obviously this is only a partial listing): (1) re-evaluation
of the index storage technology, with a strong possibility
of replacing the ebXML Registry/Repository by a more
robust solution; (2) completion of the content
management subsystem as described in this paper
(including the auxiliary agents) – this would allow us to
launch the system to automatically collect index tokens
and populate the registry for further experiments; (3)
addressing the question of search agent intelligence – we
would like them to be effective in filtering web content
and supplying our system with complete index tokens
while being relatively lightweight – and, definitely we
need high reliability results when we will start to
automatically populate the repository (here it will be
better to reject a correctly categorized resource than to

INDEXING AGENT FOR DATA... Informatica 28 (2004) 69–78 77

accept an incorrectly categorized one); (4) investigating
how many agents of various types (indexing, token
completion, search, GIS etc.) are required to prevent
processing bottlenecks in the content management
subsystem; (5) evaluating if the proposed indexing
schema is robust enough to support the content delivery
functions; (6) study how does the proposed indexing
schema match with the personalization oriented functions
that the system is to support (in particular user behavior
data storing and mining [5]). Our experimental findings
(like the fact that the ebXML Registry/Repository may
not be capable of supporting our needs) indicate that the
above listed research questions will have to be
investigated both theoretically and practically. As
suggested in [20], experimentation will play the crucial
role of guiding our system development. We will report
on our progress in subsequent publications.

References

[1] Abramowicz, W., Kalczyński, P., Węcel, K. (2002)
Filtering the Web to Feed Data Warehouses, Springer
Verlag Publishing, New York.

[2] Angryk, R., Galant, G, Gordon, M., Paprzycki M.
(2002) Travel Support System – an Agent-Based
Framework, Proceedings of the International Conference
on Internet Computing (IC’02), CSREA Press, Las
Vegas, pp. 719-725

[3] Apache Lucene from http://jakarta.apache.org

[4] DAML Crawler, retrieved Feb 11, 2003 from
http://www.daml.org/crawler/

[5] FIPA, http://www.fipa.org

[6] Galant V., Jakubczyc J., Paprzycki M. (2002)
Infrastructure for E-Commerce, in Nycz M., Owoc M. L.
(eds.), Proceedings of the 10th Conference on
Knowledge Extraction from Databases, Wrocław
University of Economics Press, pp. 32-47

[7] Galant V., Paprzycki M. (2002) Information
Personalization in an Internet Based Travel Support
System, Proceedings of the BIS’2002 Conference,
Poznań, Poland, pp. 191-202

[8] Gordon M., Paprzycki M., Galant, V. (2002)
Knowledge Management in an Internet Travel Support
System, in: Wiszniewski B. (ed.), Proceedings of
ECON2002, ACTEN, Wejcherowo, 2002, pp. 97-104

[9] Grasshopper, http://www.grasshopper.de

[10] Gudivada V, Raghavan V, Grosky W, Kasanagottu
R, (1997) Information Retrieval on the World Wide
Web, IEEE Internet Computing, pp. 57-68.

[11] Hendler, J. (2001) Agents and semantic web, IEEE
Intelligent Systems Journal, 16(2), pp. 30-37

[12] HTMLParser, http://htmlparser.sourceforge.net

[13] Intelligent Systems for Tourism (2002) IEEE
Intelligent Systems, pp. 53-55

[14] JADE, http://jade.cselt.it

[15] Jakubczyc, J., Galant, V., Paprzycki, M.,
Gordon, M. (2002) Knowledge Management in an
E-commerce System, Proceedings of the Fifth
International Conference on Electronic Commerce
Research, Montreal, Canada, CD, 15 pages

[16] Menczer, F., Pant, G., and Srinivasan, P. (2003)
Topical Web Crawlers: Evaluating Adaptive Algorithms,
ACM Transaction on Internet Technology, 5(N), pp. 1-38

[17] Porter M., Porter stemming algorithm,
http://www.tartarus.org/~martin/index.html.

[18] Nauli A. (2003) Using software agents to index data
for an e-travel system, Masters Thesis, Oklahoma State
University, 2003

[19] Ndumu, D., Collins, J., Nwana, H. (1998) Towards
Desktop Personal Travel Agents, BT Technological
Journal, 16 (3), pp. 69-78

[20] H. Nwana, D. Ndumu, A (1999) Perspective on
Software Agents Research, The Knowledge Engineering
Review, 14 (2), pp. 1-18

[21] OASIS/ebXML Registry Services Specification
v2.0, http://www.oasis-open.org/ committees/regrep/
documents/2.0/specs/ebrs.pdf

[22] Open Travel Alliance, http://www.opentravel.org

[23] Paprzycki M., Angryk R., Kołodziej K.,
Fiedorowicz I., Cobb M., Ali D. and Rahimi S. (2001)
“Development of a Travel Support System Based on
Intelligent Agent Technology,” in: Niwiński S. (ed.),
Proceedings of the PIONIER 2001 Conference,
Technical University of Poznań Press, Poznań, Poland,
pp. 243-255

[24] Paprzycki M., Gilbert A., Gordon M., Wright J.
(2003) The World of Travel: a Comparative Analysis of
Classification Methods, Annales UMCS Informatica, A1,
pp. 259-270

[25] Paprzycki M., Gordon M., Gilbert A. (2002)
Knowledge Representation in the Agent-Based Travel
Support System, in: Yakhno T. (ed.), Advances in
Information Systems, Springer-Verlag, Berlin, pp.
232-241

78 Informatica 28 (2004) 69–78 M. Paprzycki et al.

[26] Paprzycki M., Kalczyński P. J., Fiedorowicz I.,
Abramowicz W. and Cobb M. (2001) “Personalized
Traveler Information System,” in: Kubiak B. F. and
Korowicki A. (eds.), Proceedings of the 5th International
Conference Human-Computer Interaction, Akwila Press,
Gdańsk, Poland, pp. 445-456

[27] Semantic Web, http://www.semanticweb.org

[28] Stop Words List, http://www.onjava.com/onjava/
2003/01/15/examples/EnglishStopWords.txt.

[29] Suarez J. N., O’Sullivan D., Brouchoud H., Cros P.
(1999) Personal Travel Market: Real-Life Application of
the FIPA Standards, Technical Report, BT, Project
AC317

[30] Wright, J., Williams, S., Paprzycki, M., Harrington,
P. (2003) Using ebXML Registry/Repository to Manage
Information in an Internet Travel Support System, in:
Abramowicz W. and Klein G. (eds.), Proceedings of the
BIS'2003 Conference, Poznań University of Economics
Press, Poznań, Poland, 2003, pp. 81-89

 Informatica 28 (2004) 79–89 79

Multi-Agent System Case Studies in Command and Control, Information Fusion
and Data Management

Frederick Sheldon and Thomas Potok
Oak Ridge National Laboratory
Computational Sciences and Engineering
Oak Ridge, Tennessee 37831-6363
Phone: 865-576-1339/ Fax: 865-241-6275
Email: SheldonFT@ornl.gov | PotokTE@ornl.gov

Krishna Kavi
Department of Computer Science
The University of North Texas
Denton, Texas 76203
Phone: 940-565-2767 / Fax; 940-565-2799
Email: Kavi@cs.unt.edu

Keywords: Intelligent Software Agents, Ontology, Information Fusion, Collaborative Decision Support

Received: August 18, 2003

On the basis of three different agent-based development projects (one feasibility study, one prototype, one
fully fielded), we assess the fitness of software (SW) agent-based systems (ABS) in various application
settings: (1) distributed command and control (DCC) in fault-tolerant, safety-critical responsive decision
networks, (2) agents discovering knowledge an open and changing environment, and (3) light weight
distributed data management (DM) for analyzing massive scientific data sets. We characterize the
fundamental commonalities and benefits of ABSs in light of our experiences in deploying the different
applications. 1

*This manuscript has been authored by UT-Battelle, a contractor of the U.S. Government (USG) under Department of Energy (DOE) Contract DE-AC05-00OR22725. The
USG retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

1 Introduction
Systems whose information-processing structures are fully
programmed are difficult to design/evolve for all but the
simplest kinds of applications. Changing and dynamic open
environments will characterize future real-world software
application context. Such systems must be able to modify
their behavior by changing their information-procession
structures [1]. Software agents (SAs) are the latest
advancement in the trend toward small modular pieces of
code where each module performs a well-defined, focused
task or set of tasks. Programmed to interact with and
provide services to other agents, including humans, SAs
autonomously with prescribed backgrounds, beliefs and
operations. Systems of agents can access and manipulate
heterogeneous data such as information available on the
Internet [2]. Not all agent systems have to have the above
properties but any agent-based paradigm must have the
ability to engender agents with some or all of the
aforementioned properties.

1.1 Agent Technology, Maturation &

Evolution
SW development methods have been transformed over the
years from structured analysis methods, where processing
and data were kept separate [3], to Object-oriented (OO)
methods, where processing and data are combined into SW
entities called objects [4, 5] (¶1.6-1.7). Object technology
was further enhanced with distributed capabilities,
allowing an object on one system to communicate with
objects on other systems [6]. Objects may be transmitted
across a trusted network and executed on another
computer, commonly known as mobile code [7].

Furthermore, component-based software development
(CBSD) can be viewed as a similar evolutionary trend,
which differs from traditional software development. For
example, CBSD includes activities selection and creation
of SW architectures, as well as the customization of
components, while implementation deals with component
integration. Typically, this process involves developing
wrappers that bond reusable components into a cohesive
system rather than extensive coding “from scratch”
construction. Indeed, developers must architect/design
extensibility into a system and all of its parts to make

80 Informatica 28 (2004) 79–89 F. Sheldon et al.

Agent Context

Agent Host
Agent Context ID
Agent ID

Ontology

Agent A

Ontology

Agent F

Machine X

. . .

Mobility Path Communication path

Agent Context

Agent Host
Agent Context ID
Agent ID

Ontology

Agent G

Ontology

Agent Z

Machine Y

. . .

Fig. 1 ORMAC mobility-communication architecture.

components independently producible and deployable. SAs
offer a great deal of flexibility and adaptability within this
context. Agent-oriented SE provides developer’s high-level
flexible abstractions from which to represent and
conceptualize distributed application systems (e.g.,
delegation of information search, analysis, negotiation and
presentation).

SA systems, to some degree, are characterized by
being persistent, mobile, knowledgeable, adaptable,
autonomous and collaborative, which facilitates the
building and evolving of software systems as technologies
and requirements change [8]. Developers use increasingly
pervasive message-based middleware and component
technologies, Java, Extensible Markup Language, and the
Hypertext Transfer Protocol to create agent-based software
systems. Mobile appliance-oriented application servers and
portal technologies based on these technologies provide a
basis for more robust agent-oriented systems. These
technologies will make the use of mobile appliances,
adaptive content, and SAs quicker and easier.

1.2 Distributed Computing
Distributed or ubiquitous computing envisions devices
ranging from super computers to nanoscale CPUs acting in
concert to solve problems. Current distributed computing
approaches include the Common Object Request Broker
Architecture (CORBA), the Distributed Component Object
Model (DCOM), and Remote Method Invocation (RMI)
Each provides a way of executing a SW function needed by
one computer on a different computer. Remote execution
places a number of constraints on the SW. For example,
assume that a source object (e.g., program or function) is
attempting to execute some function on a target object; the
source object must have the capability to resolve the
network and computer memory address of the target object.
Next, the source object must have detailed prior knowledge
of the functions (methods) and parameters available on the
target object, as well as return information. There are also
assumptions that these remote functions will be accessed
synchronously and that the network connections are
available and permanent. If any of these assumptions does
not hold, then these distributed interactions will fail [9].

1.3 Agent infrastructure
The dynamic interaction of multiple SAs requires an
architecture that supports “our definition” of an agent (i.e.,
is a program P, written in a language l, Pl an agent?), what
underlying infrastructure is needed to support agents to
interact effectively, and how the agents will utilize the
infrastructure to interact. The Oak Ridge Mobile Agent
Community (ORMAC) is a communication/mobility
framework developed over the course of several agent-
based research projects. ORMAC is generic framework
providing transparent agent communication and mobility
across Internet connected hosts (Fig. 1). This architecture

enables an agent community to be quickly created using a
set of machines with each machine executing the ORMAC
agent host software (SW): (1) SAs migrate among
machines as necessary to facilitate communication among
agents within the community, and (2) ORMAC SAs can
also interact with systems and agents that are not part of
the community. Internet mobility is very limited based on
enforced Internet security/firewall constraints. ORMAC
uses the Foundation for Intelligent Physical Agent (FIPA)
compliant agent communication language (ACL)
messages. Any FIPA compliant agent can interact with an
ORMAC agent [10, 11]. Within an ORMAC community,
each agent host has a name server responsible for tracking
where agents are currently hosted. In addition, the name
server is responsible for answering queries from agents
trying to locate other agents in the community. For
example, an agent may want to broadcast information to all
agents within the community. The name server for each
agent host is used to locate all such agents for delivery of
said message(s).

Agents migrate among machines by changing agent
hosts. When an agent is received at an agent host, the agent
host provides it with an agent context. This agent context
is the agent’s only point of contact with the machine it is
running on and provides machine specific environments for
the agent to work. The agent is not allowed to directly
communicate with the agent host or other agents. This
provides an architectural layer for security in the ORMAC
system (written in JAVA, ORMAC uses Remote Method
Invocation (RMI) to communicate among agents).

1.4 Heterogeneous agent interoperability
Ontology-based thesauri have been an important part of
research in Natural Language Processing. As the need for
distributed software configurations has risen, Ontologies
have become increasingly important. Ontologies have
evolved as a convenient way to permit agents using diverse
vocabularies to specify common concepts. There are two

MULTI-AGENT SYSTEM CASE... Informatica 28 (2004) 79–89 81

 81

main approaches (1) creating a large general ontology, or
(2) many domain-specific ontologies. Most ontologies or
thesauri are constructed manually, however, methods have
been developed for automated construction of such [2]. In
our Virtual Information Processing Agent Research
(VIPAR) case study, agents use a flexible RDF (Resource
Description Framework) ontology to transform
heterogeneous HTML documents to XML tagged
documents, and their ability to rapidly cluster newspaper
articles that arrive in an asynchronous manner.

Agents move from one machine to another by
changing agent hosts. The ontologies move with the
agents. When an agent is received at an agent host, the
agent host provides it with an agent context. This agent
context is the agent’s only point of contact with the
machine it is running on and provides machine specific
environments for the agent to work. The agent is not
allowed to directly communicate with the agent host or
other agents. This provides an architectural layer for
security in the ORMAC system (written in JAVA,
ORMAC uses Remote Method Invocation (RMI) to
communicate among agents).

1.5 Independent asynchronous
communication

Agent-based architectures provide several advantages over
OO technologies where objects communicate through
messages. The sender object must know the address of the
receiver object (i.e., public methods). In contrast, the
ORMAC framework imposes a communication protocol
that allows messages to be sent without having to know the
specific address/method(s) of the recipient [12]. This
allows agents to migrate among host and still be in
connected with other agents via direct or broadcast requests
to any number of other agents. ORMAC provides the
ability to use an ontology to direct agents through a task.
An ontology can act as a script, or rule base for an agent to
follow. This difference is perhaps more conceptual than
practical because there currently is very little ontology
standardization. For example, in our information fusion
case study, an RDF ontology is used to describe the
characteristics of each Internet newspaper within the
system while agents use the ontology to correctly interpret
and retrieve the appropriate information (see ¶2.2).

Furthermore, agents can suspend processing on one
machine, move to another, and resume processing. In this
way, the possibility exists to prioritize agents (tasks) by
sending high priority agents to faster resources, and for
example, load balance a system depending on the workload
of each agent. The priority and/or allocation of agents can
be determined cooperatively thereby preempting the need
for global scheduling (to avert single-point-failure risk).

1.6 Agents cognitive development
framework

Kavi, et. al. [13, 14] present a framework for modeling,
analysis and construction of agent-based systems. The
framework is rooted in the Belief Desire Intention (BDI)
formalism and extends the Unified Modeling Language
(UML) to model MAS. Several modeling constructs are
introduced including Agent, Belief, Goal, Plan, FIPA
Performative, KQML-Performative, and Blackboard. In
addition, the following diagrammatic constructs are
introduced: Agent Goal Diagram to model the relationships
between the goals and the environment of an agent; Use
Case Goal Diagram to model the relationships between use
cases and goals; Agent Domain Model to facilitate
understanding of domain knowledge of an agent; Agent
Sequence Diagram to model interactions within an agent.
Similarly, Agent Activity Diagram and Agent Statechart
Diagram are introduced. The framework is illustrated by an
agent-based intelligent elevator system.

The framework is based on extensions to UML to
support multi-agent systems (MAS) development. Their
approach is rooted in the BDI formalism [15], but stresses
practical software design methods instead of reasoning
theories. In particular, we propose to extend UML with
modeling constructs called Agent, Belief, Goal, Plan, FIPA
Performative, KQML Performative, and Blackboard. Agent
is the super-type for all agent types. Belief, Goal and Plan
model the reactive and proactive behaviors of agents. An
agent has, among other data types, a collection of beliefs,
goals and plans. Beliefs are the agent’s observations and/or
sensing of the environment and are updated by sensors or
other agents. Changes in an agent’s beliefs trigger the re-
evaluation of the utility values of goals of the agent.
Changes to goals’ utility values result in pre-empting some
plans and initiating new plans. Execution of plans affects
the environment, which in turn changes the beliefs, and so
on. Agents communicate with each other through agent
communication performatives such as FIPA or KQML, or
shared blackboards as in Linda or its extensions. In the
conceptual model of our framework the Agent Goal
Diagram (AGD) is introduced to model the relationships
between the goals and the environment, the Use Case Goal
Diagram (UCGD) to relate use cases and goals, Agent
Domain Model (ADM) to facilitate understanding of agent
domain knowledge, Agent Sequence Diagram (ASD) to
model interactions within an agent. Similarly, Agent
Activity Diagram and Agent Statechart Diagram are
introduced.

1.7 Integration of Mobile Agents/Genetic Algorithms
Papavassiliou et. al. [16], present an agent based approach
for building a framework where resource allocation is
provided under the control of different and often-
competing stakeholders (users, network providers, service
providers, etc.). They describe the efficient integration and
adoption of mobile agents and genetic algorithms in the
implementation of an effective strategy for the
development of effective market based routes for brokering

82 Informatica 28 (2004) 79–89 F. Sheldon et al.

SW

Requirements

SW Technology
Limitations

D
is

tri
bu

te
d

cm
pt

ng

Fa
ul

t T
ol

er
an

ce

M
ob

ile
 C

od
e

Se
cu

rit
y

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
Su

m
m

ar
y

D
ec

is
io

n
Su

pp
or

t

SW
 P

ro
du

ct
iv

ity

Higher-level
Interfaces X X

Asynchronous
Interaction X

Sporadic Network
Support X X X

Security X X

Peer-to-peer
Models X X

SW Productivity X

Figure 2. A mapping of the SW requirements to the
limitations of the current SW technology

purposes (i.e., in the future multi-operator network
marketplace). The agent based network management
approach represents an underlying framework and structure
for the multi-operator network model, and can be used to
collect all the required management data. The proposed
genetic algorithm provides a kind of stochastic search for
optimal resource allocation strategies. [16]

Agent programming was developed in the distributed
programming field as a flexible and complementary way of
managing resources of a distributed system. Distributing
intelligence across the network allows the fast exploitation
of advanced services that dynamically adapt to the user’s
requirements. User requirements are automatically
translated into network requirements, and this implicitly
assumes the possibility to interact with network equipment.
For example, network providers who need application level
information to better manage their resources can better
satisfy their user needs while minimizing their costs.
Moreover, content providers can gain the knowledge of the
network resources needed by their services to be properly
accessed.

2 Case studies
Lets consider the merits of ABS with regard to their
inherent characteristics and properties as they have been
studied or applied to three specific problem areas: 1)
distributed command and control, 2) information fusion,
and 3) data management.

2.1 Distributed command and control
ABSs are particularly suitable for satisfying both
functional and nonfunctional DCC requirements, especially
in satisfying application scalability, mobility, and security
(SMS) expectations. A general set of DCC SW
requirements (SRs) was developed based on needs aligned
with current computer science technology and inherent

limitations [12]. ABS advantages (i.e., SMS) are enabled
mainly through a stronger messaging/coordination (MC)
model; however, the impact of key DCC system/functional
requirements poses the greatest SW challenge. While
information fusion, information summary and analysis, and
decision support are only tangential to SW technology
advances (see Figure 2). Our analysis indicates six key
challenges best-addressed using agent technology to
provide:

1. Higher-level interfaces to distributed objects,
2. Asynchronous object interaction,
3. Message support for sporadic network connections,
4. Secure object communication and information system

operation,
5. Support for richer peer-to-peer programming models,
6. Accelerated SW development productivity.

ABS is an evolving paradigm that strives to create SW
that can mimic certain human behavior. Agents are
typically endowed with human-like characteristics. For
example, agents are normally considered to be
autonomous, adaptable, social, knowledgeable, mobile, and
reactive [17]. Lets consider therefore, the comparative
benefits of agent technology.

A representative agent architecture by Sycara et al.
[18] describes planning, communication and coordination,
scheduling, and execution monitoring of agent activities.
Agents’ access shared information, implemented through a
coordination model that can be both domain specific or
independent. Griss et al. [19] describes a generalized agent
architecture with facilities for locating and communicating
with mobile, disconnected agents, and for gathering
information about groups of agents. Griss’s architecture
provides services and support for mobility, security,
management, persistence, and the naming of agents.

In general, most agent architectures include support for
DCC aspects through a general MC paradigm (i.e., any
agent can communicate with one or more agents). This
approach encapsulates messages that agents send and
receive [17]. OO methods utilize the concept of data
encapsulation, which provide for simple SW functions to
access an object’s data. These functions, not direct data
access, are responsible for data retrieval and update. This
capability limits the SW (i.e., coupling) that must change
due to nonconforming data formats, etc. The agent
paradigm extends encapsulation from data to messages sent
among agents through an agent coordination model [20].
The model defines how agents communicate among
themselves, and can be seen as coordinating
communication based on the time a message is sent
(temporal) or the names of the target agents (spatial). These
models provide the ability for communication that is
encapsulated and asynchronous with the use of
blackboards, and tuple space models and associated pattern
matching, such as Linda [21]. Agents that use a blackboard
or Linda type coordination provide a level of indirection
for agent communication (i.e., agents post messages to a

MULTI-AGENT SYSTEM CASE... Informatica 28 (2004) 79–89 83

 83

blackboard, while subscribers to the blackboard retrieve the
message). The agent that sent the message may have no
idea who actually receives it. This concept allows for
asynchronous and encapsulated communication among a
collection of connected or disconnected agents, a capability
not currently available in non-agent systems.

Messages are written in an agent control language [22]
(ACL) such as KQML or the FIPA ACL, which provide a
structured means of exchanging information and
knowledge among agents. ACLs support a higher-level
communication protocol that does not currently exist for
distributed objects. On this basis, lets consider how the
DCC concept challenges ABS SW development.
2.1.1 Higher level interfaces to distributed objects
Agent technology, based on a flexible MC scheme and
control language, (conceptually) require agents to be
connected to blackboards, not other agents[17]. The
encapsulation of messages allows for agent interfaces to
change, requiring only minor modifications to a
blackboard, not to all calling agents. This capability
provides for a more robust interface than is currently
available in distributed object systems. Moreover, ACLs
provide the ability to pass propositions, rules, actions, and
states among agents. In this way, messaging is not merely a
way of activating a function on a remote host, but provides
a way of sending information to another agent. This
information can be used to describe what requirements
need to be met for an agent to take action, what states the
sender and receiver will be in after the action takes place,
or what states the agents will be in when the overall
transaction is complete [22]. Information sent from one
agent to another may also be informative or declarative
thereby causing no agent action.

The challenge of implementing such an agent interface
is selecting both an MC architecture and an ACL.
Currently, no universally accepted MC architecture or ACL
means that for an ABS to take advantage of this high-level
interface, there must be very specific and precise
specifications on how agents will communicate (i.e., using
precise ACL syntax).
2.1.2 Asynchronous object interaction
Griss et al. [19] points out that ABS typically have simple
interfaces, and derive capability from loose coupling and
asynchronous messaging (i.e., messages are sent and
retrieved through a loosely coupled temporal agent
coordination model). Cabri et al. [20] reference two
coordination models that provide asynchronicity. The first
coordination model is blackboard-based and provides a
shared area where agents’ send/retrieve messages. Any
authorized agent can read messages posted to the
blackboard. Other agents determine whether to retrieve the
message based on the sending agent’s identifier and
therefore knowledge of the agent identifiers is required.
The second is based on the Linda coordination model,
which defines a messaging protocol, made up of a tuple of
information (e.g., a tuple may include the data format, the

date of creation, the classification, or a list of keywords).
These tuples are placed in a shared area, such as a
blackboard. Agents access these messages, not based on
agent identifiers, but on a query of the tuple information,
(i.e., an agent may retrieve all messages created yesterday
with the “Taliban” keyword). This model is asynchronous,
and does not require knowledge of the agent identifier.

Both model types are mature and widely used. They
provide needed asynchronous behavior but suffer from
single-point failure outages. Thus, a single blackboard
ABS is exposed to security and performance failures and
requires multiple blackboards to provide fault tolerance.
2.1.3 Message support for sporadic networks
One main advantage that ABS provide is flexibility (i.e.,
ability for agents to change location) along with
communication path redundancy. Vogler et al. [23]
propose a distributed transaction model using a two-phase
commit protocol to verify message delivery. The model
must support storage of undelivered messages within the
agent, or support the ability to rollback the transaction, if
synchronous transactions are required. If a transaction has
not completed, then various network/graph theory
algorithms can be used to determine a viable path prior to
reattempting the transaction. Alternatively, agents can
move to another location and try again. If a physical path
cannot be found then the transaction is not possible.

Both messaging and mobility can be effectively used
to communicate over a sporadic network; however, if the
network degrades too much, communication becomes
infeasible. Distributed transaction protocols are very useful
for verifying the success of transactions, and can be used to
ensure network security with the caveat that this capability
will limit overall system response time.
2.1.4 Secure communication operations
As Abadi [24] notes, it is practically impossible to
construct a truly secure information system.
Communications are secure if transmitted messages can be
neither affected nor understood by an adversary; likewise,
information operations are secure if information cannot be
damaged, destroyed, or acquired by an adversary.

Security in a distributed system can be enforced
through system wide policies, which are often static, and
difficult to modify and enforce [25] ABS can enforce a
security policy defining what must be done and what must
not be done when information is moved, stored, created, or
destroyed. ABS provide multiple, standalone, persistent
processes that can act at high speeds to ensure that all rules
are always followed. Encapsulated instructions concerning
what actions to take under what circumstances enables
agents to execute very complex operations, enabling
participation in complex collaborative security protocols
(e.g., key updating/multiparty authorization).
2.1.5 Peer-to-peer programming models
Fortunately, through the use of blackboard and Linda type
coordination models, the programming model of agents can
be very general. Any number of agents can send messages

84 Informatica 28 (2004) 79–89 F. Sheldon et al.

Multi- agen t ORMA C Framew or k | RDF On to log ies | Jav a + Ha va RMI | FI PAA CL

Information Agents
D1: D2: D3:

T1
:

1 0 0
T2
:

1 0 1
T3
:

0 0 1
T4
:

0 1 0
T5
:

1 1 1
T6
:

0 1 1
T7
:

1 0 1

Text Analysis Agent

Cluster Agent

Internet

Database

Agent
Communities

Information Agents

Information Agents Agent Communities

Whiteboard Agent

Wen Ho Lee
1. Wen Ho Lee Spends First Day Savoring

Home Delights

2. Clinton Calls For Review Of Lee Secrets Case

3. Clinton Concerned Over Lee Case - Reno On
Defensive

4. Asian -Americans Demand White House
Action on Lee

5. Lee Case Points up Scientists' Attitude on
Security

India and Pakistan
6. India and Pakistan: Troubled relations

7. Troops die in Kashmir clashes

IAEA Meeting
8. IAEA Supports Putin Nuclear Power Initiative

9. China Rejects Moves to Tighten Regulation of
Nuclear Materials

U.S. China Trade
10. U.S. China Trade Vote Milestone on Rocky

Road

1

23

4

5

6

7

8
9

10

Wen Ho Lee

India/Pakistan

IAEA Meeting

US China Trade

Fig. 3. VIPAR architecture and end results.

to one or many blackboard(s), and any number of agents
can receive messages from one or many blackboard(s).
Virtually any topology can be created which allows for
very broad scalability of the network. Care must be taken
in defining the bandwidth, messaging rates, and processing
requirements and will require tuning to enhance fault
tolerance and performance.
2.1.6 Increasing SW development productivity
There are indications that agent technology may provide
some SW development productivity improvement [19].
While there exists no empirical evidence to support this,
the theory claims that ABS increase the level of SW reuse.
Agents are SW components that have their messaging,
functionality, and location encapsulated thus increasing
productivity. Likewise, if standard MC protocols and
ACLs can be defined, the agent development teams may
require less communication overhead because the
interfaces are far richer than with traditional programming.

2.2 Information fusion
In theory, an information SA scours multiple
heterogeneous information sources to proactively acquire,
semantically understand, process and distribute information
and perform other information processing related tasks at
the behest and bidding of a specified user. This technology
focuses on obtaining a battery of semantic insights from
the information-glut/overload that we now face and
delivering this semantically digested information in an easy
to use/navigate interface.

One so-called Digital Assistant (DA) ABS offers a
variety of information gathering/management and
processing features where you can: (1) set up a personal
watch-list for companies, news and keywords; (2) monitor
various online newsgroups and topics of interest; (3)
monitor what companies and topics are favored by media;
(4) track regular financial data to get a statistical sense of
bullish/bearish Sentiment in the market. Results are made
available in a decision-ready format (tabular and
statistically aggregated percentages) with the flexibility of
setting up an email alert containing the digest [26, 27].

The most advanced feature of the DA is an attempt to
gauge investor sentiment from various online message
boards in the form of an Opinion Rating. Various public
message boards are scoured to understand what investors
are saying about the companies and based on a semantic
understanding of these messages a quantitative Public
Opinion index is formed (assessing the opinion-pulse in the
stock markets). Future enhancements could include a news
opinion engine that will (at the aggregate level) understand
what people are saying about a company or how the media
is profiling a particular company as well as the ability to
query the DA through email. Such enhancements could
provide insights into when and by how much market
psychology, herd mentality and media exposure has an
impact on a stock's price.

The VIPAR project/tool employs ABS technology 1)

to utilize the ability for broadcast and peer-to-peer
communication among agents, 2) to follow rules outlined
in an ontology, and 3) provide persistence (because of the
ability for agents to suspend processing on one machine,
move to another, and resume processing). These strengths
are combined for the purpose of providing an Internet-
based DA to support aspects of intelligence, surveillance,
and reconnaissance (ISR) in multiple languages[28].
2.2.1 Background
Detailed analysis of large collections of heterogeneous
unstructured information is an obvious ISR need2. The
problem can be viewed in two parts, first how to gather and
structure information, and second how to organize and
classify information.
2.2.2 Approach
Two broad approaches exist to efficiently gathering and
structuring frequently changing heterogeneous Internet
accessible information. First, we could obviously use
Internet search engines (ISE), which (typically) use
programs that recursively traverse links, capturing non-
trivial terms on each page. Pages are organized based on
the relevance of encountered terms enabling a wide variety
and number of documents to be categorized according to
relevance and made available for further refined
searches/reorganization.

ISE weaknesses include 1) existing pages in the
system are infrequently re-traversed tending to make the
information stale, 2) the Internet pages have no consistent
format, and therefore, the semantic content of a page

2 Virtual Information Center (VIC) at US Pacific Command, gathers,
analyzes, and summarizes information from Internet-based newspapers on
a daily basis (a manual, time and resource intensive process).

MULTI-AGENT SYSTEM CASE... Informatica 28 (2004) 79–89 85

 85

cannot be easily discerned, 3) the documents are organized
based solely on the presence of a keyword in a document
(regardless of other attributes like timeliness).

Alternatively, the second approach gathers and
structures Internet information using agents. The agents
provide various ways to retrieve and organize information,
including agents that are capable to access multiple
sources, and to filter based on the relevance to the user [18,
29]. Non-cooperating agents perform the information
retrieval task, cooperating agents organize the information
based on relevance, and finally, adaptive agents deal with
uncertain, incomplete, or vague information [30].
Additionally, transforming the inherent and chaotic
structure of newspaper articles into a common schema is a
difficult problem that must be overcome.
2.2.2.1 VIPAR: unique approach
The VIPAR server uses a set of information retrieval
agents to gather news related, non-redundant
heterogeneous information from the Internet newspapers,
and to format the information using XML (Fig. 3). A
whiteboard agent acts as an information-clearing house.
Agents submit their articles to the whiteboard agent, who
preempts/deletes duplicate articles, archives stale articles
(beyond a prescribed age), and feeds articles to agents that
have “subscribed” to the whiteboard. A team of cluster
agents organizes articles into a vector space model (VSM),
then into clusters of articles.
2.2.2.2 VIPAR: information agents
These agents gather and organize information through the
transformation of HTML formatted information into XML
formatted information. The conversion from HTML to
XML is a two-step process. An ontology is defined to
provide a common semantic representation and structuring
of the heterogeneous information. This ontology embodies
the transformation of HTML formatted information to
XML formatted information. This ontology is expressed in
an XML variant called the Resource Description
Framework (RDF, see http://www.w3.org/RDF/). The RDF
syntax allows directed graphs to be expressed in an XML-
like format. An Internet site is a collection of linked
Internet pages. A site is viewed as a directed graph and
RDF provides a way to model the linked pages.
Furthermore, our agents understand these RDF
instructions. A series of RDF ontologies have been
developed for the newspapers accessed by the VIPAR
system. Each site ontology describes a newspaper: (1)
meta-information about the newspaper, and (2) describes
site-specific agent actions (e.g., login, etc.). Based on the
ontological description of a newspaper site, the agent
monitors and manages the information at the site.

An HTML→XML conversion is completed using the
defined ontology. An agent, using the RDF ontology, to
understand the site layout/semantics can autonomously
retrieve articles of interest, and perform the conversion into
a structured XML formatted document. Each converted
article contains a rich set of XML tags ranging from the

time and date the article was discovered, URL location, to
the XML tags that format the article. Each agent monitors
the site looking for new articles. Fresh articles are
formatted and posted to the whiteboard agent.

The ontological site description (OSD) includes a root
URL where the agent begins traversal of the site and from
which the agent resolves relative site URLs. The OSD
includes a series of regular expressions used to describe the
table-of-contents for the site. The site description includes
a series of regular expressions that describe article pages of
interest along with contextual information (i.e.,
differentiating the text of an article from the myriad of
unimportant information (boilerplate, banners, ads, etc).
Meta-information is maintained which includes the
newspaper's name and the name of the collection under
which VIPAR classifies the newspaper, as well as site-
specific actions taken by the agents (e.g., search depth limit
[hops from the root URL], minutes to wait between
rescanning for new articles, etc.).

Using the RDF ontology agents’ monitor/manage each
site. They check each link against its ontological criteria to
discriminate table-of-contents versus article pages. If an
article page of interest is found, the agent requests the
whiteboard agent verify that the article is not already
posted. If the article is not posted, the agent reads the
page, distills out clean article text (i.e., filters the raw text
from nonessential/extraneous information). The agent
marks up the clean text using XML, tagging the parts of the
article (title, author, date, location, paragraphs, etc)
depending on the site, and then posts the information to the
VIPAR whiteboard agent. The agent continues to monitor
the site, posting new information of interest as it becomes
available. The VIPAR client is also an ORMAC agent that
contains a graphical user interface. The client agent
communicates with both the whiteboard and cluster agents
to direct/refine searches and clustering.

The whiteboard agent maintains all current articles,
ensuring no duplicates, and removing articles beyond a
certain age. The cluster agent subscribes to the whiteboard
agent and thus is notified when an article is added or
removed from the whiteboard. When the cluster agent is
notified of a new article (as discussed below), it examines
the contents of the article and adjusts its search and
clustering tables appropriately. Likewise, the tables are
adjusted when the whiteboard removes an article.
2.2.2.3 VIPAR: dynamic article clustering
Two basic steps are taken to organize articles into clusters.
The first creates a VSM from the articles. The VSM
presumes that newspaper articles and their significant
terms (words) can be represented as elements of a multi-
dimensional vector space. Within this space, each
significant term is represented by a new dimension, and a
document is represented as a vector within this
multidimensional space [31]. The value of each vector
coordinate is an entropy-based function of “local” and
“global” frequencies of the word corresponding to this

86 Informatica 28 (2004) 79–89 F. Sheldon et al.

dimension. The cluster agent maintains information
containing the frequency of occurrence of terms within a
document, called local term frequency, and over the entire
set of documents, called global term frequency. These
term frequency counts are then used to calculate a weight
for each term in each document, which is called the
document term weighting.

The second step creates a similarity matrix (SM) that
provides a pair wise comparison of each document in the
system. We use the dot product (i.e., cosine of the angle
between the vector pair) as the measure of similarity
between two document vectors. This generates a global SM
of size n x n, where n is the number of documents
contained in the document collection. Only the upper
triangular portion of this matrix is needed because it is a
symmetric matrix. Note, when a document is added or
removed the VSM must be updated. This is due to the
changes in the global frequency of words that are contained
in this document. The brute-force approach is to re-
compute all the document vectors in the document
collection (i.e., document term weights of each document
vector) as well as a global similarity matrix. However, the
time/space complexity is)()(2nOdnO +⋅ , where d is the
document vector space dimensionality. This is very
expensive when the collection size grows. An approach is
needed to more efficiently update the SMs. A sliding-
window-based approach is used.

The whole SM is modeled as a circular array of size

2
)1(−nn with a pointer initially pointing to the first array

element. When a new document is added or removed from
the collection the p percentage of the SM is updated and

the pointer is forwarded
2

)1(−
⋅

nnp steps from its current

position, thus pointing to the next stale entry of the array.
A series of experiments was conducted to determine

how changes in global term frequency affect the similarity
values. Updating 5% of the global SM every time a single
document is added or deleted preserves high accuracy. To
compare SMs, several measures were made based on the
values of their determinants, traces, and x2 distribution. In
other words, it takes 20 document additions or removals to
fully update the SM. This method resulted in acceptable
dynamic similarity update performance.

Finally, a global SM is used to perform on-demand
clustering of the documents of interest (e.g., the documents
retrieved in response to a user query). For a set of
documents to be clustered, the local SM is constructed by
including the cells of the global SM that in turn
corresponds to the documents of interest. This local SM is
used to analyze the documents of interest based on their
closeness in the document vector space. The documents are
merged into clusters using an agglomerative hierarchical
clustering algorithm [32]. When all of the documents are
combined, a Phylips Tree is generated to illustrate the

hierarchical tree structure of the clustered documents (see
Fig. 3 lower half). The Phylips Tree (or cluster diagram) is
a type of dendrogram. The nodes of the tree represent each
article while the edges (or links) between nodes represent
relationships. In general, the closer (based on distance and
hops) two nodes are, the more similar the articles. If links
from two nodes share a vertex, then these articles are the
closest in the set of articles. The longer links between
article nodes indicate greater dissimilarity.
2.2.3 Results
Organization of the acquired information using the VIPAR
system was very successful. In an experiment comparing
the organization of news articles done manually, versus
organized by VIPAR, results favor VIPAR as the preferred
method. The experiment involved searching a collection of
newspapers for key terms that produced a number of
relevant news articles. This collection of articles was then
manually organized based on the contents of the articles.
Following this manual process, VIPAR was used to
organize the same article set and the results from both
methods compared. A search was performed on September
21, 2001, using the phrase “nuclear weapons.” At the time,
five newspapers were in the VIPAR system, (1) Japan
Times, (2) Pacific Islands Report, (3) Inside China Today,
(4) Russia Today, and (5) Sydney Morning Herald. The
results produced 10 articles, with various titles (see Fig 3
lower half).

These results are typical of an average search engine,
except that VIPAR targets newspapers only and is timelier
because it filters out articles older than a few days.
Manually clustering these articles put the same articles into
the same category. This articles collection covers four
broad areas, 1) the Los Alamos Nuclear Scientist Wen Ho
Lee, 2) the India and Pakistan conflict spurring nuclear
weapons development, 3) an International Atomic Energy
Agency meeting dealing with nuclear material, and 4) U.S.
China Trade Policy dealing with nuclear material. To
manually organize a small number of articles like these can
be done fairly quickly by a knowledgeable person.
However, as the number of articles increases so does the
time required to manually organize the articles.

VIPAR clustered articles within a few seconds and
produced 4 distinct groupings. Fig. 3 (lower half) shows a
comparison of the VIPAR cluster to the manual clustering.
The four groups determined by VIPAR match extremely
well to the four groups of articles manually organized.
VIPAR clusters provide an intuitive (i.e., natural, quick and
effective) way to organize and visualize this information.

2.3 Data management
This case study uses SAs to divide and concur massive
amounts of distributed data. The SAs, which run on the
machines where the data resides, collaborate to produce
movies from the requested data, which are sent back to the
remote client for display. The quality of the movies can be
varied depending on the available network bandwidth.

MULTI-AGENT SYSTEM CASE... Informatica 28 (2004) 79–89 87

 87

Fig. 4. Agent coordination architecture and client GUI.

2.3.1 Background
Simulationists who model physical phenomena commonly
deal with massive (terabytes) datasets widely distributed
and derived from months of supercomputing. Refining
these models and algorithms to maturity requires numerous
iterations where the scientist modifies the algorithm, and
validates the resulting output. The scientist either
examines the candidate dataset in raw form or invests
considerable time and effort to analyze the data using
highly specialized hardware and software tools.
2.3.2 Approach
We proposed a large system of distributed SAs spread over
the distributed data as a simple and flexible way to help
scientists validate simulation results and refine the
simulation model/algorithm. We used 100 time steps of
data from a supernova simulation segmented into 800
individual pieces, managed by 800 agents, running on
conventional systems. We have developed a system where
a single software agent is responsible for each individual
segment of data. Upon request, these 800 agents work
together to produce a visual representation as shown in Fig.
4. Our results illustrate that a large system of software
agents is a simple and flexible solution to the problem of
data validation during the development of scientific
simulation models. In work with numerous scientists at
various laboratories and universities, we have been
successfully using this approach to render data from a
supernova simulation.

The agent architecture of this experimental system
involves multiple software agents, each of which has one
of three basic tasks. The first type of agent is called the
data controller agent. The data controller agent monitors
the simulation output directory for newly created data files.
When one is found, this agent then creates and assigns
eight new data agents to eight equal sub-cubes of the new
file. These data agents are the second type of agent used in
the system. The creation of eight agents per new file is
arbitrary and easily changed. Each of these new agents is
then responsible for fielding requests from other agents.
The typical request is for an agent to provide an image
from an XY plane of data under its control. In this case, the
individual agents will generate an image of a 2D plane
from the 3D sub-cube that they are responsible for. If the
requested plane falls outside of this cube, the agent ignores
the request. The agents also have the ability to vary the
quality of the images produced. A blackboard is used to
collect images from various responding agents. From this
blackboard, the third type of agent, the movie producer
agent, assembles the images into a movie that shows an
XY plane through the 100 time steps of data. Using
different video compressors and decompressors (CODECs)
allows the movies to be produced at different detail levels
(See Fig. 4 top half).
2.3.3 Results
The dataset was provided by the DOE’s Terascale
Supernova Initiative (TSI) project. We used a portion of

the TSI supernova simulation data to demonstrate that a
system made up of a large number of SAs is a viable
solution. The original data contains 192 times steps. Each
time step containing data from 5 variables, X, Y, and Z
velocities, pressure, and density. Data from each variable is
represented in a 320 x 320 x 320 matrix of floating point
values stored in Hierarchical Data Format (HDF) 4 format
in 960 files requiring approximately 128GB of storage. For
demonstration purposes, we chose 100 time steps of Y
velocity data showing significant activity. This equates to
100 files, each 133 MB stored on two separate PCs.

3 Discussion and conclusions
Lets briefly review our conclusions from the three case
studies described here.

3.1 Distributed command and control
A comparison of DCC functional requirements with the
capabilities of existing SW technology reveals the
limitations of low-level interfaces, synchronous
interactions, and requirements for continuous network
availability, limited redundancy, and limited productivity
improvements. Current technology would require major
enhancements (if even feasible) to enable the DCC
concept. Moreover, the main strength provided by ABS is
derived from the MC model thereby supporting a more
flexible and consequently more robust programming
model. The intellectual integrity and congruency gained by

88 Informatica 28 (2004) 79–89 F. Sheldon et al.

mapping the DCC requirements onto the ABS model gives
a compelling and natural consistency. Furthermore, ABS
can support the DCC functional requirements including
security, information analysis/summary, and decision
support, but the technology does not explicitly provide
these capabilities, and these are challenging problems.

3.2 Information fusion
The ISR/VIC problem involves gathering/analyzing more
information that can be reasonably accomplished manually
(i.e., the common information-glut/overload dilemma that
promises to worsen). To address this challenge, the multi-
agent VIPAR system was developed using software agents
to retrieve, organize, and graphically present Internet-based
newspaper information comparable to that accomplished
by human intelligence analysts. VIPAR extends the field of
agent technology through the use of a flexible RDF
ontology for managing information including the capability
to dynamically add and cluster new information entering
the system.

Agent technology is well suited to this type of problem
for three main reasons. First, the communication
mechanism allows for broadcast and peer-to-peer message
passing. Second, using an external ontology allows for an
easily maintainable and/or replaceable mechanism for
adapting to an open/changing information environment and
rules (intelligence needs). Consequently, agents can be
redirected without the need to modify code. Finally, agents
are mobile, a natural solution to the needs of intelligence
gathering. The ability for agents to suspend operations,
move to another computer, and resume operations on
command provides for various design/implementation
options needed for rapid deployment.

3.3 Data management
A multi-agent system (MAS) for analyzing massive
scientific data was developed successfully as flexible and
economical solution for distributed data management.
Agents monitor the output of a simulation model/run.
Anytime the simulation produces new data, the primary
monitoring agent logically divides the new data into pieces
and creates a new agent for each piece of the new data.
Each agent responds to queries about the piece of data that
they are responsible for.

In collaboration with scientists from various labs and
universities, this approach has been used to render data
from a supernova simulation experiment under
development. Using 100 time steps of data segmented into
800 individual pieces, managed by 800 agents, running on
conventional systems, the agents work together to produce
a visual representation of the dataset (Fig. 4). The results
indicate that a large system of software agents spread over
the candidate dataset can be an adaptable and cost effective
method to aid scientists with validating the dataset.

4 References

1. Patel, M., Forward: Advances in the Evolutionary

Synthesis of Intelligent Agents, 1st ed. Advances in
the Evolutionary Synthesis of Intelligent Agents, ed.
P.J. Mukesh, V. Honavar, and K. Balakrishnan.
2001, Cambridge: MIT Press. 480 pages.

2. Subrahmanian, V.S., et al., Heterogenous Agent
Systems, 1st ed. 2000, Cambridge: MIT Press pages.

3. Demarco, T. and P.J. Plauger, Structured Analysis
and System Specification. 1985, New York: Prentice
Hall. 352 pages.

4. Sheldon, F.T., K. Jerath, and H. Chung, "Metrics for
Maintainability of Class Inheritance Hierarchies," Jr.
of Software Maintenance and Evolution, 2002. 14(3):
pp. 147-160.

5. Booch, G., Object-Oriented Design with
Applications, 2 ed. 1991, Redwood City:
Benjamin/Cummings. 608 pages.

6. Chin, R.S. and S.T. Chanson, "Distributed, Object-
Based Programming Systems," ACM Computing
Surveys, 1991. 23(1): pp. 91-124.

7. Thorn, T., "Programming Languages for Mobile
Code,” ACM CS 29, No. 3 (1997)." ACM
Computing Surveys, 1997. 29(3): pp. 213-239.

8. Kim, H.Y., Jerath, K. and Sheldon, F.T., Assessment
of High Integrity Components for Completeness,
Consistency, Fault-Tolerance and Reliability, in
Component-Based Software Quality: Methods and
Techniques, A. Cechich, M. Piattini, and A.
Vallecillo, Editors. 2003, Springer-Verlag:
Heidelburg. pp. 259-86.

9. Geihs, K., "Middleware Challenges Ahead,"
Computer, 2001. 34(6): pp. 24-31.

10. Potok, T.E., N.D. Ivezic, and N.F. Samatova.
"Agent-based Architecture for Flexible Lean Cell
Design, Analysis and Evaluation," in Working Conf.
on Design of Info. Infrastructure Sys., Melbourne
Australia: Kluwer, 2000, pp. 181-8.

11. Ivezic, N., T.E. Potok, and L. Pouchard, "Multiagent
Framework for Lean Manufacturing," IEEE Internet
Computing, 1999. 3(5): pp. 58-9.

12. Potok, T.E., Phillips, L., Pollock, R., Loebl, A. and
Sheldon, F.T. "Suitability of Agent-Based Systems
for Command and Control in Fault-tolerant, Safety-
critical Responsive Decision Networks," in ISCA
16th Int’l Conf. on Parallel and Distributed
Computer Systems (PDCS), Reno NV: ISCA, 2003.

13. Kavi, K.M., M. Aborizka, and D. Kung. "A
framework for the design of intelligent agent based
real-time systems," in Proc. 5th Int'l Conf. on
Algorithms and Architectures for Parallel Processing,
Beijing: IEEE CS, 2002, pp. 196-200.

14. Kavi, K.M. and H.B. D.C. Kung, G. Pandcholi, M.
Kanikarla and R. Shah. "Extending UML to
modeling and design of multi agent systems," in

MULTI-AGENT SYSTEM CASE... Informatica 28 (2004) 79–89 89

 89

Proc. of 2nd Intl Workshop on Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS
collocated with ICSE03), Portland: Springer, 2003.

15. Rao, A. and M. George. "BDI agents: From theory to
practice," in Proc. First Int'l Conf. on Multi-Agent
Systems (ICMAS-95), San Francisco: AAAI Press,
1995, pp. 312-319.

16. Papavassiliou, S., et al. "Integration of Mobile
Agents and Genetic Algorithms for Efficient
Dynamic Network Resource Allocation," in Sixth
IEEE Symp. on Computers and Communications
(ISCC'01), Hammamet, Tunisia, 2001, pp. 456-63.

17. Jennings, N.R., K. Sycara, and M. Wooldridge, "A
Roadmap of Agent Research and Development," Jr.
of Autonomous Agents and Multi-Agent Systems,
1998. 1(1): pp. 7-38.

18. Sycara, K., et al., "Distributed Intelligent Agents,"
IEEE Expert, 1996. 11(6): pp. 36-46.

19. Griss, M.L. and G. Pour, "Accelerating Development
with Agent Components," Computer, 2001. 34(5):
pp. 37-43.

20. Cabri, G., L. Leonardi, and F. Zambonelli, "Mobile-
agent Coordination Models for Internet
Applications," Computer, 2000. 33(2): pp. 82-9.

21. Gelernter, D. and N. Carriero, "Coordination
Languages and Their Significance," 1992. 35(2): pp.
96-107.

22. Labrou, Y., T. Finin, and Y. Peng, "Agent
Communication Languages: The Current
Landscape," IEEE Intelligent Systems, 1999. 14(2):
pp. 45-52.

23. Vogler, H., T. Kunkelmann, and M. Moschgath. "An
Approach for Mobile Agent Security and Fault
Tolerance using Distributed Transactions," in Int'l
Conf. on Parallel and Distributed Systems, Seoul:
IEEE, 1997, pp. 268-74.

24. Abadi, M., "Secrecy by Typing in Security
Protocols," Jr. of the ACM, 1999. 46(5): pp. 749-
786.

25. Liu, Z., et al. "Pluggable Active Security for Active
Networks,” in IASTED Proc. Int’l Conf. PDCS, Nov.
2000," in Int’l Conf. PDCS, Las Vegas: IASTED,
2000.

26. K-Praxis, "SonicBoomerang: Semantic Prime-Time
for Intelligent Information Agent Technologies."
2003, K-Praxis, http://www.k-
praxis.com/archives/000036.html.

27. CCNMatthews, "Intelligence Gathering Service Wins
Information Highways Magazine's 2002 E-Content
Innovation Award." 2003, CCNMatthews: Toronto,
http://www.ccnmatthews.com/scripts/headlines1.pl.

28. Potok, T., Elmore, M., Reed, J. and Sheldon, F.T.
"VIPAR: Advanced Information Agents Discovering
Knowledge in an Open and Changing Environment,"
in SCI 2003 Proc. 7th World Multiconference on
Systemics, Cybernetics and Informatics (Special

Session on Agent-Based Computing), Orlando: IIIS,
2003.

29. Mladenic, D., "Text-learning and Related Intelligent
Agents: A Survey," IEEE Intelligent Systems, 1999.
14(4): pp. 44-54.

30. Klusch, M., "Information Agent Technology for the
Internet: A Survey," Data & Knowledge
Engineering, 2001. 36.

31. Samatova, N.F., T.E. Potok, and M.R. Leuze,
"Vector Space Model for the Generalized Parts
Grouping Problem," Robotics and Computer-
Integrated Manufacturing, 2001. 17(1-2): pp. 73-80.

32. Anderberg, M.R. "Cluster Analysis for
Applications," in Probability and Mathematical
Statistics, 19, New York: Academic Press, 1973.

90 Informatica 28 (2004) 79–89 F. Sheldon et al.

 Informatica 28 (2004) 91–94 91

Unifying the Interpretation of Redundant Information
Rocchi Paolo
IBM, via Shangai 53, Roma Italy
paolorocchi@it.ibm.com

Keywords: Redundancy, control, information theory, reliability theory

Received: November 12, 2002

This paper discusses the possibility of interpreting redundant information beyond the particular views
emerging in specialist sectors. We introduce a theoretical framework that aims at unifying and
calculating the main features of redundant information. This theoretical layout has been introduced in
professional tuition.

1 Introduction
People tried to handle redundant information from
immemorial times. For example, copyists introduced
several abbreviations and writing simplification in order
to reduce the language redundancy.
Specialists did not tackle redundancy by rigorous
methods until the early twentieth century when telegraph
and telephone networks, radio emitters began to connect
towns, then nations and continents. Infrastructures for
telecommunication involved heavy investments and
economic pressures drove engineers to optimize the use
of these facilities. H. Nyquist and others started to search
for optimal transmission and finally C. Shannon
established the fundamental laws of data compression
and marked the birth of the information theory [1].
These authors accomplished their purposes and aided the
progress of technology, but the thorough comprehension
of redundancy still remains an open question. Writers
brought this problem to light nearly fifty years ago [2]
[3] [4], although a formal theory on redundancy does not
seem to attract mathematicians’ attention so far. The
debate remains on the philosophical plane, for example
see the initial “Theory of Redundancy” and the next
“Deflationary Theory of Truth” [5]. Modern advances in
computer science, especially in the Internet, press toward
the rigorous comprehension of the different forms of
redundancy. We select three essential points from the
queries that thinkers have raised.

a) Redundancy regards any kind of information and we
question whether results pertaining to the binary
technology may be extended to other forms of
information [6]. The evidence should prove the contrary.

b) The entropy and the redundancy factor quantify
redundancy of digital information. As they are logically
disparate, we should integrate them into a comprehensive
notion expressed by the mathematical language.

c) Redundancy increases the reliability of data during
transmission and storing and also improves the
machinery reliability. The relationship between
redundant codes and redundant systems should be fully
clarified in order to achieve the general and exhaustive
knowledge of redundancy.

I was persuaded that these ample themes should be
handled within a unifying logic and have driven a
theoretical research for years. This paper sets out some
results and tries to answer the above points.

2 Redundancy
Let the set {ε} include the entities ε1, ε2, ε3,… εn. We
assume that two pieces of information are the entities ε i
and ε j that have the property of being distinct

ε i γ ε j

 i, j = 1,2,..n (2.1)

The item of information εx stands for something and we
assume that the meaning of information is the function µ
of representing α.

 εx α
µ

x = 1,2,..n (2.2)

We could say that µ is the main job of εx or, in other
terms, εx works as a model.
The statements (2.1) and (2.2) formalize two ideas
universally shared in current literature. Notably they
establish that information is distinct and has semantic
properties. Discrete formalism is usual in information

92 Informatica 28 (2004) 91–94 R. Paolo

technology (IT) and the pair (2.1) and (2.2) follows this
vein.

The word “redundant” derives from Latin and hints
something abundant and repetitive with respect to its use.
I put forward the following definition of the redundancy
in accordance to this naïf idea.

Definition 2.1: The set {ε} is minimal when the number
of informational entities is equal to the number of the
objects to be represented

n = nα (2.3)

It is insufficient when

n < nα (2.3 bis)

When

n > nα (2.3 tris)

The set {ε} is redundant, notably the information surplus
provides the redundancy of {ε}

R = n – nα (2.4)

The more R is high and the more {ε} is redundant.
Redundancy is null if (2.3) is true and is negative if
(2.3bis) is true. In substance R gives the excess (when
positive) and the lack (when negative) of the models ε.
Redundancy is null when the representations are just
enough. For ease, the picture of the car in the web page
and three phrases invite the web-visitor to buy the car.
Four pieces of information have the same promoting
significance and make the message redundant

R = 4 – 1 (2.5)

Any item of information may be modeled as an algebraic
entity and definition (2.4) begins to respond to the
question b).

3 Methods
Engineers follow two major approaches in order to
ensure the reliability of a system. The former provides
remedies after the failure has occurred. The latter method
is precautionary and precedes the damage

Method (1): Repairs the failure.
Method (2): Prevents the failure.

Redundancy is a precautionary solution against
information failures and falls into (2) [7]. IT specialists
preliminarily take care of errors, noise and random

irregularities, which will injure transmission and storage.
When the information set {ε} is redundant, (2.3ter)
yields two possibilities
Method (2.1): All the items of {ε} are used as models.
Method (2.2): R items are not used as models.

We detail these either-or ways.

Method (2.1) - When (2.3ter) is true and all the items of
information are used, at least one object α has k models

 k ≥ 2 (3.1)

Let P the probability of altering one piece of information,
the probability of altering k items of information is

Pk = P k (3.2)

As P is lower than unit, k pieces of information, which
stand for one entity α, are more reliable than only one
item of information

Pk < P (3.3)

This graph, derived from (2.2), visually evidences how k
items of information representing the same object are
similar to k units working in parallel

ε1 α
ε2 α

εk α

(3.4)

Expressions from (3.1) to (3.3) are formally symmetrical
to the formulas that calculate k machines in parallel and
they reach the same conclusions [8]. In short, Method
(2.1) answers point c). The present theory shrinks the gap
between the information theory and the reliability theory.

Method (2.2) - When (2.3ter) is true and R pieces of
information are unused, {ε} splits into two separate
subsets

{εu} 3 {εz} = ∅ (3.5)

The subset {εu} includes nα pieces of information with
precise significance. The subset {εz} has R meaningless
items; hence the entities differ from the semantic
viewpoint

ε u γ ε z (3.6)

They apply (2.1) thus engineers can follow a special
method, which is exclusive to IT and cannot be
compared elsewhere. They prepare the subset {ε u}
which is meaningful and {ε z} meaningless. If the control
detects the unmeaning piece ε z, it reveals an error. This

UNIFYING THE INTERPRETATION OF... Informatica 28 (2004) 91–94 93

technique, based on the inequality (2.1), is exclusive to
information, while Method (2.1) is universal.

This framework clarifies the relations existing between
the information sector and other engineering fields, and
elucidates point c).

4 Redundant codes
We restrict our attention to Method (2.2) and in particular
examine the redundancy of codes. We assume the length
L is fixed for the sake of simplicity. The combinatorial
calculus provides the ensuing result

n = B L (4.1)

Where B is the base of the code {ε}. Now we consider
the minimal code {εα} that, in accordance to (2.3), is the
set of codewords just sufficient to represent nα objects.
The base B and the minimal length Lα allow us to
calculate nα. This quantity along with (4.1) makes
explicit the redundancy (2.4)

L LR B B α= − (4.2)

As B exceeds the unit, {ε} is redundant if and only if L is
larger than the minimal length Lα

R > 0 ω L > Lα Β ƒ 2 (4.3)

This result proves that the redundancy of a digital code
relies on its length.

1] Expression (4.3) suggests to calculate the digital
redundancy RD of {ε} by the difference of lengths

RD = L − Lα (4.4)

2] The redundancy factor RC of the code {ε}, already in
use, relates the length L with respect to the minimal
length

 C
LR
Lα

= (4.5)

We make explicit L and Lα with combinatorial calculus
and we put them into (4.5)

 log () log ()
log ()

B
C n

B

nLR n
L n α

α α

= = = (4.6)

This result evidences that Rc depend on n and nα . This
property also regards RD that has the same variables of
Rc. Both of them are coherent with (2.4) in point of
mathematics. They differ on the practical plane: RD and
Rc regard digital information instead R has general
usage. This theory brings to light the relations existing
between various measurements of redundancy and
clarifies point b).
The base B and nα objects are usually given in the
professional environment, hence the length Lα is the
essential reference for digital calculations. Combinatorial
calculus provides this result

log ()BL nα α= (4.7)

That although neglects the frequency of the codeword.
Shannon has the merit of discovering the accurate value
of Lα and calculating it by means of the entropy

 log ()
n

i B i
i

H C P P
α

= − ⋅∑ (4.8)

Where C is a positive constant and

1
n

i
i

P
α

=∑ (4.9)

H provides the rigorous minimal length and brings
evidence of the roughness of (4.7). In fact, if the
codewords of the code {ε} are equiprobable

 Pi = 1 / nα (4.10)

The entropy equals to (4.7) up to the constant C

1/ log (1/)

log ()

n

B
i

B

H n n

n

α

α α

α

= − =

=

∑

 (4.11)

May be proved that this result is the maximum of H,
when nα and B are given [1]. In short the Shannon
entropy provides Lα in general, while (4.7) is true only if
the codewords are equiprobable.

5 Technical refinements
Let codewords be duplicated, tripled etc.

RC ƒ 2 (5.1)

94 Informatica 28 (2004) 91–94 R. Paolo

High redundancy entails high reliability because the
detection of errors is immediate. Per contra volumes are
bulky and this range confines the problem

RC < 2 (5.2)

The small number of characters hinders the detection of
errors and engineers refine Method (2.2) by means of the
algorithm, which enhances the control.
This solution although does not rule out the possibility of
an input unrecognizable by the algorithm. The generic
codeword may be modified during the transmission or
the storing to the extent that it could neither belong to
{εu} nor to {εz}. In this case, the Method (2.2) flops.
Engineers cure the problem and state that the subsets
{εu} and {εz} be mutually exclusive. Using the set theory
we write the following constraint

{ε} = [{ε z}3{ε zC}] 4 [{ε u}3{ε uC}] (5.3)

Where{ε zC}and {ε uC} are the complementary subsets of
{εz}and {εu}. As (3.5) is true we have

{ε u}3{ε zC}= {εu}
{ε z}3{ε uC}= {εz} (5.4)

And finally we get

{ε u}4{ε z} = {ε } (5.5)

This equation along with (3.5) establishes the Excluded
Middle Principle. The bits and the binary codewords
comply with this constraint. A binary word is necessary
included either in the subset {ε u} or in {ε z}. Specialists
elaborate the most advanced control techniques thanks to
this special property [9] which provides the answer to
question a).

6 Conclusions
Some authors pursue complex studies about redundancy
on the philosophical plane but the conclusions appear
generic to engineers. I have searched for the replies to the
initial queries by means of the mathematical language
and believe that this feature may be appreciated.
These pages stage the examination of redundancy and
progressively come from the most ample themes to the
specialist ones. In detail:
• This paper proposes the redundancy definition (2.4)

which relates the physical nature of information to
the semantics. This unitary approach gives an
answer to point b).

• This work puts forward the redundancy RD of digital
words which is verbally expressed so far, and relates

it to RC and to R. These discourses try to clarify point
b).

• Equation (3.3) and scheme (3.4) elucidate the links
between the informational redundancy and the
reliability theory as point c) demands.

• The Excluded Middle Principle (5.5) and (3.5)
explain why technicians can develop very
sophisticate binary solutions as point a) presumes.

The cultural meaning of the present work has proved to
possess valid educational qualities. They have been
partially taught in high schools and in basic training in
IBM.
An ample theory on information, systems and control
includes the equations presented in this paper [10] and
this is the last feature, which I aim at highlighting.

References
[1] Shannon C., Weaver W. (1949) - The Mathematical

Theory of Communication - Univ. Illinois Press,
Urbana.

[2] Calderbank R. ed. (1996) - Different Aspect of

Coding Theory - American Mathematical Society.

[3] Kriebel H.C. (1965) - A Resume of Mathematical

Research on Information Systems. - Carnegie
Institute of Technology, Pittsburg.

[4] Cherry C. (1996) - On Human Communication: a

Review and a Criticism - MIT Press, Cambridge.

[5] Field H. (1986) - The Deflationary Conception of

Truth - in MacDonald G and Wright C. (eds.) Fact,
Science and Morality, Blackwell, Oxford.

[6] Marin L. (1994) - De la Representation - Gallimard,

Paris.

[7] Ramakur R. (1993) - Reliability Engineering:

Fundamentals and Applications - Prentice Hall,
N.Y.

[8] Shen K., Xie M. (1990) - On the Increase of System

Reliability by Parallel Redundancy - IEEE
Transactions on Reliability vol 39, n.5.

[9] Wakerly J. (1978) - Error Detecting Codes, Self-

checking Circuits and Applications - North-Holland,
Amsterdam.

[10] Rocchi P. (2000) - Technology + Culture =

Software - IOS Press, Amsterdam.

 Informatica 28 (2004) 95–101 95

Assessing the Potential Impact of an Electronic Grade System to the
School Environment
Eva Jereb, Teja Toman
University in Maribor, Faculty of Organisational Sciences, Kidričeva cesta 55a, 4000 Kranj
eva.jereb@fov.uni-mb.si, http:// www.fov.uni-mb.si/eva

Keywords: internet, modelling, electronic grade system

Received: February 7, 2003

Nowadays the tempo of modern life is very fast which prevents parents from their regular contact with schools. We
have developed an application, more precisely, an electronic grade (e-grade) book which enables the parents to
monitor and control their child's education. By entering the username and password the parents would have an insight
into their child's grades, inexcusable absence, test dates, cultural, sport days, natural science days, teachers' notes to
the parents and so on. This paper shows an example of an e-grade book on the internet as well as the advantages and
disadvantages a possible introduction of an e-grade in primary schools might bring about. Teachers' and parents'
response to a possible introduction of an e-grade book is also presented.

1 Introduction
The age of computer technology is directed toward a
simplification of everyday work. With the help of
computer-communication technology, which has a
significant social and economic impact in the last 20
years (Adams and Warf, 1997), we administer the
information on the basis of which we decide and look for
solutions of different problems which we encounter
every day. We want to avoid the unnecessary paper
work, which is possible through different informational
systems directed towards automation of bureaucracy.
And the education sector has not been immune to the
impact of these developments as well (Mitchell and
Hope, 2002).

A current question in Slovenia is how to improve the
management at schools from the point of view of the
informatization as well as from the point of view of the
so called 'upgrading' of a an classic grade book with an e-
grade book. To get the best possible results a number of
projects is being carried out by different performers.

We have decided to elaborate an information system for
monitoring primary school pupils' results – an e-grade
book on the internet. We have also carried out a survey
(among parents and teachers) in four primary schools in
Gorenjska, which momentarily do not use such an
informational system. The main aim was to find out how
familiar they are with it and what their relation towards
the new technology is.

2 A Design Of Informational System
For Monitoring Primary School
Pupils' Results - An E-Grade Book

Informational system for monitoring primary school
pupils' results is entirely written for the internet

surrounding in programme languages HTML (HyperText
Markup Language), JavaScript, VBScript, Active Server
Pages (ASP), Active Database Objects (ADO) (see
Sussman and Homer, 1998), and takes the data from MS
SQL data base, version 2000 (more about see Schofield,
1994; Reisman, 1994; Cooper, 1997; Šalomon, 1998).

The web application E-grade book consists of four parts.
The first one is designed for entering look-up tables as
well as data compiling which is only accessible for the
administrator of the system. The last thing we would
want is the data to be updated by the people who are not
qualified to do this work. The next part is an e-grade
book itself that is divided into two parts: the first one is
designed for teachers only, namely for entering the
grades, notes to the parents; the second part is designed
for the parents' insight into their child's grades. The third
part comprises of notes for the parents that is the same
for the entire class. The last, fourth part enables the other
teachers the insight into the e-grade book.

The first page of the application includes the title of the
application and a primary school logo. Below are also
two connections to the look-up tables and to the e-grade
book itself.

After entering the username and password and clicking
the 'Confirm' button the application first checks the
database for the existence of the entered username. Then
it enciphers the password on the system code 'MD5',
compares it to the one in the data base and finally checks
if the entered group containing also the user has the
access to the required page (Papa et al., 1999). If all the
conditions are accomplished the user can continue,
otherwise the system prevents him/ her from doing so.
The application in use is also going to be protected on the
level of internet with the help of a certificate and key

96 Informatica 28 (2004) 95–101 E. Jereb et al.

code (e.g. Verisign – coding of the internet page with a
help of a public and personal key).

3 The Operation Of An E-Grade
Book

3.1 A Part Of An E-Grade Book Designed
For Teachers

The first part of an e-grade book is designed for teachers'
use only. Anyone having an access to the e-grade book
must have his/her username and password that are both
appropriately protected against possible breaks into a
computer system. Before its use the teacher must register
through the registry screen.

If the username or the password has been entered
incorrectly three times in a row we are notified about it
and the application returns to the basic choice. The
second or main part of the application which includes
modules for both entering the grades as well as the
parents' insight into their child's grades, identifies itself
on the basis of the entered username and password
whether the user is a teacher or a parent and the
application then shows the appropriate screens. After the
registration the teacher has to choose the class and the
subject for which he/she will enter the grades. He/she can
only choose among the classes and subjects he/she
teaches which has to be previously defined by the
administrator of the system in the look-up table.

After choosing the appropriate elements the teacher has
to decide which pupil will receive a grade. The procedure
stays the same when the teacher wants to mediate a
notice, a comment on an individual pupil to his/her
parents. The choice of an individual pupil (as well as a
class and a subject on a previous screen) follows the
same drop down menu lists, which can be evident from
the screen pictures.

The teacher has thus reached the main screen of an e-
grade book. In the upper part of the copy he/ she can
follow the previous success in a particular subject, but
he/she also has a choice to enter a new grade or a note for
the parents (see Figure 1). It should be mentioned that it
is impossible to correct or delete the previous grades for
safety reasons. This can only be done later with the
mediation of the administrator (more about see
Amundsen, 1999).

An e-grade book has been designed in such a way that a
teacher can perform all the transactions already in the
classroom provided that classrooms all have the
appropriate computer equipment.

Figure 1: Entering grades or notes for the parents

3.2 A Part Of An E-Grade Book Designed
For Parents

A parent with the acquired data on username and
password can link to the school web page, register him-
/herself to the system and choose a child whose e-grade
book he/she would like to see. It needs to be mentioned
that in a drop down menu list there is only a child or
children of parents who registered in the system.

The next screen shown to the parents is an e-grade book
of a chosen child. Here the parents can obtain all the
grades with final grades for all the subjects and at the
same time follow the teacher's notes (see Figure 2).
Every note includes a name of the teacher (in brackets)
who wrote it. Notes are written in different colours (red-
more important, blue- less important) and for the sake of
easier inspection negative grades are also written with a
different colour (red).

Figure 2: Insight into an e-grade book of an individual
pupil

ASSESSING THE POTENTIAL IMPACT... Informatica 28 (2004) 95–101 97

The same applies for the copy of an e-grade book for the
entire class that is only intended for the teachers. A
teacher first selects the appropriate class and after a click
on the button the entire e-grade book is presented.

3.3 A Part Of An E-Grade Book Designed
For The Administrator

Let's stop also at the part of an e-grade book designed for
the administrator of the system. Before the application is
used a look-up table and a database have to be completed
with teachers, pupils, classes, parents and so on. This part
of the application is of the utmost importance and a
special caution is needed for the entire system of an e-
grade book not to collapse with the inappropriate data
(see Figure 3).

Figure 3: Picture of one of the look-up table – a look-up
table of a pupil

4 Responses To A Possible
Introduction Of An E-Grade Book
In Primary Schools in Slovenia

To get the information on the opinions and views of
possible introduction of an e-grade book of both primary
school teachers and parents we have carried out a survey
and discussed some problems accompanying a possible
introduction. A survey has been carried out in A. T.
Linhart Primary School Radovljica, Fran Saleški Finžgar
Primary School Lesce, Primary School Gorje and
Primary School Žirovnica. 92 teachers and 290 parents
participated in a survey. The questionnaire for parents
(see Appendix A) has been distributed between the
pupils from 1st to 8th grade and the classes have been
chosen randomly. In the introduction the questionnaire
included the very purpose of the survey and a short
description of an e-grade book on the internet. The
questionnaire for teachers is shown in Appendix B.

4.1 Teachers' Response
Less than half of the teachers were inclined to possible
introduction of an e-grade book (43%). The majority was
against it with the explanation of the e-grade book being
only an additional work for the teacher and a loss of time
(33%), another 22% explained that nothing has to be
modernised. And some of them did not even know what
the question was all about (2%). The teachers' inclination
towards the introduction of an e-grade book is shown in
Figure 4.

Are you in favour of introducing an
e-grade book in primary school?

57 %

43 % IN FAVOUR

AGAINST

Figure 4: Review of teachers' inclination towards
introduction of an e-grade book

With a possible introduction of an e-grade book a
relatively small percentage of teachers (21%) was of an
opinion that there would be no problems with operating
with the programme with a preliminary seminar on how
to use the programme. Some teachers (40%) thought that
possible introduction of an e-grade book might
negatively affect the relation between teachers and
parents because a personal contact would no longer be
needed. Some also worry about the programme to be too
complicated (29%), and the minority (10%) thinks that
numerical grades are not enough an information.

The majority of teachers (43%) think that in a case of a
possible introduction of an e-grade book parents would
come to school on less frequent basis than now (all the
information could be obtainable on the internet), some
(37%) think that their visits would be as frequent as they
are now, and just a few (20%) claim that because of the
current information on the student's success their visits to
school would be even more frequent (Figure 5).

Only some teachers (32%) would be willing to
voluntarily participate in a test version of the programme.
29% would not participate, and 39% only if the
management directed to.

In general, less than half of the teachers (43%) is in
favour of an e-grade book. The result might be due to an
age structure of the teachers.

98 Informatica 28 (2004) 95–101 E. Jereb et al.

Parents visits to school with a
possible introduction of an e-grade

book.
20%

43%

37%
MORE THAN
NOW

LESS THEN NOW

THE SAME AS
NOW

Figure 5: Teachers' opinions on parents' visits to school
with a possible introduction of an e-grade book

4.2 Parents' Response
The majority of parents (67%) have already heard of an
e-grade book, while the rest (33%) have never heard of it
(Figure 6).

Have you ever heard of an e-grade
book?

67%

33%
YES

NO

Figure 6: Parents’ acquaintance with an e-grade book

Only a minority of parents (3%) are poorly familiar with
their child's school success, the majority (53%) are well
familiar with their success, some parents (44%) are
extremely well familiar with their child's success.

Some parents (32%) get information on a child's results
besides parents' meetings and parent-teacher interviews
also extra, but majority (68%) do not.

Majority of parents is in favour of introducing an e-grade
book (71%) some of them having doubts only about the
security of information (see Figure 7). Minority is
against (29%) and has the following opinions on the
introduction of an e-grade book:

• It will encroach upon children's rights.
• We find an e-grade book unnecessary.
• 'Non-electronic' and 'non-internet' achievements and
 aids are more important for a child's success at
 school and in life.
• It would be a burden for a child.

• School success must not be dependent on the internet
 but on a child.
• I am interested in my child's grades and not my
 neighbour's child.
• In general I think the computer age has expanded too
 much for the children will not be able to read
 and talk.
• This leads to loneliness, which will soon become a big
 problem.

Are you in favour of introducing an e-
grade book in primary school?

29 %

71 %

YES

NO

Figure 7: Parents' inclination towards introduction of an
e-grade book

Most parents (85%) think that the success of their child
after the introduction of an e-grade book would stay at
the same level. Some (14%) think that it would be better
or even a lot better, but there are also parents (1%) who
think that the introduction of an e-grade book would
deteriorate their child's success.

If monthly subscription for the use of an e-grade book
was involved, the minority of parents (1%) would be
prepared to pay 10 EUR, (9%) 5 EUR, (16%) less than 5
EUR. The majority (74%) thinks that the use should be
free of charge.

We were also interested in the percentage of parents who
have a computer either at home or at work, and if and
how they are connected with the internet. The results
were as follows: the majority of parents (84%) have a
computer (at home or at work, Figure 8), out of these a
little more than a half (51%) have a connection with the
internet. Most of them have a connection with the
internet over a cable connection (40%), a little less over
on ordinary telephone line (32%), and 28% over a
telephone line ISDN.

Parents with a computer and internet connection are
absolutely in favour of introducing an e-grade book
(50%). 31% agree with it but have some doubts about the
information security, 15% don't agree and 4% are not
interested in such form of a grade book (Figure 9).

23% of parents without a computer are absolutely in
favour of introducing it, 41% are conditionally in favour
since they have some doubts about the information

ASSESSING THE POTENTIAL IMPACT... Informatica 28 (2004) 95–101 99

security. 16% are against the introduction of an e-grade
book, and 20% of parents are not interested.

Have you got a computer?

84%

16%

YES

NO

Figure 8: Parents equipment with computer either at
home or at work

Do you agree w ith the introduction of
an e-grade book?

50%

31%

15%
4%

ABSOLUTLY AGREE

HAVE DOUBTS
ABAUT SECURITY
DON`T AGREE

NOT INTERESTED

Figure 9: Parents' opinions that have a computer and
internet connection about the introduction of an e-grade
book

4.3 Responses Of Headmasters,
Psychologists And Social Workers

The following conclusions have been reached after
talking to other employees in primary schools.
In schools where the management is in favour of
informational technology and follows its progress, the
subordinates accept new technology and changes that
follow its introduction much easier. Psychologists and
social workers still have their own opinion about the new
informational system (personal communication and
personal relations between pupils – parents – teachers are
more important), but a slight change in favour of
introduction of an e-grade book is evident. This of course
leads to easier and faster changes with the introduction of
new business informational system (Jereb E. and Jereb J.,
2000; Jereb, 2002).

The situation in schools where the management does not
follow the informational technology and does not
approve of the introduction of business informational
system is just reverse. Here the management transfers its

views to the subordinates who do not have many chances
for success even if they agree or want changes about
informational technology (Jereb E. and Jereb J, 2000).
Such school are only few in numbers.

5 Discussion
Although the study only involved a small sample of
potential users, it did demonstrate that the majority of
parents having their children in primary schools are in
favour of the introduction of an e-grade book. That is
because parents will have access to their child's grades
whenever they want to and children will not be able to
keep their grades a secret. They will have access to
information on knowledge checks, natural science days,
cultural and sport days. And also access to teachers' notes
to parents on their child's behaviour in class. The e-grade
is also a good solution in a case parents cannot attend
parent-teacher interviews or parents' meetings.

When the parents are not equipped with the knowledge
or technology to access the before mentioned
information, a problem may occur. It can also happen
that due to an e-grade book parents will no longer have a
direct contact with a class teacher and other teachers at
school, which is also not so good.

A lot of teachers were also interested in introducing an e-
grade book in primary schools. Since parents will be able
to check their child's grades over the Internet and will be
able to get all the necessary information that way, the
teachers will not have to call parents home so often or
visit them (due to bad grades, inexcusable absence,
inappropriate behaviour).

Maybe the reason why more of them have not shown the
interest is because teachers who are not familiar with the
use of information communication technology will have
to take more time to learn how to use the programme
than those who are. Some of them might even dislike the
new technology. It can also happen that they will not
have a direct contact with all the parents any more. And
teachers might need some extra time for registration of
grades and other information.

Using an e-grade book instead of a classical form of a
grade book enables an easier managing of the data since
it is written in electronic form (can be printed in different
forms, can be distributed over e-mail, can be transferred
into other programmes, etc.). That also enables an easier
statistical supervision.

What we are worried about is the security and protection
of the system and a possible loss of data (human factor,
machine failure).

6 Conclusion
Informatization in primary schools is expanding
therefore an introduction of an e-grade book is to be
expected in the near future. The technology of an e-grade

100 Informatica 28 (2004) 95–101 E. Jereb et al.

book offers the parents as well as teachers new
possibilities. School management will have to consider
the best possible way to use these possibilities and get
with the progress. An e-grade book on the internet is an
application which enables the parents to learn about their
child's grades anytime and anywhere as long as they have
connection with the internet as well as the password for
their child's grades. An e-grade book must not be viewed
as a substitution for parents' visits to school. We are still
of the opinion that a personal contact is of the utmost
importance. This application should serve as an addition
for the parents to use in order to have some extra
information on their child's grades, but the circumstances
prevent them from doing so (either the class teacher
cannot be reached or they cannot participate in parent-
teacher interview). We believe the e-grade book will
have a positive effect on a pupil-parent-teacher relation
since the parents will have a current information on their
child's grades which will also serve as a stimulation for
their frequent visits to school for the interview with a
class teacher.

References

[1] Adams, P.C., & Warf, B. (1997). Cyberspace and
geographical space. Geographical Review, 87(2),139-
145.

[2] Amundsen, M. (1999). Using Visual InterDev.
Indianapolis: Que publishing.

[3] Cooper, B. (2000). Internet: Searching the Internet.
London: Dorling Kindersley.

[4] Jereb, E., & Jereb, J. (2000). Organizacija
pisarniškega poslovanja. Kranj: Moderna organizacija.

[5] Jereb, E. (2002). Avtomatizacija pisarniškega
poslovanja. Kranj: Moderna organizacija.

[6] Mitchell, C.G., & Hope, B.G. (2002). Teaching or
Technology: Who's Driving the Bandwagon? In E.
Cohen, Challenges of Information Technology in the 21st
Century, London: Idea Group Publishing.

[7] Papa, J., Caison, C., Debetta, P., & Wilson, E. (1999).
Professional ADO RDS programming with ASP.
Chicago: Wrox Press.

[8] Reisman, S. (1994). Multimedia computing. London:
Idea group publishing.

[9] Schofield, S. (1994). The UK Internet book. England:
Addison-Wesley.

[10] Sussman, D., & Homer, A. (1998). Ado 2.0 -
Programmer`s reference. Chicago: Wrox Press.

[11] Šalamon, B. (1998). Internet pojmovnik.. Izola:
Desk d.o.o.

Appendix A
QUESTIONNAIRE -PARENTS

 Electronic grade book on the internet

Every grade the learner gets in the school is written
in the e-grade book, just as by classic grading book.
Only that hereby also the parents will have the
insight into their child's grades, access to teacher's
notes to the parents, their child's behavior etc. To
help us introduce the advantages and problems
which introducing of an e-grade book might bring
alone, we ask you to fill in this questionnaire. Thank
you.

1. Have you ever heard of an e-grade book?

Yes No

2. Are you familiar with your child's success in
school?
a) poorly
b) good
c) very good
d) do not know at all

3. Would you be interested in constant overlook
over your child's grades?
Yes No

4. Besides attending regular parent-teacher

interview do you ever extra ask about your
child's success in school?
Yes No

5. Are you interested in introducing an e-grade

book, which enables to track your child's
grades, behavior, teacher's notes, anytime
you want to?
a) Yes, off course.
b) Conditionally, I am worried about data
security.
c) No (why not?)________________________
d) Not interested in such an grade book.

6. Do you think that introducing an e-grade book
would change your child's success in school?
a) Yes to worse.
b) It would not.
c) Yes it would be better.
d) I think it would be much better.

7. Are you prepared to pay for using such a
grade book?
a) No
b) less than 5 EUR
c) 5 EUR
d) 10 EUR
e) up to 20 EUR

8. Do you have a computer (at home, at work)?
Yes No

ASSESSING THE POTENTIAL IMPACT... Informatica 28 (2004) 95–101 101

9. If you do, are you connected to the internet?
Yes No

10. If yes, how is your connection?

a) cable TV
b) ISDN
c) classic telephone line

Appendix B

QUESTIONNAIRE -TEACHERS

 Electronic grade book on the internet

Every grade the learner gets in the school is written in the
e-grade book, just as by classic grading book. Only that
hereby also the parents will have the insight into their
child's grades, access to teacher's notes to the parents,
their child's behavior etc. To help us introduce the
advantages and problems which introducing of an e-
grade book might bring alone, we ask you to fill in this
questionnaire. Thank you.

1. What do you think of an e-grade book?

a.) Something new, I think it would be useful,
worth trying.

b.) Only additional work for the teachers,
waste of time. I am not interested.

c.) Do not know what you are asking about.
d.) Else_______________________________

2. Your concern in case of introducing an e-grade
book into primary schools.

a.) I am not concerned. I would just have to
learn entering the grades.

b.) We would lose personal contact with
parents.

c.) The e-grade system sounds to complicated
for me.

d.) Else_______________________________

3. Do you think parents would still come to school?
a.) More than now.
b.) Less.
c.) The same.

4. Would you collaborate in testing the pilot version
of the e-grade system?

a.) Yes.
b.) No.
c.) Only if really necessary (management's

directive).

102 Informatica 28 (2004) 95–101 E. Jereb et al.

Informatica 28 (2004) 103–113 103

Type Systems for Concurrent Programming Calculi

N. Raja and R.K. Shyamasundar
School of Technology & Computer Science
Tata Institute of Fundamental Research
Mumbai 400 005, INDIA
Email: {raja, shyam}@tifr.res.in

Keywords: Type theory, concurrency, process calculi

Received: March 12, 2003

We explore the role of types in models of concurrent computation, particularly in the concrete setting of
the asynchronous π-calculus. The major theme of this work may be summarized by the slogan – “Wher-
ever you see structure, think of types”. We propose type annotations not merely to channels, but also
to the highly structured set of processes. The type system guarantees that well typed expressions can-
not go wrong. Polymorphic process types formalize extant informal ideas regarding the channel passing
and process passing approaches to process mobility. Further, subtyping relation between process types
distinguishes between true concurrency and nondeterministic choice.

1 Introduction
Type systems for sequential programming languages lead
to many advantages [3, 20, 27]. In programming practice:
types help in structuring programs, they assist in compile-
time error detection, and they are useful in optimizing the
target code during the compiling process. In the theoreti-
cal study of programming language concepts: types help in
the creation of succinct metalanguages that act as models
for the study of real-life programming languages, and they
serve as intermediate code in the task of providing mathe-
matical semantics for programming languages. All this has
naturally led to investigations regarding the role of types in
theories of concurrency.

The goal of this paper is to examine whether there are
any benefits to be gained by introducing types in models
for concurrent computation. In this paper, we illustrate the
role of types in the concrete setting of the asynchronous
π-calculus (API) [17, 6]. We choose API as it is one of
the most prominent calculi for concurrency and communi-
cation. API has two kinds of entities – names (also called
channels) and processes (also called agents). Names do not
possess any structure, whereas a good amount of structure
is needed to build processes. The type system we propose,
assigns types to both processes and channels. The type as-
signed to channels, characterizes the length and the nature
of the elements that the channel may carry in a communica-
tion. The type assigned to processes, characterizes the set
of actions that the process is committed to. This results in a
rich notion of types which is very useful in the monadic as
well as the polyadic versions of API. The type system pro-
posed shows that there are substantial benefits to be reaped
by exploring the idea of typing processes. The usage of our
type system entails the following advantages:

– It provides a scaffolding for the structured use of the

π-calculus, by which we can abolish certain undesir-
able features – like infinite concurrent activity – right
at the early stage of building process terms, rather than
at the stage of the reduction system.

– Guarantees safety, that well typed expressions will not
go wrong.

– Does not constrain the expressive power of the π-
calculus.

– Our type system, with minor changes, can be ap-
plied to all process algebra formalisms of concur-
rency. Thus, it provides a uniform basis for the rel-
ative assessment of various formalisms. For example,
polymorphism in process types brings out potential
impredicativity in the semantics of some of these for-
malisms.

– Subtyping relation among process types helps in dis-
tinguishing true concurrency from nondeterministic
choice.

The rest of this paper is organized as follows: Section 2
gives a brief review of the asynchronous π-calculus (API);
Section 3 presents the type system; Section 4 shows that
the type system preserves the semantics of API; Section
5 examines the type system with regard to those proper-
ties which are normally of interest in sequential languages;
Section 6 explores further extensions to the type system –
polymorphism and subtyping – by analogy with traditional
type theory; Section 7 describes related work on concur-
rency and types. The conclusions and future research di-
rections are presented in Section 8.

104 Informatica 28 (2004) 103–113 N. Raja et al.

2 The Asynchronous π-Calculus

In this section, we include a brief review of the asyn-
chronous π-calculus (API) [17, 6] notions that are required
for this paper.

Following Milner’s idea, a number of calculi for concur-
rent computation have been proposed, where the commu-
nication mechanisms are similar. Communication consists
in synchronously sending and receiving through a shared
labeled channel.

API [17, 6, 22, 25, 23, 35] is a model of concurrent
computation that supports process mobility by naming and
passing channels. It consciously forbids the transmission
of processes as messages. One of its goals is to demon-
strate that in some sense it is sufficiently powerful to allow
only names to be the content of communications.
API has two kinds of entities – names (channels), and pro-
cesses (agents).

Names (x, y, . . . ∈ X), have no structure.
Processes (P, Q, . . . ∈ P) possess a well defined struc-

ture given by
P ::= 0 | xy | x(y).P | P |Q | !P | (νx)P | ERROR
The construct xy outputs the name y along x, and does not
bind y. The construct x(y) inputs a name, say y, along x,
and binds y in the prefixed process. The word ‘asynchrony’
in this calculus means that message output is non-blocking.
This is ensured by restricting the formation of a term xy.P
in the π-calculus to the case where P is an inactive pro-
cess. API is powerful enough to encode the synchronous
message passing discipline of the π-calculus [36, 30]. The
term 0 represents an inactive process. We have extended
the π-calculus by including a constant process called ER-
ROR, to represent the kind of type mismatches that we wish
to avoid at run-time. The form P |Q means that P and Q are
concurrently active, are independent, and can also commu-
nicate. The operator “!” is called replication, and !P means
P |P | . . .; as many copies as you wish. Finally, (νx)P re-
stricts the use of name x to P . Apart from input prefix, “ν”
is another mechanism for binding names within a process
term in API. The operator “ν” may also be thought of as
creating new channels.

The operational semantics of API is given in two stages,
as shown in Figure 1. A structural congruence is first de-
fined over the process terms, and then a reduction relation
is defined. Notice that the rules do not allow reduction un-
der prefix or replication. Also, as expected there are no
reduction rules for ERROR. For more details about API, the
reader is referred to [17, 6].

3 The Type System

We present our type system in three stages – first, the syn-
tax; second, the typing rules corresponding to API pro-
cess constructors; and finally, the typing rules correspond-
ing to the reduction system of API. The following subsec-
tions are devoted to each of these three stages respectively.

Though we use the monadic asynchronous π-calculus to il-
lustrate our typing system, our results can be extended to
the polyadic case in a straightforward manner.

3.1 Syntax for Types

We shall call the type information assigned to names as sort
(ranged over by the metavariable s), and shall use the term
type (ranged over by the metavariable t) to designate the
type information assigned to processes. Our typing scheme
is an implicit one (Curry-style typing), because we want
to illustrate our work in the setting of a familiar calculus,
without any syntactic modifications to the term structure of
the calculus.

The sort ‘s’ denotes the length and nature of names
which a given channel may carry in a communication. The
superscripts R, S, indicate that the channel usage as “re-
ceive mode” and “send mode” respectively.

In API, processes may be viewed as programs which ma-
nipulate names (which in turn can be considered as data).
As mentioned earlier the data manipulated by API programs
are unstructured entities. The data develops some structure
only in the polyadic extension of API. In the monadic case,
the data are atomic entities while in the polyadic case they
are n-tuples. Thus the notion of sorts starts making sense
only in the polyadic case.

On the other hand, processes have a well-formed struc-
ture even in the monadic case; hence types are of signifi-
cance in both versions of API. The type ‘t’ denotes a pro-
cess type; it comes in various forms as depicted in Figure
2. The arrow type arises due to the prefix constructor; the
intersection type arises due to par; and the recursive type
arises due to Bang; the internal and external types arise
due to the hiding operator. The API expressions leading to
the above types will become clear as we look at each of the
typing rules given in the following subsections.

3.2 Types for Processes

An API process α.A can be regarded as an action α and
a continuation A. α.A is called a commitment – it is a
process committed to act at α [22]. This is precisely the
information that the type associated with a process embod-
ies.

Proposition 3.1 (Process-types and Commitment) A
process type describes the sequence of actions that a pro-
cess is committed to.

This will become clear from the following subsections.
API is based on the object model of computing [26]. Ob-

jects have an independent identity and they have a persis-
tent state which may not be entirely visible to the other
agents. Thus the type associated with a process has two
facets – one which specifies its interface on the outside and
the other which determines its internal transitions. Our type
system brings out this aspect of API explicitly by making

TYPE SYSTEMS FOR CONCURRENT. . . Informatica 28 (2004) 103–113 105

Definition 2.1 (Structural Congruence over Process Terms)
≡ is the smallest congruence relation over process terms such that the following laws hold:

1. Processes are identified if they only differ by a change of bound names

2. (P/ ≡, |, 0) is a symmetric monoid

3. !P ≡ P |!P
4. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P

5. If x 6∈ freeNames(P) then (νx)(P |Q) ≡ P |(νx)Q

6. P |ERROR ≡ !ERROR ≡ (νx)ERROR ≡ ERROR

Definition 2.2 (Reduction Relation)
The reduction relation → over processes is the smallest relation satisfying the following rules:

Comm (. . . + x(y).P) | (. . . + x[z].0) → P{y ← z} | 0

Par P→P ′
(P |Q)→(P ′|Q)

Struct Q≡P P→P ′ P ′≡Q′

Q→Q′

Res P→P ′
(νx)P→(νx)P ′

Figure 1: Operational Semantics of API

Sorts s ::= BasicSort | (s)R | (s)S

Type− Variables T | U | V

Pre− Types σ ::= ε|φ|T |Name(Name : s)R|Name(Name : s)S|σ → σ|σ ∩ σ|µT.σ

Pre− Types σ | σext | σint

Types t ::=< σext, σint >

TypeEnvironments Γ ::= {} | Γ, x : s | Γ, P : t

Figure 2: Syntax of the Type System

106 Informatica 28 (2004) 103–113 N. Raja et al.

Zero Γ ` 0 : φ

Prefix− R Γ`x:(s)R, y:s Γ`P :t

Γ` x(y).P : x(y:s)R→t

Prefix− S Γ`x:(s)S , y:s

Γ` x(y) : x(y:s)S

Par− I Γ`P :t1 Γ ` Q:t2
Γ` P |Q : t1∩t2

Bang Γ`P :(t1→t2)
Γ ` !P : µT.t1→(t2∩T)

New − Channel Γ`P :t Γ`x:s
Γ ` (νx)P :<t[x←ε], t>

Figure 3: Typing Rules for Process Constructors

the type associated with a process to be a tuple comprising
its external and internal types respectively.

The typing rules corresponding to each of the process
constructors that API allows, are listed in Figure 3. Among
all the typing rules listed in Figure 3, the internal and ex-
ternal types turn out to be distinct only when the ‘hiding
operator’ occurs in the process term. Hence, only the New-
Channel typing rule shows both components of the type as-
sociated with a process term. The types are to be viewed as
being implicitly universally quantified on name sorts. The
typing rules are given in a syntax directed way, and can be
checked for well-formedness by structural induction over
the API syntax.

Arrow types

Arrow types are familiar from type systems for sequen-
tial programming. The typing rule Prefix-R states in its
premises that if x, y are names, y has sort s, and x has sort
(s)R – which means that the channel x may be used for re-
ceiving a name of sort s – and the process P has type t; then
the API term x(y).P is assigned the type x(y : s)R → t.
The type indicates that process x(y).P can use channel x
for receiving only, indicated by the superscript R. Further,
after such a communication occurs (and only after), it may
proceed to behave like a process having type t. This strict
sequentiality imposed by the prefix constructor of API is
made explicit by the →. The rule Prefix-S is very similar
except that it shows that the name x may be used only for
sending (the superscript S) by the newly constructed pro-
cess.

We shall discuss the prefix rule again when we consider
higher-order models for concurrency. The Prefix type rules
will reveal any impredicativity which could be lurking in
the semantics of the calculus being typed. More about im-
predicativity will be discussed in Section 7.

Intersection types

The rule Par-I says that the intersection type ‘∩’ arises
when a process is built by the parallel composition of two
other process terms. The parallel composition operator ‘|’
allows the components to make transitions independently
(i.e., disjoint parallelism). Thus, the set of actions that a
process belonging to an intersection type can indulge in, is
given by the conjunction of the set of possible actions of
its component processes. Intersection types are also called
‘conjunctive types’ in the parlance of type theory.

There is a notable difference between the conventional
usage of intersection types [3], and the way they are used
in this work. In this work, the intersection type corre-
sponds to a process constructor (par, ‘|’). Traditionally,
intersection types are used for typing a term which be-
longs to various structurally unrelated types. For exam-
ple, the symbol ‘+’ is used to represent integer addition,
and real addition. The type assigned to such a function is
((int → int → int) ∩ (real → real → real)). In other
words, conventional intersection types are used to represent
‘overloading’. Notably also absent from our type system,
is the universal type ω (such that P : ω for all terms P),
which accompanies intersection types normally.

The parallel composition operator ‘|’ also allows the

TYPE SYSTEMS FOR CONCURRENT. . . Informatica 28 (2004) 103–113 107

components to communicate. Hence we shall encounter the
intersection type ‘∩’ once again in the typing rule describ-
ing communication between the two component processes.

Recursive Types

The Bang typing rule is another instance where the rele-
vance of types in concurrency is very clearly brought out.
The operator “!” is called replication and !P – “bang P ”–
means P |P . . .; as many copies as you wish. In API the “!”
operator can be applied to any process term P to form the
process !P (where P has been constructed using any rule
for building processes). The important point to be noted is
that API does not enforce any restrictions on P before the
“!” operator may be applied to it.

However the typing rule Bang states in its premise that
the type of P should be an “arrow type” such as (t1 → t2)
before we can apply “!” to P to get !P . This makes it
mandatory that the outermost constructor of process P be a
prefix, before the “!” may be applied to it. Thus the replica-
tion operator can be used on guarded processes only. !π.P
is a common instance of replication – it indicates a resource
P which can be replicated only when a requester commu-
nicates via π. This shows that the premise in the typing
rule Bang is meaningful. The next question which arises
is whether the typing rule Bang is being too restrictive by
imposing such a condition. Before we answer this query,
let us examine the meaning of a term such as !P when it is
not required of P that its outermost constructor be a pre-
fix. Such a term, “!P ”, means a resource which replicates
asynchronously – replicates without demand, without re-
quirement. !P appears to be acting on its own free will,
so to say. In other words it represents infinite concurrent
activity. Now this is certainly not a meaningful construct,
and we would rather not have such a term in our calculus.
Hence the typing rule Bang does not strip API off any ex-
pressive power; in fact it rules out an entire class of mean-
ingless terms from being constructed. API abolishes such
behaviour by taking recourse to its reduction rules. How-
ever we have done better in our type system, in that, we
even forbid the occurrence of such terms right at the level
of syntax, by enforcing a discipline in the structured con-
struction of API programs.

After having looked at the premise, let us now examine
the conclusion of the Bang rule. It infers that the process
term !P has the type (µT.t1 → (t2 ∩ T)). µ represents
recursion and the type variable T is the parameter of the
recursion. The recursive type makes the recursive behav-
ior of “!” operator explicit. The intuition provided by the
recursive type is well supported when we turn to API and
find that all parametric recursive process definitions can be
encoded by replication. Let us come back to the Bang typ-
ing rule: When P has the type (t1 → t2), it means that P
behaves as dictated by the type t1 and then (sequentially)
behaves as dictated by t2. The recursive type assigned to !P
says that !P behaves as required by t1 and then as required
by (t2 ∩ T). The intersection type mirrors the fact that an

independent process of type t2 has been spawned, which
executes in parallel with the resource of type T . But T is
the parameter of recursion, and we eliminate it by recursive
unfolding, that is we replace T by (µT.t1 → (t2 ∩ T)) and
proceed further as before.

The Recursive type in this setting is very similar to that
used in sequential programming. The type µT.tp stands
for the least fixed point solution of the type equation T =
tp. The solutions of such equations will be infinite types,
which can be represented by infinite labeled binary trees.
The definition of such trees is provided in Figure 4. The
same Figure also gives a congruence relation on types with
the help of such trees [9, 10].

Internal and External Types

In all the typing rules that we have considered so far, the
external and internal types are identical. However, the op-
erator ν used as (νx)P localizes (restricts) the use of the
channel x within P . The channel name x is guaranteed
to be different from any other channel name which finds
an occurrence outside P . Hence communications can be
sent and received on x only internally within process P .
This brings us to the next typing rule, New-Channel, which
gives the external and internal type of a process term which
has been built using the operator ν. The notion of distin-
guishing between the external and internal type of a process
is derived from the notion of existential types and explicit
witnesses [28], and the notion of partially abstract types
[8]. The external type-component states that if the process
P has type t and the channel x has sort s, then the external
type of the process term (νx)P is t[x ← ε] which means
that in the type t all occurrences of x are replaced by ε,
thereby making the channel x unavailable for communica-
tion with the outside world. The internal type-component
states that as far as the internal type of (νx)P is concerned,
there is no change, the type continues to be t.

That explains all the typing rules that have arisen be-
cause of the process constructors that are allowed in API.

3.3 Reduction rules and Types

The typing rules shown in Figure 4 correspond to the con-
gruence relation over types. They spell out when two types
may be considered to be congruent.

The remaining typing rules, shown in Figure 5, corre-
spond to the reduction system of API. The typing rules
Inter-E, Comm, Par-R, Res, and Struct tell us how to con-
sistently infer the type of the term which results from a
reduction.

The rule Comm mentions the types required of each term
so that the communication between the two processes will
result in a proper reduction (one which does not result in
ERROR), and gives the type of the resultant process. The
rule Par-I mentioned earlier as giving rise to the intersec-
tion type ‘∩’, can be considered to be a special case of this
rule. If there is no communication possibility allowed by

108 Informatica 28 (2004) 103–113 N. Raja et al.

Definition 3.2
The tree corresponding to the process type t, written as T (t), is defined as follows:

T (φ) = φ;

T (t1 → t2) = (→, T (t1), T (t2));

T (t1 ∩ t2 = (∩, T (t1), T (t2));

T (µT. t) = T (t[T ← µT. t]).

Definition 3.3
≈t is the smallest congruence relation over types, such that, the following laws hold:

CR-1 Process types are identified if they only differ by a change of bound names;

CR-2 t ∩ φ ≈t φ ∩ t ≈t t;

CR-3 t1 ≈t t2, if T (t1) = T (t2).

Figure 4: Congruence Relation for Types

Inter− E Γ ` P :t1 ∩ t2
Γ ` P :t1 Γ ` P :t2

Comm x(y).P : (x(y:s)R→tP), x(z) : (x(z:s)S)
x(y).P | x(z) → P{y←z} : tP {y←z}

Par− R
P :tP → P ′:tP ′

(P |Q) : tP∩tQ → (P ′|Q) : tP ′∩tQ

Res
P :<tP ,tP > → P ′:<tP ′ ,tP ′>

(νx)P :<tP [x←ε],tP > → (νx)P ′:<tP ′ [x←ε],tP ′>

Struct
tQ ≡t tP P :tP → P ′:tP ′ tP ′ ≡t tQ′

Q:tQ → Q′:tQ′

Figure 5: Reduction Rules and Types

TYPE SYSTEMS FOR CONCURRENT. . . Informatica 28 (2004) 103–113 109

the types of the interacting processes (disjoint parallelism),
then the resulting type of the compound term is given by
the Par-I typing rule. It is worth noting that the typing rules
corresponding to process constructors and the typing rules
corresponding to the reduction system, cannot be kept sep-
arated in the type system for API. This is because the oper-
ator par ‘|’ is overloaded – it represents both concurrency
(a process building operation), as well as communication
(an operation which is a part of the reduction rules). How-
ever, such a clear separation can be achieved in the case of
a type system constructed along similar lines for Boudol’s
concurrent λ-calculus [5].

Once again we mention that in all these rules, except Res
the inference is valid for both components of the process
type – external as well as internal. The Res typing rule
explicitly indicates the process type as a tuple and gives the
corresponding new components of the type after reduction.

4 Soundness and Type Safety
In this section, we examine the effect of the type-system on
the semantics of API. First, we show that our type system
preserves the semantics of API, and prove that well typed
expressions never reduce to ERROR – which means process
types guarantee the safety property.

The operational semantics of API was defined in two
stages [22, 26] as shown in Section 2. A structural equiva-
lence on process terms was given first, and then a reduction
relation was given which describes the act of communica-
tion. We prove below that our notion of type is consistent
with each of these two stages.

Theorem 4.1 Types preserve the structural congruence
rules on process terms.

Proof: We prove this theorem by examining the structure
of the definition of structural congruence on process terms.

1. Types respect α-conversion (typing rule CR-1), hence
agents are identified if they only differ by a change of
bound names.

2. Using the typing scheme presented in this paper, we
show that types preserve the fact that (P/ ≡, |, 0) is a
symmetric monoid.

0 : φ (Zero)
P |0 : t ∩ φ (Par − I)
t ∩ φ ≈t t (CR− 2)

Similarly,
0|P : φ ∩ t (Par − I)
φ ∩ t ≈t t (CR− 2)

By steps 3 and 5, it follows that types preserve the
monoidal structure of P/ ≡, where ‘|’ is the associa-
tive operator of the monoid, and 0 forms the identity
w.r.t ‘|’.

3. The typing rule Bang has been explained in sufficient
detail in Section 3. It clearly follows from the illustra-
tion given there that types guarantee !P ≡ P |!P .

4. The inactive process 0 has the type φ as both its ex-
ternal and internal type. The restricted process (νx)0
continues to have the same type. Hence (νx)0 ≡ 0.
If the process P has the process type < EP , IP > then
the process term (νx)(νy)P has the type < EP [x ←
ε, y ← ε], IP > which is equivalent to the type
< EP [y ← ε, x ← ε], IP > associated with the pro-
cess term (νy)(νx)P .

5. From the typing rules Par-I, and New-Channel it im-
mediately follows that if x is not free in P then
(νx)(P |Q) ≡ P |(νx)Q.

Thus types preserve the structural congruence on process
terms. 2

Theorem 4.2 Well typed expressions can never reduce to
ERROR.

Proof: In the absence of types, the reduction rule which
allows communication between process terms states that
x(y).P | xz → P{y ← z}. The typing scheme assigns
to each of the two concurrent process terms the following
types –
x(y).P : x(y : s)R → tP , and x(z) : x(z : s)S

Further the type scheme allows a reduction to take place by
the typing rule Comm only when the two types are com-
plementary and the sorts of the channels being used for
communication are consistent with each other. These are
exactly the conditions required to ensure a meaningful re-
duction in the π-calculus. The term resulting from the com-
munication is P{y ← z} and its corresponding type is
tP [y ← z]. Then well typed process terms never reduce
to ERROR. 2

Theorem 4.3 The type system preserves the semantics of
API.

Proof: Follows as a direct consequence of Theorem 4.1
and Theorem 4.2. 2

5 Basic Syntactic Properties
The type system proposed in this work is meant for concur-
rent calculi, and as is well known, the requirements of con-
current systems are quite different from those of sequential
systems. However, there are a number of syntactic proper-
ties which have been of interest in traditional type systems
for sequential programming [3]. For the sake of complete-
ness we briefly examine such properties in our type system.

1. Implicit Typing: The typing scheme we have pro-
posed is an implicit one (Curry-style typing). We
chose Curry-style typing because we wanted to illus-
trate our work in the setting of a familiar calculus
without requiring major syntactic modifications to the
term structure of the calculus.

2. Church-Rosser Property (CR): This is more a prop-
erty of the underlying calculus being typed, rather

110 Informatica 28 (2004) 103–113 N. Raja et al.

than the type system itself. In our case, API does
not satisfy the Church-Rosser property, since func-
tions such as ‘parallel-or’ can be represented in it.

3. Subject Reduction (SR): If process term P has the
type tP , and if P reduces to the term P ′; then the sub-
ject reduction property states that the type of P ′ is also
tP . Such a property does not hold in our type system
because process reduction in API is non-deterministic,
and also due to name passing, the interface of a pro-
cess may change with reduction.

4. Strong Normalization (SN): This property states that
all reduction sequences terminate eventually. This
means that not every computable function is definable
in the system. However this property does not hold
in our type system because of the presence of recur-
sive process types. With the help of recursive process
types we are able to type the “!” operator of API with-
out restricting its expressive power.

5. Type Checking: This property states whether, given
a typing environment Γ, a process term P , and a type
t, is the judgment Γ ` P : t decidable or not. Type
checking is decidable for our type system.

6. Type Inference: This requires that given Γ and P , it
should be possible to compute a t such that Γ ` P : t
is valid. Type inference is possible for process types.

The above properties gained prominence because of their
importance in the traditional application areas of types,
such as in proof theory and in sequential programming. In
the domain of concurrency, many of the above properties
such as CR, SR, and SN are no longer relevant. Instead,
properties such as safety and liveness become important.

6 Further Extensions to the Type
System

There are a number of concepts which have played a signif-
icant role in the success of type disciplines for sequential
systems. Two such concepts are Polymorphism and Sub-
typing. In this section we examine whether these concepts
shed any light on concurrent calculi. We informally ex-
tend our type discipline in two directions – to incorporate
polymorphism and subtyping. The results are indeed very
promising as we demonstrate in the following subsections.
Further research along these lives is sure to lead to insights
into concurrent calculi.

6.1 Channel passing versus Process passing
Many distinct formalisms [25, 29, 37, 1, 18, 2, 5] have been
invented to describe systems which do not have fixed inter-
connection topology between processes. All such formula-
tions may be classified into two groups by examining the
way in which they achieve mobility. One group achieves

mobility by allowing channel names to be communicated
[25, 1, 18] – the π-calculus belongs to this group. The other
group achieves mobility by supporting the transmission of
processes as messages [37, 2, 29, 5] – let us take a particu-
lar example from this group, say CHOCS [37].

The name passing approaches to concurrency allow
names, but not processes, to be transmitted in communi-
cations. On the other hand, the process passing approaches
allow processes, but not names, to be transmitted as mes-
sages. There are relevant reasons why each of these two
approaches allows only either names or processes but not
both to be the content of communications. Thus neither of
the two approaches can be said to have achieved “unifor-
mity” in dealing with their primitive entities. Further it has
been demonstrated [37, 22, 36] that both the paradigms are
equally powerful as far as their expressive power is con-
cerned.

The question that we ask now is whether our type system
can provide any relevant criteria that favours the choice of
one paradigm over the other? The answer is in the affirma-
tive – the type system does provide a measure which helps
in discriminating the two paradigms.

In order to see how, let us examine the type that our
system assigns to the process constructor which allows ab-
straction of names and processes in the paradigms of name-
passing and process-passing calculi respectively. In this
section, let x, y range over Names; P,Q range over Pro-
cesses; Ns range over Name Sorts; Pt and tq range over
Process Types.

Consider the following π-calculus term, and its corre-
sponding type – x(y).Q : ∀Ns.x(y : Ns)R → tq . The
type expression states that the process term x(y).Q behaves
like a program which expects any name y as input (y is a
dummy parameter), and then behaves like the process Q.
However there is no restriction on what sort of name it
can accept as input, as shown by the universal quantifier
which ranges over Ns. The important point to be observed
is that the entity “∀Ns.x(y : Ns)R → tq” is itself a process
type and does not lie in the range of the universal quantifier
(which ranges only over name sorts in this case).

Now consider the following CHOCS term, and its cor-
responding type – x?(P).Q : ∀Pt.x(P : Pt)R → tQ. In
this case the type expression states that the process term
x?(P).Q behaves like a program which expects any P pro-
cess as input (P is a dummy parameter), and then behaves
like the process Q. However the program does not im-
pose any restrictions on the type of the input process (rep-
resented by the universal quantifier ranging over Pt. In this
case the entity “∀Pt.x(P : Pt)R → tQ” is itself a process
type and hence the universal quantifier ranges over this type
as well. In other words process types turn out to be impred-
icative in CHOCS, while they remain predicative in the π-
calculus.

It is a well known phenomenon in type theory that the se-
mantics of a predicative formalism is extremely simple and
elegant in comparison with the semantics required by an
impredicative formalism [11]. Thus conceptual simplicity

TYPE SYSTEMS FOR CONCURRENT. . . Informatica 28 (2004) 103–113 111

and elegance in the semantics of the type system associated
with a formalism favours π-calculus over CHOCS – or in
more general terms, name passing approaches over process
passing approaches to concurrency.

6.2 True Concurrency versus
Nondeterministic Interleaving

As mentioned in Section 7, the work by Pierce and San-
giorgi has shown that the subtyping relation among name
sorts leads to an interesting refinement. In this subsection
we examine the relevance of subtyping relation among pro-
cess types.

In the semantic theories for process algebras such as
CCS [21] and CSP [14], concurrency is semantically
reduced to nondeterminism. For example the process
a|b is considered semantically equivalent to the process
(a.b + b.a). It has been demonstrated by Boudol et al.
[7], that in certain situations it is meaningful to retain con-
currency as a primitive concept without reducing it to non-
deterministic interleaving. We now show that process types
can be used to maintain such a distinction.

For this purpose we introduce union types, ‘∪’, and a
subtyping relation among union types. Consider a process
term of the form P + Q. This term can (nondeterminis-
tically) indulge, either in the actions specified by P or in
the actions specified by Q (exclusive-or of the actions). If
the types of P and Q are given by tp and tq respectively,
then we assign to the process P + Q, the type tp ∪ tq .
Now we define the subtyping relation ‘⊆’, by the relations,
tp ⊆ (tp ∪ tq) and tq ⊆ (tp ∪ tq). The subtyping rela-
tion is reflexive, antisymmetric, and transitive. Intuitively
in a context which requires an object of type t, one could as
well use an object whose type is a subtype of t, but not vice
versa. This intuition is well supported when we examine
the process terms themselves. It is important to note that
such a subtyping relationship does not hold in the case of
intersection types i.e. tp 6⊆ (tp ∩ tq) and tq 6⊆ (tp ∩ tq).

Thus we get the type of a|b as (ta ∩ tb) and the type of
((a.b) + (b.a)) as ((ta → tb) ∪ (tb → ta)). Consider the
above processes after they make a transition on ‘a’. (a.b)+
(b.a) reduces to b. The new process type is a subtype of the
original process type, i.e. tb ⊆ ((ta → tb) ∪ (tb → ta)).
On the other hand the process a|b also reduces to b. But
the distinction lies in the fact that the new process type is
not a subtype of the original process type, i.e. tb 6⊆ (ta ∩
tb). Thus the type equivalence provided by the subtype
relation provides a key to distinguish true concurrency from
nondeterministic interleaving.

7 Related Work
In this section we briefly discuss work related to type sys-
tems for mobile processes. As mentioned earlier, the con-
current calculi that were proposed following Milner’s CCS,
have two basic syntactic entities – channels and processes.

This situation is unlike that in sequential programming,
where the λ-calculus (the de-facto standard sequential lan-
guage), has only one basic entity – terms. Till now a major
part of the research on type systems for concurrency has
concentrated on assigning type information to the channels
only. Such type information has been called sorts.

The relevant starting point is the notion of sorts intro-
duced in the polyadic π-calculus by Milner [22]. We illus-
trate Milner’s notion of sorting with an example. Consider
the process term xy.0|x(u).u().0|xz.0. In this expression,
channels y and z carry only the empty vector if they are
ever used for communication. On the other hand, chan-
nel x always carries another channel name, which in turn
is used in communicating an empty vector. We can repre-
sent these observations as: {y 7→ (), z 7→ (), x 7→ (())}.
Notice that the usage of x is characterized by a nesting of
parentheses. The above representation is precisely the sort-
ing as proposed by Milner. Thus the sort associated with
a channel captures the length and nature of the vector that
the name carries in communications. In the polyadic π-
calculus, names may carry n-tuples of other names. Hence
the notion of sort information assumes prominence only
in the polyadic setting. There are some more points to
be noted. Firstly, sort information is assigned to channels
only and sort equivalence is by name matching. Secondly,
names occurring in a perfectly meaningful π-calculus pro-
cess term may not have any sorting at all. This can occur
if a term uses names to communicate different entities at
different times. Thus the lack of a proper sorting does not
render a π-calculus expression meaningless. Finally, sorts
are implicit i.e., they do not occur in the term structure of
the calculus. Honda [15] presented similar results, in an in-
dependent work. Gay [12] presents an algorithm (quadratic
in the length of the input process) for automatically infer-
ring such sort information for channels, from the given π-
calculus term. Naturally sorts are inferred only if they ex-
ist. Honda and Vasconcelos [16] gave an algorithm to the
same effect, though linear in the size of the input process.
Following Lafont’s work on interaction nets [19], Honda
proposed conditions on channel sorts, so as to achieve free-
dom from deadlock in certain finite and simple situations.

Pierce and Sangiorgi [31] extended the notion of sorts by
distinguishing between the ability to read from a channel,
the ability to write to a channel, and the ability to do both.
This refinement gives rise to an interesting subtype rela-
tion on channel sorts. Their sort equivalence is by struc-
tural matching. In Pierce’s work, sorts appear explicitly in
the term structure and further such sort information is even
communicated from one process to another. This requires
changes in the π-calculus model, thus resulting in a differ-
ent concurrent calculus. In Pierce’s work, the problem of
algorithmic inference of sort information is not considered
at all.

The idea of assigning type information to processes has
also been used by researchers in other contexts [29, 13, 34].
In Facile, CML, and the Typed λ-calculus with first class
processes, the notion of process type is present. However

112 Informatica 28 (2004) 103–113 N. Raja et al.

the process types which find usage in these programming
languages are predominantly just functional types. The
notion of polymorphism has been included in Facile and
CML, but once again in the realm of channel sorts, in order
to derive more flexible sorting mechanisms.

From the above observations it is clear that the notions of
type inference, polymorphism, subtyping, and conditions
for deadlock freedom have been explored in the domain of
channel sorts. Such investigations in the domain of process
types, would yield rich dividends [33, 4, 32, 38, 39].

8 Conclusions and Future Directions

The aim of this work was to establish a bridge between
the disciplines of concurrency and type theory. We pre-
sented a novel operational semantics for the asynchronous
π-calculus, by making reductions sensitive to type. Our
type system was unique, in not confining type information
to channels only; very informative types were assigned to
processes also. The universe of process terms with its rich
structure, proved to be a fertile ground for the application of
various type constructors. The type system did not restrict
the expressive power of the asynchronous π-calculus in any
way. Types guaranteed safety, that well typed expressions
would not go wrong. Further the type system helped in pre-
venting the construction of meaningless expressions, such
as those representing infinite concurrent activity, right at
the stage of syntactic formation of process terms. The no-
tion of polymorphism brought out the latent impredicativity
in the semantics of the process-passing approaches to con-
currency. The notion of subtyping helped in distinguishing
true concurrency from nondeterministic interleaving.

As further work, it would be highly interesting and rel-
evant to explore how the notion of process types could be
put to use in reasoning about liveness properties of con-
current systems, such as freedom from deadlock. It would
also be fruitful to pursue work towards establishing alge-
braic equivalences over process types. Also as discussed
in the last section, exploring the notions of polymorphism
and subtyping looks promising.

This work is part of an ongoing investigation into the role
of type theoretic concepts in the setting of concurrency. It
would also be productive to carry out such an investigation
in a more abstract formalism for concurrency, e.g., like the
one provided by action structures [24].

Acknowledgment

We wish to thank the anonymous referees for construc-
tive comments which were of help in improving the
content and presentation of this paper. Our thanks to
Ms. Margaret D’Souza for typing and typesetting this pa-
per.

References
[1] E. Astesiano, and G. Reggio (1984) Parametric Chan-

nels via Label Expressions in CCS, Theor. Comp. Sci-
ence, Vol. 33, pp. 45–64.

[2] E. Astesiano and G. Reggio (1987) SMoLCS-driven
concurrent calculi, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Vol. 249, pp. 169–201.

[3] H. Barendregt, and K. Hemerik (1990) Types in
lambda calculi and programming languages, Proc.
ESOP’90, LNCS 432, pp. 1–36.

[4] M. Berger, K. Honda, and N. Yoshida (2003) Gener-
icity and the π-Calculus, Proc. FOSSACS’03, LNCS,
To appear.

[5] G. Boudol (1989) Towards a lambda-calculus for
concurrent and communicating systems, Proc. TAP-
SOFT’89, LNCS 351, Springer-Verlag, pp. 149–161.

[6] G. Boudol (1992) Asynchrony and the π-calculus,
Rapport de Recherche, Number 1702, INRIA Sophia-
Antipolis.

[7] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn
(1991) Observing Localities, INRIA Report No. 1485.

[8] L. Cardelli, and P. Wegner (1985) Understanding
Types, Data Abstraction, and Polymorphism, ACM
Computing Surveys, Vol. 17 (4).

[9] F. Cardone, and M. Coppo (1990) Two Extensions of
Curry’s Type Inference System, Logic and Computer
Science, Academic Press, pp. 19–75.

[10] B. Courcelle (1983) Fundamental Properties of Infi-
nite Trees, Theoretical Computer Science, Vol. 25, pp.
95–169.

[11] R.L. Constable (1991) Type Theory as a Foundation
for Computer Science, Proc. TACS’91, Lecture Notes
in Computer Science, Vol. 526, Springer-Verlag.

[12] S. Gay (1993) A sort inference algorithm for the
polyadic π-calculus, Proc. ACM Symposium on Prin-
ciples of Programming Languages, ACM Press.

[13] A. Giacolone, P. Mishra, and S. Prasad (1989) Facile:
A symmetric integration of concurrent and functional
programming, Int. Jl. of Parallel Prog., Vol. 18, pp.
121–160.

[14] C.A.R. Hoare (1985) Communicating Sequential Pro-
cesses, Prentice-Hall, London.

[15] K. Honda (1993) Types for Dyadic Interaction, Proc.
CONCUR’93, Lecture Notes in Computer Science,
Volume 715, Springer-Verlag.

TYPE SYSTEMS FOR CONCURRENT. . . Informatica 28 (2004) 103–113 113

[16] K. Honda, and V.T. Vasconcelos (1993) Principal typ-
ing schemes in a polyadic π-calculus, Proc. CON-
CUR’93, LNCS 715, Springer-Verlag.

[17] K. Honda, and M. Tokoro (1991) An Object Calcu-
lus for Asynchronous Communication, ECOOP’91,
Lecture Notes in Computer Science, Volume 512,
Springer-Verlag.

[18] S.R. Kennaway and M.R. Sleep (1985) Syntax and in-
formal semantics of DyNe, a parallel language, LNCS
207, Springer-Verlag, pp. 222–230.

[19] Y. Lafont (1990) Interaction Nets, Proc. POPL’90,
ACM Press, pp. 95–108.

[20] B. Mahr (1993) Applications of Type theory, Proc.
TAPSOFT’93, Lecture Notes in Computer Science,
Volume 668, Springer-Verlag.

[21] R. Milner (1989) Communication and Concurrency,
International Series in Computer Science, Prentice
Hall.

[22] R. Milner (1991) The polyadic π-calculus: a tutorial,
Logic and Algebra of Specification, Proceedings of
International NATO Summer School (Marktoberdorf,
Germany), Series F, Vol. 94, Springer.

[23] R. Milner (1999) Communicating and Mobile Sys-
tems: The Pi Calculus, Cambridge University Press.

[24] R. Milner (1993) Action Structures and the π-
Calculus, Proof and Computation, Proceedings of In-
ternational NATO Summer School (Marktoberdorf,
Germany), Series F, Vol. 139, Springer.

[25] R. Milner, J. Parrow, and D. Walker (1992) A calculus
of mobile processes (Parts I and II), Information and
Computation, Vol. 100, pp. 1–77.

[26] R. Milner (1992) Functions as processes, Journal of
Mathematical Structures in Computer Science, Vol. 2
(2), pp. 119–141.

[27] J.C. Mitchell (1990) Type Systems for Programming
Languages, Handbook of Theoretical Computer Sci-
ence, Elsevier Science Publishers.

[28] J.C. Mitchell, and G. Plotkin (1988) Abstract Types
have Existential Types, ACM Transactions on Pro-
gramming Languages and Systems, Vol. 10 (3).

[29] F. Nielson (1989) The typed λ-calculus with first class
processes, Proc. PARLE’89, Lecture Notes in Com-
puter Science, Volume 366, Springer-Verlag.

[30] C. Palamidessi (1997) Comparing the expressive
power of the Synchronous and the Asynchronous pi-
calculus, Proc. ACM Symposium on Principles of
Programming Languages, ACM Press, pp. 256–265

[31] B. Pierce, and D. Sangiorgi (1993) Typing and Sub-
typing for Mobile Processes, Proc. IEEE Symposium
on Logic in Computer Science, IEEE Press.

[32] B. Pierce, and D. Sangiorgi (2000) Behavioral Equiv-
alence in the Polymorphic Pi-Calculus, Proc. Journal
of ACM, Vol. 47 (3) pp 531–584.

[33] N. Raja, and R.K. Shyamasundar (1994) Type Sys-
tems for Concurrent Calculi, Proc. of the Tenth
Workshop on Abstract Data Types (ADT’94), Santa
Margherita Ligure, Genoa, Italy.

[34] J.H. Reppy (1993) Concurrent ML: Design, Appli-
cation and Semantics, Funct. Prog., Concurrency,
Simulation and Automated Reasoning, LNCS 693,
Springer-Verlag.

[35] D. Sangiorgi, and D. Walker (2001) The Pi-Calculus –
A Theory of Mobile Processes, Cambridge University
Press.

[36] D. Sangiorgi (1993) From π-calculus to Higher-Order
π-calculus — and back, Proc. TAPSOFT ’93, Lecture
Notes in Computer Science, Volume 668, Springer-
Verlag.

[37] B. Thomsen (1993) Plain CHOCS. A Second Gener-
ation Calculus for Higher Order Processes, Acta In-
formatica, Vol. 30 (1), pp. 1–59.

[38] D.N. Turner (1996) The Polymorphic Pi-Calculus:
Theory and Implementation, Ph.D. Thesis, University
of Edinburgh.

[39] V. Vasconcelos (1994) Typed Concurrent Objects,
Proc. ECOOP’94, LNCS, Springer-Verlag, pp. 100–
117.

114 Informatica 28 (2004) 103–113 N. Raja et al.

Informatica 28 (2004) 115

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 28 (2004)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://ai.ijs.si/informatica/
http://orca.st.usm.edu/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2004 (Volume 28) is
– USD 80 for institutions,
– USD 40 for individuals, and
– USD 20 for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

LATEX Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 28 Number 1 April 2004 ISSN 0350-5596

Introduction 1
Representing Agents and their Systems: A Challenge
for Current Modeling Languages

R. Levy,
J. Odell

3

An XML-based Serialization of Information
Exchanged by Software Agents

S. Alboaie,
S. Buraga, L. Alboaie

13

A Task-Oriented Compositional Mobile Agent
Architecture for Knowledge Exchanges Between
Agencies and Agents

H. Zhou,
Y. Wang, D. Ali,
M. Cobb, S. Rahimi

23

Towards a Modelling Methodology for
Fault-Tolerant Multi-Agent Systems

S. Mellouli,
B. Moulin,
G.W. Mineau

31

System Administration Using Software Agents S. Rahimi,
S. Ramakrishna

41

Collaborative Translation with Mobile Agents E. Sanchis,
J.-L. Selves, Z.Y. Pan

51

Human-Agent Interaction: Case Studies in Human
Supervised UAV

H. Hexmoor,
S. Battula

61

Indexing Agent for Data Gathering in an e-Travel
System

M. Paprzycki,
A. Gilbert, A. Nauli,
M. Gordon,
S. Williams, J. Wright

69

Multi-Agent System Case Studies in Command and
Control, Information Fusion and Data Management

F. Sheldon,
T. Potok, K. Kavi

79

Unifying the Interpretation of Redundant
Information

R. Paolo 91

Assessing the Potential Impact of an Electronic
Grade System to the School Environment

E. Jereb,
T. Toman

95

Type Systems for Concurrent Programming Calculi N. Raja,
R.K. Shyamasundar

103

Informatica 28 (2004) Number 1, pp. 1–115

