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ABSTRACT. Cyclic bundle Hamiltonicity ¢bH(G) of a graph G is the minimal
n for which there is an automorphism « of G such that the graph bundle
C,04G is Hamiltonian. We define V(éa)min, an invariant that is related to
the maximal vertex degree of spanning trees suitably involving the symme-
tries of G and prove cbH(G) < V(Ga)min < cbH(G) + 1 for any non-trivial
connected graph G.

1. INTRODUCTION

In 1982, Batagelj and Pisanski [1] proved that the Cartesian product of a tree T'
and a cycle C), has a Hamiltonian cycle if and only if n > A(T), where A(T)
denotes the maximum valence (or vertex degree) of T. They introduced the cyclic
Hamiltonicity cH (G) of G as the smallest integer n for which the Cartesian product
C,0G is Hamiltonian. More than twenty years later, Dimakopoulos, Palios and
Paulakidas [2] proved that cH(G) < D(G) < cH(G) + 1, as conjectured already
n [1]. (Here D(G) denotes the minimum of A(T") over all spanning trees T of G.)
These results can be extended in a certain way to graph bundles. Recently, Pisanski

and Zerovnik [3] proved that the graph bundle C,, (0T has a Hamiltonian cycle if

and only if n > h(T,«a), where h(T,«) is the maximum value of [dgz Z{I over all

vertices v € V(T') and o(v, «) denotes the number of elements in the orbit of v
under the automorphism « while d(v, «) is the degree of the vertex corresponding
to the orbit of v in the tree T'/a.

In this note, we show that the results for general graphs can naturally be gen-
eralized from Cartesian graph products to Cartesian graph bundles. As an analog
of the cyclic Hamiltonicity ¢H (G) we define cyclic bundle Hamiltonicity ¢cbH (G) of
the graph G as the minimal n such that there exists a € Aut(G) and C,J%*G has
a Hamiltonian cycle. We prove that

cbH(G) < V(Go)min < cbH(G) + 1 (1)

where

V(éa)min = min{
V(Gy) = min{ (T,
h(T,) = max { V

w in T, and 6(w) is

2 lac Aut(G)}

| T, is a spanning tree of Gq } and

(€
o)

w -‘ | we V(T )} where d(w) denotes the degree of the vertex
t

he number of elements in the orbit of the vertex w in T .
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As the result given in this paper directly generalizes the result of [3] that is valid
for trees, it is natural to ask whether a brief argument is sufficient for the conclusion.
On one hand, a Hamiltonian cycle of C,,[0*T is clearly also a Hamiltonian cycle of
C,0%G for any spanning tree T of GG, and similarly, a Hamiltonian cycle of C,,(0“T,,
is also a Hamiltonian cycle of C,,0*G,. However, on the other hand, taking a
spanning tree T of G, the sets of automorphisms of G and of T are in general
different, hence direct application of theorem for trees is not straightforward. After
a section with basic terminology and notation, a detailed proof is given in Section
3, and the result is illustrated with several examples.

2. TERMINOLOGY AND NOTATION

Here we will study hamiltonicity of a graph bundle C,,0*G. An arbitrary con-
nected graph G is said to be Hamiltonian if it contains a spanning cycle called a
Hamiltonian cycle.

The Cartesian product of graphs G and H is the graph GOOH with vertex set
V(GOH) = V(G) x V(H). The edges of GOH are given by

(1) for any g1g2 € E(G) and h € V(H), (¢91,h) and (g2,h) are adjacent in
GOH and

(2) for any hihy € E(H) and g € V(G), (g,h1) and (g, h2) are adjacent in
GOH.

Let B and G be graphs and Aut(G) be the set of automorphisms of G. For any
pair of adjacent vertices u,v € V(B) we will assign an automorphism of G to the
ordered pairs of vertices. Formally, let o : V(B) x V(B) — Aut(G). For brevity,
we will write o(u,v) = o,, and assume that o,, = 0;5 and oy, = td for any
u,v € V(B).

Now we construct the graph X as follows. The vertex set of X is V(X) =
V(B) x V(G). The edges of X are given by:

(1) for any g192 € F(G) and b € V(B), (b,g1) and (b, g2) are adjacent in X
and
(2) for any b1bs € E(B) and g € V(G), (b1,g) and (be, op, 5,(g)) are adjacent
in X.
We call X = BO°G Cartesian graph bundle with base B and fibre G. Other
standard graph products [4] can be generalized to graph bundles. Graph bundles
were first studied in [6], and received considerable interest in the literature, see, for
example [5, 7, 8, 9, 10, 11] and the references there.

Clearly, if all oy, are identity automorphisms, graph bundle is the Cartesian
product X = BO°G = BOG. Furthermore, it is well-known [6] that if the base
graph is a tree, then the graph bundle is isomorphic to the Cartesian product,
ie. X = TO°G ~ TOG for any graph G, any tree T and any assignment of
automorphisms o.

A graph bundle over a cycle can always be constructed in a way that all but
at most one automorphism are identities. Fixing V(C,) = {0,1,2,...,n — 1} we
denote o,,—10 =@, 0,-1,; =id for i =1,2,...,n—1, and C,,0°G = C,,00°G.

There are two interesting cases where the construction above may not result in a
simple graph. For n = 2, C500°G has double edges whenever « fixes a vertex. For
n = 1, C10%G has a loop whenever « fixes a vertex and has double edges whenever
vertices v and «(v) are adjacent in G. However, when interested in Hamiltonian
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properties, we can consider Col1*G and C1O*G as simple graphs by ignoring loops
and multiple edges because a Hamiltonian cycle traverses each multiple edge at
most once and never uses a loop.

Let G be an arbitrary connected graph. Let a € Aut G be an arbitrary automor-
phism of G. Tt partitions the vertex set V(@) into disjoint orbits. For a given vertex
v € V(Q) let O(v, ) denote such an orbit whose size is denoted by o(v, ). To sim-
plify the notation, let G, denote the quotient graph obtained from the graph G by
vertex identification of each vertex orbit O(v,a) and with two orbits O(u, «) and
O(v, @) being adjacent in G, if and only if there are two representatives u € O(u, @)
and v € O(v, @) that are adjacent in G. By T, we will denote a spanning tree of
the quotient graph G,.

3. CYCLIC BUNDLE HAMILTONICITY

Cyclic Hamiltonicity ¢H (G) of the graph G is the minimal n for which C,0G is
Hamiltonian, where C,, is the cycle on n vertices [1]. As an analog we define here
the cyclic bundle Hamiltonicity cbH (G) of the graph G as the minimal n for which
there is an automorphism « € Aut(G) such that C,0%G is Hamiltonian.

If G is Hamiltonian, then ¢cbH(G) = 1. In this case, C10°G is Hamiltonian
for every automorphism « of G. But the converse is not true. We may have
cbH(G) = 1, yet G is not necessarily Hamiltonian. In Figure 1, G is not Hamiltonian
while C10*G where a@ = (1,2)(3,4) is. An example of a Hamiltonian cycle in
C10%@ is drawn with thick lines. Figure 2 shows an example of Hamiltonian cycle
in the graph bundle Co00“G, where a = (2, 3)(4,6)(5,7).

e AN AN
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1 2

a) b)

FIGURE 1. a)The graph G, b)The graph bundle C10*G where a = (1,2)(3,4)

Let G be an arbitrary connected graph with the maximum degree A(G) > 2 and
o an arbitrary automorphism of G. Let T, be a spanning tree of the quotient graph
G- Let d(w) be the degree of the vertex w = O(v,a) in T, and let 6(w) = o(v, @)
denote the number of elements in the orbit of the vertex w in T,,. Define

h(T,) = max{ {%—‘ | we V(TQ)}

V(G4) = min {h(Ta) | T,, is a spanning tree of éa} .

and
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a) b)

FIGURE 2. a)The graph G, b)The graph bundle CoO0*G where a = (2,3)(4,6)(5,7)

In the sequel we will assume that A(G) > 2. Among connected graphs this
excludes only P», the path with one edge, and the graph with one vertex P;. These
two cases are easy and will be treated separately.

First we prove a technical lemma.

Lemma 3.1. Let a € Aut(G) and T., be a spanning tree of the quotient graph G
Denote the elements of the orbit w with wy,wa, ..., W5 If the orbits w and

are adjacent in T, let
E(w,z) ={wz; | w, € w,z; € z} C E(G)
be the set of edges between the elements of the two orbits. There is a subset

Fc |J EBwaz) cEQG)

wr€E(Ty)

such that:
e if w,x are adjacent in Ty, then F N E(w,z) # 0,

e cach w; meets at most ﬁgi;-l edges of F.

Furthermore, there is a proper edge coloring of the subgraph induced on F with at
most h(Ty,) colors.

Proof. First we will build a set of subforests of T, as follows. Start with Ty = T,,.
Take a maximal subforest F of T, such that the degree of a vertex w € V(F}) in
Fy is [%-‘ (This can be done for example using a breadth first search of the
graph choosing the first edges met.) Note that when J(w) < [gg:ﬁﬂ for every vertex
w € Ty, then Fy = Ty.

If Fy # T, then continue taking 77 = Ty — Fy. Let Iy be a maximal subforest of
T, (constructed as above) such that the degree of a vertex w € V(Fy) in F; is at

most {M—‘ If {M—I < dr, (w), then dp, (w) = {M—‘ If V(w)—l > dr, (w), then

o(w) o(w) o(w) o(w)

L{F2 (w) = dTl (w)
Construct in this way further subfores:us F; until T; = 0.
Observe that, by construction UF; = Tj,.
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Recall that at each step (except at the least perl}aps) the degree of the vertex
w € T is decreased by MEZJ};-I When dr, (w) < MEZJ};-I for every vertex w € Tj,
then Fi+1 = Ti.

Hence, because of

d(w) < 5(w) {i““’ﬂ

o(w)

the vertex w appears in at most 6(w) subforests F;.
Finally we use the subforests to define a subset F' of edges of G. Let

Vi ={v e V(G) | v =w; for some orbit w € V(F;)}.

For any edge wz of F; put the edge w;x; of G in the set F'. By construction the set
of edges F is a subforest of G, and maximal degree of a vertex in F' is h(T,). As F

is bipartite, edges of F' can be properly colored by h(T,) colors as claimed. O

Theorem 3.2. Let X = C,0°G be a graph bundle. If n > V(éa), then X is
Hamiltonian.

Proof. Assume n > V(éa) Let T, be a spanning tree of G, such that h(Ta) =
V(G.)- We construct a Hamilton cycle in X as in Theorem 4.2 of [3]. More precisely,
recall that the vertices of the spanning tree T, are the orbits O(v,a). If O(v, a)
is a set of k vertices, then the subgraph of C,,[0*G induced on the vertex set
V(Cp) x O(v, @) is isomorphic to a cycle Cpy or a Mobius ladder, i.e. a cycle Cpy
with diagonals (as proved in [3]). Start with cycles corresponding to the orbits.
Recall that given Ty, by Lemma 3.1 there exists a partial proper coloring of edges
of G with h(fa) colors. Now use the edges of F' with the edge coloring to construct
a Hamiltonian cycle as follows. If two orbits are adjacent, then by construction
there is an edge e = w;z; of F that meets both orbits. If ¢ # h(T,) — 1, then the
edge e and its color ¢ define a 4-cycle in X which has one edge in each of the cycles
and the other two edges correspond to the edge e in c¢-th copy and in (¢ 4 1)-th
copy of the fibre. If ¢ = h(Ta) — 1, then the other two edges correspond to the
edge e in c-th copy of the fibre and to the edge a(w;)a(z;) in (¢ 4+ 1)-th copy of
the fibre. Replacing the two edges of the 4-cycle by the other two parallel edges we
get a cycle covering both orbits. Repeating this operation joins all the orbits and
consequently covers all the cycles because T, is a spanning tree. O

We illustrate the construction used in the proof by two examples.

Example 3.3. Figure 3a) shows the graph G and the quotient gmNph Ga (]i’igure
3b) if we take the automorphism oo = (2,3)(4,6)(5,7). Therefore V(Gy) = h(Ga) =

1

max {1, {%1 , {51} =2 and t~here exists a Hamiltonian cycle in bundle with n > 2.

Note that the vertices of G, represent orbits, i.e. cycles in Cold*G, one of them
being isomorphic to Csy, two to Cy and one to Cy with diagonals. We join this cycles
into a Hamiltonian cycle using the three disjoint 4-cycles as in the proof of theorem
above. For example: in Figure 3c¢) we have two subforests Fy and Fy of T.. If the
subset F' of edges of G is defined with the edges (2,4),(2,5) € E(G) coresponding
to F1 and (1,3) € E(G) coresponding to Fy then we can color the edge (2,4) and
(1, 3) with color 0 while the edge (2,5) with color 1 (Figure 3d)). In this situation
we get the Hamiltonian cycle in Figure 2b).
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Example 3.4. Figure 4 shows: a)the graph G, b)the quotient graph G with the
automorphism o = (5,6)(7,8) and ¢)the choosen spanning tree T. In this case is
h(fa) = max { {%] ,2} = 2. A spanning path in Figure 4c) can be used to construct
a Hamiltonian cycle in CoO0%G in Figure 4d).

b)

<) d)

FIGURE 3. a)The graph G with orbits of a = (2,3)(4,6)(5,7),
b)The quotient graph G, ¢)The two subforests F; and Fy of Ty,
d)The coloring of F' in G is indicated with colors 0 and 1

The example in Figure 1 shows that the converse of Theorem 3.2 is not true. In

Figure 5a) it is shown the same graph G once more, on 5b) the quotient graph Ga
with the automorphism a = (1,2)(3,4) and on 5c¢) the choosen spanning tree T,
with 2(T,) = 2. It holds V(G4) = 2 but a Hamiltonian cycle exists already in the
bundle C10%G (see Figure 1b)).
Construction of a spanning tree of quotient graph G, from a Hamiltonian
cycle of graph bundle X = C,00°G . Let X = C,,0*G be a Hamiltonian graph
and let H be a Hamiltonian cycle of X. We form the set A of edges of G, as follows.
Pick an arbitrary vertex (u,v) € X(u € Cp,v € G) and the orbit O(v,a) € G,
mark as ”encountered”. X is Hamiltonian so (u,v) € H. Then walk along H and
do the following: for every two consecutive vertices (u1,v1), (u2,v2) € X look at
the orbits O(v1, @) and O(ve, «). If O(vy, @) # O(ve, ) and O(v2, ) has not been
marked yet, mark O(ve, @) as "encountered” and insert the pair [O(v1, @), O(v2, &)]
in A. We continue with this procedure until we come along all cycle H.

Lemma 3.5. Let X = C,[J%G be a Hamiltonian graph and H a Hamiltonian cycle
of X. The set A described above induces a spanning tree T,, of the quotient graph
Ga.

Proof. A pair [O(v1, ), O(v2, )] (O(ve, @) # O(v,@)) is inserted in the set A when
the first time an element of orbit O(vz, @) is visited and the orbit O(vs, &) is marked.
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a) b)

c) d)

FIGURE 4. a)The graph G, b)The quotient graph G, with a =
(5,6)(7,8), ¢)The choosen spanning tree T,, d)The Hamiltonian
cycle in Co0°G

1 2
% />] /\J
a) b) ©)

FIGURE 5. a)The graph G, b)The quotient graph Go with o =
(1,2)(3,4), ¢)The choosen spanning tree T,

Since H is a Hamiltonian cycle, all vertices of G are visited, so all vertices of quotient
graph Gy, are marked as ”encountered” and the corresponding pairs inserted in A.
This fact implies that the pairs in A are distinct and their number is |V (G4 )| — 1.
Moreover, the pairs in A do not induce a cycle. Therefore, the edges corresponding

to the pairs in A form a spanning tree T, of quotient graph G. O
Now we can prove the second theorem

Theorem 3.6. If V(éa) >n+1, then C,0°G s not Hamiltonian.

Proof. Suppose for contradiction that V(G,) > n + 1, the bundle X = C,0%G is
Hamiltonian and let H be a Hamiltonian cycle of X. Construct the set A as above
to obtain a spanning tree T, as shown in Lemma 3.5. By construction, each orbit
is ”encountered” at most once, and each time a vertex in the orbit is visited along
the walk, another orbit may be ”encountered”, so the maximal valence of a vertex

w € T, is mn + 1, where m = o(w). Hence V(“’)—I = [m1 = {n-i— %] =n+1

o(w) m
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and the valence [g-‘ of the spanning tree T, of Gy is at most n + 1. Therefore
V(G.) < n+ 1, contradiction. O

Let G be an arbitrary connected graph with maximum degree A(G) > 2 and let

Aut(G) be the group of automorphisms of G. We define the number V(G )min as
V(Ga)min = min {V(éa) | o € Aut(G)} .

Using this notation, the statements of Theorems 3.2 and 3.6 can be written as

Theorem 3.7. For any non-trivial connected graph G with A(G) > 2,

CbH(G) < V(Ga)min < CbH(G) + 1

Example 3.8. Now we turn back to Figure 3. All automorphisms of G are: a1 =
(2,3)(4,6)(5,7), as = (4,5), as = (6,7) (which were already mentioned) and aqg =
(4,5)(6,7), a5 = (2,3)(4,7)(5,6) and the identity (which were not mentioned yet).

For identity we have V(Giq) = 3, which means that the ~Carte:sian product C,0G

has a Hamiltonian cycle if n > 3. Since V(Ga,) = V(Ga,) = V(Goy) = 2 and

V(Gay) = V(Gay) = V(Giq) = 3 hence V(Ga)min = 2. Hence cbH(G) = 2.
Cyclic bundle Hamiltonicity cbH(G) for the graph G in Figure 4 is 1. Namely,
minimal value of V(Ga), where a € Aut(G) is when a = (1,3)(2,4)(5,7)(6,8).

Then is V(Gyo) =1 hence V(Ga)min = 1.
In Figure 5 the graph G has the next automorphisms: a1 = (1,2)(3,4),as =

(1,2),a3 = (3,4) and identity. In this case V(Ga,) = V(Ga,) = V(Ga,) =

V(Gia) =2, $0 V(Go)min = 2. But as we already mentioned there exists a Hamil-
tonian cycle in bundle C10* G therefore cbH(G) = 1.

Remark 3.9. Clearly, C,,0°P, = C,,0P, = C,, is Hamiltonian for any n. There
are two automorphisms of Py: id and exchange of the two vertices, a. CpP;
is Hamiltonian for any n > 2 and C,0%P, is Hamiltonian for any n. Hence
cbH(P2) =1 and cbH(Py) = 1.
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