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Abstract

Given two familiesX and Y of integral polytopes with nice combinatorial and algebraic
properties, a natural way to generate a new class of polytopes is to take the intersection
P = P1 ∩ P2, where P1 ∈ X , P2 ∈ Y . Two basic questions then arise: 1) when P is
integral and 2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is,
whether P is unimodularly equivalent to a polytope inX∪Y or not. In this paper, we focus
on the families of order polytopes and chain polytopes. Following the above framework,
we create a new class of polytopes which are named order-chain polytopes. When studying

∗This work was initiated when the third author and the fourth author were visiting the MIT Department of
Mathematics. These two authors would like to thank Professor Richard Stanley for many helpful discussions.
This work was supported by the China Scholarship Council, the National Science Foundation of China (Grant
No. 11601440, 11701249), the Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0245) and
Fundamental Research Funds for Central Universities (Grant No. XDJK2018C075).
†Corresponding author.

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



300 Ars Math. Contemp. 16 (2019) 299–317

their volumes, we discover a natural relation with Ehrenborg and Mahajan’s results on
maximizing descent statistics.
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1 Introduction
This paper was motivated by the following two questions about intersecting two integral
polytopes P1 and P2, which come from two given families X and Y of polytopes respec-
tively:

1) when the intersection P = P1 ∩ P2 is integral and

2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is, whether
P is unimodularly equivalent to a polytope in X ∪ Y or not.

Usually, we shall start with those families X and Y of polytopes which have nice combi-
natorial and algebraic properties. In this paper, we focus on the families of order polytopes
and chain polytopes. Instead of considering the intersection of an arbitrary d-dimensional
order polytope and an arbitrary d-dimensional chain polytope, we will consider the inter-
section of an order polytope O(P ′) and a chain polytope C(P ′′), both of which arise from
weak subposets P ′, P ′′ of a given poset. The resulting polytope is called an order-chain
polytope, which generalizes both order polytope and chain polytope.

The order polytope O(P ) as well as the chain polytope C(P ) arising from a finite
partially ordered set P has been studied by many authors from viewpoints of both com-
binatorics and commutative algebra. Especially, in [16], the combinatorial structures of
order polytopes and chain polytopes are explicitly discussed. Furthermore, in [9], the natu-
ral question when the order polytope O(P ) and the chain polytope C(P ) are unimodularly
equivalent is solved completely. It follows from [5] and [8] that the toric ring ([7, p. 37])
of O(P ) and that of C(P ) are algebras with straightening laws ([6, p. 124]) on finite dis-
tributive lattices. Thus in particular the toric ideal ([7, p. 35]) of each of O(P ) and C(P )
possesses a squarefree quadratic initial ideal ([7, p. 10]) and possesses a regular unimodular
triangulation ([7, p. 254]) arising from a flag complex. Furthermore, toric rings of order
polytopes naturally appear in algebraic geometry (e.g., [2]) and in representation theory
(e.g., [18]).

We begin by introducing some basic notation and terminology. Given a convex polytope
P ⊂ Rd, a facet hyperplane of P ⊂ Rd is defined to be a hyperplane in Rd which contains
a facet of P . If

H = {(x1, x2, . . . , xd) ∈ Rd : a1x1 + a2x2 + · · ·+ adxd − b = 0},

where each ai and b belong to R, is a hyperplane of Rd and v = (y1, y2, . . . , yd) ∈ Rd,
then we set

H(v) = a1y1 + a2y2 + · · ·+ adyd − b.
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Let (P,4) be a finite partially ordered set (poset, for short) on [d] = {1, . . . , d}. For
each subset S ⊆ P , we define ρ(S) =

∑
i∈S ei, where e1, . . . , ed are the canonical unit

coordinate vectors of Rd. In particular ρ(∅) = (0, 0, . . . , 0), the origin of Rd. A subset
I of P is an order ideal of P if i ∈ I , j ∈ [d] together with j 4 i in P imply j ∈ I .
An antichain of P is a subset A of P such that any two elements in A are incomparable.
We say that j covers i if i ≺ j and there is no k ∈ P such that i ≺ k ≺ j. A chain
j1 ≺ j2 ≺ · · · ≺ js is saturated if jq covers jq−1 for 1 < q ≤ s, and it is called a maximal
chain if, moreover, j1 is a minimal element and js is a maximal element of P . A poset
can be represented with its Hasse diagram, in which each cover relation i ≺ j corresponds
to an edge denoted by e = {i, j}. For a finite poset P , we let c(P ), m?(P ) and m?(P )
denote the number of maximal chains, the number of minimal elements and the number of
maximal elements of P , respectively. We denote by E(P ) the set of edges in the Hasse
diagram of P .

In [16], Stanley introduced two convex polytopes arising from a finite poset, the order
polytope and the chain polytope. Following [9], we employ slightly different definitions.
Given a finite poset (P,4) on [d], the order polytope O(P ) is defined to be the convex
polytope consisting of those (x1, . . . , xd) ∈ Rd such that

(1) 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d;

(2) xi ≥ xj if i 4 j in P .

The chain polytope C(P ) of P is defined to be the convex polytope consisting of those
(x1, . . . , xd) ∈ Rd such that

(1) xi ≥ 0 for 1 ≤ i ≤ d;

(2) xi1 + · · ·+ xik ≤ 1 for every maximal chain i1 ≺ · · · ≺ ik of P .

Recall (see [16] for details) that there is a close connection between the combinatorial
structure of P and the geometric structures of O(P ) and C(P ). For instance, the following
connections are not hard to prove:

• The number fd−1(O(p)) of facets of O(P ) is equal to m?(P ) + m?(P ) + |E(P )|.
Equivalently, if we let P̂ = P ∪ {0̂, 1̂} be the poset obtained from P by adjoining
a minimum element 0̂ and a maximum element 1̂, then we have fd−1(O(P )) =
|E(P̂ )|.

• The number fd−1(C(P )) of facets of C(P ) is equal to d+ c(P ).

• The vertices of O(P ) are exactly those ρ(I) for which I is an order ideal of P , and
the vertices of C(P ) are exactly those ρ(A) for whichA is an antichain of P . Since it
is well known that order ideals of P are in one-to-one correspondence with antichains
of P , the order polytope O(P ) and the chain polytope C(P ) have the same number
of vertices.

Let P be a finite poset, we define an edge partition of P to be a map

` : E(P ) −→ {o, c}.

Equivalently, an edge partition of P is an ordered pair

(oE(P ), cE(P ))
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of subsets of E(P ) such that oE(P )∪ cE(P ) = E(P ) and oE(P )∩ cE(P ) = ∅. An edge
partition ` is called proper if oE(P ) 6= ∅ and cE(P ) 6= ∅.

Suppose that (P,4) is a poset on [d] with an edge partition ` = (oE(P ), cE(P )).
Let P ′` and P ′′` denote the d-element weak subposets of P with cover relations given by
the edge sets oE(P ) and cE(P ) respectively. Here by a weak subposet of P , we mean a
subset Q of elements of P and a partial ordering 4∗ of Q such that if x 4∗ y in Q, then
x 4 y in P . The order-chain polytope OC`(P ) with respect to the edge partition ` of P is
defined to be the convex polytope

O(P ′`) ∩ C(P ′′` )

in Rd. Clearly the notion of order-chain polytope is a natural generalization of both order
polytope and chain polytope of a finite poset.

For example, let P be the chain 1 ≺ 2 ≺ · · · ≺ 7 with

oE(P ) = {{1, 2}, {4, 5}, {5, 6}}, cE(P ) = {{2, 3}, {3, 4}, {6, 7}}.

Then P ′` is the disjoint union of the following four chains:

1 ≺ 2, 3, 4 ≺ 5 ≺ 6, 7

and P ′′` is the disjoint union of

1, 2 ≺ 3 ≺ 4, 5 and 6 ≺ 7.

Hence the order-chain polytope OC`(P ) is the convex polytope consisting of those
(x1, . . . , x7) ∈ R7 such that

(1) 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 7;

(2) x1 ≥ x2, x4 ≥ x5 ≥ x6;

(3) x2 + x3 + x4 ≤ 1, x6 + x7 ≤ 1.

It should be noted that, for any poset P on [d] and any edge partition ` of P , the dimen-
sion of the order-chain polytope OC`(P ) is equal to d. In fact, let x = (1/d, . . . , 1/d) ∈
Rd, clearly, we have x ∈ OC`(P ). If P ′` is an antichain, thenO(P ′`) is the d-cube [0, 1]d. In
this case, OC`(P ) is exactly the same as the chain polytope C(P ) and so is d-dimensional.
If P ′` is not an antichain, then P ′′` is not a d-element chain. In this case, x ∈ ∂O(P ′`) and
x ∈ C(P ′′` ) \ ∂C(P ′′` ), since no facet hyperplane of C(P ′′` ) contains x. In this case, we can
find a ball Bd(x) centered at x such that Bd(x) ⊂ C(P ′′` ) \ ∂C(P ′′` ). Keeping in mind that
x belongs to the boundary of O(P ′`), we deduce that Bd(x) ∩ (O(P ′`) \ ∂O(P ′`)) 6= ∅. It
follows that (O(P ′`) \ ∂O(P ′`)) ∩ (C(P ′′` ) \ ∂C(P ′′` )) 6= ∅, as desired.

Recall that an integral convex polytope (a convex polytope is integral if all of its vertices
have integer coordinates) is called compressed ([15]) if all of its “pulling triangulations”
are unimodular. Equivalently, a compressed polytope is an integral convex polytope any
of whose reverse lexicographic initial ideals are squarefree ([17]). It follows from [13,
Theorem 1.1] that all order polytopes and all chain polytopes are compressed. Hence the
intersection of an order polytope and a chain polytope is compressed if it is integral. In
particular every integral order-chain polytope is compressed. It then follows that every
integral order-chain polytope possesses a unimodular triangulation and is normal ([12]).
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Then one of the natural question, which we study in Section 2, is when an order-chain
polytope is integral. We call an edge partition ` of a finite poset P integral if the order-
chain polytope OC`(P ) is integral. We show that every edge partition of a finite poset P is
integral if and only if P is cycle-free. Here by a cycle-free poset P we mean that the Hasse
diagram of P is a cycle-free graph (i.e., an unoriented graph that does not have cycles).
Furthermore, we prove that every poset P with |E(P )| ≥ 2 possesses at least one proper
integral edge partition.

In Section 3, we consider the problem when an integral order-chain polytope is unimod-
ularly equivalent to either an order polytope or a chain polytope. This problem is related
to the work [9], in which the authors characterize all finite posets P such that O(P ) and
C(P ) are unimodularly equivalent. We show that if P is either a disjoint union of chains or
a zigzag poset, then the order-chain polytope OC`(P ), with respect to each edge partition
` of P , is unimodularly equivalent to the chain polytope of some poset (Theorem 3.3 and
Theorem 3.4). On the other hand, for each positive integer d ≥ 6, we find a d-dimensional
integral order-chain polytope which is not unimodularly equivalent to any chain polytope
nor order polytope. This means that the notion of order-chain polytope is a nontrivial gen-
eralization of order polytope or chain polytope.

We conclude the present paper with an observation on the volume of order-chain poly-
topes in Section 4. An interesting question is to find an edge partition ` of a poset P which
maximizes the volume of OC`(P ). In general, it seems to be very difficult to find a com-
plete answer. We shall discuss the case when P is a chain on [d], which involves Ehrenborg
and Mahajan’s problem (see [3]) of maximizing the descent statistics over certain family
of subsets.

2 Integral order-chain polytopes
In this section, we consider the problem when an order-chain polytope is integral. We shall
prove that every edge partition of a poset P is integral if and only if P is cycle-free. We
also prove that every finite poset P with |E(P )| ≥ 2 has at least one proper integral edge
partition.

Theorem 2.1. Let P be a finite poset. Then every edge partition of P is integral if and only
if P is a cycle-free poset.

Proof. Suppose that each edge partition ` of P is integral. If the Hasse diagram of P has
a cycle C, then it is easy to find a non-integral edge partition. In fact, let e = {i, j} be an
arbitrary edge from C and ` = (E(P ) \ {e}, {e}). We now show that ` is not integral. To
this end, let I be the connected component of the Hasse diagram of P ′` which contains i
and j and let v = (v1, v2, . . . , vd) ∈ Rd with

vk =

{
1
2 , if k ∈ I
0, otherwise.

Then it is easy to see that

v =
⋂

{p,q}∈E(I)

Hpq

⋂
t/∈I

Ht

⋂
Hij ,
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where

Hpq = {(x1, x2, . . . , xd) | xp = xq} for e = {p, q} ∈ E(I)

Ht = {(x1, x2, . . . , xd) | xt = 0} for t /∈ I
Hij = {(x1, x2, . . . , xd) | xi + xj = 1}

are all facet hyperplanes of OC`(P ). So we deduce that v is a vertex of OC`(P ), and ` is
not integral.

Conversely, suppose that P is a cycle-free poset on [d] and ` is an edge partition of
P . If v = (a1, a2, . . . , ad) is a vertex of OC`(P ), then we can find d independent facet
hyperplanes of OC`(P ) such that

v =

(
d−m⋂
i=1

H ′i

)
∩

 m⋂
j=1

H ′′j

 , (2.1)

where m = dim
(⋂d−m

i=1 H ′i
)
, each H ′i is a facet hyperplane of O(P ′`) and each H ′′j is

a facet hyperplane of C(P ′′` ) which corresponds to a chain Cj of length ≥ 2 in P ′′` . By
[16, Theorem 2.1], there is a set partition π = {B1, B2, . . . , Bm+1} of [d] such that
B1, B2, . . . , Bm are connected as subposets of P ′` , Bm+1 = {i ∈ [d] : ai = 0 or 1}
and

d−m⋂
i=1

H ′i = {(x1, x2, . . . , xd) | xi = xj if {i, j} ⊆ Bk for some 1 ≤ k ≤ m,
and xr = ar if r ∈ Bm+1}.

Let Bm+1 = {r1, r2, . . . , rs} and for 1 ≤ k ≤ m, let bk denote the same values of all
a′is, i ∈ Bk. Then it suffices to show that each bk is an integer. Keeping in mind the
assumption that the Hasse diagram of P is cycle-free, we find that |Ci ∩ Bj | ≤ 1 for
1 ≤ i, j ≤ m. For 1 ≤ i, j ≤ m, let

cij =

{
1, if |Ci ∩Bj | = 1

0, otherwise
(2.2)

and for 1 ≤ i ≤ m, 1 ≤ j ≤ s, let

di,m+j =

{
1, if rj ∈ Ci
0, otherwise.

(2.3)

By (2.1), (b1, b2, . . . , bm, ar1 , ar2 , . . . , ars) must be the unique solution of the following
linear system: 

∑m
j=1 cijyj +

∑m+s
j=m+1 dijyj = 1, 1 ≤ i ≤ m

ym+1 = ar1
ym+2 = ar2

...
ym+s = ars .

(2.4)
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Now it suffices to show that the determinant of the coefficient matrix

A =



c11 · · · c1m d1,m+1 · · · d1,m+s

...
...

...
...

cm1 · · · cmm dm,m+1 · · · dm,m+s

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1


(2.5)

is equal to 1 or −1. Now construct a bipartite graph G with vertex set

{B1, B2, . . . , Bm, C1, C2, . . . , Cm},

and edge set
{{Bi, Cj} | 1 ≤ i, j ≤ m, |Bi ∩ Cj | = 1}.

Let

C =

 c11 · · · c1m
...

...
cm1 · · · cmm

 .

Then we have

det(C) =
∑
σ∈Sm

sign(σ)c1σ1
· · · cmσm

. (2.6)

Clearly, each nonzero term in (2.6) corresponds to a perfect matching in the graphG. Since
the Hasse diagram of P is cycle-free, the graph G must be a cycle-free bipartite graph,
which means that there is at most one perfect matching in G. So we have det(C) = 0, 1 or
−1. Note that the linear equations (2.4) has unique solution (b1, b2, . . . , bm, ar1 , . . . , ars).
Then we find that det(C) = ±1. It follows that each bi is an integer. So the vertex v of
OC`(P ) is integral.

For a general finite poset P with |E(P )| ≥ 2, the following theorem indicates that there
exists at least one proper integral edge partition.

Theorem 2.2. Suppose that P is a finite poset. Let Min(P ) denote the set of all minimal
elements in P . For S ⊆ Min(P ), let ES(P ) denote the set of all edges in E(P ) which are
incident to some elements in S. Then the edge partition

` = (E(P ) \ ES(P ), ES(P ))

is integral.

Proof. Suppose that v is a vertex of OC`(P ). Then v can be represented as intersection
of d independent facet hyperplanes, as in (2.1). Keeping the notation in the proof of The-
orem 2.1, we can deduce that |Ci| = 2 and |Bi ∩ Cj | ≤ 1 for 1 ≤ i, j ≤ m. So we can
construct in the same way two matrices A and C as those in the proof of Theorem 2.1.
Then, we can construct a graph G with vertex set {B1, B2, . . . , Bm, r1, r2, . . . , rs} and
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edge set determined by C1, C2, . . . , Cm. More precisely, {Bi, Bj} is an edge of G if and
only if there exists 1 ≤ k ≤ m such that Ck = {i′, j′} for some i′ ∈ Bi, j

′ ∈ Bj , and
{Bi, rj} is an edge of G if and only if there exists 1 ≤ k ≤ m such that Ck = {rj , i′} for
some i′ ∈ Bi. Obviously, G is a bipartite graph with bipartition (B1,B2), where

B2 = {Bj : 1 ≤ j ≤ m, Bj = {k} for some k ∈ S} ∪ {rt : 1 ≤ t ≤ s, rt ∈ S},

and
B1 = {B1, B2, . . . , Bm, r1, r2, . . . , rs} \ B2.

Moreover, by the construction of the graph G, its incidence matrix is c11 · · · c1m d1,m+1 · · · d1,m+s

...
...

...
...

cm1 · · · cmm dm,m+1 · · · dm,m+s


where cij , di,m+j are defined in (2.2) and in (2.3) respectively. A well known fact shows
that the incidence matrix of any bipartite graph is totally unimodular (a matrix A is totally
unimodular if every square submatrix has determinant 0, +1, or −1). So the submatrix C
has determinant 0, 1 or −1. This completes the proof.

Example 2.3. By Theorem 2.1, if the Hasse diagram of P has a cycle, then there exists at
least one non-integral edge partition `.

(1) For example, let P denote the poset whose Hasse diagram is a 4-cycle (see Figure 1)
and let E1 = {{1, 2}, {2, 4}, {3, 4}}. Then the edge partition `1 = (E1, {1, 3}) is
non-integral, since v =

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
is a vertex of OC`1(P ) given by{

x1 = x2 = x4 = x3

x1 + x3 = 1.

However, it is easy to see that the edge partition `2 = ({1, 3}, E1) is integral. So
we find that the complementary edge partition `c = (cE(P ), oE(P )) of an integral
edge partition ` = (oE(P ), cE(P )) is not necessarily integral.

(2) For any poset P whose Hasse diagram is a cycle and any edge partition ` of P , it is
not hard to show that all coordinates of each vertex of OC`(P ) are 0, 1 or 1

2 .

2 3

4

1

Figure 1: Hasse diagram of poset P from Example 2.3.
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3 Unimodular equivalence

In this section, we shall compare the newly constructed order-chain polytopes with some
known polytopes. Specifically, we will focus on integral order-chain polytopes and con-
sider their unimodular equivalence relation with order polytopes or chain polytopes.

Recall (see, for example, [9]) that a d× d integral matrix U is unimodular if det(U) =
±1. A map ϕ : Rd → Rd is a unimodular transformation if there exist a d× d unimodular
matrix U and an integral vector w ∈ Zd such that ϕ(v) = vU +w. Two integral polytopes
P and Q in Rd are unimodularly equivalent if there exists a unimodular transformation
ϕ : Rd → Rd such that Q = ϕ(P). Much of the importance of unimodular equivalence
arises from the fact that combinatorial type and Ehrhart polynomial of an integral polytope
are invariant modulo unimodular equivalence. For instance, classification of polytopes with
certain properties (modulo unimodular equivalence) has gained some attentions recently
(see, for example, [1, 10, 11]).

We shall use the ideas in the proof of the following theorem due to Hibi and Li [9].

Theorem 3.1 ([9, Theorem 1.3]). The order polytope O(P ) and the chain polytope C(P )
of a finite poset P are unimodularly equivalent if and only if the poset shown in Figure 2
does not appear as a subposet of P .

3

1 2

54

Figure 2: The “forbidden” poset from Theorem 3.1.

Definition 3.2. A poset P on [d] is said to be a zigzag poset if its cover relations are given
by

1 ≺ · · · ≺ i1 � i1 + 1 � · · · � i2 ≺ i2 + 1 ≺ · · · ≺ i3 � · · · � ik ≺ ik + 1 ≺ · · · ≺ d

for some 0 ≤ i1 < i2 < · · · < ik ≤ d.

Theorem 3.3. Suppose that P is a disjoint union of chains. Then for any edge partition
`, the order-chain polytope OC`(P ) is unimodularly equivalent to a chain polytope C(Q),
where Q is a disjoint union of zigzag posets.

Proof. We firstly assume that P is a chain:

1 ≺ 2 ≺ 3 ≺ · · · ≺ d.
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and ` is an edge partition of P given by:

o : 1 ≺ 2 ≺ · · · ≺ i1
c : i1 ≺ i1 + 1 ≺ · · · ≺ i2
o : i2 ≺ i2 + 1 ≺ · · · ≺ i3

...
c : it−1 ≺ it−1 + 1 ≺ · · · ≺ it
o : it ≺ it + 1 ≺ · · · ≺ it+1

...
c : ik−1 ≺ ik−1 + 1 ≺ · · · ≺ ik = d,

where 1 ≤ i1 < i2 < · · · < ik−1 ≤ ik = d. Then the order-chain polytope OC`(P ) is
given by 

x1 ≥ x2 ≥ · · · ≥ xi1
xi1 + xi1+1 + · · ·+ xi2 ≤ 1

xi2 ≥ xi2+1 ≥ · · · ≥ xi3
...

xit−1
+ xit−1+1 + · · ·+ xit ≤ 1

xit ≥ xit+1 ≥ · · · ≥ xit+1

...
xik−1

+ xik−1+1 + · · ·+ xd ≤ 1

0 ≤ xi ≤ 1, 1 ≤ i ≤ d.

(3.1)

Now define a map ϕ : Rd → Rd as follows:

(1) if i is a maximal element in P ′` , then let x′i = xi;

(2) if i is not a maximal element in P ′` , then {i, i + 1} must be an edge in the Hasse
diagram of P ′` . Let x′i = xi − xi+1.

Let ϕ(x1, x2, . . . , xd) = (x′1, x
′
2, . . . , x

′
d).

Now it is easy to show that ϕ is a unimodular transformation. Moreover, the system
(3.1) is transformed into:

x′1 + x′2 + · · ·+ x′i1 ≤ 1

x′i1 + x′i1+1 + · · ·+ x′i2 + x′i2+1 + · · ·+ x′i3 ≤ 1
...

x′it−1
+ x′it−1+1 + · · ·+ x′it + x′it+1 + · · ·+ x′it+1

≤ 1
...

x′ik−1
+ x′ik−1+1 + · · ·+ x′d ≤ 1

0 ≤ x′i ≤ 1, 1 ≤ i ≤ d.
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Obviously, this system corresponds to the chain polytope C(Q) for the zigzag poset Q:

1 ≺ 2 ≺ · · · ≺ i1 � i1 + 1 � · · · � i2 � i2 + 1 � · · · � i3 ≺ · · ·

or the dual zigzag poset Q∗:

1 � 2 � · · · � i1 ≺ i1 + 1 ≺ · · · ≺ i2 ≺ i2 + 1 ≺ · · · ≺ i3 � · · ·

So we deduce that OC`(P ) is unimodularly equivalent to the chain polytope of some
zigzag poset.

Now we continue to prove the general case that P is a disjoint union of k chains:

P = C1 ] C2 ] · · · ] Ck.

Since
O(P ]Q) = O(P )×O(Q) and C(P ]Q) = C(P )× C(Q),

we have
OC`(P ]Q) = O((P ]Q)′`) ∩ C((P ]Q)′′` )

= O(P ′` ]Q′`) ∩ C(P ′′` ]Q′′` )

= [O(P ′`)×O(Q′`)] ∩ [C(P ′′` )× C(Q′′` )]

= [O(P ′`) ∩ C(P ′′` )]× [O(Q′`) ∩ C(Q′′` )]

= OC`(P )×OC`(Q).

(3.2)

Hence we conclude that

OC`(C1 ] · · · ] Ck) = OC`(C1)× · · · × OC`(Ck)

ϕ1×···×ϕk∼= C(Q1)× · · · × C(Qk)

= C(Q1 ] · · · ]Qk),

where Qi are zigzag posets.

Similarly, we can modify the proof of Theorem 3.3 slightly to get the following result:

Theorem 3.4. Suppose that P is a finite zigzag poset. Then for any edge partition `, the
order-chain polytope OC`(P ) is unimodularly equivalent to a chain polytope C(Q) for
some zigzag poset Q.

Proof. Suppose that P is a zigzag poset on [d] and ` is an edge partition of P . Define a
map ϕ : Rd → Rd as follows:

(1) if i is covered by at most one element in P ′` , let

x′i =

{
xi, if i is a maximal element in P ′`
xi − xj , if i is covered by j in P ′` (j = i− 1 or i+ 1).

(2) if i is covered by both i− 1 and i+ 1 in P ′` , let

x′i = 1− xi.
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Let
ϕ(x1, x2, . . . , xd) = (x′1, x

′
2, . . . , x

′
d).

It is not hard to show that ϕ is the desired unimodular transformation.

The following example shows that not every order-chain polytope OC`(P ) of a cycle-
free poset P is unimodularly equivalent to some chain polytope.

Example 3.5. Let P be the poset shown in Figure 2 with an edge partition

` = ({{1, 3}, {3, 4}, {3, 5}}, {2, 3}).

Let
ϕ(x1, x2, x3, x4, x5) = (x1, 1− x2, x3, x4, x5).

It is obvious that ϕ is a unimodular transformation and ϕ(OC`(P )) = O(P ). However, by
checking all 63 different non-isomorphic posets with 5 elements, we find that O(P ) is not
equivalent to any chain polytope.

Furthermore, for any d ≥ 6, we shall find an integral order-chain polytope in Rd which
is not unimodularly equivalent to any chain polytope or order polytope. To this end, we
need the following lemma.

Lemma 3.6.

(1) None of the chain polytopes of finite posets on [d] possesses d+ 4 vertices and d+ 7
facets.

(2) None of the order polytopes of finite posets on [d] possesses d+ 4 vertices and d+ 7
facets.

Proof. (1) Assume, by contradiction, that P is a finite poset on [d] such that C(P ) has
d + 4 vertices and d + 7 facets. Since the vertices of C(P ) are those ρ(A) for which A
is an antichain of P , we can deduce that P possesses exactly d + 4 antichains. Keeping
in mind that ∅, {1}, . . . , {d} are antichains of P , we find that there is no antichain A in P
with |A| ≥ 3. Otherwise, the number of antichains of P is at least d + 5. It then follows
that there are exactly three 2-element antichains in P . We need to consider the following
four cases:

(i) Let, say, {1, 2}, {1, 3}, {1, 4} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1} and P \ {2, 3, 4}.

(ii) Let, say, {1, 2}, {1, 3}, {2, 4} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1, 2}, P \ {1, 4} and P \ {2, 3}.

(iii) Let, say, {1, 2}, {1, 3}, {4, 5} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1, 4}, P \ {1, 5}, P \ {2, 3, 4} and P \ {2, 3, 5}.

(iv) Let, say, {1, 2}, {3, 4}, {5, 6} be the 2-element antichains of P . It can be shown
easily that P possesses exactly eight maximal chains.

Recall that the number of facets of C(P ) is equal to d+c(P ), it follows from the assumption
that there are exactly 7 maximal chains in P , which is a contradiction. As a result, none of
the chain polytopes C(P ) of a finite poset P on [d] with d + 4 vertices can possess d + 7
facets, as desired.
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(2) Let P be a finite poset on [d] and suppose that the number of vertices of O(P ) is
d + 4 and the number of facets of O(P ) is d + 7. Since the number of vertices of O(P )
and that of C(P ) coincide, it follows from the proof of (a) that there is no antichain A in P
with |A| ≥ 3 and that P includes exactly three 2-element antichains. On the other hand,
it is known [9, Corollary 1.2] that the number of facets of O(P ) is less than or equal to
that of C(P ). Hence the number of maximal chains of P is at least 7. Thus, by using the
argument in the proof of (a), we can assume that the antichains of P are {1, 2}, {3, 4} and
{5, 6}. Then, it is easy to prove that the number |E(P̂ )| of edges in the Hasse diagram of
P̂ = P ∪ {0̂, 1̂} is at most d + 6. So we deduce that the number of facets of O(P ) is at
most d+ 6, a contradiction with the assumption.

We remark that, by modifying the argument of the statement (1) in Lemma 3.6, we can
prove directly that the order polytope of Example 3.5 cannot be unimodularly equivalent to
any chain polytope.

Example 3.7. Let P be the finite poset shown in Figure 3. Let ` be the edge partition with

1 2

3 4

5 6

Figure 3: Poset P from Example 3.7.

oE(P ) = {{3, 5}, {3, 6}} and cE(P ) = E(P ) \ oE(P ). Then it is easy to verify that
OC`(P ) is an integral polytope with 10 vertices and 13 facets. (Since the number of facets
of the order-chain polytope is small, we can compute this by hand. Of course, we can also
compute this by using the software polymake [4].) So it follows from Lemma 3.6 that
the integral order-chain polytope OC`(P ) cannot be unimodularly equivalent to any order
polytope or any chain polytope.

In fact, for any d > 6, let Pd be the poset shown in Figure 4 and let ` be the edge
partition with

oE(Pd) = {{3, 5}, {3, 6}, {5, 7}, {6, 7}, {7, 8}, . . . , {d− 1, d}} .

It is easy to see that the order-chain polytope OC`(Pd) has d+ 4 vertices and d+ 7 facets.
Therefore OC`(Pd) cannot be unimodularly equivalent to any order polytope or any chain
polytope.

Recall that Example 3.5 shows that there is an order polytope which is not unimodularly
equivalent to any chain polytope. To conclude this section, we will prove that, for each
d ≥ 9, there exists a finite poset P on [d] for which the chain polytope C(P ) cannot be
unimodularly equivalent to any order polytope.

Recall that, for a finite poset P on [d], we have

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
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1 2

3 4

5 6

7

8

d

...

Figure 4: Poset Pd from Example 3.7.

and

fd−1(C(P )) = d+ c(P ),

To present our results, we firstly discuss upper bounds for fd−1(O(P )) and fd−1(C(P )).
By [9, Theorem 2.1], if d ≤ 4, then O(P ) and C(P ) are unimodularly equivalent and
fd−1(O(P )) = fd−1(C(P )) ≤ 2d. Moreover, for each 1 ≤ d ≤ 4, there exists a finite
poset P on [d] with fd−1(O(P )) = fd−1(C(P )) = 2d.

Lemma 3.8. Let d ≥ 5 and P be a finite poset on [d]. Then

fd−1(O(P )) ≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d (3.3)

and

fd−1(C(P )) ≤


3k + d, d = 3k

4 · 3k−1 + d, d = 3k + 1

2 · 3k + d, d = 3k + 2.

(3.4)

Furthermore, both upper bounds for fd−1(O(P )) and fd−1(C(P )) are tight.

Proof. (Order polytope) Let d = 4. Since the right-hand side of (3.3) is equal to 2d (= 8),
the inequality (3.3) also holds for d = 4. Let d ≥ 5 and P be a finite poset on [d]. We will
prove (3.3) by induction on d. Suppose that 1 is a minimal element of P and let a be the
number of elements in P which cover 1.
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If a = 0, then O(P ) = O(P \ {1})× [0, 1] and so

fd−1(O(P )) = fd−2(O(P \ {1})) + 2

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ d− 1 + 2

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

If 1 ≤ a ≤ bd/2c, then from the facts that |E(P \{1})| = |E(P )|−a, m?(P \{1}) ≥
m?(P )− 1 and m?(P \ {1}) = m?(P ), we have

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
≤ m?(P \ {1}) +m?(P \ {1}) + 1 + |E(P \ {1})|+ a

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ (d− 1) +

⌊
d

2

⌋
+ 1

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

Now we consider the case bd/2c + 1 ≤ a ≤ d − 1. Let, say, 2 be an element of P
which covers 1. Since the set of the elements of P which cover 1 is an antichain of P , it
follows that |E(P \{2})| ≥ |E(P )|− (d−a), m?(P \{2}) ≥ m?(P ) andm?(P \{2}) ≥
m?(P )− 1. Hence

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
≤ m?(P \ {2}) + 1 +m?(P \ {2}) + |E(P \ {2})|+ (d− a)

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ (d− 1) +

(
d−

⌊
d

2

⌋
− 1

)
+ 1

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

Therefore, the inequality (3.3) holds. We proceed to show that this upper bound for
fd−1(O(P )) is tight. In fact, let P be the finite poset P on [d] with

E(P ) =

{
{i, j} ∈ [d]× [d] : 1 ≤ i ≤

⌊
d+ 1

2

⌋
,

⌊
d+ 1

2

⌋
+ 1 ≤ j ≤ d

}
.

Clearly, we have

fd−1(O(P )) =

⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

(Chain polytope) Let d ≥ 5. Let P1 be a finite poset on [d] and M1 the set of minimal
elements of P1. If P1 is an antichain, then fd−1(C(P1)) = 2d. Suppose that P1 is not an
antichain. Let P2 = P1 \M1 and M2 be the set of minimal elements of P2. In general,
if Pi is not an antichain and Mi is the set of minimal element of Pi, then we set Pi+1 =
Pi \Mi. By continuing this construction, we can get an integer r ≥ 1 such that each of
the P1, . . . , Pr−1 is not an antichain and that Pr is an antichain. Let P be the finite poset
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on [d] such that i1 ≺ i2 ≺ · · · ≺ ir if ij ∈ Mj for 1 ≤ j ≤ r. One has c(P1) ≤ c(P ) =
|M1| · · · |Mr|. For any integer d ≥ 5, let

M(d) = max

{
r∏
i=1

mi : 1 ≤ r ≤ d, m1 +m2 + · · ·+mr = d, mi ∈ N+

}
.

Then the desired inequalities (3.4) follows immediately from the following claim:

M(d) =


3k, d = 3k

4 · 3k−1, d = 3k + 1

2 · 3k, d = 3k + 2.

(3.5)

So it suffices to prove this claim. Since for any integer m ≥ 4,

m ≤
⌊
m+ 1

2

⌋(
m−

⌊
m+ 1

2

⌋)
,

we can assume that, to maximize the product
∏r
i=1mi, all parts mi ≤ 3. We can also

assume without loss of generality that there are at most two mis that are equal to 2, since
23 < 32. Then the claim (3.5) follows immediately.

Finally, for each d ≥ 5, the existence of a finite poset P on [d] for which the equality
holds in (3.4) follows easily from the above argument.

Remark 3.9. The special case d = 1976 of claim (3.5) is exactly the problem 4 in the In-
ternational Mathematical Olympiad (IMO) in 1976, where the maximum value of a prod-
uct of positive integers summing up to 1976 is asked for. The answer is 2 · 3658 since
1976 = 3 · 658 + 2.

A routine computation shows that, for each 1 ≤ d ≤ 8, the right-hand side of (3.3)
coincides with that of (3.4) and that, for each d ≥ 9, the right-hand side of (3.3) is strictly
less than that of (3.4). Hence

Corollary 3.10. For each d ≥ 9, there exists a finite poset P on [d] for which the chain
polytope C(P ) cannot be unimodularly equivalent to any order polytope.

4 Volumes of OC`(P )

Given a poset P on [d], Corollary 4.2 in [16] shows that the volumes of O(P ) and C(P )
are given by

V (O(P )) = V (C(P )) =
e(P )

d!
,

where e(P ) is the number of linear extensions of P . (Recall that a linear extension of P is
a permutation π = π1π2 · · ·πd of [d] such that π−1(i) < π−1(j) if i ≺ j in P .)

For order-chain polytopes, different edge partitions usually give rise to polytopes with
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different volumes. For example, let P be the poset as follows:

1

2 3

4

It is easy to see that

V (O(P )) = V (C(P )) =
3

4!
.

Let
` = ({1, 2}, {{1, 3}, {3, 4}}), `′ = ({{1, 2}, {1, 3}}, {3, 4}),

then we have
V (OC`(P )) =

1

4!
and V (OC`′(P )) =

5

4!
.

Hence one has the following inequality:

V (OC`(P )) < V (O(P )) = V (C(P )) < V (OC`′(P )).

It should be noted that, for an arbitrary poset P , we can not always find edge partitions
such that this inequality holds. For example, if P is a chain, then there is no edge partition
` such that V (OC`(P )) < V (O(P )) = V (C(P )). Then a natural question is to ask which
edge partition ` gives rise to an order-chain polytope with maximum volume. It seems
very difficult to solve this problem in general case. In this section, we consider the special
case when P is a chain P on [d]. We transform it to a problem of maximizing descent
statistics over certain family of subsets. For references on this topic, we refer the reader to
[3] and [14].

Let P be a chain on [d]. By the proof of Theorem 3.3, for an edge partition ` of P , the
order-chain polytopeOC`(P ) is unimodularly equivalent to a chain polytope C(P1), where
P1 is a zigzag poset such that all maximal chains, except the first one (containing 1) and
the last one (containing d), consist of at least three elements. So we have

V (OC`(P )) = V (C(P1)) =
e(P1)

d!
.

Conversely, for such a zigzag poset P1, it is easy to find an edge partition ` of P such that
OC`(P ) is unimodularly equivalent to C(P1).Denote byZ(d) the set of such zigzag posets
P1 on [d]. Thus, to compute the maximum volume over all order-chain polytopes of the
chain P , it suffices to compute the maximum number of linear extensions for all zigzag
posets P1 ∈ Z(d). Next we shall represent this problem as a problem of maximizing
descent statistic over a certain class of subsets. To this end, we recall some notions and
basic facts. Given a permutation π = π1π2 · · ·πd, let Des(π) denote its descent set {i ∈
[d − 1] : πi > πi+1}. For S ⊆ [d − 1], define the descent statistic β(S) to be the number
of permutations of [d] with descent set S. Note that there is an obvious bijection between
zigzag posets on [d] and subsets of [d− 1] given by

S : P 7→ {j ∈ [d− 1] : j � j + 1}.
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Moreover, a permutation π = π1π2 · · ·πd of [d] is a linear extension of P if and only
if Des(π−1) = S(P ). Let F(d) = S(Z(d)). Then we can transform the problem of
maximizing volume of order-chain polytopes of a d-chain to the problem of maximizing
the descent statistic β(S), where S ranges over F(d).

Observe that β(S) = β(S̄), where S̄ = [d− 1] \S. Following [3], we will encode both
S and S̄ by a list L = (l1, l2, . . . , lk) of positive integers such that l1 + l2 + · · · + lk =
d − 1. Given S ⊆ [d − 1], a run of S is a set R ⊆ [d − 1] of consecutive integers of
maximal cardinality such that R ⊆ S or R ⊆ S̄. For example, if d = 10, then the set
S = {1, 2, 5, 8, 9} has 5 runs: {1, 2}, {3, 4}, {5}, {6, 7}, {8, 9}. Suppose that S has k
runs R1, R2, . . . , Rk with |Ri| = li, let L(S) = (l1, l2, . . . , lk).

Lemma 4.1. Suppose that S ⊆ [d− 1] and L(S) = (l1, l2, . . . , lk). Then S ∈ F(d) if and
only if li ≥ 2 for all 2 ≤ i ≤ k − 1.

Proof. The lemma follows immediately from the fact that Z(d) consists of zigzag posets
P such that all maximal chains in P , except the first one (containing 1) and the last one
(containing d), contain at least three elements.

Denote by Fd the dth Fibonacci number. By Lemma 4.1, it is easy to see that |F(d)| =
2Fd for d ≥ 2. Based on computer evidences, we conjectured the following results about
maximizing descent statistic over F(d), which in fact1 is a special case of Theorem 6.1
in [3].

Proposition 4.2. Suppose that d ≥ 2 and S ⊆ [d− 1].

(1) If d = 2m and

L(S) = (1, 2, 2, . . . , 2︸ ︷︷ ︸
m−1

) or L(S) = (2, 2, . . . , 2︸ ︷︷ ︸
m−1

, 1),

then β(T ) ≤ β(S) for any T ∈ F(d).

(2) If d = 2m+ 1 and
L(S) = (1, 2, 2, . . . , 2︸ ︷︷ ︸

m−1

, 1),

then β(T ) ≤ β(S) for any T ∈ F(d).

Equivalently, by the proof of Theorem 3.3, we have

Proposition 4.3. Let P be a chain on [d]. Then the alternating edge partition ` =
(oE(P ), cE(P )) with

oE(P ) =

{
{{1, 2}, {3, 4}, . . . , {d− 1, d}}, if d is even
{{1, 2}, {3, 4}, . . . , {d− 2, d− 1}}, otherwise

gives rise to an order-chain polytope OC`(P ) with maximum volume.

1We thank Joe Gallian and Mitchell Lee for bringing [3, Theorem 6.1] to our attention.
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