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0 INTRODUCTION

Effective machine health assessment provides 
diverse benefits including improved safety, improved 
reliability and reduced costs for operation and 
maintenance of complex manufacturing systems. 
Monitoring and assessing the degradation trend of 
some key components, such as bearings, allow the 
degraded behavior or faults to be corrected before 
they cause machine breakdown [1]. According to our 
literature review, it has been discovered that many 
of the existing works are based on signal-processing 
methods, such as instantaneous energy density self-
similarity, time-frequency entropy, and regularization 
dimension for health assessment [2] to [6].

However, as the data collected from machines is 
becoming increasingly greater and the requirements of 
the speed and accuracy of machine health assessment 
are becoming higher and higher, there is an urgent 
need for new assessment methods that can effectively 
analyse massive amounts of data and automatically 
provide accurate assessment results. Yu [1] proposed 
a hidden Markov model (HMM) and contribution 
analysis-based method to assess machine health 
degradation. Do and Nguyen [7] utilized adaptive 
empirical mode decomposition (AEDM) for bearing 
fault detection and made comparisons with those of 

using envelope analysis and the latest version of the 
EMD. In addition, back-propagation network (BPN) 
was used by Yan and Guo [8] for on-line bearing 
performance degradation assessment. More recently, 
as a new area of machine learning, various deep 
learning algorithms, such as deep belief networks 
(DBNs) [9], convolutional neural network [10] and 
deep neural networks (DNNs) [11] have been applied 
successfully and rapidly in many different fields. 
Feng et al. [6] utilized DNNs to implement both fault 
feature extraction and intelligent diagnosis. Discrete 
wavelet transform and neural network (NN) were 
adopted by Li et al. [12] to detect gearbox crack 
faults. Moreover, Meng et al. [13] proposed a novel 
hierarchical diagnosis network by collecting DBNs by 
layer for the hierarchical identification of mechanical 
systems. 

In addition to assessment methods, extracting 
the representative features of the vibration signal 
collected from the target machines is another crucial 
task. There are two kinds of conventional methods 
for extracting vibration signal features: time domain 
analysis and frequency domain analysis, which 
include correlation function analysis, fast Fourier 
transform (FFT), etc. Recently, some novel analysis 
techniques, such as wavelet packet transform 
(WPT) [14], short time Fourier transform (STFT) 
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[15] and Wigner-Ville distribution (WVD) [16] have 
also been successfully used for the same purpose. 
However, usually, after a series of transformations 
the dimensionality of the acquired parameters reaches 
tens or even hundreds, so it is essential to reduce 
the dimensionality prior to entering the data into the 
assessment model. The major idea of dimensionality 
reduction is that the extracted redundant statistical 
features in a high-dimensional space are mapped to a 
few significant features in a low-dimensional space, 
where these features are used to represent different 
crack levels [17]. Principal component analysis (PCA) 
is a popular linear dimensionality reduction method 
that constructs a low-dimensional representation of 
the data that describes as much of the variance in the 
data as possible by finding a linear basis of reduced 
dimensionality for the data, in which the amount 
of variance in the data is maximal [18]. As for non-
linear dimensionality reduction methods, in addition 
to Isometric feature mapping (Isomap), Laplacian 
Eigenmaps and local linear embedding (LLE) are 
two other techniques that find a low dimensional data 
representation by preserving local properties of the 
manifold [19].

By comparing and analysing the deficiencies 
of the existing methods, this paper presents a novel 
combined assessment model (CAM) by combining 
WPT, Isomap, and DBN to assess the health condition 
of the target machine; the method includes three 
steps: (1) extract original features of the vibration 
signals through time and frequency domain analysis 
and WPT, (2) reduce the dimensionalities of the high-
dimensional arrays by Isomap, (3) enter the acquired 
low-dimensional arrays composed of significant 
features into the trained DBN to obtain assessment 
results. To present a comprehensive comparison and 
highlight the advantages of the proposed method, 
two other popular dimensionality reduction methods 
(PCA and Laplacian Eigenmaps) and two other 
intelligent algorithms (HMM and back-propagation 
neural network (BPNN)) have also been introduced to 
conduct the same experiments. 

The rest of the paper is organized as follows: 
Section 2 presents the proposed combined assessment 
method (CAM) for assessing machine health, in which 
all the concepts and algorithms are described clearly. 
In Section 3, a series of experiments were conducted, 
including extracting the representative features of the 
vibration signal and designing the DBN architecture. 
In Section 4, comparison experiments with the PCA 
linear dimensionality reduction method and the 
Laplacian Eigenmaps nonlinear local dimensionality 
reduction technique, which have commonly been used 

for feature extraction were conducted, which proved 
the advantages of the proposed CAM. The assessment 
results are analysed in Section 5.

1  THE PROPOSED CAM

1.1  Techniques for Original Features Extraction 

Extracting the representative features of the vibration 
signal collected from the target machines is a crucial 
task for the work of health assessment. To illustrate 
the general applicability of the proposed method, both 
conventional and modern feature extraction methods 
will be employed.

1.1.1  Time and Frequency Domain Analysis

Time domain analysis directly based on the time-
domain signal to analyse and give results is the 
simplest and most direct analysis method, which is 
especially effective when the signal contains simple 
harmonic, periodic or transient pulse components. 
Time domain analysis mainly includes probability 
analysis, time domain average synchronous method, 
correlation function analysis, and analysis of the 
extracted features of the time domain waveform. 
Frequency domain analysis converts the signal in the 
time domain to the frequency domain with the help 
of Fourier transform and then determines the type and 
degree of the fault according to the characteristics 
of the frequency distribution and the trend of the 
signal. It mainly includes spectrum analysis, cepstrum 
analysis, and envelopment analysis. 

In the proposed method, 11 time-domain original 
features, such as crest factor, peak value, variance 
value, etc., and 13 original features, such as standard 
deviation frequency, spectrum kurtosis, first order 
centre, etc. are extracted. 

1.1.2  WPT

WPT, an extension of wavelet transform (WT) that can 
provide level-by-level decomposition, is introduced 
to extract the original features in this study. WPT 
can decompose a time-domain signal S into several 
levels of wavelet packet (WP) nodes to construct the 
structure of a WP tree, in which each level stands 
for a frequency resolution. The WP coefficients of a 
function S can be computed via [20]:

	 C S W t ij k
i

j k
i

, ,
, , , ,...,= ( ) =1 2 	 (1)
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where the integers i, j and k in W tj k
i
, ( )  represent the 

modulation, scale and translation parameters, 
respectively. Each coefficient of Cj k

i
,  measures a 

specific frequency band content indexed by the scale 
parameters i and j. Therefore, the definition of wavelet 
packet node energy can be:

	 e Cj i j k
i

, ,
,= ∑( )2 	 (2)

which measures the signal energy contained in some 
specific frequency band controlled by i and j. Each  
(i, j) will be referred to as a wavelet packet node in the 
following. Each value of the node energy of wavelet 
packet can be regarded as an individual feature 
element and serve as a robust preliminary exploration 
of the specific features of the machine vibration 
signals, from which the useful information for health 
assessment purposes could be abstracted.

After selection, 14 WPT original features are 
extracted in this paper.

1.2  Isomap Dimensionality Reduction

The sample data of high dimensional space (D 
dimensional) is in a low dimensional manifold (L 
dimensional, L ≤ D); the manifold structure retains the 
geometric characteristics of the original data, and  L 
is the intrinsic dimensionality of the sample [21]. As 
a nonlinear global dimensionality transformation 
technique, Isomap finds a mapping solution after a 
series of conversions through which the geodesic 
distance between input points in the original space 
can be represented by a Euclidean distance in the 
projection space as accurately as possible [22], of 
which the effect can be generally expressed as:

	 M M L DD
Isomap

L⇒ ≤( ), , 	

where MD and ML stand for the D-dimensional 
original features and projected L-dimensional 
features, respectively. The main solution procedures 
are summarized as follows:

Step 1: Establish matrix T which is composed of 
the geodesic distances between each two data points 
in MD according to the neighborhood graph P and 
shortest-path algorithms proposed by Dijkstra [23], 
where MD = [o1, o2, ..., oM]T.

Step 2: Update the entries gij and double-center 
matrix G by Eq. [9], where G = T 2, T (oi, oj) denotes 
shortest path between oi and oj in graph P.

	 g g
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g
N
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2

. 	(3)

Step 3: Solve the eigenproblem in Eq. (4) 
and form the columns of matrix V with d primary 
eigenvectors νk (1 ≤ k ≤ L) that correspond to d maximal 
eigenvalues δk (1 ≤ k ≤ L), respectively.

	 Gv v= δ . 	 (4)

Step 4: Compute the entries pi of matrix ML which 
is the low-dimensional representation of MD by:

	 pi = δk k
iv , 	 (5)

where vk
i  is the ith element of the kth primary 

eigenvector  of the matrix V.
Step 5: Construct L-dimensional embedding ML 

of the original D-dimensional data matrix MD with pi 
through:

M L T= [ ]p p pM1 2
, , .

The main procedures can be presented in Fig. 1.

Fig. 1.  Flow chart of Isomap space transformation

As described in Section 2.1, in this paper, a high-
dimensional n×38 original features array is obtained 
from the vibration signal. To obtain reasonable 
dimensionality, a maximum likelihood estimation 
(MLE) algorithm is introduced to evaluate the 
intrinsic quantity of the projected dimensionalities 
before the array is transformed to an n×m one (m < 38) 
by Isomap. 

1.3  DBN-Based Assessment Model

As a probabilistic generative model that can 
effectively capture the typical information from raw 
data with various non-linear transformations and 
approximate complex non-linear functions, DBN is 
highly appropriate for machine health assessment. 
Next, the construction and training of DBN model 
will be introduced.

1.3.1  DBN Architecture

DBN is constructed by stacking a sequence of 
restricted Boltzmann machines (RBMs) layer by 
layer [8], as shown in Fig. 2, layer 1 (input layer V) 
and layer 2 (hidden layer H1) form RBM1, layer 2 
(hidden layer H1) and layer 3 (hidden layer H2) form 
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RBM2, and so on. Each RBM consists of a hidden and 
a visible layer, both of which are composed of binary 
stochastic units that only connect with the units from 
different layer but do not connect with the ones within 
the same layer.

The energy of a joint configuration of the visible 
and hidden units is given:

    E w v h b v a h
i

V

j

H

ij i j
i

V

i i
j

H

i jv h, ; ,θ( ) = − − −
= = = =
∑∑ ∑ ∑
1 1 1 1

	 (6)

where matrix w denotes the weights between visible 
and hidden layer, vectors a and b are the biases of 
hidden units hj and visible units νi, while θ = {w, b, a} 
are the model parameters.

Fig. 2.  Schematic architecture of DBN

To further clarify the working process of DBN, 
take single RBM1 as an example. ∀ ∈{ } ∈{ }i j v hi j, , , , ,0 1 0 1

∀ ∈{ } ∈{ }i j v hi j, , , , ,0 1 0 1 . Each component of input array X  
corresponds to a node of the visible layer, by this way 
X is input into a RBM1. After a series of calculations, 
an output array Y of which each component 
corresponds to a node of the hidden layer is obtained.

1.3.2  DBN Model Training

The distinctive architecture makes it feasible to 
train DBN by training a series of RBMs with the 
contrastive divergence (CD) algorithm. The primary 
training procedure can be summarized as: each RBM 
layer is trained by using the activation probabilities of 
the sub-network RBM as the input training data, while 
the output serves as the input to the next RBM layer. 
After the unsupervised RBM pre-training, the first 
layer is fed with the raw input data and is Gaussian-
binary restricted Boltzmann machines (GB-RBM) for 

real-valued input; the others are binary or Bernoulli–
Bernoulli RBM. Finally, the updating rule for the 
parameter is given:

	 W W← + −( )εw i j i jv h v h0 1
, 	 (7)
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where εw, εa and εb denote the learning rates of weights, 
hidden bias and visible bias, respectively. Details of 
the training process can be found in literature [24].

For machine health assessment tasks, after the 
generative pre-training, other typical discriminative, 
learning procedures which can effectively fine-
tune the weights will be combined to improve the 
performance of DBN. A very effective way that 
has been successfully confirmed for implementing 
discriminative fine-tuning is to add an extra layer of 
variables that denote the desired labels after the last 
RBM. Then, the back-propagation algorithm similar to 
that in the standard back propagation neural network 
will be introduced to adjust all the network weights.

Multiple samples for training and testing are 
obtained by dividing the dataset, which are further 
divided into small “mini-batches” for efficient training 
[22]. To meet the application requirements, the first 
2000 min data NL of the transformed dataset ML in 
projected space, which are all collected under normal 
conditions are used as training data to train and fine-
tune the normal DBN model, that is:
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1.4  Assessment

The specific structure and nonlinear learning 
procedures of DBN make it very effective for 
obtaining the intrinsic characteristics from a large 
number of data. After obtaining the normal DBN 
model, the entire feature dataset ML that contains 
normal data as well as fault data are used as testing 
data to assess the machine whole life health state, that 
is:
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where N ML L∈ .
The principal work for DBN-based machine 

health CAM can be summarized as follows: (1) Pre-
process the original vibration signal data, such as 
eliminating the abnormal data. (2) Extract features of 
the datasets with Isomap and divide them into training 
and testing subsets. (3) Build the assessment model 
based on deep learning and DBN theories. (4) Train 
DBN with the training feature data NL to obtain a 
normal DBN assessment model. (5) Apply the normal 
DBN model and the entire dataset ML for machine 
health assessment. It should be noted here that steps 
(3) and (4) will be repeated until the number of epochs 
is reached. Since being trained with the feature data 
collected under normal conditions, when the entire 
dataset is input into the DBN assessment model, its 
output is the relative probability value of each input 
belonging to normal condition which is determined by 
DBN, and its changing trend can reflect the running 
condition of the tested machine.

Fig. 3 shows the procedures of the proposed 
CAM.

2  EXPERIMENTS AND ANALYSIS

2.1  Test Rig and Data

The experiment executed bearings run-to-failure 
tests un-der permanent load was conducted on a 
special test rig, as shown in Fig. 4, in order to make 
comparisons with the existing methods and highlight 
the advantages of the proposed method in this paper; 
the test data from literature [25] are adopted for the 
following further research. There are four double row 
bearings that are force lubricated in the test rig, and 
the rotation speed of the shaft is applied onto a radial 
load was kept constant by an alternating current (AC) 
motor coupled to it via rub belts.

The parameters and operation condition of the 
bearings are displayed in Table 2. To collect the 
vibration signal effectively, each bearing was installed 
with a PCB 353B33 high sensitivity quartz ICP 
accelerometer on the bearing housing. There are four 
channels: channels 1 to 4 correspond to bearings 1 to 
4, respectively.

Collection of the data was facilitated with 
NI DAQ Card 6062E. When the test-to-failure 

experiment was completed, a dataset which consists 
of 984 individual vibration signal data files was 
obtained. The files of ASCII format contain all the 
information of the four channels. Each file contains 
20480 data points with the sampling rate of 20 kHz, 
and the recording interval of the files is 10 minutes. At 
the end of the test experiment, failure occurred in the 
outer race of bearing 1.

Fig. 3.  Flowchart of the proposed CAM

Table 2.  Bearing parameters and operation condition

Type Number Ball diameter [mm] Contact angle [deg] Rotation speed [RPM] Radial load [kN]
ZA-2115 4 10 0 2000 26.671
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Fig. 4.  Test rig

2.2  Features Extraction

In view of the outer race failure occurred in bearing 1 
at the end of the test experiment, the data of channel 
1 were chosen for subsequent experiments. Firstly, 
pre-processing the data of the bearing vibration 
signal datasets was carried out, during which three 
documents that were detected to have abnormal data 
points were removed. Then the techniques of time 
domain analysis, frequency domain analysis, and WPT 
were employed to extract the 38 original features, and 
a 9810×38 original features array was obtained. Next, 
the intrinsic quantity of the dimensionalities was 
calculated with the algorithm of MLE, and the answer 
was 6. Then the Isomap non-linear dimensionality 
reduction method was employed to further extract the 
more representative features; thus, the 9810×38 high-
dimensional original features array was converted 

into a 9810×6 low-dimensional one, which contains 
more representative features. Fig. 5 indicates that four 
features (features 1, 2, 3 and 5) appeared to become 
irregular at about 5300 and all these 6 features have 
a significant mutation around the point of 7000. The 
phenomena described above may suggest that the 
bearing tested in the experiment could have a fault in 
the vicinity of these abnormal points. 

Although extracted from the same test dataset, 
the six feature trends in Fig. 5 still exhibit significant 
inconsistency; therefore, these features are not 
supposed to be applied individually for machine 
health assessment as they are not able to provide the 
consistent and accurate degradation pattern. A more 
feasible method is to construct an effective model that 
can fuse all the information of these representative 
features to obtain reliable and accurate machine health 
assessment results.

In the next experiments, the 9810×6 features 
array obtained above will be used to achieve two 
functions: the former 2000×6 subpart will be applied 
for training and tuning the assessment model, while 
the whole dataset will be used to test the model and 
get the health assessment results of the machine 
during the entire test period.

2.3  Design of DBN Structure

The numbers of input, hidden nodes, and hidden 
layers are the most critical parameters in the design 
of neural networks. As for the DBN-based assessment 
model, the number of input nodes corresponds to the 
number of the dimensionality of the array composed of 
extracted features data, of which the value is 6. Since 
the one-step-ahead assessment method is chosen, one 
output node is enough to meet the requirements.

Fig. 5.  The 6 features extracted by Isomap-based dimensionality reduction
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The number of hidden nodes determine the ability 
of neural networks to capture nonlinear patterns from 
the input data. On the one hand, neural networks with 
too few hidden nodes may not be competent enough 
to model the data. On the other hand, too many 
hidden nodes may bring about over-fitting problems 
and result in inferior assessment performance. As 
a generative neural network model with multiple 
hidden layers, DBN is more powerful in acquiring 
the complicated relationship from the input data. 
Therefore, the changeable number of hidden layers 
and hidden nodes provides the designer of DBN a 
significant amount of freedom, which also brings 
many problems. To date, there has been no mature 
means in theory for determining the number of hidden 
layers and nodes, which remains an intractable task 
for the design of DBN structure.

In this paper, the numbers of hidden layers 
and nodes of the DBN were selected by a series 

of experiments. The data for training DBN were 
divided into two parts: 80% of them were applied 
for training, while the rest for validation. Given that 
the numbers of hidden layers of DBNs [13] that had 
been successfully applied to solve various problems 
are all more than two, hence, the constructed DBN 
was initialized with three hidden layers. After several 
attempts, it was discovered that when the hidden 
nodes of the three hidden layers are set as 100–50–50, 
respectively, the evaluation result would be better than 
other design patterns. Analogously, after comparing 
with the same analysis method, the architectures of 
the DBNs with 4, 5 and 6 hidden layers that realized 
the most satisfactory evaluation results are 100–100–
50–20, 100–100–50–50–10 and 100–100–100–50–
20–20, respectively. The assessment outputs of these 
optimal architectures of the DBNs described above 
are displayed in Fig. 6, which shows that the DBN 
with 4 hidden layers could acquire better assessment 
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result than a 3-hidden-layer one, for example, the 
waveform of the former is more stable than that of the 
latter before the mutational point, and its mutation at 
time point 700 is more obvious. While the DBN with 
the architecture of 100–100–50–50–10 performs best 
in the experiment by virtue of its smoothest, clear and 
reasonably trended curve, with the number of hidden 
layers increasing to 6, the performance of DBN had 
become worse. 

The phenomenon above can be explained as that 
DBN with less than five hidden layers may not have 
enough power to model the data; however, when there 
are more than 5 hidden layers the over-fitting problems 
may result in inferior assessment performance. It is, 
therefore, the conclusion that the 5-hidden-layer DBN 
with the architecture of 100–100–50–50–10 is the best 
model for the work of machine health assessment. 
(It is worth noting that since the value of each point 
of the waveforms is a relative one, the direction the 

waveforms trended (up or down) does not affect the 
quality of the assessment results.)

3  COMPARISON EXPERIMENTS

3.1  Comparison Experiments of Dimensionality Reduction

Isomap, adopted in this paper, is a nonlinear global 
dimensionality reduction method; next, the comparison 
experiments with linear dimensionality reduction 
method PCA and nonlinear local dimensionality 
reduction technique Laplacian Eigenmaps that have 
been used for feature extraction were conducted. 

In order to make fair and reasonable comparisons, 
the most suitable DBN architectures for PCA and 
Laplacian Eigenmaps are constructed, which are 100–
100–50–50–5 and 100–100–50–50–10, respectively. 
The assessment results of DBNs with these two 
different dimensionality reduction methods are 
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based dimensionality reduction method
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displayed in Fig. 7, from which it can be determined 
that the resulting waveform of PCA-based method has 
the same abnormality beginning point (at time point 
530) and mutational point (at time point 700) with that 
of the Isomap-based method, but the former fluctuates 
much more severely before abnormality beginning 
point and becomes disorganized at the end. While, 
the resulting waveform of Laplacian Eigenmaps 
-based method performs better for the two problems 
mentioned above, but the overly bizarre mutational 
point (at time point 647) also demonstrated the defect 
of this method. The analysis and comparisons above 
surely proved the correctness of the Isomap-based 
dimensionality reduction method.

3.2  Comparison Experiments of Assessment Models

Next, two other kinds of intelligent algorithms HMM 
and BPNN that have already been successfully and 
widely applied in fault diagnosis, data classification, 
are also introduced to conduct the similar experiments 
under the corresponding same conditions. As an 
extension of Markov chains, HMM that contains a 
finite number of states, where each state generates 
an observation at a certain time point, is a state-of-
the-art technique for model recognition due to its 
elegant mathematical structure and the availability 
of computer implementation [1]. While a BPNN 
model is composed of many idealized layers of nodes 
and specified by the node characteristics (weights), 
the learning rules (transfer functions, always the 
sigmoid function), network interconnection geometry 
(different layers), and dimensionality (number of 
layers and nodes), of which the learning feeds back 
into the model to change the weights of nodes between 
layers in order to decrease errors between predicted 
and measured values [26].

In order to make the results of the experiments 
more persuasive, the dimensionality reduction method 
is kept the same as Isomap only the assessment models 
were replaced by BPNN and HMM, respectively. The 
assessment results of these two models are shown 
in Fig. 8, which indicates that BPNN can accurately 
identify the anomaly and mutation at time points 530 
and 700, respectively, but it performs disorderedly 
after the mutational point when the waveform trends 
to the opposite direction. While the waveform of 
HMM is very smooth at the beginning, it drops too 
fast after the abnormality beginning point 530, which 
does not accord with the actual situation, and the 
transformation at mutational point 700 is too vigorous 
so that the waveform graph disconnected there; 
additionally, its tail waveform is also very confusing.

4  ASSESSMENT RESULTS

After a series of experiments, in which the 
comparisons with two popular dimensionality 
reduction methods (PCA and Laplacian Eigenmaps-
based) and two intelligent assessment algorithms 
(HMM and BPNN-based), the proposed CAM in 
this paper, which employs Isomap and the DBN with 
architecture of 100–100–50–50–10, was verified to 
be very effective and accurate for machine health 
assessment work. 
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Fig. 9.  Assessment result of the proposed CAM

As shown in Fig. 9, after a long time of normal 
running, the proposed CAM detected the early slight 
degradation of the bearing at time point 530, indicating 
where the slight faults of wear, pitting or overheat 
may begin occurring. Then the CAM monitored a 
mutation signal (at point 700) which presents that 
crackle, fatigue spalling or some other serious faults 
might occur there. Finally, it can be observed from 
the end of the waveform that after the time point 940, 
the condition of the bearing began to deteriorate so 
sharply that it could not continue working.

Compared with the real test situations, the 
assessment results of the proposed method in this 
paper are very much in line with the actual running 
conditions of the bearings.

5  CONCLUSIONS

Machine health assessment is playing an increasingly 
important role, which can provide diverse benefits 
including improved safety, improved reliability and 
reduced costs for operation and maintenance of 
complex manufacturing systems. This paper presents 
a novel combined assessment method (CAM) for 
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assessing the health condition of the target machine 
(rolling-element bearings). To deal with the non-
stationary property of the vibration signals collected 
from machines, three widely used techniques 
involving time domain analysis, frequency domain 
analysis, and WPT are adopted to extract 38 original 
features of the datasets. Then, the Isomap nonlinear 
global algorithm is adopted for dimensionality 
reduction and extracting more representative features. 
Next, the acquired low-dimensional features array is 
input into the well-trained DBN model to evaluate 
the performance status of the bearing. Finally, the 
bearing-accelerated degradation data from Cincinnati 
University were investigated for further research, 
through the comparison experiments with two 
popular dimensionality reduction methods (PCA and 
Laplacian Eigenmaps-based), and two intelligent 
assessment algorithms (HMM and BPNN-based), 
the proposed CAM is proved more sensitive to the 
incipient fault of rolling bearings and more effective 
for bearing performance degradation evaluation. In 
future work, CAM can be applied in other fields for 
evaluation or classification.
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