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Scheduling in Flexible Manufacturing Systems (FMSs) is an important area of research as it significantly 

affects performance of the systems. In scheduling problems, determination of an appropriate order for 

jobs to be processed on a machine is a difficult task and to solve such problems, job priority rules (JPRs) 

are used. Several JPRs have been developed with an aim to obtain better performance, measured in terms 

of one or more scheduling performance measures (SPMs). However, selection of an appropriate rule is 

still an area of research as no single rule provides better results for all SPMs considered simultaneously. 

This work proposes a framework which is based on an integration of simulation and multi criteria decision 

making (MCDM) methods for the selection of an appropriate JPR yielding optimum results for multiple 

SPMs taken together. The proposed framework includes development of a simulation model to collect 

values of the SPMs corresponding to different JPRs. Further, five MCDM methods have been used to 

determine rank of the JPRs. Since different MCDM methods produce different ranking result therefore, 

the final rank of the JPRs has been determined by comparing the rank derived from these methods using 

membership degree method. To exemplify the probable application of the proposed framework, it has been 

implemented on a specific FMS taken from the literature in order to select the best JPR. 

Povzetek: Razvit je okvir za reševanje problemov razporejanja v fleksibilnih proizvodnih sistemih, ki 

združuje simulacijsko modeliranje in metode MCDM. 

 

1 Introduction 
High system throughput and customer satisfaction are 

considered as the most important performance metrics 

required from a manufacturing system. However, due to 

conflicting nature of these performance metrics, the 

concept of flexible manufacturing system (FMS) was 

evolved which provides flexibility as well as high 

productivity at the same time. FMS is a centrally or 

distributed computer control system consisting of 

automated machines viz. CNC, material handling system 

(MHS), automatic storage and retrieval system (AS/RS) 

and other auxiliary devices. Various studies have 

suggested that a significant amount of improvement in 

performance can be obtained with installation of FMS 

over conventional manufacturing systems [1], [2]. Further, 

the performance of these systems can be additionally 

enhanced if effective and efficient operational decisions 

are made [3]. Despite the fact that small setup times, 

variability of parts, high machine utilization etc. are some 

of the advantages, there are various operational problems 

associated with FMSs. The three major operational  

problems of FMS are classified as scheduling, control 

problems, and pre-release planning [4]. 

 

 

 

The focus of this study is to scrutinize scheduling 

problem associated with FMS. Scheduling is an 

extensively researched area and it is considered to be an  

important concern in the management and planning of 

manufacturing processes [3], [5]. It is the process of 

assigning available resources to the concerned job so as to 

enhance productivity, flexibility, profitability, and 

production of the system [6]. Scheduling in FMS 

environment is more complex as compared to 

conventional manufacturing environment due to its 

versatile capabilities [7]. The FMS scheduling problem 

consists of two sub-problems [8]. The first one is related 

to the allocation of the requisite operation to a suitable 

machine and the second one pertains to the job sequencing 

of operations on each machine. Over the years, Job 

Priority Rules (JPRs) are found to be the simplest and most 

widely accepted means to resolve the second sub problem 

i.e., sequencing of jobs on each machine. These rules 

provide precedence to one job over other jobs, based on 

their performance on a predefined priority function, for 

processing on the machine. Further, the scheduling 

problem is described as dynamic or static based on the 

availability of jobs [9]. A scheduling problem is classified 

as dynamic if jobs arrive into the system during the 

scheduling process i.e. all jobs are not available at the 

mailto:shafiahmad.amu@gmail.com
mailto:zahid_jmi@yahoo.com
mailto:shafiahmad.amu@gmail.com
mailto:masjad@jmi.ac.in


502   Informatica 47 (2023) 501–514                                                                                                                               S. Ahmad et al. 

beginning and it is categorized as static if they are 

available at the starting of the scheduling process [10]. To 

solve static scheduling problem, many optimization 

algorithms and heuristics have been developed [11], [12]. 

However, JPRs are found to be the most appropriate 

means to resolve the dynamic scheduling problems [13], 

[14].  

JPRs are classified on the basis of processing time, 

due date, rules neither based on processing time and due 

date, combinatory rules and rules based on shop floor 

conditions [9]. The processing time based rules are found 

to perform well under tight load conditions whereas for 

light load conditions, due date based rules are preferred 

[15]. Several JPRs have been developed and proposed in 

the literature and it has been established that the 

performance of the FMS is significantly affected by the 

chosen JPR. Further, selection of an appropriate JPR 

among the available one is a complex task as no single rule 

can provide best results for all the performance measures 

taken together. With this intention, this work attempts to 

provide an effective framework using a combined 

approach of simulation modelling and MCDM methods to 

select the best JPR resulting in the optimum performance 

of FMSs with dynamic scheduling of parts.  

Selection of an appropriate JPR requires various 

performance measures to be satisfied simultaneously and 

therefore, the selection problem resembles an MCDM 

problem. Several MCDM methods such as WSM, WPM, 

AHP, VIKOR, ELECTRE, TOPSIS etc. are available 

which can be used to select the best JPR among the 

available ones [16]. However, due to inherent 

characteristics of these and many other MCDM methods, 

the best JPR produced by them may be different. 

Therefore, the framework proposed in this work examines 

the priorities of the JPRs on the basis of rank obtained 

from five MCDM methods viz. Measurement Alternatives 

and Ranking according to COmpromise Solution 

(MARCOS), Proximity Index Value (PIV), Multi-

Attribute Border Approximation Area Comparison 

(MABAC), Evaluation based on Distance from Average 

Solution (EDAS) and Technique of Order Preference 

Similarity to the Ideal Solution (TOPSIS). Subsequently, 

it determines the final rank of the JPRs by comparing the 

rank produced by these methods using membership degree 

method. To demonstrate the potential application of the 

proposed framework, it has been employed to select the 

best JPR for a specific FMS taken from the literature. Rest 

of the paper is structured as follows: Section 2 discusses 

the various JPRs, SPMs, simulation modelling, and the 

MCDM methods employed in the present study. Section 3 

describes the steps involved in the development of the 

proposed framework. Section 4 explains working of the 

proposed framework through an illustrative example taken 

from the literature. Finally, section 5 presents conclusion 

of the present study. 

2 JPRs, SPMs, simulation modelling 

and MCDM methods 

2.1. Job priority rules (JPRs) in FMSs 

Job priority rules are used to select the next job to be 

processed on a machine from a set of jobs that are waiting 

in the queue for processing. Since, these rules are simple 

and easy to implement, they are most commonly used in 

FMSs for job sequencing. Consider an FMS with m 

machines designated as Mi (i=1, 2, m) processing n parts 

say Pj (j = 1,2, ...., n). If t = Current time of the system, 

ATj = Time of arrival of part j in the system, Tij = Time 

of arrival of part j on machine i, PTij = Processing time of 

part j on machine i, DDj = Due date of part j, TTj = Total 

time required to perform all operations on part j, RTj = 

Remaining processing time for part j and NRj= Number of 

remaining operations to be performed on part j. Some of 

the most commonly used JPRs along with their priority 

functions and reference are shown in Table 1. 

Table 1: JPRs and their priority functions 

JPRs Symbol 
Priority 

Function 
Reference 

First Come, 

First Served 
FCFS min (Tij) [14], [17] 

Last Come, 

First Served 
LCFS max (Tij) [14] 

Shortest 

Processing 

Time 

SPT min (PTij) [14], [17] 

Longest 

Processing 

Time 

LPT max (PTij) [14], [18] 

Earliest Due 

Date 
EDD min (DDj) [18], [19] 

First at shop, 

first out 
FASFO min (ATj) [20] 

Least Slack 

Time 
LST 

min (DDj − 

t − RTj) 
[19], [20] 

Minimum 

Critical Ratio 
MCR 

min ((DDj 

− t)/RTj ) 
[19] 

Maximum 

Balanced 

processing 

time 

MBPT max (RTj) [14], [21] 

Least 

Balanced 

processing 

time 

LBPT min (RTj) 
[14], [19], 

[20] 

Most 

Number of 

Operations 

Remaining 

MNOR max (NRj) [20] 

Least 

Number of 

Operations 

Remaining 

LNOR min (NRj) [19], [20] 
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Greatest 

Total Work 
GTW max (TTj) [14] 

Lowest Total 

Work 
LTW min (TTj) 

[14], [17], 

[19] 

Modified due 

date 
MDD 

min (DDj − 

t) 
[19], [22] 

Least 

processing 

time on Next 

machine 

LPTNM 
min 

(PT(i+1)j) 
[23], [24] 

Maximum 

processing 

time on Next 

machine 

MPTNM 
max 

(PT(i+1)j) 
[23], [24] 

Processing 

time and due 

date total 

PDT 
min 

(PTij+DDj) 
[25] 

2.2. Scheduling performance measures 

(SPMs) 

In a manufacturing system, scheduling performance 

measures (SPMs) are the attributes used to estimate the 

performance of a schedule. There are a number of different 

SPMs which can be used to evaluate the performance of a 

schedule. However, their consideration may vary 

depending upon the requirements of a specific industry. 

The frequently found SPMs are described as follows: 

1. Makespan time (MT): It is the amount of time 

required to complete a set of jobs. It is desirable to 

schedule the parts in such a way that MT is the 

minimum. Considering to as the time at which first 

part enters into the system and tf as the time at which 

last part exits from the system, MT is defined by Eqn. 

(1). 

𝑀𝑇 = 𝑡𝑓 − 𝑡𝑜                         (1) 

 

2. Average waiting time in the queue (AW): AW is the 

average waiting time spent by parts on a machine to 

get processed. Considering a system with m machines 

designated as MCi (i=1,2, ......., m) processing n parts 

labelled as Pj (j=1,2, ......., n). If Wji denotes the 

waiting time of part j on machine i, the Average 

waiting time in the queue (AW) on machine i is 

computed according to Eqn. (2). 

𝐴𝑊𝑖 =∑𝑊𝑗𝑖

𝑛

𝑗=1

            (2) 

 

3. Machine utilization (MU): It refers to the extent to 

which the productive capacity of a machine is 

utilized. Mathematically, it is the ratio of the time a 

machine is working to the total time it is available for 

processing as given by Eqn. (3). 

 

𝑀𝑈𝑖 =
𝑇𝑖𝑚𝑒 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖′ ′𝑖𝑠 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖′ ′𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

× 100                                            (3) 
 

4. Average lateness (AL): It is the difference between 

the completion time and the due date of a part. Since, 

each part has different completion time and may have 

different due date, the average of the lateness of all 

the parts is used to measure performance of the 

system. If DDj and Cj denote the due date and 

completion time of a part j respectively, then AL is 

given by Eqn. (4) 

 

𝐴𝐿 =∑(𝐷𝐷𝑗 − 𝐶𝑗)                     (4)

𝑛

𝑗=1

 

 

5. Number of late parts (NL): Any part completed after 

its due date is regarded as late. An appropriate 

schedule is the one which does not result in any late 

part. Hence, total number of late parts is considered 

as a SPM and it should be minimized. 

2.3. Simulation modelling 

A simulation model is a replicate of a real process or 

system in a virtual space. It has gained importance in the 

past few years due to its exceptional ability to quantify and 

observe behavior of complex systems under different 

scenarios. It helps to examine how an existing system or 

process might perform if some or all the parameters are 

altered. In manufacturing environment, it is extensively 

used to study and compare performance of the system 

under different designs. Inventory management, 

scheduling, investigation of different control strategies, 

are some of the most common issues addressed by 

simulation modeling. 

Simulation modeling finds a wide range application 

and consequently, several studies based on it have been 

conducted by researchers for examining and improving 

performance of the FMSs. For example, Chawla et al., 

(2018) performed a simulation based investigation to 

determine optimal utilization of the AGVs [26]. Amoako-

Gyampah & Meredith, (1996) conducted a simulation 

based study and suggested different heuristics for tool 

allocations in FMS [27]. Mahmood et al., (2017) 

examined the performance of FMS with the help of 

modeling and simulation [28]. Hussain & Ali, (2019) 

examined the impact of control and design factors on 

different SPMs specifically AW, MU and MT with the 

help of simulation modeling [29]. A comprehensive 

review on FMS modeling reported that simulation 

modeling has been used by different authors to solve 

problems associated with FMSs [2]. Further, software-

based simulation modeling has gained popularity over 

other methods due to its simplicity. Few examples of 

prominent software preferred for modeling of FMSs are 

WITNESS, ARENA, ProModel etc. 

2.4. MCDM methods 

MCDM methods are techniques that are used to solve 

decision making problems involving several conflicting 

attributes/criteria. Over the years, a large number of 

MCDM methods have been developed and employed to 

solve decision making problems pertaining to different 
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knowledge domain. Among the several MCDM methods, 

TOPSIS is the most widely used [30] and MARCOS [31], 

PIV [32], MABAC [33] and EDAS [34] are recently 

developed methods. Therefore, these MCDM methods 

have been included in the proposed framework. The 

computational steps of these methods are discussed in the 

following subsections. 

 

Measurement Alternatives and Ranking according 

to COmpromise Solution (MARCOS) method 
MARCOS is a recently developed MCDM method which 

can be used to rank alternatives [31]. In this method, rank 

of the alternatives is determined on the basis of their utility 

function value which is a connection between reference 

values and alternatives [35], [36]. The computational steps 

of this method are discussed as follows [31], [35]: 

Step 1: Formulate decision matrix D = [aij]m×n , where 

the element aij represents the value of jth decision 

attributes for ith alternative and total number of decision 

attributes and alternatives varies from 1 to m and 1 to n 

respectively. 

Step 2: Insert non-ideal NI = [aNj]1×n and ideal PI = 

[aPj]1×n alternative at the top and bottom of D  to develop 

extended decision matrix (E).  The values aPj and aNj for 

beneficial and non beneficial attributes are computed 

using Eqn. (5) and Eqn. (6) respectively. 

 

𝑎𝑃𝑗 = 𝑚𝑎𝑥 
𝑖
(𝑎𝑖𝑗) , 𝑎𝑁𝑗 = 𝑚𝑖𝑛 

𝑖
(𝑎𝑖𝑗)     (5)  

𝑎𝑃𝑗 = 𝑚𝑖𝑛 
𝑖
(𝑎𝑖𝑗) , 𝑎𝑁𝑗 = 𝑚𝑎𝑥 

𝑖
(𝑎𝑖𝑗)      (6) 

 

Step 3: Develop normalized decision matrix N = 

[sij](m+2)×n where, sij = aij/aPj for beneficial attribute 

and sij = aPj/aij for non beneficial attribute. 

Step 4: Determine weighted normalized matrix W = 

[vij](m+2)×n. If wj is the weight assigned to attribute j, 

then vij = sij×wj. 

Step 5: Compute positive utility degree 𝑃𝑈𝑖 = ∑ 𝑣𝑖𝑗
𝑛
𝑗=1 /

∑ 𝑣𝑃𝑗
𝑛
𝑗=1   and negative utility degree 𝑁𝑈𝑖 = ∑ 𝑣𝑖𝑗

𝑛
𝑗=1 /

∑ 𝑣𝑁𝑗
𝑛
𝑗=1  of the alternatives.  

Step 6: Determine the utility function (Ui) value of the 

alternatives using Eqn. (7).  

 

𝑈𝑖 =
𝑃𝑈𝑖 + 𝑁𝑈𝑖

1 +
1 − 𝑓(𝑃𝑈𝑖)
𝑓(𝑃𝑈𝑖)

+ 
1 − 𝑓(𝑁𝑈𝑖)
𝑓(𝑁𝑈𝑖)

     (7) 

where, 𝑓(𝑃𝑈𝑖) =  
𝑃𝑈𝑖

𝑃𝑈𝑖+ 𝑁𝑈𝑖
 and  𝑓(𝑁𝑈𝑖) =  

𝑁𝑈𝑖

𝑃𝑈𝑖+ 𝑁𝑈𝑖
. 

 

Step 7: Rank the alternatives on the basis of their Ui value. 

Higher the Ui value higher is the rank and vice-versa.   

 

Proximity Index Value (PIV) method 
PIV method was developed in 2018 to prioritize different 

alternatives [32]. This method is popular among 

researchers due to its advantage of minimizing the rank 

reversal problem in situations when either more 

alternatives are added or a few are removed from the 

existing list of alternatives, as compared to other MCDM 

methods specifically, TOPSIS [37], [38]. This method 

comprises of the following steps [32], [38]: 

Step 1: Formulate decision matrix as discussed in step 1 

of MARCOS method.  

Step 2: Develop normalized decision matrix N = [sij]m×n  

 

where, 𝑠𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗𝑖

. 

 

Step 3: Determine weighted normalized matrix W = 

[vij]m×n. If wj is the weight assigned to attribute j, then 

vij = sij×wj. 

Step 4: Compute proximity value (𝑃𝑉𝑖 = ∑ 𝑢𝑖
𝑛
𝑗=1  ) of each 

alternative, where ui values are determined using Eqn. (8). 

 

𝑢𝑖 = {
𝑚𝑎𝑥
𝑖
 (𝑣𝑖𝑗) − 𝑣𝑖𝑗  ; 𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛 

𝑣𝑖𝑗 −𝑚𝑖𝑛
𝑖
 (𝑣𝑖𝑗) ; 𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛  

}       (8) 

 

Step 5: Rank the alternatives on the basis of their ui value. 

A lower ui value corresponds to higher rank and vice-

versa. 

 

Multi-Attribute Border Approximation area 

Comparison (MABAC) method 
MABAC method, developed in 2015, has been effectively 

used to solve problems pertaining to different knowledge 

domain [33], [39], [40]. In this method, rank to the 

alternatives is assigned on the basis of their distance from 

the border approximation area (BAO). An alternative 

having highest distance from the BAO is ranked first and 

rank of other alternatives decreases as their distance from 

BAO decreases. The computational steps of this method 

are as under [33], [41]: 

 

Step 1: Formulate decision matrix as discussed in step 1 

of MARCOS method.  

 

Step 2: Develop normalized decision matrix N = [sij]m×n 

where, sij  is computed using Eqn. (9). 

 

𝑠𝑖𝑗 =

{
 
 

 
 

𝑎𝑖𝑗 −𝑚𝑖𝑛
𝑖
 (𝑎𝑖𝑗)

𝑚𝑎𝑥
𝑖
 (𝑎𝑖𝑗) − 𝑚𝑖𝑛

𝑖
 (𝑎𝑖𝑗)

 ; 𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒

𝑚𝑎𝑥
𝑖
 (𝑎𝑖𝑗) − 𝑎𝑖𝑗

𝑚𝑎𝑥
𝑖
 (𝑎𝑖𝑗) − 𝑚𝑖𝑛

𝑖
 (𝑎𝑖𝑗)

 ; 𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛 𝑏
}
 
 

 
 

(9) 

 

Step 3: Determine weighted normalized matrix W = 

[vij]m×n. If wj is the weight assigned to attribute j, then 

vij = (sij+1)×wj. 

 

Step 4: Determine the border approximation area matrix G 

= [gj]1×n  where, 𝑔𝑗 = (∏ 𝑠𝑖𝑗
𝑚
𝑖=1 )

1/𝑚
 

 

Step 5: Compute total distance of each alternative from the 

border approximation area 𝑆𝑖 = ∑ 𝑞𝑖𝑗
𝑛
𝑗=1  where, qij = vij 

−  gj 
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Step 6: Rank the alternatives based on their Si value. An 

alternative with the maximum Si value gets rank 1 and 

rank decreases as Si value decreases.  

 

Evaluation based on Distance from Average 

Solution (EDAS) 
EDAS, developed in 2015, is a compensatory method in 

which the distance of an alternative from the optimal value 

is used to identify the best alternative [34]. This method 

has been used to solve air traffic problem [42], personnel 

selection problem [43], and evaluation of airlines services 

[44]. The computational steps involved in this method are 

as follows [34], [44]: 

Step 1: Formulate decision matrix as discussed in step 1 

of MARCOS method.  

Step 2: Compute average solution (AV) corresponding to 

each attribute AV = [rj]1×n  where, 𝑟𝑗 =
1

𝑛
(∑ 𝑎𝑖𝑗

𝑚
𝑖=1 ) 

Step 3: Determine positive (PD) and negative (ND) 

distances from the average solution as defined by Eqn. 

(10) and Eqn. (11) respectively. 

 

𝑃𝐷𝑖𝑗 =

{
 
 

 
 
max(0, 𝑎𝑖𝑗 − 𝑟𝑗)

𝑟𝑗
𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛 

max(0, 𝑟𝑗 − 𝑎𝑖𝑗)

𝑟𝑗
𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛 𝑏𝑒𝑛

}
 
 

 
 

     (10) 

𝑁𝐷𝑖𝑗 =

{
 
 

 
 

 

𝑚𝑎𝑥 (0, 𝑟𝑗 − 𝑎𝑖𝑗) 

𝑟𝑗
𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓

𝑚𝑎𝑥 (0, 𝑎𝑖𝑗 − 𝑟𝑗) 

𝑟𝑗
𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛 𝑏𝑒𝑛

}
 
 

 
 

   (11) 

 

Step 4: Compute weighted positive distance 𝑊𝑃𝐷𝑖 =
∑ (𝑃𝐷𝑖𝑗 × 𝑤𝑗)
𝑛
𝑗=1  and 𝑊𝑁𝐷𝑖 = ∑ (𝑁𝐷𝑖𝑗 × 𝑤𝑗)

𝑛
𝑗=1  of each 

alternative. Where, wj is the weight assigned to attribute j. 

Step 5: Determine appraisal score (A) using Eqn. (12). 

 

𝐴𝑖 =
𝑃𝑁𝑖+𝑁𝑁𝑖

2
                       (12) 

where, 𝑃𝑁𝑖 =
𝑊𝑃𝐷𝑖

max
𝑖
 (𝑊𝑃𝐷𝑖)

 and 𝑁𝑁𝑖 =
𝑊𝑁𝐷𝑖

max
𝑖
 (𝑊𝑁𝐷𝑖)

. 

 

Step 6: Rank the alternatives on the basis of their Ai value. 

Rank 1 is given to the alternative having maximum Ai 

value and the rank decreases with decreasing Ai value.  

 

Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS) 
TOPSIS is the most widely used MCDM method for 

solving varieties of decision problems belonging to 

different knowledge domain [45]. This method prioritizes 

the alternatives on the basis of their distance from positive 

and negative ideal alternatives. It suggests that an 

alternative closest to positive ideal alternative and farthest 

from negative ideal alternative should be ranked first [46]. 

The steps involved in finding the distances from positive 

and negative ideal alternatives and thus organizing them 

as per their performances are as follows [45]–[47]: 

Step 1: Formulate decision matrix as discussed in step 1 

of MARCOS method.  

Step 2: Develop normalized decision matrix N = [sij]m×n 

where, 𝑠𝑖𝑗 =
𝑎𝑖𝑗

√∑ 𝑎𝑖𝑗𝑖

. 

 

Step 3: Determine weighted normalized matrix W = 

[vij]m×n. If wj is the weight assigned to attribute j, vij = 

sij×wj. 

 

Step 4: Discover the positive PI = [aPj]1×n and negative 

NI = [aNj]1×n ideal alternatives. Elements aPj and aNj are 

determined using Eqn. (13) and Eqn. (14) respectively  

 

𝑎𝑃𝑗 = {
𝑚𝑎𝑥 

𝑖
(𝑎𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓

𝑚𝑖𝑛 
𝑖
(𝑎𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛 −  𝑏𝑒𝑛𝑒

}  (13) 

𝑎𝑁𝑗 = {
𝑚𝑖𝑛 
𝑖
(𝑎𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓

𝑚𝑎𝑥 
𝑖
(𝑎𝑖𝑗) 𝑖𝑓 𝑗 ∈ 𝑛𝑜𝑛 −  𝑏𝑒𝑛𝑒𝑓

}  (14) 

 

Step 5: Compute positive distance 𝑃𝐷𝑖 =

√∑ (𝑎𝑃𝑗 − 𝑎𝑖𝑗)
2𝑛

𝑗=1   and negative distance 𝑁𝐷𝑖 =

√∑ (𝑎𝑁𝑗 − 𝑎𝑖𝑗)
2𝑛

𝑗=1  of alternatives from the ideal 

alternative. 

 

Step 6: Compute relative closeness of alternative, 𝑅𝐶𝑖 =
𝑁𝐷𝑖

𝑃𝐷𝑖+𝑁𝐷𝑖
. 

 

Step 7: Rank the alternatives based on their RCi value.  A 

higher RCi value corresponds to higher rank and vice-

versa.. 

2.5. Method to determine final rank of the 

alternatives 

It has been observed that the computational steps involved 

in different MCDM methods are different. Hence, it is 

much likely that rank of the alternatives produced by 

different MCDM methods may be different. Therefore, 

membership degree method developed by Yang et al., 

(2019) is used to determine final rank of the alternatives. 

Steps of this method are given below (Yang et al., 2019; 

Wakeel et al., 2020): 

 

Step 1: Arrange alternatives in rows and their rank in 

columns resulting in the formulation of rank frequency 

matrix (R) as given by Eqn. (15). Each element 𝑐𝑝𝑞 of R 

denotes the frequency of rank q for alternative p over n 

different MCDM methods.  

 

𝑅 = [

𝑐11 … 𝑐1𝑞
… … …
𝑐𝑝1 … 𝑐𝑝𝑞

]                                                    (15) 

 

where, p and q vary from 1 to m and m denotes total 

number of alternatives. 
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Step 2: Formulate membership degree matrix (MD) by 

dividing each element of R by total number of MCDM 

methods i.e. n as shown in Eqn. (16) 

 

𝑀𝐷 = [

𝑙11 … 𝑙1𝑞
… … …
𝑙𝑝1 … 𝑙𝑝𝑞

]                                                    (16) 

where, 𝑙𝑝𝑞 = 
𝑐𝑝𝑞

𝑛
 

 

Step 3: Determine rank index (RIp) using Eqn. (17). 

 

𝑅𝐼𝑝 = ∑(𝑙𝑝𝑞) × 𝑞                   (17)

𝑁

𝑞=1

 

 

Step 4: The rank index is used to determine final rank of 

the alternatives. An alternative with the minimum RIp 

value is ranked first and lower rank is assigned to the 

alternatives with higher RIp values.  

3 Proposed research framework 
The jobs received at a workstation undergo a wide 

range of operations. When job traffic is high, the sequence 

of job processing becomes very important due to high cost 

of waiting jobs and the cost of idle workstations. 

Inefficient scheduling results in the formation of job 

queues. This situation puts pressure on the managers to 

develop schedules which handle the job traffic effectively 

and efficiently. A number of JPRs have been laid for 

prioritizing the jobs at different workstations. As soon as 

a workstation finishes a task, the job priority rule decides 

the succeeding job that enters the workstation. 

Determining which JPR best suits a particular system is a 

difficult task as none of the suitable choices give any clear 

indication on managing a system in the best possible way. 

Thus, management should select the best option using a 

systematic approach. The approach must consider 

multiple contributing factors in order to get a deeper 

insight into the system and make better decisions. Multi 

Criteria Decision Making (MCDM) methods can 

accomplish the above said requirements. MCDM 

techniques can assist managers and decision-makers in 

making informed decisions by solving problems involving 

multiple criteria. This work proposes a simulation-based 

decision-making framework to select best JPR using 

MCDM methods. The step-by-step procedure for the 

proposed research framework is discussed as follows: 

 

1. Identify the potential JPRs used in FMS and SPMs 

used to examine the performance of the concerned 

industry. 

2. Develop the simulation model of the FMS using 

appropriate software such as ARENA, WITNESS etc. 

It is to be noted that while developing the simulation 

model the modules and corresponding attributes 

should be provided to collect SPM.  

3. After developing the simulation model, collect the 

SPM values corresponding to each JPR. 

4. Arrange JPRs and SPM in rows and columns 

respectively to formulate decision matrix to be used 

by the MCDM methods i.e. MARCOS, PIV, 

MABAC, EDAS and TOPSIS methods to rank the 

potential JPRs.  

5. Determine the final rank of JPRs by comparing the 

ranking results of different MCDM methods using 

membership degree method. 

The proposed research framework comprising of the 

above steps is shown in Figure 1. 

Figure 1: Proposed research framework. 

4 Illustrative example 
To demonstrate the potential application of the proposed 

research framework, it has been employed to select the 

best JPR for an FMS taken from literature [49]. The FMS 

consisted of five CNC machines named as FMC1, FMC2, 

FMC3, FMC4, and FMC5 for processing five different 

part types A2021, B2021, C2021, D2021, and E2021. All 

five machines had infinite input buffer capacity and three 

to four operations were essentially required for complete 

processing of a specific job type. The processing time of 

various parts was stochastic.  

Since inter-arrival time and due date of jobs were not 

known for the FMS, they were determined using Eqn. (18) 

[50] and Eqn. (19) [10], [50] respectively.  

 

𝜈 =  
1

𝜆
=
𝜇𝑝𝜇𝑔

𝜂𝜔
                                                            (18) 

𝐷𝐷𝑖 = 𝐴𝑖 +  𝐾 × 𝑇𝑇𝑗                                                  (19) 

 

where, v and 𝜆 are mean inter-arrival and job arrival 

time respectively, 𝜇𝑝 and 𝜇𝑔 are the mean processing time 

and number of operations per job respectively, 𝜂 and 𝜔 are 

Identify different JPRs used in FMS

Identify SPMs used to evaluate JPRs

Develop simulation model for the FMS 

system

Collect performance metrics for different 

JPRs

Rank the identified JPRs using MARCOS, 

PIV, MABAC, EDAS and TOPSIS methods

Compare the ranking results to determine 

priority of the JPRs
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the utilization and number of machines in the shop floor 

respectively. Ai is the arrival time of job i, TTj is the total 

time required to perform of all operations on part j and K 

is the tightness factor which reflects the amount of 

expected delay a job will experience and it is taken as 3 in 

this study.  

Further, simulation model for the FMS configuration 

shown in Table 2 was developed using the student’s 

version of ARENA 16.0 simulation software. While 

developing the model, following assumptions were made: 

(i) Part transfer, loading and unloading times were all 

included in the processing time, 

(ii) No rework was allowed, 

(iii) No order cancellation was allowed, 

(iv) Machines never broke down, and  

(v) Pre-emption was not allowed.  

 

Since, the maximum number of parts that can be 

created in students’ version of ARENA is limited to 150, 

the number of parts for part types A2021, B2021, C2021, 

D2021 and E2021 was considered as 45, 27, 27, 23 and 16 

respectively. Initially, Create module was used to create 5 

different parts with inter arrival time computed using Eqn. 

(18). Further, each part progressed to the Assign module 

where parameters such as arrival time, processing time, 

due date, number of operations, and sequence of 

operations were assigned. In accordance with the 

sequence of operations, each part was moved to its 

corresponding machine station. Before slotting a part in 

the machine for operation, it was passed through Assign 

Attribute module where parameters such as remaining 

processing time, remaining number of operations etc. were 

modified. Subsequently, the parts were processed 

according to the predefined JPR. The parts were further 

moved forward to the next corresponding station after 

passing through another Assign Attribute module. As soon 

as all the operations were completed on a part, it was 

moved to the Dispose station where it was checked 

whether the part was late or not. If the part was late, 

lateness was stored using the Record module. Finally, if 

the part under examination was the last part of the system, 

the current simulation time was collected to measure the 

make span time. The logic module for the simulation 

model so developed is shown in Figure A1 of Appendix. 

For each of the twenty JPRs defined in section 2.1.1, 

the simulation model was run to collect the performance 

values for the five SPM. It needs to be mentioned here that 

30 replications of each simulation run were performed and 

the results of the five SPM for each of the JPRs were 

collected which are shown in Table A1 of Appendix.  

It is observed that MT is minimum (2794.59 minutes) 

when jobs are processed according to the LBPT rule. 

Whereas, number of late jobs and average lateness are 

minimum (75.033 and 664.17 minutes) when SPT and 

EDD rule are used respectively. Further, mean of AW for 

all machines is minimum (192.30 minutes) for SPT rule 

and average MU is maximum (63.73 %) for LTW rule as 

evident from Table 2.  

Table 2: Mean AW and MU 

JPR Mean AW (min) Mean MU (%) 

FCFS 256.78 63.47 

LCFS 273.09 63.18 

SPT 192.30 62.75 

LPT 303.41 62.28 

EDD 204.37 63.55 

FASFO 203.95 63.30 

LST 226.11 63.48 

MCR 241.53 63.21 

MBPT 272.26 63.53 

LBPT 228.62 63.70 

MNOR 307.75 63.62 

LNOR 270.21 63.25 

GTW 268.88 63.00 

LTW 210.37 63.73 

MDD 216.02 63.35 

LPTNM 380.75 60.03 

MPTNM 250.10 63.02 

 

Thus, based on the results, it is observed that no single 

JPR provides optimum results for all the SPMs. Hence, 

MCDM methods were used to find the best JPR that 

produced the optimal results for all SPMs. Considering 

Table A1 as the decision matrix, five MCDM methods 

were employed to determine rank of the JPRs. Equal 

weight was assigned to the SPMs as they were considered 

to be equally important. The performance value and 

corresponding rank of the JPRs derived from different 

MCDM methods used in this study is shown in Table A2 

of the Appendix. 

It is found that LTW is ranked first by three MCDM 

methods i.e. MARCOS, MABAC, and EDAS. However, 

it ranked second and sixth by PIV and TOPSIS methods. 

Whereas, PDT and MDD is ranked first by PIV and 

TOPSIS methods respectively. Thus, it is difficult to 

suggests which among the considered JPR is should be 

used as none among them is ranked first by all the 

methods.  Therefore, membership degree method was 

employed to determine the rank index and final rank of the 

JPRs which are shown in Table 3. 

Table 3: Rank index and final ranks of the JPRs 

JPR Rank Index, RIp Final Rank 

FCFS 9.6 9 

LCFS 11.6 11 

SPT 6.8 8 

LPT 15.2 16 

EDD 3.8 3 

FASFO 5.8 6 

LST 6.4 7 

MCR 13.2 13 

MBPT 16 17 

LBPT 4.2 4 

MNOR 14 14 

LNOR 9.6 10 

GTW 15 15 

LTW 2.2 1 

MDD 4.6 5 

LPTNM 17.6 18 

MPTNM 12.8 12 
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It is evident from Table 3 that among the considered 

JPRs, LTW is the top ranked rule and therefore, it is the 

best one for producing optimum performance of the five 

SPMs. Further, the next preferred rule is PDT followed by 

EDD, LBPT, MDD, FASFO, LST, SPT, FCFS, LNOR, 

LCFS, MPTNM, MCR, MNOR, GTW, LPT, MBPT and 

LPTNM. Hamidi (2016) proposed the PDT rule to utilize 

benefits of both SPT and EDD rules and showed that this 

is an effective and promising rule as compared to FCFS, 

SPT, EDD, MCR and LST rules [25]. Similar results have 

been obtained in this study where SPT is found better than 

other rules except LTW. 

5 Conclusion 
Flexible manufacturing systems (FMSs) are preferred 

over conventional manufacturing systems due to their 

ability to provide flexibility as well as high throughput at 

the same time. However, there are various operational 

problems associated with FMSs which need to be resolved 

to enhance productivity of these systems. Scheduling is 

one of the operational problems which have attracted 

attention of the researchers as it significantly affects 

performance of the FMS.  This work intended to provide 

an effective decision-making framework to resolve one of 

the scheduling problems i.e. sequencing of jobs on each 

machine. Job priority rules (JPRs) are used to determine 

sequence of the jobs to be processed on a machine. These 

rules provide precedence to a job over other jobs based on 

a predefined priority function. Several JPRs have been 

proposed so far to obtain better results for one or two 

performance measures. However, it is difficult to judge 

which rule is the best one to produce optimal values for all 

the performance measures considered simultaneously. 

The current era of production systems requires better 

results for more than one performance measures taken 

together. Hence, selection of an appropriate JPR becomes 

more difficult as more than one performance measures 

need to be justified simultaneously. MCDM methods are 

one of the most powerful decision-making methods used 

to select the best alternative from among the existing ones 

on the basis of multiple attributes. Hence, the decision-

making framework proposed in this work was based on 

selection of JPR using MCDM methods combined with 

simulation modeling. In the proposed framework, initially 

the potential JPRs and scheduling performance measures 

(SPM) for the concerned industry were identified. Further, 

a simulation model of the FMS was developed to collect 

the performance value for the various SPMs for different 

JPRs. The SPMs values corresponding to JPRs acted as a 

decision matrix for MCDM methods. Five MCDM 

methods were employed to rank the JPRs which produced 

their different ranks and therefore, it was difficult to 

decide which JPR is the best one. Consequently, the ranks 

obtained from different MCDM methods were compared 

to determine the final rank of the JPRs using membership 

degree method. The proposed framework was 

implemented to select the best JPR for a specific FMS 

taken from the literature. It has been found that for the 

considered FMS system, LTW rule provides optimum 

results for the five SPMs.  

The proposed framework can be used by the FMS 

based industries to solve problem related to selection of 

the best JPR so as to obtain optimum values of their 

specific SPMs. It needs to be mentioned here that 

industries may not necessarily employ the same MCDM 

methods that have been used in the present study to 

determine rank of JPRs, instead other MCDM methods 

can also be used. However, steps of the proposed 

framework listed in the paper are essentially required to be 

followed for selection of the best JPR leading to the 

optimal performance of the system.  
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Figure A1: Logic module  
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Table A2 : Rank of JPRs derived from different MCDM methods 

JPR 
MARCOS PIV MABAC EDAS TOPSIS 

Ui Rank ui Rank Si Rank Ai Rank RCi Rank 

FCFS 0.5951 10 0.0649 9 0.0769 9 0.5815 10 0.6305 10 

LCFS 0.5777 14 0.0687 11 -0.0036 12 0.5134 12 0.6339 9 

SPT 0.6593 4 0.0502 8 0.0792 8 0.8282 6 0.6590 8 

LPT 0.5590 17 0.0851 14 -0.1700 17 0.4206 14 0.5726 14 

EDD 0.6532 5 0.0419 3 0.1637 4 0.8921 3 0.7291 4 

FASFO 0.6193 9 0.0467 6 0.1134 5 0.7989 7 0.7425 2 

LST 0.6212 8 0.0471 7 0.1101 6 0.7890 8 0.7365 3 

MCR 0.5854 13 0.0769 13 -0.0247 14 0.4857 13 0.5853 13 

MBPT 0.5569 18 0.0906 16 -0.0086 13 0.3379 17 0.5277 16 

LBPT 0.6612 2 0.0446 5 0.1750 3 0.8561 4 0.6971 7 

MNOR 0.5917 12 0.0897 15 0.0031 11 0.4032 15 0.5079 17 

LNOR 0.6344 7 0.0665 10 0.0120 10 0.6350 9 0.5934 12 

GTW 0.5948 11 0.0924 17 -0.1254 16 0.3858 16 0.5369 15 

LTW 0.6749 1 0.0407 2 0.1881 1 0.9238 1 0.7076 6 

MDD 0.6398 6 0.0434 4 0.1089 7 0.8455 5 0.7426 1 

LPTNM 0.5765 16 0.1027 18 -0.4040 18 0.2867 18 0.4624 18 

MPTNM 0.5774 15 0.0707 12 -0.0350 15 0.5401 11 0.6238 11 

PDT 0.6605 3 0.0403 1 0.1789 2 0.9140 2 0.7285 5 
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