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Background. In the setting of primary hyperparathyroidism (PHPT), [18F]fluorocholine PET/CT (FCH-PET) has excellent 
diagnostic performance, with experienced practitioners achieving 97.7% accuracy in localising hyperfunctioning 
parathyroid tissue (HPTT). Due to the relative triviality of the task for human readers, we explored the performance of 
deep learning (DL) methods for HPTT detection and localisation on FCH-PET images in the setting of PHPT. 
Patients and methods. We used a dataset of 93 subjects with PHPT imaged using FCH-PET, of which 74 subjects had 
visible HPTT while 19 controls had no visible HPTT on FCH-PET. A conventional Resnet10 as well as a novel mPETResnet10 
DL model were trained and tested to detect (present, not present) and localise (upper left, lower left, upper right or 
lower right) HPTT. Our mPETResnet10 architecture also contained a region-of-interest masking algorithm that we evalu-
ated qualitatively in order to try to explain the model’s decision process.
Results. The models detected the presence of HPTT with an accuracy of 83% and determined the quadrant of HPTT 
with an accuracy of 74%. The DL methods performed statistically worse (p < 0.001) in both tasks compared to human 
readers, who localise HPTT with the accuracy of 97.7%. The produced region-of-interest mask, while not showing a 
consistent added value in the qualitative evaluation of model’s decision process, had correctly identified the fore-
ground PET signal.
Conclusions. Our experiment is the first reported use of DL analysis of FCH-PET in PHPT. We have shown that it is pos-
sible to utilize DL methods with FCH-PET to detect and localize HPTT. Given our small dataset of 93 subjects, results are 
nevertheless promising for further research. 
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Introduction

Primary hyperparathyroidism (PHPT) is the third 
most common endocrine disorder with a reported 

prevalence ranging from 1 to 21 per 1,000 among 
the general population.1 PHPT is the result of hy-
perfunctioning parathyroid tissue (HPTT), which 
becomes insensitive to the inhibitory effect of hy-
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percalcemia. Histologically HPTT can be either an 
adenoma (in approximately 80% of cases), multi-
ple adenomas, hyperplasia or rarely a carcinoma 
(in approximately 1% of cases).2 The treatment of 
PHPT typically requires surgical removal of HPTT. 
Modern, minimally invasive surgical techniques 
require precise preoperative localization of HPTT. 
For this task, [18F]fluorocholine PET/CT (FCH-PET) 
is one of the most promising imaging modalities, 
with reported sensitivities of 94–100% and specifi-
cities of 88–100%.3-13 Performance of FCH-PET was 
repeatedly shown to be superior to other HPTT 
localization methods, while at the same time hav-
ing lower radiation exposure compared to other 
nuclear medicine modalities.14

Deep learning (DL) techniques with convolu-
tional neural networks (CNN) have proven to be 
useful in various computer vision tasks, such as 
super-resolution, image synthesis, denoising, clas-
sification, segmentation and object detection.15-22 
In medical imaging, CNNs have shown promis-
ing performance, even exceeding experts in some 
specific cases, such as grading diabetic retinopathy 
from fundus images, detecting skin cancer from 
photographs and detecting abnormalities on chest 
X-ray images.23-25 Research of CNNs in nuclear 
medicine showed its potential in reducing the PET 
radiation dose, improving image quality, lesion de-
tection and segmentation as well as prediction of 
prognosis.21-36

Given the excellent human performance of ana-
lysing FCH-PET for the presence and localisation 
of HPTT, an interesting opportunity to challenge 
DL techniques is presented. An automated analy-
sis pipeline of FCH-PET that would classify HPTT 
presence and location would allow for efficient 
surgical planning and could serve to double check 
the experts’ reports. Such analysis would also al-
low for more accurate and objective comparison of 
potential follow-up studies; these are not often re-
quired, but unavoidable in cases of persistent or re-
current hyperparathyroidism. Furthermore, if the 
model could visualise the pathological uptake in 
the study, it would provide more visual feedback 
to the surgeon in axial images to allow for better 
visualisation of HPTT and would allow faster in-
terpretation of interplay of surrounding anatomi-
cal structures. Our aim was to explore the perfor-
mance of DL analysis of FCH-PET in the setting of 
PHPT, since the use of DL for FCH-PET analysis 
in PHPT has not yet been thoroughly investigated. 

To this end, we developed a classification model 
which classifies whether HPTT is present in the 
study and its location. We also attempt to model 

in a novel unsupervised manner the regions-of-
interest fed to the model. Furthermore, we aimed 
to provide a preliminary comparison of the diag-
nostic accuracy of the DL models to human experts 
to determine clinical applicability, as the model 
should be as accurate as an expert in evaluating 
FCH-PET studies to be clinically applicable. 

Patients and methods

This was a retrospective analysis of prospective 
clinical trial data (NCT03203668) performed at the 
University Medical Centre Ljubljana and Institute 
of Oncology Ljubljana. The clinical trial was ap-
proved by the Medical Ethics Committee of the 
Republic of Slovenia (approval number 77/11/12). 
The trial only included patients with biochemical-
ly confirmed primary hyperparathyroidism; hy-
percalcemic patients had elevated or inappropri-
ately normal parathormone (PTH) levels, whereas 
normocalcemic patients had inappropriately ele-
vated PTH levels. All included patients were older 
than 18 years and had no clinical history of onco-
logical, inflammatory, or infectious disease of the 
head and neck. No pregnant women were includ-
ed in the trial. The retrospective use of the data 
was approved by the Medical Ethics Committee of 
the Republic od Slovenia (approval number 0120-
582/2021/4) and the patient consent was waived 
due to the retrospective nature of the analysis.

The study only included images of patients 
with biochemically confirmed PHPT at time of 
FCH-PET imaging. Since the trial did not include 
healthy controls, data of patients with the follow-
ing criteria were chosen as “controls”: no visible 
HPTT in FCH-PET at time of imaging; have not un-
dergone surgery in thyroid region; were biochemi-
cally normocalcemic at 6 months’ follow-up.

Dataset description and PET-CT image 
acquisition

We used the data of 79 participants (22 male, 57 
female) with visible HPTT lesions on FCH-PET 
(referred below as patients) and 19 participants (7 
male, 12 female) without visible HPTT lesions on 
FCH-PET (referred below as controls). Average age 
(± SD) of patients was 58.7 ± 12.7 years and average 
age of controls was 60.1 ± 11.8 years. Both patients 
and control groups were comparable in terms of 
age (p = 0.659) as well as male to female ratio (p 
= 0.852), as determined by Student t-test and nor-
malised Chi-square test, respectively.37,38
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FCH-PET imaging was performed at the 
Department for Nuclear Medicine of the University 
Medical Centre Ljubljana. The acquisition details 
were the same as in Cuderman et al.3 The patients 
fasted 6 hours prior to the examination, were 
well hydrated and injected with 100 MBq of [18F]
Fluorocholine (FCH). Acquisition was performed 
on a Siemens Biograph mCT® PET/CT (Siemens 
Healthineers AG, München, DE) 5 minutes and 60 
minutes after the FCH application. The imaging 
region extended from the angle of mandible to the 
aortic arch. The imaging consisted of a low-dose 
CT (120 kVp, 25 mAs, CARE Dose 4D, FBP recon-
struction), followed by PET imaging (one bed posi-
tion of 4 minutes). PET images were reconstructed 
using Siemens HD PET software with iterative 
TrueX + TOF OSEM method (2 iterations, 21 sub-
sets) with 400 × 400 matrix, zoom 1 and Gaussian 
filter with FWHM of 4 mm. To train and evalu-
ate DL models, we used only images acquired 60 
minutes after FCH application, where the balance 
of image quality and target-to-backround ratio is 
typically highest.

All patients with HPTT present on FCH-PET 
were surgically treated at Institute of Oncology 
Ljubljana. Ground truth HPTT presence and loca-
tion for training the CNNs was based on the post-
surgical histopathological results. Furthermore, 
our dataset included formatted information from 
FCH-PET reports as used by Cuderman et al. that 
we used to compare the performance of DL mod-
els with human experts.3 These reports were used 
to guide the subsequent surgical removal of the 
HPTT.

For simplicity, we only used patients who had 
single gland disease and had HPTT in the typical 
anatomic location of parathyroid glands. HPTT 
was thus in one of 4 possible locations: upper left 
(UL, 21 patients), lower left (LL, 27 patients), up-
per right (UR, 5 patients) and lower right (LR, 26 
patients). Since the UR location in our dataset con-
tained only 5 patients, it was removed from the fi-
nal analysis due to under-representation. For the 
final model development and evaluation, we used 
19 controls and 74 patients, among them 21 with UL 
HPTT, 27 with LL HPTT and 26 with LR HPTT.

Image pre-processing

We used the same pre-processing pipeline for all 
analyzed images. First, we resampled the CT im-
age using bivariate spline interpolation from scipy 
library to match the PET image matrix of 200 × 200 
× 56.39 3D interpolation was not needed as CT was 

reconstructed at same slices as PET. Both images 
were concatenated to produce a 200 × 200 × 56 × 2 
matrix representing the PET/CT. Next, we cropped 
the desired region of interest containing the hy-
perfunctioning parathyroid tissue to the matrix of 
size 64 × 64 × 32. For all patients, the region was 
cropped at same PET/CT coordinates, which were 
chosen empirically, such that it contained HPTT in 
all studies. In this way, there are lower memory re-
quirements to run deep learning models.

The labels for an image were represented by a 
one-hot encoded vector of length 4, representing 
locations UL, LL, LR and a dummy variable repre-
senting “healthy” controls.

Modelling

For modelling, we defined 2 tasks: (i) a task of clas-
sifying whether the HPTT is present in the image 
or not (CPr, classification of presence) and (ii) a 
task of classifying in which quadrant the HPTT 
was present in the image (CLoc, classification of 
location). CPr is a simple binary classification task 
where p(HPTT) = 1 – p(healthy). CLoc is a multi-
class classification task where each output of the 
model is analogous to the probability of HPTT be-
ing present at one of three considered locations 
UL, LL and LR. 

With normalized PET-CT images represented by 
a matrix of shape 200 × 200 × 56 × 2 as input, the 
output of the model was a vector of length 4, acti-
vated by SoftMax activation function, correspond-
ing to p(UL), p(LL), p(LR) and p(healthy) (Figure 1). 

FIGURE 1. mPETResnet10 architecture. First, PET-CT images 
are fed into UNet with a single channel output and tanh+1 
activation function. This output is the PET mask. This mask is 
elementwise multiplied with PET image to produce a masked 
PET image. Masked PET is concatenated with the original 
CT and the masked PET-CT is fed into the ResNet10 classifier. 
Gray boxes represent deep-learning models, coloured boxes 
represent data, and circles represent operations of tanh+1, 
multiplication (mul) by element and concatenation (concat).
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The model was therefore trained for both CPr and 
CLoc simultaneously. Furthermore, the dataset 
was well balanced, containing a similar number of 
cases for each of the 4 classes, and thus ensured sta-
ble training using cross entropy as a loss function.40 
For training, batch size of 5 was used with stochas-
tic gradient descent optimizer with momentum of 
0.9 and weight decay of 0.005. The initial learning 
rate was determined by a grid search in log space 
and learning rate decay on plateau scheduling was 
used. Identical procedure was used for all models. 
All models were trained from scratch.

For both CPr and CLoc classification tasks, we 
performed baseline experiments using the 3D ver-
sion of Resnet10 (RN10) architecture and using 
our novel architecture as described below.41,42 Our 
choice of architecture of Resnet10 was based on 
extensive experiments which included other state-
of-the-art, and larger architectures, namely us-
ing 3D versions of Densenet12143, wideResNet10144, 
PreActResnet10145, Resnet10141 and Resnet50. For all 
architectures except our novel architecture, imple-
mentations from Kensho et al. were used.42

We provide comprehensive comparison between 
the performance of RN10 and proposed architec-
ture “masked-PET Resnet10” (mRN10), as well as the 
comparison of mRN10 to experts’ performance.

Masked-PET Resnet10

We developed a novel architecture designed to 
mask PET signals from unimportant (i.e., physi-
ological uptake) regions with high signal (eg. 
muscle tissue, salivary glands) before entering the 
RN10 classifier. This is important as the FCH-PET 
images are heteroscedastic, with some regions - 
like muscle - having high variance between sub-
jects and other regions - like air - having low vari-
ance. To mitigate this, and to improve conditioning 
of the data and therefore the stability of the classi-
fier,46 we decided to allow the model itself to opti-
mize for differentiable masking of these potential-
ly problematic regions. We named the proposed 
architecture “masked-PET Resnet10” (mRN10). 

The mRN10 consisted of 2 parts. First, a Unet 
architecture was used to mask the PET-CT.47 
Next, Resnet10 was used to classify the masked 
PET-CT. We decided on Unet architecture since 
it is commonly used in segmentation tasks21 and 
we deemed the task of masking to be similar to 
segmentation of the region-of-interest. Masking 
was achieved by first activating per-voxel output 
of Unet with activation function f(x) = tanh(x)+1. 
These output values were in interval (0,2), such 

that regions where Unet output was negative were 
closer to 0, while regions where Unet output was 
positive were closer to 2. This matrix, representing 
the mask, was then multiplied elementwise by the 
PET matrix, to produce a masked PET image. 

The architecture of mRN10 is depicted on 
Figure 1. Regions in PET image where Unet output 
was negative were multiplied by values close to 0 
and were therefore effectively “masked” from the 
PET image. This masked PET was then concatenat-
ed with CT and the masked PET-CT was used as 
input for the Resnet10 classifier. The entire mRN10 
was trained end-to-end, therefore the masking 
was optimized for the lowest loss in the classifica-
tion task of the downstream Resnet10 classifier.

The models were written in python 3.8.0 us-
ing Pytorch 1.10 framework and trained on a sin-
gle GTX 1080Ti graphics card (Nvidia Corporation, 
Santa Clara, US).48,49 The code is freely available on-
line at: https://github.com/ljarabek/AI_FCH  

Training and evaluation

For training, we used 12-fold cross-validation with 
data split into a test set of 10 random subjects, with 
the remaining subjects being randomly split into 
a training set (90% of the remaining subjects) and 
validation set (10% of the remaining subjects). 
Data was normalised using z-score normalization 
upon splitting accordingly, such that the mean and 
standard deviation were computed only using the 
training set. Sets were sampled such that each set 
contained at least 1 subject from each class (UL, 
LL, LR and control). For testing, the model with 
the lowest validation loss was used. The confusion 
matrix for CPr evaluation was computed by sum-
ming the confusion matrices for the test set across 
the 12 data splits, providing 120 total samples. The 
confusion matrix for CLoc was obtained by sum-
ming the 3 confusion matrices for evaluated lo-
cations UL, LL, LR across the best performing 12 
data splits, providing 360 “samples”. Similarly, the 
area under the receiver operating characteristic 
curve (AUCROC) was computed. 

We used epiR package for R to determine the 
diagnostic performance metrics and McNemar test 
from DTComPair package for determining statis-
tically significant (p < 0.05) differences.50-53 Only 
binary diagnostic performance metrics were used 
for evaluation, even though CLoc is theoretically 
a multi-class classification task. In this way, the 
results comparable to studies evaluating the per-
formance of FCH-PET, since they also mostly used 
binary classification metrics.3-13

https://github.com/ljarabek/AI_FCH
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Results

We determined the best performing models for 
both RN10 and mRN10 were trained using the ini-
tial learning rate of 0.013. The confusion matrices 
for RN10 and mRN10 are presented in Tables 1A 
and 1B, while the diagnostic performances for 
both tasks using the RN10 and mRN10 models are 
presented in Table 2. Both models had compara-
ble performance in the CPr task. The mRN10 had 
a significantly higher accuracy for the CLoc task 
than the RN10 and was therefore used for compar-
ison with human performance.

We performed a comprehensive comparison 
with human expert evaluation only for the CLoc 
task. Healthy controls had, by definition, no HPTT 
visible on FCH-PET (as reported by human ex-
perts), so the comparison could not be made for 
the CPr task, as human performance for CPr was 
100%. Comparison of performance metrics for the 
CLoc task between the mRN10 model and hu-
man performance (based on the same subset of 83 
patients used for the DL model development) is 
shown in Table 3. 

Studies with different architectures

Studies across multiple models were performed 
to determine the use of RN10 as the base architec-
ture. The results of other models are stated below, 
as well as the number of trainable parameters and 
optimal initial learning rate. Mean CPr AUCROC 
and 95% confidence intervals were computed as 
population statistics of 50 models obtained from 
5 runs of 10-fold cross-validation at optimal learn-
ing rate. The highest performance among the mod-
els tested was achieved with RN10 and mRN10. 
The performance of other models is noted in the 
table below.

PET masking qualitative results

Qualitative results were evaluated across all sub-
jects and using an iteration of the model trained 
from a single data split. The qualitative results did 
not change in a significant manner with repeated 
training. In qualitative analysis of PET masking re-
sults, the region-of-interest mask correctly identi-
fied the foreground, while we have found that in 

TABLE 1. Confusion matrices for CPr (A) and CLoc (B) for both RN10 and mRN10 models. Note that the confusion matrices for CLoc have more 
samples (360 in total), as they were computed by summing the confusion matrices for each of the three included locations (UL, LL, LR) 

CPr task with RN10 CPr task with mRN10

HPTT present HPTT not 
present sum HPTT present HPTT not 

present sum

Model output 
HPTT present 79 8 87 Model output 

HPTT present 90 11 101

Model output 
HPTT not 
present

20 13 33
Model output 

HPTT not 
present

9 10 19

sum 99 21 120 sum 99 21 120

CLoc task with RN10 CLoc task with mRN10

HPTT at GTLoc HPTT not at 
GTLoc sum HPTT at GTLoc HPTT not at 

GTLoc sum

Predicted 
GTLoc 35 51 86 Predicted 

GTLoc 53 50 103

Not predicted 
GTLoc 61 213 274 Not predicted 

GTLoc 43 214 257

sum 96 264 360 sum 96 264 360

CPr = classification of presence; CLoc = classification of location; GTLoc = ground truth location based on postsurgical histopathological reports; HPTT = hyperactive 
parathyroid tissue; mRN10 = novel masked-PET Resnet10 model; RN10 = baseline Resnet10 model

A

B
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all but 3 subjects, 1 with LL HPTT and 2 LR HPTT, 
that the mask completely obscured (masked) the 
original location of HPTT on masked PET. In the 
3 subjects with visible HPTT in the masked PET 
in the original location, the mask still partially ob-
scured the HPTT, as seen in Figure 3, rows d), f) 
and g). 

Figure 2 shows a typical example of mRN10 
masking, where HPTT was masked and cannot 
be distinguished in masked PET image. The net-
work correctly classified the subject in Figure 2 as 
having lower right HPTT. The region of air outside 
the patient is masked to approximately 25% of the 
original PET signal, with mask having a value of 
approximately 0.25. The high signal from the sali-
vary glands is masked in all cases, whereas signal 
from the thyroid gland is only partially masked in 
all cases, as seen in Figure 3.

Discussion

The aim of the study was to evaluate the poten-
tial of DL models in classifying HPTT presence 
and location in FCH-PET studies in the setting of 
PHPT. For our experiments to be representative of 
results of such a model in practice, we used data 
of representative cohort of subjects with PHPT. 
Classification of FCH-PET studies was performed 
using multiple common DL models and we found 
that the simplest among the models tested, RN10, 
achieved the highest performance. Furthermore, 
we improve the model’s performance by modify-
ing the architecture to include a region-of-interest 

masking step, which produced a region-of-interest 
mask, which successfully identified the foreground 
of PET. The mRN10 achieved superior performance 
to models of similar size. Overall, given the size of 
our dataset and achieved performance, we found 
that the use of deep learning is highly promising in 
potential evaluation of FCH-PET in PHPT.

Dataset and patient characteristics

Both our patients and the controls had representa-
tive demographic characteristics of patients with 
PHPT, with male-to-female ratio in literature being 
1:3 to 1:4 and the peak incidence of 62 ± 13 years.54-57 
Therefore, the models were more likely to have 
learned the correct features to classify HPTT pres-
ence and were trained on a relatively representa-
tive dataset that would be encountered in real-life 

TABLE 2. Diagnostic performance metrics of RN10 and mRN10 as well as p-values as determined by McNemar test comparing both models for 
each task (except AUCROC) 

CPr
RN10

CPr
mRN10

CPr
p-value

CLoc
RN10

CLoc
mRN10

CLoc
p-value

Sensitivity
[95% CI]

0.800
[0.719; 0.877]

0.909
[0.852; 0.965] 0.028 0.365

[0.268; 0.460]
0.552

[0.453; 0.652] 0.018

Specificity 
[95% CI]

0.619
[0.411; 0.827]

0.476
[0.263; 0.690] 0.257 0.807

[0.759; 0.854]
0.811

[0.763; 0.858] 0.910

Positive
predictive

value 
[95% CI]

0.908
[0.847; 0.969]

0.891
[0.830; 0.951] 0.507 0.407

[0.303; 0.511]
0.515

[0.418; 0.611] 0.089

Negative
predictive

value 
[95% CI]

0.394
[0.227; 0.560]

0.526
[0.302; 0.751] 0.205 0.777

[0.728; 0.827]
0.833

[0.787; 0.878] 0.021

Accuracy 
[95% CI]

0.767
[0.681; 0.839]

0.833
[0.756; 0.895] 0.050 0.689

[0.638; 0.736]
0.742

[0.693 0.786] 0.031

AUCROC 0.815 0.849 / 0.702 0.770 /

AUCROC = area under the receiver operating characteristic curve; CPr = classification of presence; CLoc = classification of location; mRN10 = novel masked-PET Resnet10 
model; RN10 = baseline Resnet10 model

TABLE 3. Comparison of mRN10 and human performance for the CLoc task. 
p-values were determined by using the McNemar test

CLoc
mRN10

CLoc
human p-value

Sensitivity 
[95% CI]

0.552
[0.453; 0.652]

0.917
[0.857; 0.958] < 0.001

Specificity 
[95% CI]

0.811
[0.763; 0.858]

0.997
[0.986; 0.999] < 0.001

Positive predictive value 
[95% CI]

0.515
[0.418; 0.611]

0.992
[0.945; 0.999] < 0.001

Negative predictive value 
[95% CI]

0.833
[0.787; 0.878]

0.972
[0.952; 0.984] < 0.001

Accuracy 
[95% CI]

0.742
[0.693; 0.786]

0.977
[0.960; 0.988] < 0.001

CLoc = classification of location; mRN10 = novel masked-PET Resnet10 model; RN10 = baseline 
Resnet10 model
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i ii iii

FIGURE 2. Example of novel masked-PET Resnet10 model (mRN10) masking of PET signal in a subject with parathyroid adenoma 
in the region of lower right parathyroid gland (black arrow in row c). Each row represents a different slice through the pre-
processed [18F]fluorocholine PET/CT (FCH-PET) images ((A) – mandibular region, (B) – upper neck region (C) – lower neck 
region containing parathyroid adenoma). The first column shows a pre-processed PET/CT image (64 × 64 × 32 matrix), where 
colours toward the “warm” (red) part of the spectrum indicate higher PET signal and colours toward the “cool” (blue) part 
of the spectrum indicate lower PET signal. The second column shows the mask, where regions coloured toward the red part 
of the spectrum have higher weights (non-masked) and regions toward the yellow part of the spectrum have lower weights 
(masked). The third column represents the final masked PET/CT images computed by multiplying the mask with the original PET/
CT. The image was correctly classified as containing the adenoma in the lower right region.

application. Representation per quadrant of HPTT 
in our cohort was also congruous to numbers re-
ported in the literature. Marzouki et al. provide 
95% confidence intervals of HPTT ratio per site as 
follows: lower left 32–51%, lower right 25–42%, up-
per left 10–23% and upper right 4–15%.58-60

Unfortunately, the dataset was imbalanced 
with respect to patients vs “controls”. However, 
obtaining negative FCH-PET studies is difficult 
due to high positivity rate of finding HPTT in 

FCH-PET, since only patients with biochemically 
confirmed PHPT are imaged. Such patients are 
highly likely to have visible HPTT, as reported in 
studies exploring the effectiveness of FCH-PET.3-13 
Since healthy subjects are generally not referred to 
undergo FCH-PET imaging, the best attempt was 
made to select the criteria for choosing “controls” 
among patients with negative visual assessment of 
FCH-PET. Our controls therefore had negative im-
aging findings and biochemical criteria for PHPT 
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D

E

F

G
FIGURE 3. Some examples of masking of hyperactive parathyroid tissue (HPTT), which is indicated by an arrow in column (I). 
The images are shown in the same format as in Figure 2. Rows (D), (F) and (G) represent the only 3 cases where HPTT was not 
completely masked.
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resolved at follow-up after 6 months without sur-
gical treatment.

For ground truth location, histopathological re-
sults were used as opposed to expert visual assess-
ment of FCH-PET, in order to simulate real-world 
use of the models in guiding surgical removal of 
HPTT.

Deep-learning model architecture

We have chosen the 3D Resnet10 as our baseline 
model since multiple research groups have shown 
it provides promising results in classification tasks 
on both medical and non-medical images and is 
the basis of modern architectures.41,61-63 Resnet10 
also achieved the highest performance among the 
models tested. The other tested models with more 
parameters performed worse, as they seemed 
overparameterized and likely learned aberrant 
features, thus overfitting to the training data. Not 
many studies explore this phenomenon in detail, 
but a similar phenomenon was noted in the results 
of a recent study of Bailly et al.64 studying the ef-
fects of dataset size, dataset complexity, and model 
complexity on performance. 

The main motivation behind the design of 
mRN10 and implementation of masking is the way 
experts interpret FCH-PET. Experienced nuclear 
medicine physicians know that HPTT usually ap-
pears around the thyroid region, and we wanted 
to allow for the model to learn to mask regions 
that were deemed unimportant for classification. 
Furthermore, these unimportant regions (e.g., 
muscle) commonly produced high intensity PET 
signal that might affect the classifier. Using end-
to-end training with only cross-entropy classifica-
tion loss, we allowed the network to learn to mask 
these unimportant regions in an unsupervised 
manner by carefully tailoring the architecture. 
Given how experts interpret FCH-PET, mRN10 

was an attempt to integrate expert knowledge into 
the model to improve the Resnet10 classifier.

The Unet was chosen as the masking architec-
ture as we deem our masking to be a task that is 
comparable to segmentation. For the activation 
function, we used tanh (hyperbolic tangent), since 
it was shown to be more stable in backpropagation 
compared to sigmoid function.65 Since our initial 
goal was to mask unimportant parts of the image, 
and tanh is a function bound between –1 and 1, we 
used tanh + 1, such that regions where the Unet 
output was very negative were close to 0 and sub-
sequently masked when multiplied by the PET sig-
nal intensity. The use of batch normalisation lay-
ers in the downstream Resnet10 in mRN10 ensures 
stable training even when masked PET is the in-
put, which is not explicitly normalized apriori. The 
masking Unet was trained end-to-end along with 
Resnet10 in the mRN10 architecture for optimal 
performance of the classification task. This was an 
attempt to explain the classification decision of the 
classifier by allowing it to optimize for masking of 
unimportant parts of the image as well as increase 
the performance by improving the conditioning of 
the input data to the classifier.46

Classification results

One of the goals of the study was to compare 
the model’s performance to nuclear medicine ex-
perts. The task of detecting and localizing HPTT 
on FCH-PET is relatively “trivial” for human ex-
perts, with reported accuracies of up to 98%.3-13 We 
therefore feel that a small dataset is sufficient for 
training a model to similar performance. However, 
the results differed from our expectations, as the 
achieved performance was significantly below the 
one of humans for both of our tasks. It is most like-
ly that by increasing the dataset to several hundred 
subjects, the performance gap would be closed. 

TABLE 4. Performance of several models on CPr task

Model name mRN10 RN10 Resnet50 Resnet101 Densenet101 PreActResnet101 WideResnet101

# Trainable 
parameters (millions) 33.5 14.3 46.2 85.2 112.9 85.2 85.2

Optimal initial 
learning rate 0.0136 0.0136 2.15*10-3 1.47*10-4 0.316 1.47*10-4 2.15*10-3

Mean CPr AUCROC 
[95% CI]

0.850
[0.734; 0.998]

0.812
[0.716; 0.994]

0.754
[0.624; 0.980]

0.527
[0.410; 0.639]

0.703
[0.606; 
0.905]

0.739
[0.486; 0.998]

0.752
[0.653; 0.966]

AUCROC = area under the receiver operating characteristic curve; CPr = classification of presence; mRN10 = novel masked-PET Resnet10 model; RN10 = baseline Resnet10 
model
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Given the size of our dataset, our results are 
comparable to other published studies on other 
medical imaging related tasks. The study with a 
similarly sized dataset (85 subjects) in the classifi-
cation of cardiac sarcoidosis by Togo et al. achieved 
sensitivity and specificity of 84% and 87%.66 In line 
with the established best practice, Lu et al. explored 
the diagnosis of Alzheimer disease from PET and 
MRI images using a multimodal approach on a 
dataset of 397 subjects and achieved 93% accuracy 
at detecting Alzheimer disease; Ma et al. used a DL 
method to classify thyroid diseases from SPECT 
with a dataset of more than 2000 subjects and 
achieved accuracy of up to 100% for some tasks.67,68 
Because the aforementioned tasks are different 
and generally have different difficulty compared 
to ours, these comparisons and potential conclu-
sions are hypothetical, but they give us a rough 
estimate of the number of subjects needed to sub-
stantially improve the performance of our model. 

We feel that by increasing the size of our data-
set to several hundred patients, similar levels of 
performance metrics to human performance could 
most likely be achieved. One supporting data 
point for this assumption is that the upper-bound 
of the 95% CI of AUC in the population statistics of 
50 model iterations used in experiments was 0.998. 
Given the right data split, the model could perfect-
ly classify the test set.

PET mask discussion

Qualitatively, we observed interesting properties 
of the mask created using the UNet, with exam-
ples depicted in Figures 2 and 3. In Figure 2 row 
a), we can see that the physiological signal from 
the salivary glands was masked, and the weak 
signal of the paravertebral musculature is ampli-
fied. In row b), the physiological signal from the 
red marrow in the vertebral body was masked and 
signal from the neck musculature on the left was 
enhanced. In row c), the physiological signal from 
the thyroid gland and paravertebral musculature 
were masked, contradicting findings in row a). 
The model likely learns to amplify the weak signal 
from the musculature with low uptake of FCH and 
to suppress strong signal from salivary glands and 
certain muscle groups with high uptake. 

The physiologically high PET activity in sali-
vary glands and the thyroid were correctly 
masked. This is likely because there is usually high 
PET activity in these regions. The masking of the 
thyroid region is especially problematic since the 
signal from HPTT can also be masked along with 

the thyroid. This resulted in HPTT being masked 
in all but 3 cases, as shown in Figure 3. Still, this 
did not always result in a false classification of the 
HPTT location. The parathyroid adenoma in row 
c) is crucial to the task for experts and yet it was 
masked in this case by the network. Even though 
the model masked the adenoma, the mRN10 mod-
el output in this case was still correct (lower right 
adenoma location). It is likely that UNet learns to 
encode the information of adenoma into the mask 
that is passed to the Resnet10.

Regions near the skin and the skin itself were 
always enhanced – we assumed that this was an 
important signal to the model, as skin-air inter-
face exhibits high contrast on PET and CT and acts 
as a rough anatomical landmark. It is also much 
higher in contrast than soft tissue interfaces of the 
structures in the parathyroid region and produces 
stronger gradients in training. The region outside 
the patient (air) was not masked to 0, but to ap-
proximately 25% of the signal (value of mask was 
0.25), since it is irrelevant to the classification and 
likely does not produce a gradient in training, so 
the Unet output for this region is closer to the ini-
tialization state.

We find the obtained masks to be interpret-
able in terms of optimizing downstream Resnet10, 
yet they did not enhance HPTT signal on masked 
PET as could be expected. Highly active PET re-
gions were therefore always masked (thyroid, sali-
vary glands). The regions which produced high 
PET activity only in some subjects (musculature) 
were masked only if they produced high PET ac-
tivity (Figure 2, row c), if not, these regions were 
enhanced (Figure 2 row a), introducing noise to 
masked PET. This further makes the masked PET 
uninterpretable as the intensity of the introduced 
noise is higher than the masked signal from the 
parathyroid adenoma, which can itself be masked. 
However, in terms of optimizing the Resnet10 clas-
sification performance, these findings make sense, 
since the mechanism acts to adaptively scale the 
inputs to stabilize Resnet10 classifier.

While the proposed mRN10 model, using Unet 
and Resnet sequentially for region-of-interest iden-
tification and classification tasks, respectively, 
somewhat resembles the state-of-the-art region 
proposal algorithms, we have not found such a 
model presented in existing literature. Firstly, it 
is unlikely that such architecture would achieve 
superior performance on other tasks as Resnet is a 
good classifier on its own if it is trained on a large 
enough database.20,41 Secondly, the masking results 
we achieved did not appear to consistently add 
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value to FCH-PET interpretation when explored 
by humans, however, according to our results, the 
mask can be clearly interpreted in terms of opti-
mizing downstream Resnet10 performance.

Namely, we found the mRN10 to be superior 
in performance to the RN10 in CLoc task. This is 
probably due to the improved conditioning of the 
masked input to Resnet10 in mRN10, leading to in-
creased stability, which in turn increases the per-
formance of the trained model.46

Limitations of the study

In the model selection, we found that the model 
with lowest number of parameters performed the 
best. This is one limitation of our study since ex-
periments with even simpler models were not car-
ried out. Another potential performance improve-
ment could be using transfer learning, but we have 
not found suitable pretrained models for the FCH-
PET images. 

Our PET masking was an attempt to make the 
model more interpretable. Most notable similar 
mechanisms that exist within literature are the 
attention mechanisms.69 The main problem with 
most attention mechanisms is that they rely on 
weighing of the image features, which are ob-
tained by embedding a small image patch into a 
vector. Because of this, the spatial resolution of the 
attention map is limited by the size of the image 
patch, which is commonly 16 × 16 in visual trans-
formers.70 In analogy, if we used 16 × 16 × 16 for our 
theoretical attention, the feature map of our entire 
image would be of spatial dimensions 4 × 4 × 2, 
which is too low detailed enough interpretation. 
Another method of explaining the model output 
is the class activation mapping (CAM), which also 
relies on feature embeddings before fully con-
nected layers and therefore entails a loss of spatial 
resolution;71 in case of the RN10, the CAM resolu-
tion would be 4 × 4 × 2. Gradient-based attribution 
methods, which do provide pixel-level (or in our 
case voxel-level) input attribution to the model 
output, have received criticism due to their incon-
sistency and poor theoretical foundations.72

Conclusions

We provide extensive experiments in deep learn-
ing analysis of FCH-PET using standard classifica-
tion model RN10 and a novel architecture tailored 
to the task. As deep learning for FCH-PET anal-
ysis in PHPT has to our knowledge not yet been 

described in literature, our experiments provide 
a baseline for future work. Even though inferior 
performance to human experts was achieved, the 
results seem very promising considering the small 
dataset and the achieved accuracy of 83% for de-
tecting HPTT and 74% accuracy for localizing the 
quadrant of HPTT.
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