UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 34(2004)1, Ljubljana

SEAMLESS HW/SW CO-DESIGN FLOW

Joze Dedi¢, Andrej Trost, Andrej Zemva

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Key words: design space exploration, directed acyclic hyper-graph (DAG), HW/SW co-design, partitioning, scheduling

Abstract: Computing applications complexity has raised to the level where managing the design flow in the classical way, while satisfying various con-
straints, is becoming extremely hard to cope with. We see two main reasons for that. The first reason is partial consequence of Von Neumann architecture
inheritance which imposes throughput restrictions /1/ with its imposed program sequentializing. The CS curriculum and rich set of tools are both suited
to that model. Now, speedups are possible by providing additional HW components operating concurrently. We expect that the work will be done in the
direction of a revised application development design flow approach which would trade the execution time for complexity. The second reason is the
consequence of the IC manufacturing technology improvement with its increasing level of integration which enables a steep system level complexity
increase in a wide range of applications. Many of them also face short time to market. CAD tools are not in pace with this increasing complexity, thus
putting pressure onto design teams. The design cycle round time shortening is possible by different levels of modeling, where each of them features
design decision estimations. This paper presents the HW/SW co-design architecture exploration space and gives an overview over the related method-
ologies. Based on the study of these methodologies and our experience with an ad-hoc approach, we present a seamless HW/SW co-design flow. The
flow forms the basis for the development of a CAD tool helping designers to considerably benefit from the HW concurrency and offering an efficient

system level approach.

Enovit naértovalski potek so¢asnega nacrtovanja strojne in
programske opreme

Kjuéne besede: hkratno nacrtovanje strojne in programske opreme, razmescéanje, razvrséanje, usmerjen graf vezja

lzviedek: Kompleksnost racunalnisko podprtih aplikacij je narasla do nivoja, ko je klasi¢en potek naértovanja, ob hkratnem upostevanju vseh omejitev,
postal zelo tezko obvladljiv. Tukaj vidimo dva glavna razloga. Prvi razlog je delna posledica Von Neumannove arhitekturne zapuscine, ki z vpeljano pro-
gramsko sekvenénostjo omejuje podatkovno pretocnost /1/. Radunalniska veda in nabor orodij sta oba prilagojena temu modelu. Pohitritve so sedaj
mogoce z dodajanjem vzporedno delujocih strojnih komponent. Nadaljnie delo vidimo v smeri predrugacenega naértovalskega poteka razvijanja aplikac-
ije, ki bi ceno povedane hitrosti izvajanja aplikacije placal s povedanjem arhitekturne kompleksnosti. Drugi razlog je posledica tehnoloske izboljsave
izdelave integriranih vezij, ki z vse vecjo integracijo omogoca eksponentno narascanje sistemske kompleksnosti na sirokem podrocju aplikacij. Dodaten
pritisk pri razvoju aplikacije pa je lahko tudi kratek ¢as do trga. CAD razvojna orodja pa ne uspejo drzati koraka v kompleksnosti, tako se povecujoce se
breme prenasa na raziskovalno ekipo. Skrajsanje nacértovalskega razvojnega cikla je mogocée z modeliranjem na razli¢nih nivojih, ki podpirajo moznost
ocenitve naértovalskih odlogitev. Clanek predstavi arhitekturni nabor primeren za hkratno naértovanje strojne in programske opreme in poda pregled
sorodnih metodologij. Na osnovi Studije teh metodologij in izkusenj pridobljenih z ad-hoc pristopom predstavljamo enovit nacrtovalski postopek socas-
nega nacrtovanja strojne in programske opreme. Nadértovalski potek vidimo kot osnovo za razvoj CAD orodja, ki bi nacrtovalcem omogodil efektivno
izkoristiti prednosti soGasnega delovanja strojne opreme in bi nudil efektivni sistemski pristop.

aging the HW/SW co-design exploration space is even

1 Introduction
harder. In order to meet the optimization challenge, the

Size and complexity of high performance signal, image and
control processing algorithms is increasing tremendously.
Classical SW approaches with traditional von Neumann-
like architectures are far from being optimal. Their major
strategy to overcome complexity and increase throughput
is increasing the processor clock speed and SW optimiza-
tion methods /1/, /2/. Moreover, the algorithm complex-
ity and real-time constraints in reactive embedded systems
can be so demanding that classical high end SW proces-
sor at a reasonable clock speed can no longer manage
the task /3/. The only possible solution to the problemis a
unified HW/SW co-design approach. Nevertheless, when
studying HW/SW co-design, some other issues of similar
importance arise. When partitioning between HW and SW,
the following design metrics have to be accounted for: cost,
size, performance, power, time-to-prototype, time-to-mar-
ket, correctness, safety, and maintainability /5/. As some
of these design metrics compete among themselves, man-

18

designer must be comfortable with a vast variety of HW
and SW implementation technologies enabling him/her to
find an optimal solution for a given application and con-
straints. A rich expertise in both SW and HW domain is
required for this purpose.

After the heterogeneity problem is solved, the next to be
copped with is the system level complexity problem. The
process of applying the application description onto archi-
tecture can be an extremely complex task when details
are to be described in a non hierarchical way. Support for
different level approaches has to be provided for. System
tevel design decision choices should be available as late
as possible within the design cycle, thus enabling the ex-
plore-propose-validate-refine process to achieve its best,
while the accuracy of a model gradually increases. This is
not the case in the classical approach where HW (proces-
sor) is designed in advance, hopefully powerful enough,

J. Dedi¢, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

Informacije MIDEM 34(2004)1, str. 18-25

and SW (application) is adapted to it. Each designer in-
volved with designing a fairly modest system, from the ini-
tial specification to the final implementation, has to deal
with complexity when interconnecting heterogeneous com-
ponents. The explore-propose-validate-refine process can
be a very tedious work, especially when a variety of possi-
ble implementations should be explored to best satisfy
design metrics. In the first approach aiming at lowering the
designers’ stress while simultaneously increasing produc-
tivity and the largest manageable system complexity, the
design work is partitioned among multiple designers. Two
problems arise. First, when partitioning work on smaller
subsets, the designers specialize into a relatively narrow
segment of the whole system. This gives rise to the prob-
lem of how developing individual parts of the system with-
out having a clear idea of the overall system integrity. Sec-
ond, adding system designers to the project does not work
as expected. Believing that the designers productivity is
independent of the project team size is not in place. Sim-
ple man-month relations are not valid when the project team
size increases. After some point, enlarging the number of
designers working on the project does not contribute to
the design cycle shortening/5/.

All these facts show the importance of research studies
for guiding development of CAD tools to support the entire
design flow based on heterogeneous architectures and to
provide system level support. Such CAD tools are neces-
sary to cope with the exponentially increasing system com-
plexity. Already existing CAD tools provide a semi-automatic
interactive environment where most important scheduling
and partitioning decisions are the designer’s choice. As
seen currently, a fully automatic approach is impossible
for the present.

The rest of the paper is organized as follows. Section 2
describes diverse architectures enabling efficient HW/SW
co-design exploration. Analyzed are also their weakness-
es and strengths. Section 3 presents some of the work
related to HW/SW co-design approaches and methodolo-
gies. In section 4 we propose a seamless HW/SW design
flow based on the study of these methodologies and our
experience with ad-hoc approaches of application parti-
tioning and system level integration /15/. In section 5 we
introduce our ad-hoc application partitioning with which
we acquired knowledge needed for mastering heteroge-
neous architectures and HW/SW partitioning. Section 6
concludes this paper.

2 HW/SW co-design exploration
opportunities

HW/SW design deals with balancing the architecture re-
sources of a digital system in the search for an optimal
implementation. With the term architectural resources we
denote all kinds of storage resources (memory, registers),
programmable resources (FPGAS), partially programmable
resources (application specific and general purpose SW

processors), nonprogrammable resources (single purpose
processors) and communication resources (interconnec-
tions, buses) which provide space for flexible exploration.
All resources should be taken into account and trimmed
carefully to achieve optimal design metrics. Design met-
rics that we are focusing on in our work are cost, time-to-
prototype and performance improvement. Meeting these
criteria leads us to some compromises that still permit us a
level of flexibility large enough to explore a variety of imple-
mentation options. Some possible exploration environ-
ments that enable HW/SW co-design study are:

- FPGA-only HW environment with a processor imple-
mented as a softcore. Microprocessor architectures
implemented as a softcore (ARM, ARC, MIPS, Pow-
erPC, etc.) offer limited performance. There are many
technical reasons for this. Far ahead in usage are Xil-
inx's Micro Blaze {for the Spartan and Virtex family of
FPGAs) /12/ and Altera’s Nios (for Cyclone and Stratix
FPGAs) /13/ sold as IP cores. These processors can
achieve the maximum clock speed in the range of
100MHz and can occupy quite a large portion of
FPGA; the more complex the processor is the slower
the speed is. OSs can be very simple and provide
only some basic functionality thus making the porta-
bility of application harder. Advanced OSs require a
more powerful processor, more FPGA resources, but
also decrease the maximal clock speed.

- Standalone processor with FPGA logic as its periph-
ery /14/. Embedded systems are a very good exam-
ple of it. Their maximal performance is attained if FPGA
is connected directly to the processor's bus to opti-
mize data transfer rates. A lower overhead for access-
ing external HW provides more partitioning possibili-
ties. Despite their greater complexity and an additional
HW overhead, an extensive computation power can
be attained. The various OSs are well supported for
many processors on the market with compilers, cross-
compilers and debuggers. Many of them can be ob-
tained free of charge. The initial cost includes build-
ing such an embedded platform and porting some OS
to make the platform alive and stable.

- The PC environment and some additional custom HW
/15/. PC does not represent any overhead as a re-
sult of its popularity and availability. Executing SW is
stable and a variety of development tools exist. If com-
munication method is not of primary interest (PCi
bus), it offers a great set of architectural resources
when combined with a resource-wealthy add in PCI
board. Also, when moving to another set of architec-
tural resources, it allows for a great amount of code
reusability (SW or HW IP). Some HW scalability is also
supported in the PC environment through PCI exten-
sion slots.

- New extensions to HW/SW co-design are offered by
programmable SoC platforms. They comprise pro-
grammable arrays, hard wired microprocessors and
rich set of fast communication peripheries. Their rep-

19

Informacije MIDEM 34(2004)1, str. 18-25

J. Dedié, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

resentatives are Xilinx Virtex 1l Pro /12/ and Altera
Excalibur /13/. Virtex ll Pro consists of up to four
PowerPCs. They are integrated within a regular FPGA
structure by sacrificing some silicon that would other-
wise be used for CLBs and interconnections. Excali-
bur offers an ARM9 processor and programmable
array integrated within the same IC, with a smaller lev-
el of integration than the former. In this way, HW/SW
cohesion can be applied very efficiently and the whole
design can be finally fitted in one chip.

As a result of the overall complexity of the whole system
design, regardless of the environment chosen, stable and
efficient SW tools are required to efficiently manage appli-
cation mapping onto available architectural resources.

3 Related work

There is currently a lot of activities related to HW/SW co-
design methodology underway. Many of the research
groups focus on some particular stages in the design proc-
ess or even optimize some of these stages to best suit
their finite extent of supported architectures. Such closed
areas of increased interest can be the system level speci-
fication and modeling, partitioning and scheduling, com-
pilation and synthesis, co-verification and co-simulation,
automatic code generation for HW and SW interfacing, and
automatic code generation for the task manager. The com-
mon denominator among them is splitting the input descrip-
tion into subtasks and describing data dependency be-
tween them. For that purpose most of them use some form
of directed acyclic hyper-graph (DAG) /3/, /6/. Nodes in
the graph represent subtasks (more or less complex oper-
ations) and edges represent data dependency between
them. Many automatic scheduling and partitioning tools
uses DAG (or some extension of it) for applying some opti-
mization methods to obtain satisfactory mapping of appli-
cations onto architecture. The task of optimization meth-
ods is to find an optimal partitioning and scheduling sce-
nario for subtasks extracted from the input specification.
Common partitioning and scheduling problems belong to
the class of NP-hard and intractable problems. Research
studies have been done on algorithms involving heuristic
search /7/. Heuristic optimization methods are guided by
applied cost functions to evaluate implementation space
realizations.

Numerous researches have already been done in the field
of HW/SW co-design. Here we report only the work that
we find particularly interesting for our study.

Wiangtong, Cheung, and Luk /6/ presented a semi-auto-
matic co-design environment for a system consisting of a
single general purpose processor and multiple reconfig-
urable HW units. Their study involves building HW/SW ar-
chitecture suited for dataflow dominated applications. The
proposed design flow enables input application descrip-
tion in high level language (HLL). Mapping the input de-

20

scription into DAG is done manually. Authors implemented
automatic generation of the underlying code and taking
care of necessary application sub-tasks communication
by wrapping tasks in standard frames. Independent tasks
are executed on several processing elements. They are
controlled by an automatically generated task manager
program running on the SW processor. Because of the
task's standard frame overhead, this method is appropri-
ate for coarse grain partitioning. Authors presented a study
of heuristic methods suited for partitioning and scheduling
/7/. They applied them onto DAG and thus made a next
step towards a fully automatic design flow.

AAA methodology /3/ extends DAG and adds ability to
specify loops through factorization nodes. This leads to an
algorithm model called factorized data dependence graph
(FDDQ). Graph factorization consists of replacing a repeat-
ed pattern by only one instance of it. Because of exten-
sion, it is suitable both for data and control flow dominated
applications. FDDG may be specified directly or it may be
generated from HLL (Esterel, Signal). Methodology main
efforts are towards graph transformations. Optimization
consists of finding defactorization transformations within
implementation space. This gives best results in terms of
cost function (heuristics guided by their cost function). AAA
uses a single factorized graph model from the algorithm
specification down to the architecture implementation
through optimizations expressed in terms of defactoriza-
tion transformations applied to the algorithmic graph. Au-
tomatic generation of a HW implementation from an algo-
rithm specification based on FDDG is supported by em-
ploying a set of rules for data and control path. The algo-
rithm employs synchronization rules and a delocalized con-
trol approach (as opposed to the above mentioned meth-
odology). Support for real-time extension is studied, too.

A very important area of HW/SW co-design is task com-
munication in terms of resource sharing, which often does
not get enough attention compared to its influence on the
overall system performance. Communication channel is a
resource, similarly as other processing elements, and must
be scheduled. When several tasks use the same commu-
nication resource, the channel activity also causes task
delays which must be taken into account when task sched-
uling. /9/ gives an overview of this topic, proposes rules
and explores genetic algorithm heuristics to schedule tasks.
While achieving shorter execution time, implied rules im-
pose only a small overhead to the whole scheduling and
partitioning process.

Work has also been done in the direction of finding a lan-
guage that would meet the needs for describing HW and
SW so as to enable compilation and synthesis, and sup-
port various level application modeling. Several mature lan-
guages exist that were originally suited for SW(C/C++) or
for HW(VHDL/ Verilog) design. They all exhibit some weak
points when bridging the heterogeneity gap. Some spe-
cial points of interest are: support for HW description, con-
currency support, system level description and modeling,

J. Dedi¢, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

Informacije MIDEM 34(2004)1, str. 18-25

gradual model refinement, and verification. SystemC /10/
solves this problem by introducing specific class libraries
which are ANS| C++ compliant. SystemC benefits from all
C++ object oriented attributes and leverages it by intro-
ducing concurrency, notion of time and support for HW
data types. Extensions are realized through running an
executable system description under the SystemC simula-
tion kernel. SystemC tends to become a standard as a lan-
guage-based modeling tool for system-level design; OSCI
has already submitted it to the IEEE for standard approval.
System(C itself should not be considered as a methodolo-
gy. It is a modeling language from which HW/SW co-de-
sign can benefit. Another very important feature is system
verification support. Support is enabled through Cadenece
SystemC verification extension built on top of SystemC li-

brary /11/.

4 Seamless design flow

If we outline some properties, which in our opinion the
designer-friendly and applicable HW/SW co-design CAD
tool should have, we quickly find some weak points of
methodologies in many of the currently active research
studies in the field of HW/SW co-design. The CAD tool,
which we are steaming to, should take the advantage of
mature languages and just fill the gap caused by heteroge-
neity. Input description languages that are already widely
accepted and have arich set of underlying supporting tools
should not be disregarded and, for the same reason, new
description languages should not be forced by any means.
Awork around could be implementing some additional fea-
tures to the already existent languages (by means of librar-
ies or language extensions of a reasonable level) or build-
ing some supporting environment to extend the language
description capability. Tools for building SW executives
(compilers) are already well optimized, and designers are
trained to use them efficiently. Tools for building HW net-
lists (synthesis tools) are also very powerful. In this paper
we are introducing a seamiess environment where these
sets of already existent tools can be used in a uniform way
to support design flow from the system level description to
distributed executives and net-lists. Effort should be made
in the direction of automatically crossing the HW/SW bar-
rier and at the same time reusing powerful aspects of tools
on both sides.

The gap between HW and SW is currently handled by the
system designer, who is doing a tedious work of the ex-
plore-propose-validate-refine process. The model accura-
cy is gradually increased when more details are added.
This consequently prolongs the time needed for the sys-
tem model development and simulation. To reduce the time
required for design space exploration evaluation of design
choices should be supported earlier in the design proc-
ess, which leads us to system level exploration.

Figure 1 outlines the traditional design flow. This approach
is also known as Y-chart approach /16/. It introduces the
main idea that seamless HW/SW co-design environment

should provide for a sufficient support. The input specifi-
cation consists of an architecture and application descrip-
tion as well as application constraints. HW/SW co-design
approach main object is finding the best mapping of appli-
cation onto available HW resources, while satisfying con-
straints. As the Y-chart suggests, the process of finding
the optimal mapping consists of iterating cycles. The proc-
ess of evaluating different possible solutions that are can-
didates to realize the application within given constraints is
named design space exploration. The design space con-
sists of a variety of spatial and temporal mappings and, as
mentioned before, this problem can easy become unsolv-
able. Dashed arrows suggest the order of design space
exploration. First, the design space built from a given ar-
chitectural and application description is explored. If no
solution within the design space satisfies constraints, the
next step is to revise the application description in terms of
algorithm speedups. The whole design cycle from the pre-
vious step is repeated. If widening the design space still
does not produce satisfactory solutions, this is an indica-
tion that, within given architectural resources, application
mapping cannot be made by realizing constraints. Another
important aspect of the Y-chart is reusability since it ena-
bles mapping of multiple target applications onto candi-
date architectures in order to evaluate performance.

Architscture

L —
\ £ Application
Y descripion i '\\

descnption

Mapping

L :

e \
¢ Performarice .
i analysis
N i3

RN
{
|

pY

Figure 1: Y-chart approach

Our approach to HW/SW co-design partially follows the
traditional Y-chart approach guidelines. It mostly extends
it as it is in detail explained in Figure 2. The application is
in the foreground. Optimal partitioning and scheduling are
obtained by employing gradual model refinement.

The application description is split into the system level
description and full-detail level description. At the system
level description we benefit from SystemC system level
modeling and model refinement. The system level applica-
tion description satisfies two purposes. First, information
about tasks and data dependency between them is cap-
tured to construct DAG. Second, the system level descrip-
tion is used as a simulation skeleton to guide heuristic

21

Informacije MIDEM 34(2004)1, str. 18-25

J. Dedi¢, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

methods so as to find the optimal spatial and temporal dis-
tribution. The task description can be very loose at this
stage. The full-detail level is not needed at this stage and
can be postponed.

Architecture is described by a set of available system re-
sources, providing necessary external tools for synthesis,
compilation, verification and simulation, providing IP blocks
of more or less complex operators in terms of library, spec-
ifying standard frames to enable automatic generation of
task communication and automatic generation of control
logic for task scheduling, and specifying communication
channels.

Similar to the application description, the architecture de-
scription is also split into two parts. The term architecture
description means all kinds of specifications that smooth
the higher level description compilation or synthesis onto
target architecture (C/C++, VHDL, or an even higher level
task representation abstraction). The coarse grain archi-
tecture description is provided with external tools that ena-
ble smooth transition from the HLL HW and SW code to
the netlist (synthesis) and executable code (compilation)
and provide its testing, simulating, verifying, debugging and
profiling. Clearly defined architecture limitations that sen-
sibly limit the design space size are also a part of the coarse
grain description; e.g. a number of processing elements
suitable for SW execution, amount of available memory,
number of system buses... Library provides synthesizable
and compilable description of standard elements, supports
automatic generation of the underlying code and provides
support for IP reuse. Library consists of blocks of HW and
SW descriptions of various complexity levels. These can
be all kinds of wrappers, supporting smoother integration
of the user defined code (with HW or SW tasks), commu-
nication channels {implementing SW drivers and HW pro-
tocols), and various complexity level operators (from sim-
ple adders and multipliers to more complex cores such as
DCT).

Although the split architecture description may look some-
how artificially made, it is a necessary design approach,
because programmable gate arrays enable realization of
virtually any function, endlessly extending the design space.
The coarse grain description is used for quick infallible
partitioning and scheduling decisions, rejecting unfeasi-
ble schemes. Providing library of synthesizable cores wraps
the endless design space to a final extension and enables
IP reuse.

Constraints are used to build cost functions needed by
heuristic methods to identify the best solution within the
design space and to evaluate the result from heuristics.
Constraints can be given in any combination of resource
utilization, power consumption, and application execution
time. Constraints must be later given appropriate weights
to obtain the cost function to guide heuristic search meth-
ods.

22

Given the necessary input specification, the system level
application description is studied and data dependency
between tasks is obtained to build DAG. The main feature
of DAG is determining the dataflow dependency to over-
come the sequential nature of the application description
and to discover parallelism possibility. Tightly connected
to building DAG is rearranging parts of the graph by appiy-
ing different algorithms, i.e. by increasing the parallelism
rate and granularity modification /3/.

After application is split into subtasks and potential paral-
lelism is discovered, DAG partitioning and mapping take
place. Application is partitioned on the basis of the input
specification about HW only, SW only and HW or SW tasks,
and the design space, to be explored later, is defined. While
partitioning and mapping, architectural resources informa-
tion is needed to obtain a set of operators capable of exe-
cuting application operations to be mapped. Up to this point
the design space consists of a variety of combinations,
covering every possible mapping of every subtask to ap-
propriate available resource. In the case of implementa-
tion of HW resources with programmable circuits, the de-
sign space is infinite, thus practical limitation is set by a

—— e — o — — — — g R - - - —

Figure 2:

HW/SW co-design design flow

finite number of library components. Finding the optimal
solution within the design space takes time that is expo-
nentially dependant on the design space size when solved
with feasible computers. Even in the case of a modest

J. Dedig, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

Informacije MIDEM 34(2004)1, str. 18-25

application, the problem quickly becomes unmanageable.
Here, the system level approach enables us to-explore only
defined subsection(s) of the entire system, thus isolating
the detailed level description of a partition and schedule
enabled task from the rest of the system, described only
for a necessary interaction. In the next step, scheduler
extends the design space even more. Solving this kind of
optimization problems belongs to the class of NP prob-
lems. Keeping the design flow time under control, heuris-
tic methods are necessary. These methods will select a
point from the design space and estimate its result ade-
quation guided by the cost function. The way how the de-
sign space is explored depends on the chosen heuristic
method /7/.

The partitioning step is tightly integrated with scheduling
step heuristic methods and rules. The scheduler task is to
find optimal temporal distribution which would produce the
shortest application runtime. Temporal mapping is applied
to subtasks that share common resources. The execution
order depends on data dependency extracted from DAG
and when determining the execution order, rules are ap-
plied which take into consideration resource conflicts and
task delays caused by them /9/. Two resource allocation
policies /4/ can be applied; dynamic and static. This pa-
per addresses only the static one. To find optimal schedul-
ing, each task must be described by its communication
and processing time. This time can be obtained either as
the input given approximately or as a more realistic feed-
back from subsequent stages. In Figure 2 it is depicted by
dotted arrow labeled task model refinement.

After tasks are spatially and temporally mapped, the map-
ping efficiency can be estimated using SystemC system
level model executive. It is indicated by a solid arrow la-
beled ¢. The input specification for SystemC executive is
built from the system level application description input,
modified by graph transformation algorithms and spatial and
temporal mappings. Estimations are getting closer to real-
istic values when task descriptions are becoming gradual-
ly refined, which is the primary feature of SystemC. Parti-
tioning and scheduling heuristic algorithms iteratively ex-
plore the design space until an optimal solution is found
(depicted by a dotted arrow labeled a). If iterative heuristic
algorithms fail to find a solution within the design space,
the input description must be reviewed (depicted by a dot-
ted arrow labeled b).

Gradual application system level model refinement intro-
duces optimal spatial and temporal mapping for a given
input specification. If results conform to constraints, the
subtask descriptions should be refined to a full-detail level
according to the winning partitioning scheme. Currently,
we assume mixed SW and HW language description
(C/C++, VHDL). At this point, architectural information is
used to wrap detailed described subtasks into standard
frames thus enabling automatic task connectivity and au-
tomatic control generation. Compilation and synthesis are
done with the usage of external tools connected into a

seamless design flow through command line extension.
When constraints are satisfied, this is also the subsection
of the design flow where the entire HW and SW code is
generated for every programmable part of the architecture.
After a synthesizable and compilable code is obtained for
every task, it can be verified and simulated with the use of
external tools. Task level verification and timing simulation
can be applied using external tools, which will serve as an
exact guide to the partitioning and scheduling algorithm.

5 JPEG design Example

As previously described, the design flow gradually evolved
by taking into account the related work in this area, lever-
aged by our experiences obtained with an ad-hoc approach
of partitioning and system level integration. Experiences
with real-life applications were the motivation key while
evaluating the related methodology successfulness, and
later they were golden guidelines when developing our own
design flow within a seamless environment.

Following the architectural classification in section 2, our
targeted exploration architecture fits into the second group
of co-design exploration suitable architectures (processor,
accompanied with array of programmable logic). The plat-
form is based on the Intel Strong ARM microprocessor,
supporting a variety of peripheries which eases communi-
cation and extends its flexibility /14/. HW programmability
is achieved by introducing FPGA connected directly onto
the microprocessor's bus. The platform supports the Linux
operating system. Integration of SW executive and neces-
sary control logic with the rest of programmable HW re-
sources is supported through kernel drivers. While improv-
ing the design flow, we also made a move towards the PC
based HW/SW co-design platform /15/, presented as the
third possible architecture in section 2.

e
Foo o Soime
X s

:‘l Atinsst 64 poinls y
N /l

£ Reagingt T Y £ Comvartinl N\, ¥

—-—-—'ﬁ hitriap Me- L YUy colérspace ,2»1

\, {anayol piiei) 7 \, farvay of pixeis) 2/
RS : o N

7 No neighdournood e e - /

' dependency J / Abfeast &4 paints + N\

R g *, previous DT companent [
N L

Eachieoar plane;. -]
¥ gach 848 sutecRon) ¥

L RIS

PP

/7 UBRCRIRLE. T, v 47 Quantize N
£ Huffrsn encoting: < " {eaeticansiomned 3
Y {00 cosficiont Bitne: reét / \ 7 costficient ineach 8x8:

2 \

o B3y RLE) > - sobeanion)

A 4

//Wrife JEIF header &\.\
¢ Compressed
"\ coalficerits /

Figure 3: JPEG encoding steps

In order to carefully study the whole design flow, we decid-
ed to manually realize all design steps by implementing the
JPEG coding / decoding image processing application

23

Informacije MIDEM 34(2004)1, str. 18-25

J. Dedi¢, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

/17/. The JPEG image processing overall complexity is
well suited for a wide range of processors and their per-
formance improvement can be substantial, provided that
an optimal HW-SW co-design solution is found. Figure 3
shows JPEG compression steps, suitable as a starting point
for the system level application description. This figure also
exhibits the high level input application specification tight-
ly connected to our basic idea of the high level task de-
scription. A closer examination of encoding steps already
reveals not easily observable possibilities of design deci-
sions, explicitly at the system level. Although the compres-
sion flow exhibits pure sequential data processing, the
exploration space can be still revealed. Shaded nodes in
Figure 3 straightforwardly resemble the JPEG compres-
sion flow. Only broken line circuited explanations comment-
ing data dependency are here important. Dependency
comments explain the minimally required amount of data
provided by the previous task and needed to start the next
one. If every task requirements were an entire image ar-
ray, then the application task flow would be seen as strictly
sequential. Here, we can discover/apply a mixed sequen-
tial, parallel, and in some stages even pipelined behavior.
An optimal system level partitioning and scheduling deci-
sion would consider the required/available amount of mem-
ory between tasks, number of necessary task repetitions
linked to the task execution time, and possible resource
conflicts. Figure 3 expresses a close resemblance to DAG;
the application is logically coarsely partitioned into sub-
tasks, represented with nodes, and tasks data dependen-
cy is represented with arrows. After the tasks resource
usage is evaluated, guidelines for finer task re-partitioning
are obtained, leading into a successively refined partition-
ing scheme.

Following the Figure 2 design flow, a coarse grain archi-
tecture description is provided by means of a gcc compil-
er and gdb debugger, limitation of only one SW processor,
and a certain amount of the available memory. A detailed
library description is provided by a Wishbone compliant
1D DCT core, Wishbone communication structure, and
device driver (SW/processor to HW/FPGA communica-
tion). Since we chose a point from the design space man-
ually, the only constraint that makes sense is HW and SW
resource usage limitation.

As every portion of the design flow was processed manu-
ally and the turnaround time was expected to be rather
long, our focus was not on design space exploration, but
rather on realization of the entire design flow from descrip-
tion to realization. It was noted that by choosing just one
design point from the design space, only a suboptimal
solution could be obtained. The design space is explored
thoroughly as the entire flow is automated thus shortening
the time required for the design decision.

Rather than generating an executable application descrip-
tion for several partitioning and scheduling schemes with
the use of SystemC, we analyzed application execution by
hand C coding. By studying the JPEG coding algorithm, it

24

was easily established that DCT is computationally the most
intensive part of image processing. We decided to imple-
ment DCT in HW (VHDL) and the rest of application se-
quentially in SW (C). Considering our modest initial con-
straints, we were successful. However, despite straight-
forward partitioning scheme, it took us some time to hand
write the necessary code. Any modification at the system
level required from us a fair amount of tedious handwriting.
The main drawback of the ad-hoc approach is that a lot of
handwriting has to be done. Namely, not taking the entire
system integrity (e.g. communication resource conflicts)
into account makes the partitioning scheme inefficient.
Solution to this problem is automatization of evaluating suc-
cessively chosen design points.

6 Conclusion

We presented a HW/SW co-design methodology design
flow based on the study of current research activities in
this area and our experiences with an ad-hoc approach to
partitioning and system level integration. With the present-
ed ad-hoc approach drawbacks we highlighted features
that we found particularly important. We proposed a seam-
less environment supporting system level development and
automatization of repetitive tasks, and softened the solu-
tion to the issue of heterogeneity gap. The main idea is to
reuse the already existent tools. Our future research effort
will be towards blurring the gap caused by languages ca-
pable of describing heterogeneous capabilities.

Our future work will address the following two main issues.
First, the persistent need of increasing the system com-
plexity will widen the interest in IP-cores reusability. Our
effort will be laid in finding an efficient way of IP libraries
re-usage leveraged by user code development. IP librar-
ies can consist of any of fine grain and coarse grain oper-
ators, encapsulating wrappers enabling automatic appli-
cation subtasks connectivity, and communication channels.
The second area of our future work will be towards opti-
mizing specific parts of the design flow.

7 References

/1/ R. Hartenstein, Data-stream-based Computing: Models and Ar-
chitectural Resources, MIDEM Proceedings 2003, October
2003, pp. 29-37

/2/ G. Stitt, R. Lysecky, F. Vahid, Dynamic Hardware/ Software Par-
titioning: A First Approach, Design Automation Conference Pro-
ceedings 2003 (DAC'03), pp. 250-255

/3/ M. Akil, High-level Synthesis based upon Dependence Graph
for Multi-FPGA, MIDEM Proceedings 2003, October 2003, pp.
83-96

/4/ T. Grandpierre, C. Lavarenne and Y. Sorel, Optimized Rapid
Prototyping For Real Time Embedded Heterogeneous Multiproc-
essors, CODES'99 7th International Workshop on Hardware/
Software Co-Design, Rome, May 1999

/5/ F. Vahid, T. Givargis, Embedded Systemn Design - A Unified
Hardware/Software Introduction, John Wiley & Sons, inc., 2002,
ISBN 0-471-38678-2

J. Dedi¢, A. Trost, A. Zemva:
Seamless HW/SW Co-design Flow

Informacije MIDEM 34(2004)1, str. 18-25

/6/

/7/

/8/
79/
/10/
/117
/12/

/13/
/14/

/15/

/16/

T. Wiangtong, P. Y. K. Cheung, and W. Luk, A Unified Codesign
Run-time Environment for the UitraSONIC Reconfigurable Com-
puter, Field-Programmable Logic and Applications Proceedings,
September 2003, pp. 396-405

T. Wiangtong, Peter Y.K. Cheung, W. Luk, Comparing Three
Heuristic Search Methods for Functional Partitioning in Hard-
ware-Software Codesign, International Journal on Design Auto-
mation for Embedded Systems, Kluwer Academic Publishers,
Volumn 6, pp.425-449, 2002

G. De Micheli, Synthesis and optimization of digital circuits,
McGraw-Hill, Inc., 1994, ISBN 0-07-016333-2

J. J. Resano, M. E. Perez, D. Mozos, H. Mecha, J. Septien,

Analyzing communication overheads during hardware/software
partitioning, Microelectronics Journal 34 (2003), pp. 1001-1007

SystemC OSCl homepage: http://www.systemc.org/
Cadence TestBuilder homepage: http://www.testbuilder.net/
Xilinx homepage: http://www.xilinx.com/

Altera homepage: http://www.altera.com/

J. Dedi&, T. Zontar, A. Janhar, A. Trost, Design and implementa-
tion of customized embedded platform, MIDEM Proceedings,
2002, pp. 213-218

J. Dedi¢, A. Trost, A. Zemva, PC based HW/SW codesign sup-
port for embedded system target, MIDEM Proceedings, 2003,
pp. 249-254

V. D. Zivkovic, P. Lieverse, An Overview of Methodologies and
Tools in the Field of System-level Design, Lecture Notes in Com-
puter Science, Tutorial on Embedded Processor Design Chal-
lenges, Systems, Architectures, Modeling, and Simulation (SA-
MOS'02), pp. 74-89, 2002

/177

Prispelo (Arrived): 11.02.2004

K. Wallace, The JPEG Still Picture Compression Standard, Com-
munications of the ACM, April 1991, vol. 34, no. 4, pp. 30-44

JoZe Dedic, B.Sc.,
joze.dedic@fe.uni-lj.si,

Assistant Prof., Dr. Andrej Trost,
andrej.trost@fe-uni-lj.si

Associate Prof, Dr. Andrej Zemva,
andrej.zemva@fe-uni-lj.si

University of Ljubljana
Faculty of Electrical Engineering,

Trzaska 25, 1000 Ljubljiana, Slovenia
Tel: +361 1 4768 351

Sprejeto (Accepted): 25.02.2004

25

