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0  INTRODUCTION

Conditional-based maintenance (CBM) is a modern 
maintenance concept [1]. As an effective method to 
realize CBM, prognostics and health management 
(PHM) has become the focus of the research [2]. One 
typical example is the application of PHM in joint 
strike fight (JSR) F-35 [3]. To establish the appropriate 
PHM of equipment, it is first necessary to conduct 
the research of degradation feature extraction for 
prognostics [4]. The degradation experiment requires 
a long time and the vibration signals during the 
degradation are very complex [5]. However, features 
extracted by traditional methods [6] are normally 
based on the single monitoring signal. Tran et al. 
extracted features by the analysis of the monitoring 
signal in the time domain [7]. Zhao used the empirical 
mode decomposition (EMD) in vibration signal 
analysis and extracted the approximate entropy as 
the degradation feature [8]. Dong et al. chose the 
non-extensive wavelet feature scale entropy to be the 
feature for degradation evaluation [9]. In this situation, 
some important fault information may be lost. For 
example, it is known that the loose slipper fault is 
the typical failure mode of hydraulic pumps [10]. It is 
caused by the wear between the head of the piston and 
the hat of the slipper [11]. Finally, the interaction could 
be monitored on the pump shell in the form of strikes. 

However, the strikes of the interaction are not always 
from only one direction [12]. Analysis based on a 
single vibration signal can hardly achieve the whole 
information needed for diagnosis and prognosis. As a 
result, multi-direction vibration signals are required 
for processing. Additionally, vibrations of hydraulic 
pumps caused by the striking from pistons are directly 
influenced by the coupling effect [13]. It seems to 
be extremely difficult to effectively extract obvious 
fault information. To solve this issue, a modified 
method is required to fuse multi-direction signals of 
the hydraulic pump to extract the degradation features 
more effectively.

The traditional fusion algorithms for multiple 
signals include the weighted fusion algorithm 
[14], the Kalman filtering algorithm [15] and the 
wavelet analysis fusion algorithm [16]. Based on the 
analysis of these methods [17], it is known that some 
important fault information may be lost due to the 
inherent disadvantages during signal processing [18]. 
As a novel fusion algorithm, composite spectrum 
(CS) can calculate the correlative relations between 
neighbouring signals for information fusion [19]. 
Considering the structural characters of hydraulic 
pumps, some modifications must be made to extract 
the sensitive features effectively [20]. First, the 
complex computation caused by the multiplication 
the CS algorithm must be reduced. On this basis, 
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an appropriate method is required for CS fusion to 
obtain detailed components from the original signals, 
which contain sensitive feature information. An LCD 
algorithm is an efficient nonlinear signal processing 
method [21]. The feature information in the original 
signal can be detailed into various intrinsic scale 
components (ISCs) [22]. The sensitive information 
is relatively easy to be achieved for CS fusion. 
Therefore, based upon the modification of the earlier 
CS, the LCD composite spectrum (LCS) algorithm is 
proposed for the fusion of various vibration signals to 
extract sensitive degradation features.

Features extracted by various methods can 
reveal fault information in different aspects to 
improve completeness. However, it may also increase 
information redundancy degree and even result in 
dimensional disaster [23]. Common methods to 
solve this problem include decreasing dimensions 
by simplifying signal features [24]. The typical 
algorithms are principal component analysis (PCA) 
and the locality-preserving projection (LPP). PCA 
performs better only with linear data. If the high-
dimensional data needed processing is nonlinear, the 
PCA’s ability for feature dimensionality reduction 
would be limited [25]. LPP is a widely used manifold 
learning algorithm. Based on the Laplace mapping, 
LPP can deal with the nonlinear data [26]. However, 
LPP always requires many samples [27]. Furthermore, 
these dimensionally reduction methods may delete 
parts of features directly, leading to the loss of 
sensitive information. As analysed, the basis for 
feature dimensionality reduction is to evaluate the 
correlations between various vectors [28]. Correlation 
coefficient is one traditional factor [29]. Because 
of the structural character of hydraulic pump, the 
data of the extracted feature are nonlinear to a large 
extent. In this situation, the correlation coefficient can 
hardly evaluate the correlations. Based on information 
entropy theory, the relative entropy can reveal the 
correlation between nonlinear data by the analysis 
of the complexity [30]. Therefore, the feature fusion 
algorithm is proposed to make full use of the extracted 
features’ information and to improve features 
conciseness. 

Consequently, the method for feature fusion using 
LCS and relative entropy is proposed. This article is 
organized as follows: In Section 0, the LCS algorithm 
is presented for multi-channel signal fusion; In Section 
1, LCS high-order power entropy and the high-order 
singular entropy, which are relatively defined in SE 
and TE, are extracted as initial features; in Section 2, a 
feature fusion strategy based on relative entropy is put 
forward in detail and the originally extracted features 

are fused into the required new feature; in Section 3, 
the experiment is presented and the results are verified 
by the application of the proposed method; in Section 
4, some conclusions are drawn.

1  THE PROPOSED LCS FUSION ALGORITHM

1.1 Signals Decomposed by LCD

Assuming that x(t) denotes the original signal, the 
LCD algorithm is detailed as follows.

Step 1. Confirm the extremum point Xk  of x(t)  
and its correspondent time τk , k = 1, 2, ..., M. M is the 
total number of all extremum points.

Step 2. Calculate Ak+1 (k = 2, 3, ..., K – 1) and Lk:

	 A X X Xk k
k k

k k
k k+

+

+
+= +

−
−

−1
1

2

2

τ τ
τ τ

( ), 	 (1)

	 L aA a X k Kk k k= + − = −( ) , , ,..., .1 2 3 1 	 (2)

Step 3. Fit L1 ~ Lk by the cubic spline function and 
acquire the baseline BL1(t). Separate the baseline.

	 h t x t BL t1 1( ) ( ) ( ),= − 	 (3)

if h1(t) meets the ISC condition [21], output 
ISC1 = h1(t).

Step 4. Separate ISC1 from the original data and 
get the new signal. Then repeat the steps until un(t) is 
monotonous or a constant function. Get ISC1, ISC2, 
…, ISCn and the trending component un(t) ( )nu t .

1.2 Selection of ISCs

Normally, the correlation coefficient is applied for the 
reflection of the nonlinearity between variables, and 
the mutual information is used for the reflection of the 
linearity relations. In this paper, based on the SE, the 
mutual information I is defined:
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where, H(yi) is the entropy of yi. p(yi) is the probability 
density function for pi. For the solution of joint 
probability density function, the probability of the 
samples falling into multi-dimensional space can be 
used for approximate estimation.

In this paper, on the basis of the mutual 
information, the sensitive factor ε is defined as the 
ISCs selection index. Assume that the sampling 
parameters are the same, the sampled normal signal 
is ynor, and the sampled fault signal is yf. The fault 
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signal is further decomposed by LCD and the ith ISC 
component is marked as ISCi. The sensitive factor of 
ISCi is εi , which is calculated by Eq. (5).

	 ε i i iI I= 1 2- , 	 (5)

where, I1i denotes the mutual information between 
ISCi and yf. I2i denotes the mutual information between 
ISCi and ynor. Based upon the analysis above, εi can 
evaluate the sensitive information contained in ISCi. 
The higher the εi is, the more obvious the difference 
between the mutual information I1i and I1i will be. This 
means that the sensitive fault information contained in 
the ISCi is supposed to be more. Therefore, the ISC 
component with the highest εi will be selected from 
each vibration signal.

1.3  LCS Algorithm

Based on the ns division of every ISC, the CS is 
defined as [19]:
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k( )  denotes the Fourier coefficient and 
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segment in all B signals. X fCS
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(7).
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Eq. (8).
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The multiplication of the Fourier coefficient and 
the complex conjugate exists in CS. If Eq. (8) is 
combined with Eq. (7), terms like  
X f X f X f X fr

k
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k
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k
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* *( ) ( ) ( ) ( ), , ...  are achieved, 
which can be merged together. This phenomenon 
leads to the increasing of the computation complexity. 
To solve this problem, Eq. (6) in LCS algorithm is 
redefined by Eq. (9).
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Compared with Eq. (1), the computation of 
LCS algorithm is only around half of the earlier 
CS algorithm. Furthermore, the high sensitivity 

information contained in the selected ISCs is 
introduced and further processed by LCS.

2  THE PROPOSED METHOD FOR  
DEGRADATION FEATURE EXTRACTION

2.1 Extraction of LCS high-Order Power Spectral Entropies

Information entropy is an effective factor to 
quantitatively reveal the uncertain information in the 
signal by putting up the contained characteristics. As 
indicated in our previous research in reference [31], 
the high order entropy is sensitive to non-symmetrical 
and nonlinear components and it could reveal the 
information which cannot be obtained by second-
order statistical analysis. Therefore, the high-order 
entropy is used in this paper as the LCS spectrum 
analysis factor. It can describe the degradation trend. 
SE is a kind of information entropy that is defined 
in logarithmic form. For a system which contains Q 
microstates, the SE is defined by Eq. (10) [32].

	 SE Bolt p pi i
i

Q

= −
=
∑ ln( ),
1

	 (10)

where Bolt is the Boltzmann constant, pi means the 
occurrence probability of the ith status. SE is usually 
used to reveal the property of the scope system and 
it can reflect the general trend. However, the factual 
system may be more or less correlated in time 
and space, and SE can hardly reveal all the inner 
characteristics of the system. Being the generalization 
of SE, TE is able to reveal the non-scope information 
which cannot be obtained by SE. TE is defined by Eq. 
(11) [32].

	 TE Bolt p qi
q

i

Q

= − − −
=
∑( ) / ( ),1 1
1

	 (11)

where q is the non-scope parameter. The common 
settled value of q is 3. Compared with SE, the values of 
TE range only from 0 to 1. However, there may be the 
correlations in time and space or certain degradation 
stages. TE is required to be the supplement of SE. 
As a result, to reveal the performance degradation 
of hydraulic pumps effectively and sensitively, the 
Shannon LCS power spectral entropy (SLPE) and 
Tsallis LCS power spectral entropy (TLPE) are both 
selected to be the features.

Based on reference [31], taking the three-channel 
vibration signals as example, the procedures are 
detailed as follows.
①	 LCD is applied in each of the three vibration 

signals; after selection, three ISCs remained.
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②	 Divide each ISC into N parts and then carry out 
Fourier transform on each part and obtain 
X i j Ni

j , , , , ,...,= =1 2 3 1 .
③	 Calculate the composite spectrum SCF( fk):
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④	 Make standard procession on the obtained SCF( fk) 
and the result is {u(t), t = 1, 2, …, N}. Calculate 
the triple correlation of DCT coefficients.
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	 where Y(i) is the DCT coefficient, μ = fk / N, s1 and 
s2 are the 3-order accumulation range, λ1 and λ2 
are positive and the sum should not be more than 
half of the sampling frequency fs.

⑤	 Calculate the proportion of each coefficient:
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l

N

=
=
∑( , ) / ( , ) ,λ λ λ λ1 2

2

1 2

2

1

	 (14)

	 where K means number of the frequency bands.
⑥	 Calculate SLPE and TLPE:
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Based on the analysis, it can be seen that LCS 
high-order power spectral entropies (SLPE and TLPE) 
are sensitive to the total energy changes theoretically. 

2.2 Extraction of LCS High-Order Singular Spectral 
Entropies

As another effective spectrum parameter, singular 
spectral entropy is able to reveal complexity of signal 
components. Compared with power spectral entropy, 
it tends to be more sensitive to response energy 
changing [33]. The first four calculation steps of LCS 
high order singular entropy are the same as LCS high-
order power spectral entropy, and the following steps 
are:
⑤	 Calculate the DCT high order estimation matrix 

B.

	 B b Ni
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( , ) ( , ) / .λ λ λ λ1 2 1 2
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⑥	 Make singular values decomposition on U and 
calculate the proportion of each:

	 U EDW,= 	 (18)

	 where E is V×O matrix, D is O×O matrix and 
D = diag(x1, x2, …, xO). W is O×T matrix, and O is 
the order of U.
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⑦	 Calculate LCS high-order singular entropies 
respectively defined in SE and TE, which is 
marked as SLSE and TLSE:

	 SLSE Bolt p pu u
u

O

= −
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∑ ln ,
1
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q

u
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= − − −
=
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LCS high-order singular entropies (SLSE and 
TLSE) are able to reveal distributions of various 
mode components in composite spectrum sensitively. 
If the degradation degree is lighter, distributions of 
different mode components are in balance and the 
signal complexity will be higher and, consequently, 
the entropies will be higher.

2.3  The Proposed Features Fusion Algorithm

The main purpose of features’ fusion is to improve the 
completeness and conciseness. As a typical evaluating 
factor, the traditional definition for relative entropy is 
shown in Eq. (22) [34]:

	 I y y H y H y yn i n
i
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=
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where I represents for the relative entropy of vector 
y1, …, yn, H(yi) is the SE of each vector. 

Assume that the features data collection extracted 
from various degradation stages after normalization 
is X = [X1, ..., Xn, ..., XN], where N is the number 
of features. Xn is the vector of the nth feature, and  
Xn = [ ,..., ]s sn

m
n T

1 , where sm
n  is the nth element of the 

mth sample.
Step 1. For the extracted N features, calculate I 

(Xn1, Xn2) between two arbitrary feature vectors:

     I H H Hn n n n n n( , ) ( ) ( ) ( ),X X X X X1 2 1 2 1 2= + − 	 (23)

where, Xn1n2 is the new reconstructed feature by the 
fusion of Xn1 and Xn2. sm

n n1 2  is the element of Xn1n2, 
which is defined as:
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Step 2. Choose Xnx and Xny with the maximum 
Inxny and delete these two feature vectors. Then add 
the new fused feature Xnxny into X instead. Then the 
dimension of X reduces to N–1.
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Step 3. Repeat the steps above until dimension X 
becomes 2.

Step 4. Carry out the final fusion of the only two 
features in X. The final achieved feature is the fused 
one needed for use.

Based on the gradual fusion strategy, all extracted 
features are finally fused into only one new feature, 
effectively improving the concision of computation.

3  EXPERIMENTAL VALIDATION 

3.1  Experimental Rig

To verify the proposed method, an experiment was 
conducted on the test-bed shown in Fig. 1. Three-
channel vibration signals were sampled.

x

yz

Fig. 1.  Installation of the vibration sensors

According to the technical documentation from 
the pump manufacturer, the volumetric efficiency 
(VE) is applied to evaluate the degradation 
performance. When VE is less than 80 %, the pump is 
confirmed to be failed. In this experiment, VE was less 
than 80 % when the total time was 582 h 15 min 17 s. 
After disassembly, the piston was verified to occur the 
loose slipper failure, as seen in Fig. 2.

Fig. 2.  The failure of loose slipper

3.2  Results and Analysis

The whole degradation processes are roughly divided, 
as shown in Table 1.

Table 1.  Various degradation stages

VE
Operating  

time
Degradation 

state
Mark

95 % to 100 % 0 to 532 h 55 min 11 s normal

94 % to 95 %
532 h 55 min 12 s to  
549 h 54 min 46 s

initial failure F1

92.5 % to 94 %
549 h 54 min 47 s to  
562 h 0 min 25 s

slow 
development

F2

90 % to 92.5 %
562 h 0 min 26 s to  
572 h 49 min 33 s

weak failure F3

85 % to 90 %
572 h 49 min 34 s to  
579 h 26 min 52 s

accelerated 
degradation

F4

80 % to 85 %
579 h 26 min 53 s to  
582 h 15 min 17 s

loose slipper 
formation

F5

a) 

b) 

c)
Fig. 3.  Time domains of vibration signals xF4;  

a) xF4-X, b) xF4-Y, and c) xF4-Z
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One sample of the F1 to F5 period is taken.  
{xF1, xF2, …, xF5} is used to denote the five samples.  
To simplify the data processing, the initial 1 s of the 
10 s sampled data are used for analysis. Every signal 
contains 5200 points. xF4 is applied as a detailed 
example for analysis. The time domain is shown in 
Fig. 3.

In Fig. 3, we can see that these original signals 
can hardly provide enough complete feature 
information and the influences by noises and other 
disturbances are obvious. Based on the LCD 
algorithm, each signal has been decomposed and 
10ISCs remained. After selection, the 6th ISC of xF4-X, 
the 7th ISC of xF4-Y and the 4th ISC of xF4-Z remained. 
These are equally divided into segments. After Fourier 
transform, the coefficients Xi

j  are achieved. 
Furthermore, SCS( fk) can be calculated by Eq. (12).

3.2.1  DCS Power Spectral Entropy

Based on the procedures presented, the following result 
can be obtained: SLPE = 3.863 and TLPE = 0.725. 
Similarly, SLPE and TLPE of the remaining four 
stages can also be obtained. Data are considered to 
be one group of results. Then, SLPE and TLPE of the 
other nine samples in F1 to F5 are calculated. Results 
are shown in Figs. 4 and 5.

1 2 3 4 5 6 7 8 9 10
3

3.5
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4.5

5

5.5

Groups

S
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E

 

 
F1 F2 F3 F4 F5

Fig. 4.  SLPE in F1 to F5 degradation stages
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Fig. 5.  TLPE in F1 to F5 degradation stages

Fig. 4 shows SLPE in various degradation stages. 
With the aggravation, SLPE tends to be reduced. This 
reveals the tracking ability of degradation changing. 
However, crossovers exist in neighbouring curves 
obviously, meaning that the distinguish ability of 
SLPE still needs to be improved. Fig. 5 shows the 
TLPE in various degradation stages. The crossover 
and overlapping of neighbouring curves become less, 
which reveals the complementary of TE to SE.

3.2.2  LCS High-Order Singular Spectral Entropy

Based on the procedures presented, the result can be 
obtained that: SLSE = 3.227 and TLSE = 0.521. Finally, 
totally 10 groups of results are achieved, which are 
shown in Figs. 6 and 7. 

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

Groups

S
LS

E

 

 
F1 F2 F3 F4 F5

Fig. 6.  SLSE in F1 to F5 degradation stages
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1
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E

 

 F1 F2 F3 F4 F5

Fig. 7.  TLSE in F1 to F5 degradation stages

Compared with LCS high-order power spectral 
entropies, crossover and overlapping in neighbouring 
curves of SLSE and SLTE are obviously reduced. This 
phenomenon means these two entropies possess better 
distinguishing ability than others. However, in detail, 
fluctuations in curves of SSE and STE are slightly 
more obvious, which shows the disadvantages in the 
stability of singular entropy.
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3.2.3  Fusion of Features

The fusion of the ten groups of SLPE, TLPE, SLSE, 
TLSE in F1 to F5 are carried out, and the results are 
shown in Fig. 8.

1 2 3 4 5 6 7 8 9 10
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F1 F2 F3 F4 F5

Fig. 8.  Fusion feature in F1 to F5 degradation stages

3.2.4  Analysis and Comparison of Experimental Results

The double sample Z test [35] is applied for 
quantitative evaluation. Its computation is explained 
by:

	 Z X X n nX X= − +1 2

2

1

2

21 2
( ) ,µ µ 	 (25)

where X1 and X2 denote sample sets of degradation 
feature X in various degradation stages. X  and μX

2    
respectively mean the average and variance of X. n is 
the number of samples. In comparison, the wavelet 
algorithm is used to process the three-channel signals. 
The amplitude and power of the characteristic 
frequencies of the constructed signal are extracted as 

the traditional features, which are marked as TF-1 and 
TF-2. Sensitivity is calculated. and results are shown 
in Table 2.

In Table 2, it can be seen that the traditional 
features TF-1 and TF-2, based on the wavelet 
fusion algorithm, could roughly describe the 
degradation. However, limited by the disadvantages 
of wavelet transform, the sensitivity of TF-1 and 
TF-2 are the lowest. Compared with TF-1 and TF-
2, the performances of four features extracted by 
the proposed LCS fusion algorithm are improved. 
According to the sensitivity of various double 
samples, the extracted features are complementary 
to each other. However, some obviously redundant 
information still remains. Compared with the initial 
four features, the fused feature keeps the better 
performances of original features. Sensitivity to each 
double sample and the mean sensitivity of the fused 
feature are all the highest. Furthermore, there is 
only one feature after fusion, so that the conciseness 
would be greatly improved. This feature’s fusion 
can effectively avoid contradiction disturbances by 
overloading the feature’s information during the 
prognostic policy-decision stage.

Furthermore, the support vector machine (SVM) 
is applied for verifying the identification performance 
of the features. The four extracted features, the fused 
feature based on LPP algorithm [26] and the fused 
feature based on the proposed algorithm are made 
comparison. 30 samples of each stages of F1 to F5 
have been used. There are a total of 150 values for 
each feature. The SVM identification results are 
shown in Table 3. 

Table 2.  Sensitivity of various features

Double Samples
Sensitivity

SLPE TLPE SLSE TLSE TF-1 TF-2 Fused feature
(F1, F2) 10.17 6.38 14.28 12.35 6.38 8.26 17.32
(F2, F3) 12.94 20.58 11.87 15.21 10.94 12.37 24.26
(F3, F4) 8.28 13.15 10.94 24.19 11.27 12.02 25.33
(F4, F5) 19.56 26.31 22.42 19.07 18.95 17.59 28.59
Mean sensitivity 12.74 16.61 14.88 17.70 11.89 12.56 23.88

Table 3.  Degradation stages identification accuracy of various features

F1 [%] F2 [%] F3 [%] F4 [%] F5 [%] Total accuracy 

SLPE 76.7 86.7 73.3 76.7 70 76.7
TLPE 73.3 90 76.7 70 83.3 78.7
SLSE 93.3 86.7 70 66.7 80 79.3
TLSE 76.7 83.3 80 80 83.3 80.6
Fused feature (LPP) 86.7 86.7 83.3 80 86.7 84.6
Fused feature (relative entropy) 93.3 93.3 90 86.7 86.7 90
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Table 3 shows the result of the degradation stage 
identification with various features. As analysed 
previously, the sensitivity of SLPE to degradation is 
not very high. Therefore, the identification accuracy 
of SLPE to various degradation stages is the lowest. 
The accuracy of TLSE is the best of the four extracted 
features. However, the total accuracy of SLPE, TLPE, 
SLSE, and TLSE are close, ranging from 76 % to 
80 %. Based on the LPP algorithm, the accuracy of 
the fused feature is improved to 84.6 %. Limited by 
the disadvantages, the identification of some stages 
has not changed so much before or after fusion. 
The proposed relative entropy fusion algorithm can 
make full use of the extracted feature information. 
Consequently, the identification accuracy of the fused 
feature to each stage and the total accuracy are all the 
highest. This means that the fused feature can evaluate 
various degradation stages of hydraulic pumps.

Above all, the comparison results show that the 
presented LCS algorithm gains the ability to extract 
more sensitive features. Meanwhile, unlike the 
traditional feature dimension reduction method, the 
relative entropy algorithm can make full use of each 
feature’s information, so that the performance and 
concision of the fused feature will be both improved.

4  CONCLUSIONS

A novel fusion algorithm for extracting degradation 
feature is proposed here. Following the application 
in the degradation experiment, major conclusions are 
drawn, as follows:
1.	 LCS method for vibration signals fusion is 

presented to take advantages of fault information. 
LCS high-order power spectral entropy and high-
order singular entropy defined in SE and TE are 
extracted as initial features.

2.	 The fusion method based on information 
entropy is proposed to make fusion of the initial 
features. The concision and performance are both 
effectively improved.

3.	 Experimental results showsthat the fused 
feature performances much better describe the 
degradation of hydraulic pump effectively.
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