
 Informatica 31 (2007) 1–13 1

A Novel Roll-Back Mechanism for Performance Enhancement of
Asynchronous Checkpointing and Recovery
Bidyut Gupta and Shahram Rahimi
Department of Computer Science, Southern Illinois University
Mail Code 4511, Carbondale, IL 62901-4511, USA
{bidyut, rahimi}@cs.siu.edu

Yixin Yang
Department of Biological Sciences, Emporia State University
Emporia, KS 66801, USA
yyang@emporia.edu

Keywords: asynchronous checkpointing, recovery, maximum consistent state

Received: May 26, 2006

In this paper, we present a high performance recovery algorithm for distributed systems in which
checkpoints are taken asynchronously. It offers fast determination of the recent consistent global
checkpoint (maximum consistent state) of a distributed system after the system recovers from a failure.
The main feature of the proposed recovery algorithm is that it avoids to a good extent unnecessary
comparisons of checkpoints while testing for their mutual consistency. The algorithm is executed
simultaneously by all participating processes, which ensures its fast execution. Moreover, we have
presented an enhancement of the proposed recovery idea to put a limit on the dynamically growing
lengths of the data structures used. It further reduces the number of comparisons necessary to determine
a recent consistent state and thereby reducing further the time of completion of the recovery algorithm.
Finally, it is shown that the proposed algorithm offers better performance compared to some related
existing works that use asynchronous checkpointing.
Povzetek: Opisan je izboljšan postopek okrevanja v porazdeljenih sistemih.

1 Introduction
Checkpointing and rollback-recovery are well-

known techniques for providing fault-tolerance in
distributed systems [1]-[5]. The failures are basically
transient in nature such as hardware error [1]. Typically,
in distributed systems, all the sites save their local states,
known as local checkpoints. All the local checkpoints,
one from each site, collectively form a global checkpoint.
A global checkpoint is consistent if no message is sent
after a checkpoint of the set and received before another
checkpoint of the set [2]-[4], that is, each message
recorded as received in a checkpoint should also be
recorded as sent in another checkpoint. In this context, it
may be mentioned that a message is called an orphan
message if it is recorded as received in a checkpoint, but
not recorded as sent in another checkpoint. The local
checkpoints belonging to a consistent global checkpoint
will be termed in the present work as globally consistent
checkpoints (GCCs). After recovery from a failure
processes in a distributed computation restart their
computation from a consistent global checkpoint /state
(CGS) of the system, i.e. from their respective GCCs. It
may be noted that a consistent global checkpoint of a
system is termed as a recent or a maximum one if, after
the system recovers from a failure, the number of events
(states) rolled back at each processor is a minimum [6].

To determine consistent global checkpoints, two
fundamental approaches have been reported in the
literature [1]-[9]. These are synchronous and
asynchronous approaches. In the synchronous approach,
processes involved coordinate their local checkpoint
actions such that the set of all recent checkpoints in the
system is guaranteed to be consistent. Although it
simplifies recovery it has the following disadvantages:
(1) additional messages need to be exchanged by the
checkpointing algorithm when it takes each checkpoint;
(2) synchronization delay is introduced during normal
operation [5]. In the asynchronous approach, processes
take checkpoints independently without any
synchronization among them. Therefore, it is the simplest
form of taking checkpoints. However, because of the
absence of synchronization there is no guarantee that a
set of local checkpoints taken will be a consistent set of
checkpoints. That is, there may exist orphan messages
between the local checkpoints. In order to get rid of the
orphan messages while determining the GCCs, processes
have to rollback. In such a situation, rolling back one
process causes one or more other processes to roll back.
This effect is known as the domino effect [5]. This is the
main drawback of the asynchronous approach. So, a
recovery algorithm has to search for the most recent
consistent set of checkpoints before the system restarts
its normal operation. Therefore, the recovery process is

2 Informatica 31 (2007) 1–13 B. Gupta et al.

quite complex while the checkpointing scheme is much
simpler compared to the same in synchronous approach.

2 Related Works
In this work, we have considered asynchronous

checkpointing approach because of its simplicity in
taking checkpoints. So, in this section we state briefly the
contributions of some noted related works. When
processes take checkpoints independently, some or all of
the checkpoints taken may be useless for the purpose of
constructing consistent global checkpoints. A set of
checkpoints can belong to the same consistent global
snapshot if no zigzag path (Z-path) exists from a
checkpoint to any other checkpoint [15]. In other words,
absence of a Z-path means absence of any orphan
message. A theoretical framework for characterizing
quasi-synchronous algorithms has been presented in [12].
Quasi-synchronous checkpointing algorithms reduce the
number of useless checkpoints by preventing the
formation of noncausal Z-paths between checkpoints and
advance recovery line. “Advancement of recovery line”
is interpreted as follows: the more the recovery line is
advanced, the less is the amount of computation to be
redone by processes after the system of processes restart
their normal operation; meaning thereby the reduction in
the amount of rollback per process after the system
recovers from failure. Depending on the degree to which
the non causal Z-paths are prevented, quasi-synchronous
checkpointing algorithms are classified into three classes
namely [12], Strictly Z-Path Free (SZPF), Z-Path Free
(ZPF), and Z-Cycle Free (ZCF).

Manivannan and Singhal [13] have presented a
quasi-synchronous checkpointing algorithm which
allows the processes to take checkpoints asynchronously
and reduces the number of useless checkpoints by
forcing processes to take additional checkpoints. In this
checkpointing algorithm, each process maintains a
counter which is periodically incremented and the time
period is same in all the processes. When a process takes
a checkpoint, it assigns the current value of its counter as
the sequence number for the checkpoint. Each message is
equipped (i.e. piggybacked) with the sequence number of
the current checkpoint. If the sequence number
accompanying the message is greater than the sequence
number of the current checkpoint of the process
receiving the message, then the receiving process takes a
checkpoint and assigns the sequence number received in
the message as the sequence number to the new
checkpoint and then processes the message. Quasi-
synchronous checkpointing algorithm makes sure that
none of the checkpoints taken lies on a Z-cycle in order
to make all checkpoints useful. Asynchronous recovery
algorithms are also presented in this paper based on the
checkpointing algorithm. A failed process needs to roll
back to its latest checkpoint and requests other processes
to rollback to their consistent (latest) checkpoints. The
work claims to be free from any domino effect. However,
arguably this work is more of a synchronous approach
than an asynchronous approach; partly because all
processes have identical time periods to take

checkpoints, and checkpoint sequence numbers are used
so that all the ith checkpoints of all processes are taken at
the same time (i.e., logically at same time). Hence, we
argue that there is no question of domino effect as this
work is not at all an asynchronous approach.

Gupta et al. [11] have proposed a hybrid roll forward
checkpointing/recovery approach. Processes take
checkpoints periodically and these time periods are
different for different processes. Periodically, in absence
of any failure, an initiator process invokes the algorithm
to advance the recovery line; the duration of this period
is assumed to be much larger than the time period of any
individual process. Therefore, the domino effect is
limited by this time period. The main advantages of this
work are that each process may need to keep at most two
checkpoints at any time, processes participate in the
algorithm simultaneously ensuring re-execution time
after a failure is limited by the period of execution of the
algorithm, and finally, recovery is as simple as in the
synchronous checkpointing/recovery approach.

Ohara et al. [14] proposed an uncoordinated
checkpointing algorithm for finding a recovery line
where a given checkpoint is the earliest. In this
algorithm, each process maintains a set of all local
checkpoints on that process in a local vector. All local
checkpoints which are just behind a given checkpoint are
initially assumed to form a consistent global checkpoint.
The algorithm checks happened-before relation for any
coupled local checkpoints belonging to an ordered global
checkpoint set. If there exists any happened-before
relation, it replaces a local checkpoint with a successive
local checkpoint of the same process. The algorithm may
end by either finding a recovery line or running out of
local checkpoints to be replaced.

Venkatesan and Juang [16] presented an
asynchronous checkpointing algorithm where each
process take checkpoints independently and keeps track
of the number of messages it has sent to other processes
as well as the number of messages it has received from
other processes. The algorithm is initiated by the process
which fails and is recovered from thereafter or when it
learns about process failure. During its each iteration, a
process needs to compare the number of messages
received by it and the actual number of messages sent by
the other process, at each of its checkpoint starting from
the most recent one. The received vectors corresponding
to all the checkpoints including the current one and the
one where next iteration starts, need to be fetched from
the storage in order to decide the checkpoint for the next
iteration to start with.

3 System Model
The distributed system has the following

characteristics [1], [6], [10]:
1. Processes do not share memory and they

communicate via messages sent through channels.
2. Channels are made virtually lossless and order of the

messages is preserved by some end-to-end
transmission protocol.

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 3

3. When a process fails, all other processes are notified
of the failure in finite time. We also assume that no
further processor (process) failures occur during the
execution of the algorithm. In fact, the algorithm
must be restarted if there are further failures.

Below we state the problem considered in this work.

Problem Formulation: In this work, we have considered
asynchronous checkpointing approach because of its
simplicity in taking checkpoints. That is, processes take
checkpoints periodically and each process determines
independently its time period of taking its checkpoints.
So, different processes may have different time periods
for taking their checkpoints. After the system recovers
from a failure, processes start from the recent consistent
state of the system. However, the main drawback of this
approach is that determining a consistent global
checkpoint may involve a very large number of pairwise
comparisons of checkpoints belonging to different
processes because of the presence of a possible domino
effect. In absence of any hybrid approach [11], in the
worst case, all checkpoints of all processes may have to
be compared. However, asynchronous checkpointing
approach is suitable for highly reliable systems where
failures occur very seldom.

In this work, our objective is to design an efficient
recovery algorithm that will reduce considerably the
number of unnecessary pairwise comparisons of
checkpoints while determining a consistent global
checkpoint. In other words, our objective is to identify a
priori the checkpoints that can not be the GCCs so that
we can exclude these checkpoints from comparison
resulting in a fast determination of a recent consistent
global checkpoint (state) of the system. Note that an
initial version of this work has appeared in [17].

4 Data Structures
Let us assume that the distributed system under

consideration consists of n processes. Each process Pi
maintains a vectors Vi of length n. The Vi vector records
the number of messages process Pi has sent to every
other process with the exception that the element vi,i (=Vi
(i)), i.e. the number of messages process Pi has sent to
itself will be always zero. The Vi vector is described
below:

Vi = [vi,0, vi,1, …. . ,vi,i, …. . ,vi,n-1]
where vi,j = Vi (j) and represents the number of messages
sent by process Pi to process Pj, and vi,i is always zero.

All entries in Vi are initialized to zero. Each time process
Pi decides to send a message m to process Pj, then Vi(j) is
incremented by one. This facilitates process Pi to know
how many messages it has sent to process Pj. In this
work, Cj,r represents the rth checkpoint taken by process
Pj. Sometimes when mentioning the checkpoint number
is irrelevant, we simply use Cj to denote a checkpoint
taken by Pj. Each process Pi also maintains a linear list
Ri of dynamically growing length. At any given time t,
the length of the list Ri (i.e. the number of the entries in

the list) is equal to the number of checkpoints taken by Pi
till time t. For example, the length of the list is 3 at the
3rd checkpoint of process Pi where as its length will be 4
at its 4th checkpoint and so on. The list Ri is described as
Ri = [ri,1, …. . ,ri,r, ……,], where ri,r = Ri (r) and
represents the number of messages received by process Pi
from all other processes till its rth checkpoint. Each such
list is initially empty.

Each process stores its vectors and the lists together
with the corresponding checkpoints in stable storage.
Also copies of the lists and the vectors are stored in the
respective local memories of the processors running the
processes. It offers their faster access than to access them
from stable storage whenever possible. In addition, each
process maintains a Boolean flag. This flag is used to
convey some specific information (described later).

5 Observations
Consider the system of three processes P1, P2, and P3

as shown in Fig. 1. The vectors V1, V2, and V3 initially
have all their entries set to zero. The lists R1, R2, and R3
are initially all empty. By the time process P1 takes its
first checkpoint C1,1, it did not send any message to P2 or
P3. So its V1 vector is [000]. Also, process P1 received
one message before it took its first checkpoint; so now
the list R1 has one entry, i.e. R1 = [1]. By the time process
P1 takes its second checkpoint C1, 2, it has already sent
one message to P2. So it increments V1(2) by 1 and the
vector V1 is now = [010]. Also, process P1 has not
received any messages (from P2 or from P3) before it
takes its second checkpoint. So the list R1 at C1,2 is [1,1].
In the same way, the vector and the list are updated at
each checkpoint of each process. This example will be
used later in this paper to illustrate the working principle
of our proposed algorithm.

We assume that a process Pi after recovery from its
failure acts as the initiator process, i.e., Pi is responsible
for invoking the recovery algorithm. To start with Pi
sends a message requesting all Pj, 0 ≤ j ≤ n-1, j ≠ i, to
send to it their respective Vj vectors corresponding to
their latest checkpoints. Upon receiving the request,
every process Pj sends its Vj to Pi. After receiving the
vector Vj from all processes the initiator process Pi
forms a two dimensional array VN . It is written below.

where the jth row represents Vj, 1-nj0 ≤≤ . The
initiator process then computes the column sums to
create the following vector:

VC = [vc

0, vc
1, …, vc

j, … ,vc
n-1]

where vc

j = column sum of the entries of the jth column
of VN and is given as

4 Informatica 31 (2007) 1–13 B. Gupta et al.

vc

j = VC(j) = ∑VN (i , j), for i = 1 to n.

Therefore, vc
j represents the total number of messages

sent to process Pj by all other processes as recorded in
each sending process’ latest checkpoint. The initiator
process Pi then unicasts vc

j (= VC(j)) to process Pj. After
receiving vc

j from Pi, each process Pj computes Dj = Rj(r)
- vc

j, assuming that the last checkpoint of process Pj is the
rth checkpoint (Cj,r). The difference Dj (if >0) gives the
exact number of orphan messages received by a process
Pj till its checkpoint Cj,r, from all other processes in the
system. Initiator process Pi also does similar computation
to determine the exact number of orphan messages (if
any) it has received till its latest checkpoint Ci,r. Proof of
this statement is given later.

Figure 1: Vectors (Vi) and lists (Ri) for i = 1, 2, and 3

Observe that for every process Pj, vc

j and Rj(r) may not
be identical, because some of the sent messages
(recorded already by the sending processes at their
respective latest checkpoints) may not have arrived yet at
Pj (i.e. vc

j ≥ Rj(r)), or some of the received messages (by
Pj) may not have been recorded at the latest checkpoints
of some sending processes because these messages may
have been sent after their latest checkpoints (i.e. vc

j ≤
Rj(r)).

Assume that the last checkpoint of process Pj is the
rth checkpoint (Cj,r) and Dj is greater than zero (Dj >0).
Search in the list Rj is performed backwards, starting
with its last component. Thus, we search the proceeding
entries of the list Rj from Rj (r) till the first Rj (m) so that
Rj (r) - Rj (m) ≥ Dj , (m < r). Then, the checkpoints Cj,r,
…, Cj, m+1 are excluded from the consideration of GCC
composition, i.e. these checkpoints will be skipped. So,
now we start from the checkpoint Cj,m of process Pj. The
vector Vj at checkpoint Cj,m along with the Boolean flag
“1” are sent to the initiator process Pi for the computation
of the next iteration.

In the next iteration, if Dj is smaller than or equal to
zero (Dj ≤ 0), which means that process Pj has not
received any orphan message till the checkpoint Cj,r.
process Pj will send the flag “0” to the initiator process Pi

. The initiator process Pi will use the vector Vj at Cj,r for
the computation of the next iteration. Initiator process Pi
is also involved in similar computation like any other

process Pj to determine its appropriate vector Vi needed
for the computation of the next iteration. This will be
repeated until all processes send “0” flags to the initiator
process Pi and Pi’s own flag is also 0 . Then the initiator
process Pi will notify all processes to rollback to their
respective latest checkpoints at which their
corresponding flags have the value 0 each. Thus, this set
of checkpoints is a globally consistent checkpoint (proof
is given later).

The following observations are necessary for
designing the recovery algorithm.

Lemma 1: Let Cj,r be the latest checkpoint of process Pj
at time t. If Dj > 0, then process Pj has received a total Dj
number of orphan messages from other processes.
Proof: Rj(r) represents the total number of messages
process Pj has received so far from all other processes till
time t. Also vc

j represents the total number of messages
sent by all other processes to Pj as recorded in their latest
checkpoints. Therefore Dj > 0 means that at least some
process Pi (i ≠ j) has sent some message(s) to Pj after
taking its latest checkpoints. It also means that the
sending processes have not yet been able to record these
Dj messages. Since all such Dj messages have been
received and recorded in Pj’s latest checkpoint, but
remain unrecorded by the sending processes, therefore Pj
has received Dj number of orphan messages from the rest
of the processes with respect to the checkpoint Cj,r. ■

Lemma 2: If Dj ≤ 0, process Pj has not received any
orphan message.
Proof: Dj = 0 means that the number of messages
received by Pj is equal to the number of messages sent to
Pj and these sent (also received) messages have already
been recorded by the sending processes in their latest
checkpoints. Therefore the received messages can not be
orphan.

Also, Dj < 0 means that the number of the messages
received by Pj is less than the number of messages sent to
it. Now vc

j is the total number of messages sent by all
other processes to Pj as recorded in the latest checkpoints
of the sending processes. It means that all messages
received by Pj have already been recorded by the senders.
Hence none of such received messages can be an orphan.
Hence the proof follows. ■
Lemma 3: Let Dj > 0 at the checkpoint Cj,r of process Pj
and let m denote the largest integer that satisfies Rj(r) -
Rj(m) ≥ Dj (m < r). Then none of the checkpoints Cj,r, Cj,r-

1, …, Cj, m+1 belongs to the set of the globally consistent
checkpoints.
Proof: Because m is the largest integer that satisfies Rj(r)
- Rj(m) ≥ Dj (m < r), the relation Rj(r) - Rj(i) < Dj is
established for any i (m+1 ≤ i ≤ r). Moreover, according
to Lemma 1, Pj has received exactly Dj number of orphan
messages from all other processes. So there must be at
least one orphan message received by process Pj before
Cj,r, and the same also is true before every checkpoint
between Cj,r and Cj,m. Hence, none of the checkpoints Cj,r,
Cj,r-1, …, Cj, m+1 can belong to the set of the globally
consistent checkpoints. ■

R R R1 R1= R1=1,1

R

R R

V1 V1 V1 V1 V1

V2

V3 V3

Fa

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 5

Theorem 1: Given a set S* = {Cj,r} of n checkpoints, one
from each Pj, 1-nj0 ≤≤ , if for every checkpoint Cj,r,
its corresponding Dj ≤ 0, then S* is the set of the
globally consistent checkpoints.
Proof: Since Dj ≤ 0, for each process Pj, (1-nj0 ≤≤)
at its checkpoint Cj,r ε S*, therefore, all received
messages by any such process Pj have already been
recorded as sent by the sending processes in their
corresponding checkpoints. Hence, according to Lemma
2 none of the messages received by process Pj is an
orphan message. This is true for all processes. Therefore,
the system of n processes does not have any orphan
messages with respect to the checkpoints of the set S*.
Hence the set S* is the set of globally consistent
checkpoints. ■

Before we present the algorithm formally, we give
an illustration of its working principle using the example
of Fig. 1.

An illustration: Suppose a failure ‘f’ occurs on the
processor running the process P1. The process P1 that
became faulty, acts as the initiator after recovery from
failure. After the system recovers from the failure, to
start with, initiator process P1 broadcasts a request asking
the other two processes P2 and P3 to send their respective
vectors V2 and V3 corresponding to their latest
checkpoints C2,1, and C3,2. In this example, the three
latest checkpoints of processes P1, P2, and P3 before the
failure occurs are C1,5, C2,1, and C3,2. The respective
vectors V1, V2, and V3 at the three latest checkpoints are
[010], [100] and [020]. After receiving all these vectors,
P1 (it becomes the initiator after recovery from failure)
forms a two dimensional array VN. It is written below:

 0 1 0
 VN = 1 0 0
 0 2 0

P1 creates the vector VC = [130] and unicasts vc
j to

each process Pj, for j = 1, 2, and 3. After receiving vc
j

from Pi each process Pj computes Dj (= Rj(r) – vc
j)

(assuming the last checkpoint of Pj is the rth checkpoint)
to determine the total number of orphan messages (if
any) it has received with respect to its latest checkpoint
and also Pi does the same. The lists R1, R2, and R3 at the
latest checkpoints (C1,5, C2,1, and C3,2) of processes P1, P2
and P3 are [1,1,2,4,5], [2] and [0,1] respectively. P1 finds
that D1 = (5-1) = 4; so it has received 4 orphan messages.
It calculates the difference between R1(5) and R1(2) and
finds that R1(5) – R1(2) = 4 = D1; so process P1 now
considers the vector V1 (= [010]) at C1,2 along with a
flag “1” for the computation of the next iteration. P2 finds
that it has not received any orphan message because D2 =
(2-3) < 0. So it sends the same vector [100] and a flag
“0” to P1. Process P3 finds that D3 = (1-0) = 1; so it has
received an orphan message. It calculates the difference
between R3(2) and R3(1) and finds that R3(2) - R3(1) = 1
= D3; so process P3 now sends the vector V3 (= [010]) at
C3,1 along with a flag “1” to P1 for the computation of
the next iteration. In the second iteration, P1 forms the
following two dimensional array.

 0 1 0
 VN = 1 0 0
 0 1 0

P1 creates the vector VC = [120] and unicasts vc

j to
process Pj, for j = 1, 2, and 3. P1 finds that it has not
received any orphan message because at C1,2, its D1 = 1 –
1 = 0. So, it sets its flag to 0. P2 also finds that it has not
received any orphan message because at C2,1, its D2 = 2 –
2 = 0; and it sends the flag “0” to P1. Similarly, P3 finds
that it has not received any orphan message because at
C3,1, its D3 (= R3(1) – vc

3) = 0 – 0 = 0, and it sends a flag
“0” to P1. Thus, P1 receives flag 0 from each process
including its own flag set to 0. It then notifies each
process to rollback to the current checkpoints
corresponding to these flags (= 0). At this time, none of
the processes needs to roll back further and hence P1
terminates the algorithm. Thus the algorithm terminates
after two iterations. Therefore the GCCs belonging to the
maximum consistent state are C1,2, C2,1 , and C3,1.

It may be noted that in each iteration we need to
fetch only the latest Rj for each process Pj and some Vj
vectors (not all) to determine the GCCs. In each iteration,
the checkpoints that can not be the GCCs are identified
and their vectors Vj are not fetched at all. That is, the
presented approach will not repeat its operation
unnecessarily for these vectors corresponding to these
non-GCCs. It definitely makes the approach fast and
efficient. Observe what happens if we do not consider the
above idea to determine the GCCs. It is stated below.

First, C1,5, C2,1, and C3,2 are considered and
compared pairwise to determine if they are globally
consistent. Since C1,5 and C3,2 are not, so in the next
iteration C1,4, C2,1, and C3,1 are considered pairwise. But
C1,4 cannot be a GCC. Therefore C1,3, C2,1, and C3,1 are
now considered. But since C1,3 can not be a GCC,
therefore C1,2, C2,1, and C3,1 are now considered. This
time it is found that these three checkpoints are globally
consistent. Therefore four iterations for pairwise
comparisons of three checkpoints, one from each
process, are needed to determine the GCCs as opposed to
only two when the approach presented in this work is
followed. It also means that the number of trips to the
stable storage for fetching checkpoints can also be
reduced to a good extent in the proposed approach. It
definitely makes our algorithm fast. Moreover when
processes take large number of checkpoints before a
failure occurs, our approach may offer even much better
performance from the viewpoint of a possible large
reduction in the number of iterations (i.e. the number of
trips to stable storage as well) to determine the GCCs. As
a result, the recovery scheme also will be faster. Besides,
it is clear from the example that each process Pj
simultaneously identifies the checkpoints that cannot be
globally consistent and therefore these checkpoints
should be skipped. This parallelism of the algorithm
further enhances the speed of execution of the recovery
approach.

6 Informatica 31 (2007) 1–13 B. Gupta et al.

6 Algorithm to Determine Globally
Consistent Checkpoints

In the following algorithm we assume that process Pi
was faulty. So, it becomes the initiator of the recovery
algorithm after it recovers from the failure.

6.1 Algorithm Recovery
Input: Given the latest n checkpoints, one for each

process Pj , 0 ≤ j ≤ n-1, for an n process system
and the corresponding vectors Vj and lists Rj at
these n checkpoints.

Output: A set of globally consistent checkpoints

(maximum consistent state of the system).

The responsibilities of each participating process Pj
and the initiator process Pi are stated in Fig. 2.
Proof of Correctness: Each process Pj repeats its steps 1,
2, 3, and 4 to arrive at a checkpoint that has not recorded
the receipt of any orphan message from the other
processes (using the observations of Lemmas 1, 2, and
3). In other words, it identifies the checkpoints that can
not belong to the set of the globally consistent
checkpoints and skips them. This decision is taken by
identifying a checkpoint Cj,m such that m is the largest
integer that satisfies Rj(r) - Rj(m) ≥ Dj (m < r). None of
the checkpoints Cj,r, Cj,r-1, …, Cj, m+1 can belong to the set
of the globally consistent checkpoints and they are
skipped. However, the initiator process Pi decides when
to terminate the algorithm, i.e., when the checkpoints can
become globally consistent. Process Pi checks to see if all
processes send flags of 0, i.e. Dj ≤ 0 for each process Pj.
If so, the algorithm terminates according to Theorem 1.
Note that the condition Dj ≤ 0 must always occur
during the execution of the algorithm. It may be observed
that in the worst case, because of some typical
communication pattern, the domino effect may force
each process to restart from its initial state where for
each process Pj we always have Dj = 0. Besides, since
the algorithm starts with the latest checkpoints, the
number of events (states) rolled back at each processor is
a minimum. This is true because, in its Step 4 each
process Pj skips only the checkpoints that are non GCCs.
Thus the algorithm determines the maximum consistent
state of the system as well. ■

6.2 Advantages of the proposed approach
The presented algorithm offers the following

advantages. During its each iteration, each process Pj
determines the checkpoints that can not be the GCCs.
Therefore, the algorithm is able to avoid any unnecessary
computations of VC corresponding to these non GCCs.
The presented algorithm skips checkpoints that do not
belong to the set of the globally consistent checkpoints;
thus it avoids many unnecessary pairwise comparisons. It
also means that the number of trips to the stable storage
for fetching checkpoints can also be reduced to a good
extent in the proposed approach. It definitely makes the

algorithm fast and efficient. The simultaneous execution
of the algorithm by all participating processes also
contributes to the speed of execution of the algorithm.
Besides, the algorithm can find the maximum number of
checkpoints to be skipped by determining the largest
integer m, which satisfies Rj(r) - Rj(m) ≥ Dj. This
guarantees significant reduction in the iterations of
computation.

6.3 Performance
Message complexity: Suppose the termination of the

algorithm requires the construction of the vector VC by
the initiator process Pi to occur k times (i.e. k number of
iterations). During each such time every process in the n-
process system exchanges a couple of messages with the
initiator process Pi. Thus, O(n) messages are sufficient
for each time. Thus, considering k times, the message
complexity of the algorithm is O(kn).

Besides message complexity, another factor that
must be considered as a performance measure is the
number of pairwise comparisons of the checkpoints
among the processes that is needed to be performed by
any asynchronous checkpointing/recovery approach. This
is done in order to determine a consistent global state of
the system. Obviously larger the number of such
comparisons, larger is the execution time of the recovery
algorithm. This has been discussed in the previous
subsection.

It may be noted that the number of such pairwise
comparisons is also related to the number of times
checkpoints are fetched from stable storage, i.e. the
number of trips to the storage. The time spent on such
trips may be substantial enough to affect to a good extent
the speed of execution of any recovery algorithm. One
possible solution may be to fetch a large number of
checkpoints at a time. However, it may not be a good
idea at all in many situations; for example, a process may
end up in fetching too many when that many are not
needed, or too little when more are needed. So, it
becomes quite arbitrary about how many checkpoints
should be fetched at a time. Therefore, it is wise to
consider that a process will fetch one checkpoint at a
time and in fact, this is true for all existing asynchronous
checkpointing / recovery algorithms. In the following
analysis we consider the fact that larger the number of
pairwise comparisons of checkpoints, larger is the
number of trips to stable storage, and therefore, larger is
the execution time as a result.

In our analysis we will not consider complexity due
to message size, as most related works including ours use
control messages of reasonably small size and all these
works differ mainly in terms of the number of
comparisons, number of iterations, and the number of
control message needed to determine a consistent global
state. It may be noted that computing this number of
comparisons is not very straightforward because it
depends solely on the nature of the distributed
computations. However, we give an approximate
analysis which may not be very accurate; still it will offer
a clear understanding of the advantages of our algorithm

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 7

8 Informatica 31 (2007) 1–13 B. Gupta et al.

Figure 2: The responsibilities of each participating process Pj and the initiator process Pi

over some other noted asynchronous checkpointing /
recovery approaches [14], [16]. It is stated below.

Let the system consist of n processes. For simplicity
we assume that after a failure occurs and the system
recovers from it, each process will skip on an average its
latest (r-1) checkpoints to restart its computation. Thus a
process Pj will skip its latest (r-1) checkpoints Cj,m+2, …. ,
Cj,r+m. We also assume that the set {C0,m+1, C1,m+1, …,Cn-

1,m+1} represents the globally consistent checkpoint
(maximum consistent state) of the system and our
algorithm will determine it in k number of iterations. In
this simple model, we consider a recovery approach
associated with asynchronous checkpointing scheme in
which the pairwise comparisons to determine
checkpoints’ consistency involves first the checkpoints
of the set {C0,m+r, …. , Cn-1,m+r}, followed by the set
{C0,m+r-1, …. , Cn-1,m+r-1}, … and so on, and finally the set
{C0,m+1, …., Cn-1,m+1}which is the globally consistent
state. Therefore, the total number of comparisons is
given by [r x{n(n-1)}/2]. Note that this may not be the
exact way to perform the comparisons in a particular
case; still it offers a clear view of how complex it can be.
In general, a checkpoint(s) in one set may also have to be
compared with a checkpoint(s) in another set. On the
other hand, not necessarily all checkpoints in a set may
be needed to be pairwise compared. It depends on the
nature of the distributed computations. So the actual
number of comparisons may be larger or smaller than the
number [r× {n(n-1)}/2]. Anyway, it is clear that this
number is much larger than the total number of
comparisons k×n, offered by our approach, where n is the
number of parallel comparisons to test if Dj > 0 in each
iteration and 1 ≤ k ≤ r. Observe that in the worst case, the
number of comparisons of the proposed approach may
become [r× {n(n-1)}/2]. Below we have compared the
performance of our approach with the approaches in [14],
[16].

6.3.1 Comparison with Ohara et. al. [14]
Ohara et al. [14] have proposed an asynchronous

approach for finding a recovery line where a given
checkpoint is the earliest. All the local checkpoints which
are just behind a given checkpoint are initially assumed
to form a consistent global checkpoint. In this algorithm,
happened-before relations are checked for every coupled
local checkpoints belonging to an ordered global
checkpoint set. If there exists any happened-before
relation, it replaces a local checkpoint with a successive
local checkpoint of the same process. The algorithm may
end by either finding a recovery line or running out of
local checkpoints to be replaced. This leads to exhaustive
comparisons of happened before relations for every
coupled local checkpoints. The number of such
comparisons is approximately [r× {n(n-1)}/2] as
calculated earlier. In our algorithm, it skips the
checkpoints that do not belong to the set of the globally
consistent checkpoints. Thus, our algorithm reduces to a
good extent unnecessary pairwise comparisons of the
checkpoints to determine global consistent checkpoint of

the system. Performance comparison of the above
mentioned approach [14] and our approach is shown in
Fig. 4.

Fig. 3 illustrates how the number of comparisons is
affected with the increase in the average number of
checkpoints per process (r) in the asynchronous approach
[14] and in our approach. Fig. 4 shows the variation of
the number of comparisons with the increase in the
number of processes (n). Both figures highlight the
advantages offered by our approach, i.e. considerable
amount of reduction in the number of comparisons in our
approach. It helps the processes to restart their
computation related to the distributed application much
faster after the system recovers from a failure.

Figure 3: Number of comparisons vs. the average

number of checkpoints per process (r).

6.3.2 Comparison with Venkatesan et. al. [16]
Venkatesan and Juang [16] presented an

asynchronous checkpointing algorithm where each
process takes checkpoints independently and keeps track
of the number of messages it has sent to other processes
as well as the number of messages it has received from
other processes. The existence of orphan messages is
discovered by comparing the number of messages sent
and received. The algorithm is initiated by the process
when a failure occurs or when it learns about process
failure.

Figure 4: Number of comparisons vs. the number of

processes (n).

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 9

During its each iteration, a process needs to compare

the number of messages received by it and the actual
number of messages sent by the other process, at each of
its checkpoints starting from the recent one. The received
vectors corresponding to all the checkpoints including
the current one and the one where next iteration should
start, need to be fetched from the storage in order to
decide the checkpoint for the next iteration to start with.
It means that the number of trips to the storage for
fetching the information related to the received message
(for the purpose of comparison) will be equal to the
number of checkpoints starting from the current
checkpoint all the way to the checkpoint where the next
iteration should start.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

n

N
o.

 o
f M

es
sa

ge
s

The Proposed Approach Venkatesan and Juang Approach

Figure 5: Number of control messages vs. the

number of processes (n).

In our algorithm, the decision about the checkpoint at
which the next iteration should start is based on the R-
vector at the recent checkpoint only. This algorithm skips
checkpoints that do not belong to the set of the globally
consistent checkpoints by examining this R-vector only.
Therefore, in order to determine the checkpoint for the
next iteration to start with, the number of trips to the
storage is only one per iteration. This means that the total
number of trips to complete the execution of our
algorithm is reduced to a good extent compared to that in
[16]. We now compare the two algorithms based on the
number of control messages needed to execute the
respective algorithms.

In [16], in each iteration, for an n-process system
n(n-1) messages are exchanged among the processes.
Thus, O(n2) messages are exchanged in each iteration. In
our algorithm, 3(n-1) messages are exchanged in each
iteration. Thus, O(n) messages are sufficient in each
iteration in our algorithm where n is the number of
processes in the system. Fig. 5 shows the message
complexity comparison of the two algorithms with the
increase in the number of processes. This figure clearly
shows the advantage offered by our algorithm over the
one in [16].

7 Further Enhancement
We have seen that the linear list Rj maintained by a

process Pj increases dynamically. If the application
program has large execution time and there is seldom any

failure during its execution, the length of the lists may
become too large; thereby it may consume considerable
amount of memory. To solve this problem, i.e. to keep
the list from growing too much we will propose a simple
solution in this section. The following operation is
needed in the implementation of the idea.

We define the subtraction operation on two vectors
Vj of process Pj at its two checkpoints Cj,m and Cj,s with (s
> m) as follows:

Vj at Cj,s – Vj at Cj,m = [(vj,0 at Cj,s – vj,0 at Cj,m), … ,

(vj, n-1 at Cj,s – vj, n-1 at Cj,m)] = [(vj,p at Cj,s – vj,p at Cj,m)]
for 0 ≤ p ≤ n-1

We now state the basic idea to keep the growing

lengths of the lists in control. This idea has been used in
designing the enhanced recovery algorithm stated later in
this section. It may be noted that the recovery algorithm
stated earlier does not consider the use of this idea.

In absence of any failure an algorithm runs
periodically (say the time period is T which should be
much larger than the time period of any individual
process) to put a limit on the length of the R-vector. The
lengths of the lists (R-vectors) may then be limited by the
number of checkpoints taken by the processes during the
time interval (T) between two successive executions of
the algorithm. Besides in doing so, this also advances the
recovery line in the event that a recent recovery line
exists other than the one found during the previous
execution of the algorithm. In effect, the number of
comparisons of the checkpoints to determine a recent
consistent state may also drastically reduce since there is
a possibility that the algorithm will consider in a
particular run only the checkpoints which the processes
take during the interval T. Therefore, this enhanced
algorithm, in general, may take much less time to
complete its execution compared to Algorithm Recovery.
Also note that at the completion of the lth execution of the
algorithm a process Pj will have in stable storage only its
recent globally consistent checkpoint, say Cj,m and any
other checkpoint (s) it has taken thereafter and prior to
the start of the lth periodic execution of the algorithm.

In describing the following two rules for updating
the lists Rj and the vectors Vj of a process Pj we have
assumed that the latest globally consistent checkpoint of
process Pj is Cj,m as determined by the lth execution of the
algorithm and it has taken (k-m) more checkpoints
thereafter and prior to the start of the lth periodic
execution of the algorithm.
Rule 1: Updated Rj at Cj,m = {} and updated Vj at Cj,m =
[00…0]
 Rule 2: Updated Rj at Cj,s for (m+1 ≤ s ≤ k) = [(Rj(m+1)
– Rj(m)), … , (Rj(s) – Rj(m))], and

Updated Vj at each Cj,s = [(vj,p at Cj,s – vj,p at Cj,m)]
for 0 ≤ p ≤ n-1

When we implement the above idea of reducing the

lengths of the lists, either of the following two
approaches can be adopted:
Approach 1: When a failure occurs and the system
recovers from the failure, the algorithm is run again in

10 Informatica 31 (2007) 1–13 B. Gupta et al.

spite of its periodic execution, with the hope that a recent
(maximum) consistent state may be found which is not
identical to the one determined by its last periodical
execution. In such a situation the time to complete the
application will be less because of the advancement of
the recovery line.

On the other hand, if such a situation as mentioned
above does not exist, the algorithm will output the same
consistent state as determined in its last periodic
execution. In this case, however, the application will take
an additional amount of time equal to the execution time
of the algorithm for its completion.

Approach 2: After the system recovers from a failure all
processes restart from their respective globally consistent
checkpoints which have already been determined by the
algorithm’s last periodic execution prior to the
occurrence of the failure. The recovery becomes as
simple as that in a synchronous approach. However,
since this approach does not look for the possible
existence of a recent consistent state other than the
already existing one, therefore the time to complete the
application may increase.

Observe that irrespective of which approach is
followed, the next periodic execution of the algorithm
will occur T time units after the system restarts. About
when to apply a specific rule, Rules 1 and 2 will be
implemented when the algorithm runs periodically in
absence of any failure. Rule 1 is also implemented when
determination of a consistent global state of the system is
needed after the system recovers from a failure
(Approach 1). In the following algorithm we have
considered a combination of the two approaches.

For the selection of an initiator process for running
the algorithm periodically, we consider that each process
Pi maintains a local CLKi variable which is incremented
at periodic time interval T. It also maintains a local
counter denoted as counteri , initially set to 0 and is
incremented by process Pi during its turn to initiate the
recovery algorithm. Thus, a process on its own
determines if it is its turn to initiate the execution of the
algorithm. In this context, observe that the set of GCCs is
unique and is independent of the initiator process. We
state below how a process Pi does it before we formally
state the algorithm:

Selection of an initiator process:
At each process Pi (0 ≤ i ≤ n-1):
 If CLKi = (i+(counteri*n))*T
 counteri= counteri+1;
 /*When its turn to initiate the recovery algorithm,
 i.e., Pi becomes the initiator*/

Algorithm Recovery – Enhanced:
Input: Given the latest n checkpoints, one for each

process Pj , 0 ≤ j ≤ n-1, for an n process
 system and the corresponding vectors Vj and

lists Rj at these n checkpoints.
Output: A set of globally consistent checkpoints

(maximum consistent state of the system).

The responsibilities of the initiator process Pi and each
participating process Pj are stated in Fig. 6.

An example: Consider the system as shown in Fig. 7.
Ignore the presence of the failure ‘f’ for the time being.
Suppose that the periodic execution of algorithm starts
immediately after processes P1 and P3 take their
respective checkpoints C1,5 and C3,2. The algorithm
determines the latest consistent global checkpoint of the
system. It is {C1,2, C2,1, C3,1}.

The two rules are applied to update the lists R1, R2,
and R3, and the vectors V1, V2, and V3 at the checkpoints
of processes P1, P2, and P3 starting from their respective
latest globally consistent checkpoints, which are namely
C1,2, C2,1, C3,1. The system with the updated lists and
vectors is shown in Fig. 8. The checkpoints shown in Fig.
8 are the only ones saved in stable storage.

Now assume that a failure ‘f’ has occurred.
Therefore the algorithm determines the consistent global
checkpoint of the system, which is {C1,2, C2,1, C3,1} and
applies only Rule 1 to reset the vectors to zero and to
make the lists empty at the respective GCCs of the three
processes.

Figure 7: Before the execution of the algorithm

The system in this situation is shown in Fig. 9. The
three respective consistent checkpoints are the only ones
saved in the stable storage at this time.

Note that the consistent global state remains the
same (see Figs. 8 and 9). This is the situation when time
to complete the application program increases by an
amount equal to the time to execute the recovery
algorithm. This has been pointed out earlier in the
description of Approach 1. However, this will not happen
if only Approach 2 is followed for recovery.

R R R1 R1= R1=1,

R

R3 = 0, V3

V V V V V

V

R3 = 0,

Fa

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 11

Figure 8: After the execution of the algorithm in

absence of any failure

Figure 9: The system restarts from its consistent
global state {C1,2,C2,1,C3,1}after recovery.

7.1 Comparison with [11] and [13]
Gupta et al. [11] have proposed a roll-forward hybrid

checkpointing / recovery scheme using basic
checkpoints. The direct dependency concept used in the
communication-induced checkpointing scheme has been
applied to basic checkpoints to design a simple algorithm
to find a consistent global checkpoint. They have used
the concept of forced checkpoints that ensures a small re-
execution time after recovery from a failure. This scheme
has the advantages of simple recovery as in synchronous
approach and simple way to create checkpoints like in
asynchronous approach.

Our proposed approach (enhanced version) is not a
hybrid approach. It runs periodically only to put a limit
on the size of the R-vectors. This is the primary objective
of the enhanced approach. In doing so it may come out
with a recent recovery line that is different from the one
found during the last execution of the algorithm. Thus,
effectively as mentioned earlier, even though the
proposed algorithm is not a hybrid one, still as in [11] it
may reduce drastically the number of comparisons
needed to identify a recovery line, as well as it may limit
the domino effect by the time period T, based on the
message communication pattern among the processes.

Our proposed approach is quite different from the
work in [13] in that in our approach processes take

checkpoints completely independently based on their
individual time periods that are different for different
processes. In [13], processes take checkpoints with the
same time periods and they make sure that there is no
orphan message between any two ith checkpoints of two
processes. Therefore, it is more of a synchronous
approach than an asynchronous approach, where as our
approach is purely an asynchronous approach.

8 Conclusions
In this paper we have presented an efficient recovery

algorithm for distributed systems. Asynchronous
checkpointing scheme has been considered because of its
simplicity in taking checkpoints. The main feature of the
recovery algorithm is that to determine a maximum
consistent state, the algorithm in its each iteration does
not need to compare all the vectors at all the checkpoints
of the processes. In its each iteration the algorithm
identifies and skips those checkpoints that can not belong
to the set of the globally consistent checkpoints. It not
only reduces the computational overhead to a good
extent, but also the number of trips to the stable storage
for fetching checkpoints is reduced compared to the
works in [14] and [16], and as a result its execution
becomes even faster. In this context, it may be noted that
in any algorithm that uses asynchronous checkpointing,
there is always some computational time wasted to create
process checkpoints that later do not belong to CGS and
this problem can not be avoided. This is true for our
proposed algorithms as well. Besides, it is executed
simultaneously by all participating processes while
determining a maximum consistent state. It further
contributes to its speed of execution. We have also
proposed a simple enhanced asynchronous recovery
scheme to control the dynamically growing length of the
lists. In effect, the number of comparisons of the
checkpoints to determine a recent consistent state may
also drastically reduce and based on the communication
pattern among the processes it may limit the domino
effect by the time period T. Even though we do not apply
any hybrid checkpointing scheme [11], still this approach
offers the option to achieve a recovery scheme which is
as simple as the approach proposed in [11]. In this
context, it may be noted that if the system model changes
such that order of the messages sent through the channel
cannot be preserved, it will adversely affect the
processing time, because a process must wait to receive
message m1 before processing its already received
message m2. Here, we have assumed that the proper
order is m1 followed by m2.
Our future work is directed at the new challenging area
of designing recovery schemes for cluster federation
computing environment in which different clusters may
adopt different ways for checkpointing, for example,
some may apply coordinated approach, where as other
may apply asynchronous approach [18], [19].

R3= {}, V3
= 000

C

C

C

R1= {},

V 000

R2 ={},

V1=000

R R R R1= 1,

R

R
3= {}

R3= 01, V3
= 010

V V V V

V

 ,
V3=000

12 Informatica 31 (2007) 1–13 B. Gupta et al.

Figure 6: The responsibilities of the initiator process Pi and each participating process Pj for the enhanced
algorithm.

A NOVELL ROLL-BACK MECHANISM FOR... Informatica 31 (2007) 1–13 13

9 References
[1] R. Koo and S. Toueg, “Checkpointing and

Rollback-Recovery for Distributed Systems”, IEEE
trans. Software Engineering, vol. SE-13, no. 1, pp.
23-31, Jan 1987.

[2] Y. M. Wang, A. Lowry, and W. K. Fuchs,
“Consistent Global Checkpoints Based on Direct
Dependency Tracking”, Information Processing
Letters, vol. 50, no. 4, pp. 223-230, May 1994.

[3] K. M. Chandy and L. Lamport, “Distributed
Snapshots: Determining Global States of
Distributed Systems”, ACM Trans. Computing
Systems, vol.3, no. 1, pp. 63-75, Feb. 1985.

[4] Y. Wang, “Consistent Global Checkpoints that
Contain a Given Set of Local Checkpoints”, IEEE
Trans. Computers, vol. 46, no. 4, pp. 456-468, April
1997.

[5] M. Singhal and N. G. Shivaratri, Advanced
Concepts in Operating Systems, McGraw-Hill,
1994.

[6] S. Venkatesan, T. Juang, and S. Alagar, ”Optimistic
Crash Recovery Without Changing Application
Messages”, IEEE Trans. Parallel and Distributed
Systems, vol. 8, no.3, pp. 263-271, March 1997.

[7] R. Baldoni, F. Quaglai, and P. Fornara, “An
Index-Based Checkpointing Algorithm for
Autonomous Distributed Systems”, IEEE Trans.
Parallel and Distributed System, vol. 10, no.2,
pp.181-192, Feb. 1999.

[8] J. Tsai, S. -Y. Kuo, and Y. -M. Wang, “Theoretical
Analysis for Communication-Induced
Checkpointing Protocols with Rollback
Dependency Trackability”, IEEE Trans. Parallel
and Distributed Systems, vol. 9, no. 10, pp. 963-
971, Oct. 1998.

[9] G. Cao and M. Singhal, “ On Coordinated
Checkpointing in Distributed Systems, IEEE Trans.
Parallel and Distributed Systems ”, vol. 9, no.12,
pp. 1213-1225, Dec.1998.

[10] P. Jalote, Fault Tolerance in Distributed Systems,
PTR Prentice Hall, (1994), Addison-Wesley,
(1998).

[11] B. Gupta, S.K. Banerjee and B. Liu, “Design of
new roll-forward recovery approach for distributed
systems”, IEE Proc. Computers and Digital
Techniques, Volume 149, Issue 3, pp. 105-112,
May 2002.

[12] D. Manivannan and M. Singhal, “Quasi-
synchronous checkpointing: Models,
characterization, and classification”, Parallel and
Distributed Systems, IEEE Transactions on Volume
10, Issue 7, pp. 703– 713, July 1999.

[13] D. Manivannan, and M. Singhal, “Asynchronous
recovery without using vector timestamps”, Journal
of Parallel and Distributed Computing, Volume 62,
Issue 62 pp. 1695-1728, Dec 2002.

[14] M. Ohara., M. Arai., S. Fukumoto., and K.
Iwasaki.,”Finding a Recovery Line in
Uncoordinated Checkpointing”, Proceedings 24th

International Conference on Distributed Computing
Systems Workshops (ICDCSW’04), pp. 628 – 633,
2004.

[15] R. H. B. Netzer and J. Xu, “Necessary and
Sufficient Conditions for Consistent Global
Snapshots”, IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 2, pp. 165-169, Feb. 1995.

[16] T. Juang and S. Venkatesan, “Crash Recovery with
Little Overhead”, Proc. 11th International
Conference on Distributed Computing Systems, pp.
454-461, May 1991.

[17] B. Gupta, Y. Yang, S. Rahimi, and A. Vemuri, “A
High-Performance Recovery Algorithm for
Distributed Systems”, Proc. 21st International
Conference on Computers and Their Applications,
pp. 283-288, Seattle, March 2006.

[18] S. Monnet, C. Morin, R. Badrinath, “Hybrid
Checkpointing for Parallel Applications in cluster
Federations”, Proc. 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid,
Chicago, IL, USA, pp. 773-782, April 2004.

[19] J. Cao, Y. Chen, K. Zhang and Y. He,
“Checkpointing in Hybrid Distributred Systems”,
Proc.7th International Symposium on Parallel
Architectures, Algorithms and Networks
(ISPAN’04), pp. 136-141, May 2004.

