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Abstract. We present an update on recent advances in the theory of Dirac particles in
curved space-times. The basic formulation behind the covariant coupling of the Dirac
bispinor to space-time geometry is briefly reviewed including the appropriate covariant
action principle. A number of central-field problems have recently been analyzed; all of
these depend on a concrete, explicit evaluation of the spin connection matrices for particular
space-time geometries; the relevant results are discussed. The generalization of the formal-
ism to tachyonic spin-1/2 particles is rather straightforward and allows the identification of
the leading interaction terms for high-energy tachyons, which approach the light cone. The
combination of quantum electrodynamics on curved space-time backgrounds may seem
like a far-fetched field of research, but recent claims in the field have shaken the foundations
of fundamental principles of general relativity. We show that a careful consideration of the
vacuum polarization integral, with a gravitational effective mass, restores the validity of
the weak equivalence principle in deep gravitational potentials.

Povzetek. Poročava o nedavnem napredku v teoriji Diracovih delcev v ukrivljenem prostoru-
času. Na kratko predstaviva kovariantno sklopitev Diracovega bispinorja z geometrijo
prostor-časa s in ustrezno kovariantno akcijo. Na kratko predstaviva nove dosžke pri
iskanju rešitev za Diracov delec v več različnih centralnih potencialih, ki so se pojavili v
zadnjem času. Vsi uporabijo matrike spinskih povezav. Ta pristop posplošiva na tahionske
delce s spinom 1/2, kar nama omogoči prepoznati vodilne člene interakcije za skoraj brez-
masne tahione na svetlobnemu stožcu. Povezava kvantne elektrodinamike v ukrivljenem
prostoru-času se zdi zanimiva ob trditvah o morebitni neveljavnosti splošne teorije rela-
tivnosti. Vendar s skrbno obravnavo polarizacije vakuuma (z gravitacijsko efektivno maso)
pokaževa veljavnost načela šibke ekvivalence v globokih gravitacijskih potencialih in s tem
zmotnost teh trditev.

6.1 Introduction

The coupling of a spin-1/2 particle to the gauge fields via the covariant derivative,
within the Dirac equation, has been central to the formulation of the Standard
Model of Elementary Interactions, and to the understanding of the properties
of antiparticles. It is much less common wisdom how to couple a Dirac parti-
cle to a curved space-time geometry. Some naive guesses fail. In flat space, the
Clifford algebra of Dirac matrices was formulated [1,2] to fulfill the fundamental
anticommutator relation

{γµ, γν} = ηµν (6.1)
? Talk delivered by U.D. Jentschura
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64 U.D. Jentschura and J.H. Noble

where ηµν is the flat space-time metric ηµν = diag(1,−1,−1,−1). In curved space,
this relation has to be generalized to

{γµ(x), γν(x)} = gµν(x) , (6.2)

where gµν(x) is the curved space-time metric, and the Dirac matrices become
coordinate-dependent. (We choose to denote the curved-space metric by g in order
to avoid confusion with the flat-space counterpart, which is usually denoted by g
in elementary physics.)

However, one would be mistaken to simply replace γµ → γµ in the Dirac
equation in order to couple the Dirac particle to space-time curvature, or, to sim-
ple insert the gravitational potential V = −Gm1m2/r into the Dirac equation by
hand. Both approaches fail because they are not covariant with respect to Lorentz
transformations of curved space-time. In particular, the simple insertion of the
gravitational potential into the Dirac equation would lead to a different equation of
motion for the Dirac particle under a change of the space-time coordinates, which
is unacceptable. The requirement of covariance under local Lorentz transforma-
tions leads to the definition of the spin connection matrices, and to the covariant
derivative for a spinor in curved space time.

Here, we briefly review some recent works on related topics, which are based
on the concrete evaluation of the spin connection matrices for particular space-time
geometries, and discuss an application to quantum electrodynamics in curved
space-time, namely, the gravitational correction to vacuum polarization. We use
units with ~ = c = ε0 = 1 and employ the standard representation for the
Dirac matrices [3,4] (the “standard” speed of light is sometimes denoted as c0, for
reasons apparent from the context of the discussion on conceivable tiny deviations
induced by quantum phenomena).

6.2 Dirac Particles and Curved Space–Time

In order to fix ideas [5], let us recall that the vierbein eAµ (the “square root of the
metric”) describes the connection of the curved-space and flat-space metrics,

gµν(x) = e
A
µ e

B
ν ηAB , ηAB = diag(1,−1,−1,−1) . (6.3)

The completeness of the vierbein implies that both the “local” (nonholonomic)
as well as the “global” (holonomic) indices can be raised and lowered using the
metric(s) η and g. In particular, one has

eµA eµB = ηAB , eAµ eνA = gµν(x) (6.4)

The connection of the flat-space (γ̃) and curved-space (γ) Dirac matrices is given
as follows,

γµ(x) = e
A
µ γ̃A , {γ̃A, γ̃B} = ηAB , {γµ(x), γν(x)} = gµν(x) . (6.5)

Local Lorentz transformations lead to a reparameterization of the “internal” space,

e ′µA(x) = ΛAB(x) e
νB(x) , e ′µA (x) = ΛA

B(x) eνB(x) , (6.6)
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6 Gravitational Effects for Dirac Particles 65

The Ricci rotation coefficientωABν is obtained from the covariant derivative of an
anholonomic basis vector,

~eA = eµA ~eµ , ~eB = eµB ~eµ ,

∂ν~e
B =

(
∇ν eµB

)
~eµ = eAµ

(
∇ν eµB

)
~eA ≡ ωABν ~eA . (6.7)

It is given, in terms of the vierbein and Christoffel symbols, as follows,

ωABν = eAµ ∇ν eµB = eAµ ∂ν e
µB + eAµ Γ

µ
νλ e

λB . (6.8)

A local spinor Lorentz transformation with generators ΩAB(x) transforms the
bispinor ψ according to

ψ ′(x ′) = S(Λ(x))ψ(x) =

(
1−

i
4
ΩAB(x) σ̃AB

)
ψ(x) (6.9)

The flat-space spin matrices σ̃AB are given as

σ̃AB =
i
2
[γ̃A, γ̃B] (6.10)

The covariant derivative∇µ of a spinor contains the spin connection matrix Γµ(x),

Γµ(x) =
i
4
ωµ

AB(x) σ̃AB ,

∇µψ(x) =
(
∂µ −

i
4
ωµ

AB(x) σ̃AB

)
ψ(x) = (∂µ − Γµ)ψ(x) (6.11)

A change of the vierbein according to Eq. (6.6) leads to a different form of the Ricci
rotation coefficients, and of the spin connection matrices,

∇ ′µψ(x) =
(
∂µ −

i
4
ω ′µ

AB
(x) σ̃AB

)
ψ(x) =

(
∂µ − Γ ′µ

)
ψ(x) (6.12)

but the covariance with respect to the local Lorentz transformation is ensured by
the relationship [5],

∇ ′µ [S(Λ(x))ψ(x)] = S(Λ(x))∇µψ(x) , (6.13)

in accordance with the underlying idea of the covariant derivative. From the action

S =

∫
d4x

√
−detg(x) ψ(x)

(
i
2
γµ(x)

←→∇ µ −m

)
ψ(x) ,

one derives the gravitationally coupled Dirac equation

(iγµ∇µ −m)ψ(x) = 0 . (6.14)

It is straightforward to generalize this formalism to tachyons, which in flat space-
time are described by the tachyonic Dirac equation,

(iγ̃µ∇µ − γ̃5m)ψ(x) = 0 . (6.15)
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In curved space-time [6,7], the generalization of the γ5 matrix reads as

γ5(x) =
i
4!

εµνρδ√
−detg(x)

γ̃µ(x) γ̃ν(x) γ̃ρ(x) γ̃δ(x) , (6.16)

the action becomes

S =

∫
d4x

√
−detg(x) ψ(x)γ5(x)

(
i
2
γρ(x)

←→∇ ρ − γ5(x)m)ψ(x) ,
from which one derives the gravitationally coupled tachyonic Dirac equation as

[
iγµ∇µ − γ5(x)m

]
ψ(x) = 0 . (6.17)

Based on this formalism, a number of very concrete and definite problems
have recently been investigated [8–10,7], mainly for time-independent, central-
field curved-spacetime configurations. The Dirac bispinor ψ describes both parti-
cle (“electron”) as well as antiparticle (“positron”) states. A symmetry of particle
and anti-particle solutions has been uncovered in Ref. [8] for the Schwarzschild
space-time geometry; it implies that, on the level of Newtonian and Einsteinian
geometrodynamics, antiparticles are attracted in central gravitational fields in
the same way as particles are (including all relativistic corrections of motion, and
within a quantum dynamical formalism). A conceivable deviation of the gravita-
tional interactions for particles and antiparticles therefore would be indicative of
a fifth fundamental force [8]. We also found the nonrelativistic limit of the Dirac-
Schwarzschild Hamiltonian and identified the gravitational spin-orbit coupling,
and gravitational zitterbewegung term [9]. The leading relativistic corrections
terms are obtained after a Foldy–Wouthuysen transformation [11], and read [9]

HFW = β

(
m+

~p 2

2m
−

~p 4

8m3

)
− β

mrs

2 r
(6.18)

+ β

(
−
3rs

8m

{
~p 2,

1

r

}
+
3πrs

4m
δ(3)(~r) +

3rs

8m

~Σ · ~L
r3

)
.

Here, rs = 2GM is the Schwarzschild radius. The spectrum of a purely gravitation-
ally coupled bound state in a central field was studied, including the relativistic
corrections [12], and the analogue of the electromagnetic fine-structure constant
for gravity was identified [12]. Furthermore, it has recently been clarified, based
on tachyonic gravitationally coupled Dirac equation (6.17), that the leading term
in gravitational central fields actually is attractive for tachyons, in full agreement
with the fact that tachyons become “luxons” in the high-energy domain (they
approach the light cone), and they thus are attracted to gravitational centers much
like photons. However, several correction terms are repulsive for tachyons, in
contrast to their attractive counterparts for tardyons [7]. Namely, according to
Ref. [7], One finds for tardyons (in the high-energy limit, with E = −~Σ · ~p)

Hds = β

(
E + m2

2E −
1

2

{
E , rs
r

}
+
9

32

{
E , r

2
s

r2

}
−
7m2

64

{
1

E ,
r 2s
r2

}
+
3m2

16

rs

r

1

E
rs

r

)
, (6.19)
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while for tachyons

Htg = β

(
E − m2

2E −
1

2

{
E , rs
r

}
+
9

32

{
E , r

2
s

r2

}
+
7m2

64

{
1

E ,
r 2s
r2

}
−
3m2

16

rs

r

1

E
rs

r

)
. (6.20)

Here, “ds” and “tg” refer to the identifications of the Hamiltonians as “Dirac
Schwarzschild” and “tachyonic gravitational”, respectively. The final two terms in
these Hamiltonians have opposite signs, indicating a difference in the gravitational
interaction for tachyons and tardyons.

We should clarify that, in order to couple a Dirac particle to space-time cur-
vature, it is not necessary to quantize space-time. The spin connection matrices
mediate the coupling to the “classical” (not quantum) space-time geometry, and
they ensure the covariance of the covariant derivative under local Lorentz trans-
formations (in a nonholonomic basis).

6.3 Speed of Light in Deep Gravitational Potentials

First, it’s necessary to remember that the speed of light is not as “constant” as one
would a priori assume, when expressed in global coordinates. According to Eq. (5)
of Ref. [13], the space-time metric for static, weak gravitational fields reads as

ds2 = (1+ 2ΦG(~r)) dt2 − (1− 2ΦG(~r)) d~r 2 , (6.21)

where ΦG is the gravitational potential. Light travels on a null geodesic, with
ds2 = 0, and so (

d~r
dt

)2
=
1+ 2ΦG(~r)

1− 2ΦG(~r)
≈ 1+ 4ΦG(~r) . (6.22)

The local speed of light, expressed in terms of the global coordinates, thus is
∣∣∣∣
d~r
dt

∣∣∣∣ = 1+ 2ΦG(~r) , ∆c = 2ΦG(~r) = (1+ γ)ΦG(~r) < 0 . (6.23)

In a central field, we have ΦG(~r) = −GM/r. Deviations from γ = 1 parameterize
departures from standard geometrodynamics [14–16]. For further discussion, we
also refer to Chap. 4.4 on page 196 ff. of Ref. [17], Eq. (4.43) of Ref. [18] and Sec. 4.5.2
of Ref. [18], as well as Ref. [19]. The effect parameterized by Eq. (6.23) is known as
the Shapiro time delay [20–24].

Some attention [25] was recently directed to a recent paper [26] where it
was claimed that quantum electrodynamics, when considering the gravitational
correction to the fermion propagators, yields an additional correction to the speed
of light, parameterized as

δcγ =
9

64
α
ΦG(~r)

c20
< 0 , (6.24)
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slowing down photons as compared to other high-energy particles, which ap-
proach the “unperturbed light cone”. The reason for the special role of photons is
claimed to be due to the fact that vacuum polarization, on shell, receives a tiny
correction due to the gravitational interactions of the fermions in the loop, which
in turn displaces the photon ever so slightly from the flat space-time mass shell.

First doubts arise because the value

γ− 1 = χα =
9α

64
= 1.03× 10−3 . (6.25)

is in disagreement with the bounds set by radar reflection from the the Cassini
observations [27] in superior conjunction, which reads as follows,

γ− 1 = (2.1± 2.3)× 10−5 . (6.26)

Further conceptual difficulties result because, one might otherwise perform a
thought experiment and enter a region of deep gravitational potential with three
freely falling, propagating wave packets, one describing a photon, the others de-
scribing a very highly energetic neutrino and a very highly energetic electron. The
latter two propagate at a velocity (infinitesimally close to) the flat-space speed
of light c0. If a correction of the form δcγ exists, then photons will have been
decelerated to a velocity c0 − |δcγ| within the gravitational potential, whereas both
fermions retain a velocity (infinitesimally close to) c0. If we regard the photons
as particles, then we could argue that a “force” must have acted onto the photon,
causing deceleration, even though the particles were in free fall, leading to violat-
ing of the weak equivalence principle. However, the claim (6.24) is of quantum
origin and therefore beyond the realm of applicability of standard classical general
relativity; it is thus hard to refute based on first principles.

It thus remains to calculate the leading correction to vacuum polarization in
gravitational fields using the gravitationally coupled Dirac equation. According to
Eq. (12) of Ref. [8], the leading term is

H = ~α · ~p+ βmw(~r) , w(~r) ≈ 1+ΦG , (6.27)

leading to an effective mass of the fermion,

meff = mw(r) ≈ m (1+ΦG) , (6.28)

which needs to be inserted into the covariant representation of the one-loop
vacuum insertion into the photon propagator,

gµν

k2
→ gµν

k2 [1+ωR(k2)]
, k2 = ω2 − ~k2 , (6.29)

ωR(k2) =
αk2

3π

∞∫
4m2eff

dk ′2

k ′2
1+ 2m2eff/k

′2

k ′2 − k2

√

1−
4m2eff

k ′2
. (6.30)
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The asymptotic forms

ωR(k2) =
α

15π

k2

m2eff
+O(k4) , k2 → 0 , (6.31a)

ωR(k2) = −
α

3π
ln
(
−
k2

m2eff

)
+
5α

3π
+O

(
ln(−k2)
k2

)
,

k2 →∞ , (6.31b)

imply that the correction on the mass shell, ωR(0) = 0, invalidating the claim
made in Ref. [26].

6.4 Conclusions

In Sec. 6.2, we have studied the gravitational coupling of Dirac particles to curved
space-time backgrounds, and found that the covariant coupling to space-time
implies the use of spin connection matrices; naive prescriptions based on the
insertion of the gravitational potential into the Dirac equation can only be valid
in an approximate sense. The central idea behind the covariant coupling is the
covariance of the covariant derivative in spinor space, given in Eq. (6.13), from
which by an explicit evaluation of the spin connection matrices, the results given
in Eqs. (6.18), (6.19) and (6.20) can be derived.

The gravitational correction to vacuum polarization is discussed in Sec. 6.3,
and a recent claim [26] regarding an additional modification of the speed of light in
deep gravitational potentials [parameterized by the γ parameter, see Eq. (6.25)] is
refuted. The vacuum polarization tensor in gravitational backgrounds is obtained,
within the leading approximation, by a substitution of the gravitationally shifted
effective electron mass into the fermion propagator of the one-loop vacuum polar-
ization integral [see Eq. (6.29)]. In summary, we have shown that one can apply the
gravitational coupling of Dirac particles in order to solve a number of problems
of practical interest, including central-field problems and variations thereof, and
potential gravitational corrections to quantum-field theoretical phenomena, like
vacuum polarization.
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