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Abstract. We establish a connection between the quark model and the 1/Nc expansion

mass formulas used in the description of baryon resonances. We show that a remarkable

compatibility exists between the two methods in the light and heavy baryon sectors. In

particular, the band number used to classify baryons in the 1/Nc expansion is explained

by the quark model and the mass formulas for both approaches are consistent.

1 Introduction

Since pioneering work [1] in the field, the standard approach for baryon spec-

troscopy is the constituent quark model. The Hamiltonian typically contains a

spin independent part formed of the kinetic plus the confinement energies and
a spin dependent part given by a hyperfine interaction. The quark model results

are de facto model dependent; it is therefore very important to develop model
independent methods that can help in alternatively understanding baryon spec-

troscopy and support (or not) quark model assumptions. Apart from promising

lattice QCD calculations [2], large Nc QCD, or alternatively the 1/Nc expansion,
offers such a method. In 1974 ’t Hooft generalizedQCD from SU(3) to an arbitrary

number of colors SU(Nc) [3] and suggested a perturbative expansion in 1/Nc, ap-
plicable to all QCD regimes. Witten has then applied the approach to baryons [4]

and this has led to a systematic and predictive 1/Nc expansion method to study

static properties of baryons. The method is based on the discovery that, in the
limit Nc → ∞, QCD possesses an exact contracted SU(2Nf) symmetry [5] where

Nf is the number of flavors. This symmetry is approximate for finite Nc so that
corrections have to be added in powers of 1/Nc. Notice that a baryon is a bound

state ofNc quarks in the largeNc formalism.

The 1/Nc expansion has successfully been applied to ground state baryons,

either light [6,7] or heavy [8,9]. Its applicability to excited states is a subject of cur-
rent investigations. The classification scheme used in the 1/Nc expansion for ex-

cited states is based on the standard SU(6) classification as in a constituent quark

⋆ Based on talks presented by F. Buisseret and F. Stancu
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model. Baryons are grouped into excitation bands N = 0, 1, 2,. . . , each band con-

taining at least one SU(6) multiplet, the band number N being the total number

of excitation quanta in a harmonic oscillator picture.

The purpose of the present paper is to show that there is a compatibility

between the quark model and the 1/Nc expansion methods. It is organized as
follows. We first give a summary of the 1/Nc expansion method in Sec. 2. Then

we present a relativistic quark model in Sec. 3 and derive analytic mass formulas

from its Hamiltonian in Sec. 4. The comparison between the quark model and the
1/Ncmass formulas is discussed in Sec. 5 and conclusions are drawn in Sec. 6. We

point out that the results summarized hereafter have been previously presented
in Refs. [10,11] for the light baryons and [12] for the heavy baryons. This work

aims at being a pedagogical overview of these last three references.

2 Baryons in large Nc QCD

2.1 Light nonstrange quarks

We begin with a summary of the 1/Nc expansion in the caseNf = 2, but the argu-
ments are similar for anyNf. The contracted SU(2Nf) symmetry is here the group

SU(4) which has 15 generators: The spin and isospin subgroup generators Si and

Ta and operators acting on both spin and isospin degrees of freedom denoted by
Gia (i, a = 1, 2, 3).

The SU(4) algebra is

[Si, Ta] = 0, [Si, Gja] = iεijkGka, [Ta, Gib] = iεabcGic,

[Si, Sj] = iεijkSk, [Ta, Tb] = iεabcTc, [Gia, Gjb] =
i

4
δijεabcTc +

i

4
δabεijkSk.

In the limit Nc → ∞ one has [Gia, Gjb] → 0 which implies the existence of a
contracted algebra. These SU(4) generators form the building blocks of the mass

operator, at least in the ground state band (N = 0). For orbitally excited states the
generators ℓi of SO(3), as well as the tensor operator ℓ(2)ij also appear since the

symmetry under consideration is extended to SU(4)⊗ SO(3).

In the 1/Nc expansion the mass operatorM has the general form

M =
∑

i

ciOi, (1)

where the coefficients ci encode the QCD dynamics and have to be determined
from a fit to the existing data, and where the operators Oi are SU(4) ⊗ SO(3)

scalars of the form

Oi =
1

Nn−1
c

O
(k)

ℓ ·O(k)

SF . (2)

Here O
(k)

ℓ is a k-rank tensor in SO(3) and O
(k)

SF a k-rank tensor in SU(2)-spin,

but invariant in SU(2)-flavor. The lower index i in the left hand side represents
a specific combination. Each n-body operator is multiplied by an explicit factor

of 1/Nn−1
c resulting from the power counting rules [4], where n represents the
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minimum of gluon exchanges to generate the operator. For the ground state, one

has k = 0. For excited states the k = 2 tensor is important. In practical applications,

it is customary to include terms up to 1/Nc and drop higher order corrections of
order 1/N2c.

As an example, we show the operators used in the calculation of the masses
of the [70, 1−] multiplet up to order 1/Nc included [13] (the sum over repeated

indices is implicit)

O1 = Nc 1, O2 =
1

Nc
ℓiSi, O3 =

1

Nc
TaTa, O4 =

1

Nc
SiSi,

O5 =
15

N2c
ℓ(2)ijGiaGja, O6 =

3

N2c
ℓiTaGia. (3)

Note that although O5 and O6 carry a factor of 1/N2c their matrix elements are

of order 1/Nc because they contain the coherent operator Gia which brings an
extra factorNc.O1 = Nc 1 is the trivial operator, proportional toNc and the only

one surviving when Nc → ∞ [4]. The operators O2 (spin-orbit), O5 and O6 are

relevant for orbitally excited states only. All the SU(4) quadratic invariants SiSi,
TaTa and GiaGia should enter the mass formula but they are related to each

other by the operator identity [7]

{
Si, Si

}
+ {Ta, Ta} + 4

{
Gia, Gia

}
=
1

2
Nc(3Nc + 4), (4)

so one can express GiaGia in terms of SiSi and TaTa.

Assuming an exact SU(2)-flavor symmetry, the mass formula for the ground

state band up to order 1/Nc takes the following simple form [7]

M = c1Nc + c4
1

Nc
S2 + O

(
1

N3c

)
, (5)

which means that for N = 0 only the operators O1 and O4 (spin-spin) contribute

to the mass.

Among the excited states, those belonging to theN = 1 band, or equivalently

to the [70, 1−] multiplet, have been most extensively studied, either for Nf = 2

(see e.g. Refs. [14–18]) or for Nf = 3 [19]. The N = 2 band contains the [56 ′, 0+],
[56, 2+], [70, ℓ+] (ℓ = 0, 2), and [20, 1+] multiplets. There are no physical resonances

associated to [20, 1+]. The few studies related to the N = 2 band concern the
[56 ′, 0+] for Nf = 2 [20], [56, 2+] for Nf = 3 [21], and [70, ℓ+] for Nf = 2 [22], later

extended toNf = 3 [23]. The method has also been applied [24] to highly excited

non-strange and strange baryons belonging to [56, 4+], the lowest multiplet of the
N = 4 band [25].

The group theoretical similarity of excited symmetric states and the ground
statemakes the analysis of these states simple [21,24]. Formixed symmetric states,

the situation is more complex. There is a standard procedure which reduces the

study of mixed symmetric states to that of symmetric states. This is achieved by
the decoupling of the baryon into an excited quark and a symmetric core ofNc−1

quarks. This procedure has been applied to the [70, 1−] multiplet [14–19] and to
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the [70, ℓ+] (ℓ = 0, 2) multiplets [22,23]. But it has recently been shown that the

decoupling is not necessary [13], provided one knows the matrix elements of the

SU(2Nf) generators betweenmixed symmetric states. The derivation of these ma-
trix elements is not trivial. For SU(4) they have been derived by Hecht and Pang

[26] in the context of nuclear physics and adapted to quark physics in Ref. [13],
where it has been shown that the isospin-isospin term becomes as dominant in ∆

as the spin-spin term in N resonances.

The derivation of SU(6) matrix elements between mixed symmetric states

[Nc − 1, 1] is underway [27].

A detailed description of the problems raised by the standard procedure [17]
of the separation of a system of mixed spin-flavour symmetry [Nc − 1, 1] into a

symmetric core of Nc − 1 quarks and an excited quark has been given in Refs.

[28,29].

2.2 Inclusion of strangeness

For light strange baryons (Nf = 3) the mass operator in the 1/Nc expansion has
the general form

M =
∑

i=1

ciOi +
∑

i=1

diBi, (6)

where the operatorsOi are invariants under SU(6) transformations and the opera-

tors Bi explicitly break SU(3)-flavor symmetry. In the case of nonstrange baryons,

only the operators Oi contribute, see Eq. (1). Therefore Bi are defined such as
their expectation values are zero for nonstrange baryons. The coefficients di are

determined from the experimental data including strange baryons. In Eq. (6) the
sum over i is finite and in practice it containes the most dominant operators. Ex-

amples of Oi and Bi can be found in Refs. [21,23,24].

Assuming that each strange quark brings the same contribution ∆Ms to the

SU(3)-flavor breaking terms in the mass formula, we define the total contribution
of strange quarks as [11]

ns ∆Ms =
∑

i=1

diBi, (7)

where ns = −S is the number of strange quarks in a baryon, S being its strange-

ness.

2.3 Heavy quarks

The approximate spin-flavor symmetry for large Nc baryons containing light

q = {u, d, s} and heavy Q = {c, b} quarks is SU(6)× SU(2)c × SU(2)b, i.e. there
is a separate spin symmetry for each heavy flavor. Over a decade ago the 1/Nc
expansion has been generalized to include an expansion in 1/mQ and light quark
flavor symmetry breaking [8]. The majority of the currently available experi-

mental data concerning heavy baryons is related to ground state baryons made

of one heavy and two light quarks [30]. Such heavy baryons, denoted as qqQ
baryons, have been recently reanalyzedwithin the combined 1/Nc and 1/mQ ex-

pansion [9], and masses in good agreement with experiment have been obtained.
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A first attempt to extend this framework to excited heavy baryons can be found

in Refs. [31] but much work remains to be done in this field. That is why we focus

here on the N = 0 band for qqQ baryons only.

Let us first consider that SU(3)-flavor symmetry is exact. In this case the mass
operatorM(1) is a flavor singlet and in the combined 1/mQ and 1/Nc expansion

to order 1/m2Q it takes the following form

M(1) = mQ1 +Λqq + λQ + λqqQ. (8)

The leading order term ismQ at all orders in the 1/Nc expansion. Next we have

Λqq = c0Nc 1 +
c2

Nc
J2qq, and λQ = NQ

1

2mQ

(
c

′

0 1 +
c

′

2

N2c
J2qq

)
, (9)

where Jqq is identical to the total spin Sqq of the light quark pair when one deals

with the N = 0 band. Note that Λqq contains the dynamical contribution of the
light quarks and is independent ofmQ while λQ gives 1/mQ corrections. The last

term, λqqQ, contains the heavy-quark spin-symmetry violating operator which
reads

λqqQ = 2
c

′′

2

NcmQ
Jqq · JQ, (10)

where JQ is identical to the spin SQ of the heavy quark.

The unknown coefficients c0, c2, c
′

0, c
′

2, and c
′′

2 are functions of 1/Nc and

of a QCD scale parameter Λ. Each coefficient has an expansion in 1/Nc where

the leading term (in dimensionless units) is of order unity and does not depend
on 1/mQ. Thus, without loss of generality, by including dimensions, one can set

c0 ≡ Λ. The quantity Λ, as well as the other coefficients, have to be fitted to the
available experimental data. In agreement with Ref. [8], we take

c0 = Λ, c2 ∼ Λ, c
′

0 ∼ c
′

2 ∼ c
′′

2 ∼ Λ2. (11)

The inclusion of SU(3)-flavor breaking leads to an expansion of the mass
operator in the SU(3)-violating parameter ǫ which contains the singletM(1), an

octetM(8), and a 27-pletM(27). The last term brings contributions proportional

to ǫ2 and we neglect it. ForM(8) we retain its dominant contribution T8 to order
N0c. Then the mass formula becomes

M = M(1) + ǫT8. (12)

The flavor breaking parameter ǫ is governed by the mass difference ms − m

(where m is the average of the mu and md masses) and therefore is ǫ ∼ 0.2-0.3.

It is measured in units of the chiral symmetry breaking scale parameter Λχ ∼ 1

GeV.

3 Quark model for baryons

3.1 Main Hamiltonian

The quark model used here to describe baryons aims at capturing the main phys-

ical features of a three-quark system while keeping the formalism as simple as
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possible in order to get analytical mass formulas. It contains: Relativistic kinetic

energy for the quarks, Y-junction confining potential, one-gluon exchange poten-

tial and quark self-energy contribution added as perturbative terms. Let us now
shortly describe all these ingredients.

A baryon, seen as a bound state of three valence quarks, can be described, at

the dominant order, by the spinless SalpeterHamiltonianH =
∑3
i=1

√
p 2i +m2i+

VY , wheremi is the bare mass of the quark i and where VY is the confining inter-
action potential. We use the bare mass of the quarks in the relativistic kinetic en-

ergy term as suggested by the field correlator method [32], but other approaches,

like Coulomb gauge QCD, rather favor a running constituent quark mass [33].
Although very interesting conceptually, the influence of this choice on the mass

spectra should not be so dramatic than it could have been expected at the first
glance: First, the bare and constituent heavy quark masses are nearly identical.

Second, the constituent light quark masses quickly decrease at large momentum

and become similar to the bare masses; a common limit is reached for the excited
states. The situation is thus mainly different for low-lying nnn baryons (u and d

quarks are commonly denoted as n), where the bare massmn can be set equal to
0, but where the constituent mass is about 300 MeV [33]. However, the strength

of additional interactions like one-gluon exchange (see next section) can be tuned

in both cases and lead to final mass spectra which are quite similar.

Both the flux tubemodel [34] and lattice QCD [35] support the Y-junction pic-

ture for the confining potential: A flux tube starts from each quark and the three
tubes meet at the Torricelli (or Steiner or Fermat) point of the triangle formed by

the three quarks, let us say the ABC triangle. This point T , located at xT , mini-
mizes the sum of the flux tube lengths and leads to the following confining po-

tential VY = a
∑3
i=1 |xi − xT |, where the position of quark i is denoted by xi and

where a is the energy density of the flux tubes. If all the angles of ABC are less

than 120o, then the Toricelli point is such that the angles ÂTB, B̂TC, and ÂTC are

all equal to 120o. If the angle corresponding to an apex is greater than 120o, the

Toricelli point is precisely at this apex.

As xT is a complicated three-body function, it is interesting to approximate

the confining potential by a more tractable form. In the following, we shall use

HR =

3∑

i=1

√
p 2i +m2i + VR, (13)

VR = ka

3∑

i=1

|xi − R| , (14)

where R is the position of the center of mass and k is a corrective factor [36].

The accuracy of the replacement (14) has been checked to be very satisfactory
(better than 5%) in this last reference provided that the appropriate scaling factor

is used: k0 = 0.952 for qqq baryons and k1 = 0.930 for qqQ baryons. For highly

excited states, the contribution of the configurations in which the Toricelli point
is located on one of the quarks becomes more and more important, and one could

think that the center of mass approximation (14) is then wrong. But in such cases
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the angle made by the Toricelli point and the other two quarks is larger than

120o and the center of mass is consequently still close to the true Toricelli point.

The approximation (14), although being less accurate for highly excited states,
remains however relevant.

3.2 Perturbative terms

Besides the Hamiltonian (13), other contributions are necessary to reproduce the
baryon masses. We shall add them as perturbations to the dominant Hamilto-

nian (13). The most widespread correction is a Coulomb interaction term of the

form

∆Hoge = −
2

3

∑

i<j

αS,ij

|xi − xj|
, (15)

arising from one-gluon exchange processes, where αS,ij is the strong coupling

constant between the quarks i and j. Actually, one should deal with a running

form αS(r), but it would considerably increase the difficulty of the computations.
Typically, we need two values: α0 = αS,qq for a qq pair and α1 = αS,qQ for a qQ

pair, in the spirit of what has been done in a previous study describing mesons in
the relativistic flux tubemodel [37]. There it was found thatα1/α0 ≈ 0.7 describes
rather well the experimental data of qq̄ andQq̄mesons.

Another perturbative contribution to the mass is the quark self-energy. This

is due to the color magnetic moment of a quark propagating through the QCD
vacuum. It adds a negative contribution to the hadron masses [38]. The quark

self-energy contribution for a baryon is given by

∆Hqse = −
fa

2π

∑

i

η(mi/δ)

µi
, (16)

where µi is the kinetic energy of the quark i, that is µi =

〈√
p 2i +m2i

〉
, the aver-

age being computed with the wave function of the unperturbed spinless Salpeter

Hamiltonian (13). The factors f and δ have been computed in quenched and un-
quenched lattice QCD studies; it seems well established that 3 ≤ f ≤ 4 and

(1.0 ≤ δ ≤ 1.3) GeV [39]. The function η(ǫ) is analytically known; we refer the

reader to Ref. [38] for an explicit formula. It can accurately be fitted by

η(ǫ) ≈ 1− βǫ2 with β = 2.85 for 0 ≤ ǫ ≤ 0.3,
≈ γ

ǫ2
with γ = 0.79 for 1.0 ≤ ǫ ≤ 6.0. (17)

Let us note that the corrections depending on the parameter γ appear at order

1/m3Q in the mass formula, so they are not considered in this work.

We finally point out that the quark model we developed in this section is

spin independent. This neglect of the fermionic nature of the quarks is the reason

why such amodel is often called “semirelativistic”: The implicit covariance is pre-
served, but spin effects are absent. Spin dependent contributions (spin-spin, spin-

orbit, etc.) typically come from relativistic corrections to the one-gluon exchange
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potential. It is useful to mention that in our formalism such potential terms be-

tween the quarks i and j should be of the form [32]

Vij ∝ (µiµj)
−1. (18)

4 Mass formulas

4.1 The auxiliary field method

The comparison between the quark model and largeNc mass formulas would be

more straightforward if we could obtain analytical expressions. To this aim, the
auxiliary field method is used in order to transform the Hamiltonian (13) into an

analytically solvable one [40]. With λ = ka, we obtain

H(µi, νj) =

3∑

j=1

[
p 2j +m2j

2µj
+
µj

2

]
+

3∑

j=1

[
λ2(xj − R)2

2νj
+
νj

2

]
. (19)

The auxiliary fields, denoted as µi and νj, are operators, and H(µi, νj) is equiva-
lent to H up to their elimination thanks to the constraints

δµi
H(µi, νj)|µi=µ̂i

= 0 ⇒ µ̂i =

√
p 2i +m2i ,

δνj
H(µi, νj)

∣∣
νj=ν̂j

= 0 ⇒ ν̂j = λ|xj − R|. (20)

〈µ̂i〉 is the quark kinetic energy, and 〈ν̂i〉 is the energy of one flux tube, the aver-
age being computed with the wave function of the unperturbed spinless Salpeter

Hamiltonian (13). The equivalence relation between Hamiltonians (13) and (19)

is H(µ̂i, ν̂j) = H.

Although the auxiliary fields are operators, the calculations are considerably
simplified if one considers them as variational parameters. They have then to be

eliminated by a minimization of the masses, and their extremal values µi,0 and
νj,0 are logically close to 〈µ̂i〉 and 〈ν̂j〉 respectively [40]. This technique can give

approximate results very close to the exact ones [41]. If the auxiliary fields are

assumed to be real numbers, the Hamiltonian (19) reduces formally to a non-
relativistic three-body harmonic oscillator, for which analytical solutions can be

found. A first step is to replace the quark coordinates xi = {x1, x2, x3} by the
Jacobi coordinates x

′

k = {R,ξ,η } defined as [42]

R = (µ1x1 + µ2x2 + µ3x3)/µt, with µt = µ1 + µ2 + µ3, (21)

and ξ ∝ x1 − x2, η ∝ (µ1x1 + µ2x2)/(µ1 + µ2) − x3.

In the case of two quarks with massm and another with massm3, the mass
spectrum of the Hamiltonian (19) is given by (µ1 = µ2 = µ, ν1 = ν2 = ν by

symmetry)

M(µ, µ3, ν, ν3) = ωξ(Nξ+3/2)+ωη(Nη+3/2)+µ+ν+
µ3 + ν3

2
+
m2

µ
+
m23
2µ3

, (22)
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where ωξ =
λ√
µν
, ωη =

λ√
2µ + µ3

√
µ3

µν
+

2µ

µ3ν3
. (23)

The integers Nξ/η are given by 2nξ/η + ℓξ/η, where nξ/η and ℓξ/η are the radial
and orbital quantum numbers relative to the variable ξ/η respectively. More-

over,
〈
ξ 2
〉
and

〈
η2
〉
are analytically known. This eventually allows to compute〈

(x1 − x3)
2
〉
and

〈
(x2 − x3)

2
〉
, which are needed to know the one-gluon exchange

contribution.

The four auxiliary fields appearing in the mass formula (22) have to be elim-

inated by solving simultaneously the four constraints

∂µM(µ, µ3, ν, ν3) = 0, ∂µ3
M(µ, µ3, ν, ν3) = 0,

∂νM(µ, µ3, ν, ν3) = 0, ∂ν3
M(µ, µ3, ν, ν3) = 0. (24)

This task cannot be analytically performed in general, but solutions can fortu-

nately be found in the case of light and heavy baryons.

4.2 Light baryons

Since we do not distinguish between the u and d quarks in our quark model and

commonly denote them as n, there are only four possible configurations: nnn,
sss, nss and snn, that can all be described by the mass formula (22). Important

simplifications occur by setting mn = 0, which is a good approximation of the
u and d quark bare masses. However, the non vanishing value for ms causes

Eqs. (24) to have no analytical solution unless a power expansion in ms is per-

formed. This is justified a priori since the strange quark is still a light one. After
such a power expansion, the final mass formula reads [10]

Mqqq = M0 + ns ∆M0s (ns = 0, 1, 2, 3),

M0 = 6µ0 −
2k0aα0√
3µ0

−
3fa

2πµ0
, ∆M0s =

m2s
µ0

[
1

2
−
k0aα0

6
√
3µ20

+
fa

2π

(
3

4µ20
+
β

δ2

)]
,

µ0 =

√
k0a(N+ 3)

3
. (25)

The mass formula Mqqq depends only on N = Nξ + Nη. The contribution of
terms proportional toNξ −Nη, vanishing for ns = 0 and 3, was found to be very

weak in the other cases by a numerical resolution of Eqs. (24).

An important feature of the above mass formula has to be stressed: It only
depends on N the total number of excitation quanta of the system. But, this in-

teger is precisely the band number introduced in large Nc QCD to classify the

baryon states in a harmonic oscillator picture. Indeed the spinless SalpeterHamil-
tonian (13) has been transformed into a harmonic oscillator by the auxiliary field

method and it is thus natural that a such band number appears. The great ad-
vantage of the auxiliary field method is that it allows to obtain analytical mass

formulas for a relativistic Hamiltonian while making explicitly the band number

used in the large Nc classification scheme to appear. The origin of N is thus ex-
plained by the dynamics of the three-quark system and the comparison with the

1/Nc mass formulas is therefore possible.
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4.3 Heavy baryons

A mass formula for qqQ baryons can also be found from Eq. (22). An expansion

inms is still needed to get analytical expressions, but an expansion in 1/mQ can
also be done since we deal with one heavy quark. One obtains [12]

MqqQ = mQ +M1 + ns ∆M1s + ∆MQ (ns = 0, 1, 2),

M1 = 4µ1 −
2

3

(
α0

√
k1a

2Nξ + 3
+ 2α1

√
2k1a

N + 3

)
−
fa

πµ1
,

∆M1s =
m2s
µ1

[
1

2
−

1

12µ1

(
α0

√
k1a

2Nξ + 3
+ 2α1

√
2k1a

N + 3

)
+
fa

2π

(
3

4µ21
+
β

δ2

)]
,

∆MQ =
k1a

2mQ

[(
1−

fa

2πµ21

)
G(N,Nη) −

α0

6

√
2Nη + 3

2Nξ + 3

(√
2(2Nη + 3)

N+ 3
− 1

)

+
4α1

3

2Nη + 3

N+ 3

]
,

µ1 =

√
k1a(N+ 3)

2
, G(N,Nη) =

√
2Nη + 3

(√
2(N + 3) −

√
2Nη + 3

)
.

(26)

At the lowest order in ms and 1/mQ, this mass formula depends only on N.

However, when corrections are added, the mass formula is no longer symmetric
in Nη andNξ. Is it still possible to find a single quantum number? The answer is

yes, provided we make the reasonable assumption that an excited heavy baryon
will mainly “choose” the configuration that minimizes its mass.

The dominant correction of order 1/mQ is the term that depends on the func-

tion G(N,Nη). The baryon mass is lowered when G(N,Nη) is minimal, that is to
say for Nη = N. The analysis of the dominant part of the Coulomb term shows

that the baryon mass is also lowered in this case. So it is natural to assume that
the favored configuration, minimizing the baryon energy, isNη = N andNξ = 0.

It is also possible to reach the same conclusion by checking that an excitation of

type Nη will keep the baryon smaller in average than the corresponding excita-
tion inNξ. This is favored because of the particular shape of the potential, having

for consequence that the more the system is small, the more it is light.

As for light baryons, the quark model shows that heavy baryons can be la-

beled by a single band numberN in a harmonic oscillator picture. A light diquark-

heavy quark structure is then favored since the light quark pair will tend to re-
main in its ground state. Note that the diquark picture combined with a detailed

relativistic quark model of heavy baryons leads to mass spectra in very good

agreement with the experimental data [43].

4.4 Regge trajectories

The band numberN emerges from the quark model as a good classification num-

ber for baryons. It is now interesting to focus on the behavior of the baryon
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masses at large values of N, i.e. for highly excited states. In this limit, the for-

mula (25) gives

M2
qqq ≈ 12ak0(N+ 3) −

24√
3
ak0α0 −

16fak0

π
+ 6

[
1+

fak0β

πδ2

]
nsm

2
s . (27)

Our quark model thus states that light baryons should follow Regge trajecto-
ries, that is a linear relationM2 ∝ N, with a common slope, irrespective of the

strangeness of the baryons. The Regge slope of strange and nonstrange baryons

is also predicted to be independent of the strangeness in the 1/Nc expansion
method [44]. Too few experimental data are unfortunately available to check this

result. In the heavy baryon sector, the mass formula (26)withNξ = 0 andNη = N

becomes at the dominant order

(M −mQ)2 = 8a
k1

k0
(N + 3). (28)

This model predicts Regge trajectories for heavy baryons, with a slope of 8ak1/k0
≈ 7.8a instead of 12ak0 ≈ 11.4 a for light baryons.

The Regge slope for light baryons is here given by 12ak0. However, from

experiment we know that the Regge slopes for light baryons and light mesons
are approximately equal. For light mesons, the exact value obtained in the frame-

work of the flux tube model is 2πa, a lower value than the one obtained from

formula (27). This is due to the auxiliary field method that has been shown to
overestimate the masses [45]. What can be it done to remove this problem is to

rescale a. Let us define σ such that 12ak0 = 2πσ; then the formula (27) is able
to reproduce the light baryon Regge slope for a physical value σ of the flux tube

energy density. The scaling a = πσ/(6k0) will consequently be assumed in the

rest of this paper.

5 Large Nc QCD versus Quark Model results

5.1 Light nonstrange baryons

The coefficients ci appearing in the 1/Nc mass operator can be obtained from

a fit to experimental data. For example, the case N = 0 is particularly simple.
Equation (5) can be applied to N and ∆ baryons. Taking Nc = 3 together with

MN = 940MeV for S = 1/2, andM∆ = 1232MeV for S = 3/2, we get

c
(N=0)

1 = 289MeV, c
(N=0)

4 = 292MeV. (29)

Since the spin-orbit contribution vanishes for N = 0, no information can be ob-

tained for c2. We refer the reader to Refs. [19,21,22,24] for the determination of ci
at N > 0.

In the 1/Nc expansion method, the dominant term c1Nc in the mass for-

mula (1) contains the spin-independent contribution to the baryon mass, which
in a quark model language represents the confinement and the kinetic energy. So,
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Fig. 1. Plot of c21 (left) and ∆Ms (right) versus the band number N. The values computed

in the 1/Nc expansion (full circles) from a fit to experimental data are compared with the

quark model results with σ = 0.163 GeV2 , α0 = 0.4, f = 3.6, andms = 0.240 GeV (empty

circles and dotted line to guide the eyes). No data is available forN = 3 in largeNc studies.

The largeNc data are nearly indistinguishable from the quark model prediction in the left

plot.

it is natural to identify this term with the mass given by the formula (25). Then,
for Nc = 3we have

c21 =
M2
qqq

9
=
2π

9
σ(N + 3) −

4π

9
√
3
σα0 −

fσ

3
. (30)

Figure 1 shows a comparison between the values of c21 obtained in the 1/Nc ex-

pansion method and those derived from Eq. (30) for various values of N. From

this comparison one can see that the results of large Nc QCD are entirely com-
patible with the formula (30) provided σ = 0.163 GeV2, a rather low but still

acceptable value according to usual potential models, α0 = 0.4, and f = 3.6:
These are very standard values.

Equation (18) implies that c2 and c4 ∝ µ−2
0 . Therefore we expect the depen-

dence of N of these coefficients to be of the form

c2 =
c02

N+ 3
, c4 =

c04
N+ 3

. (31)

We see that such a behavior is consistent with the large Nc results in Fig. 2. We
chose c02 = 208 ± 60MeV so that the point with N = 1, for which the uncertainty

is minimal, is exactly reproduced. Let us recall that the spin-orbit term is van-

ishing for N = 0, so no large Nc result is available in this case. To compute the
parameter c04 a fit was performed on all the largeNc results. In this way we have

obtained c04 = 1062 ± 198MeV. Note that c04 ≫ c02. This shows that the spin-spin
contribution is much larger than the spin-orbit contribution, which justifies the

neglect of the spin-orbit one in quark model studies.
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Fig. 2. Values of c2 (left) and c4 (right) versus the band numberN. The values computed in

the 1/Nc expansion (full circles) from a fit to experimental data are compared with results

from formula (31) (empty circles and dotted line to guide the eyes). No data is available

forN = 3 in largeNc studies.

5.2 Light strange baryons

We have first to find out the values of ∆Ms coming from the 1/Nc expansion. For

N = 0, 1, and 3, they can be found in Ref. [44], and the case N = 4 is available in
Ref. [24]. The situation is slightly more complicated in the N = 2 band due to a

larger number of available results. We refer the reader to Ref. [11] for a detailed
discussion about the computation of ∆Ms in this case.

The mass shift due to strange quarks is given in the quark model formalism

by ∆M0s in Eq. (25). A comparison of this term with its large Nc counterpart

is given in Fig. 1, where we used the same parameters as for light nonstrange
baryons. The only new parameter is the strange quark mass, that we set equal to

240 MeV, a higher mass than the PDG value but rather common in quark model
studies. One can see that the quark model predictions are always located within

the error bars of the large Nc results. Except for N = 3, whose large Nc value

would actually require further investigations, the central values of ∆Ms in the
large Nc approach are close to the quark model results and they decrease slowly

and monotonously with increasing N. Thus, in both approaches, one predicts
a mass correction term due to SU(3)-flavor breaking which decreases with the

excitation energy (or N).

5.3 Heavy baryons

As mentioned previously, our present study is restricted to ground state heavy
baryons made of one heavy and two light quarks. In the 1/Nc, 1/mQ expansion

the parameters to be fitted are Λ,mQ and ǫΛχ. At the dominant order, the value
of Λ can be extracted from the mass combinations [8]

ΛQ = mQ+NcΛ,
1

3
(ΣQ+2Σ∗

Q)−ΛQ = 2
Λ

Nc
, Σ∗

Q−ΣQ =
3

2

(
2Λ2

NcmQ

)
, (32)
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resulting from the mass formula (8). Here and below the particle label represents

its mass. A slightly more complicated mass combination, involving light baryons

as well as heavy ones, directly leads tomQ, that is [9]

1

3
(ΛQ + 2ΞQ) −

1

4

[
5

8
(2N + 3Σ +Λ + 2Ξ) −

1

10
(4∆+ 3Σ∗ + 2Ξ∗ +Ω)

]
= mQ.

(33)

This mass combination gives

mc = 1315.1 ± 0.2MeV, mb = 4641.9 ± 2.1MeV, (34a)

while the value

Λ ≈ 324MeV (34b)

ensures that the mass combinations (32) are optimally compatible with the exper-

imental values for Q = c and b. A measure of the SU(3)-flavor breaking factor is

given by [8]

ΞQ −ΛQ =

√
3

2
(ǫΛχ). (35)

The value (ǫΛχ) = 206MeV leads to ΞQ − ΛQ = 178MeV, which is the average

value of the corresponding experimental data.

The new parameters appearing in the quark model aremc, mb, k1 = 0.930,

and α1. For the other parameters we keep the values fitted in the light baryon

sector. We take α1 = 0.7α0 from the quark model study of Ref. [37]. The heavy
quark masses can be fitted to the experimental data as follows. The quark model

mass formula (26) is spin independent; it should thus be suitable to reproduce

the masses of heavy baryons for which J2qq = 0. Namely, one expects that

Mnnc|N=0 = Λc = 2286.46 ± 0.14MeV, Mnnb|N=0 = Λb = 5620.2 ± 1.6MeV.
(36)

These values are reproduced by formula (26) with mc = 1.252 GeV and mb =

4.612 GeV. It is worth mentioning that we predict Mnsc|N=0 = 2433 MeV and

Mnsb|N=0 = 5767MeVwith these parameters. These values are very close to the
experimental Ξc and Ξb masses respectively.

We can now compare the quark model and the 1/Nc, 1/mQ mass formulas.

On the one hand the mass combination (33) leads to mc = 1315 MeV and mb =

4642 MeV. On the other hand, the quark model mass formula (26) is compatible

with the experimental data provided that mc = 1252 MeV and mb = 4612 MeV.

Both approaches lead to quarkmasses that differ by less than 5%. Thus they agree
at the dominant order, where onlymQ is present.

The other parameter involved in the largeNc mass formula is Λ. A compar-

ison of the spin independent part of the mass formulas (8) and (26) leads to the
following identification forNc = 3

c0 =
1

3
M1|N=0 =

4

3
µ1 −

2

27

√
k1πσ

2k0
(α0 + 2

√
2α1) −

fσ

18k0µ1
, (37)
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with µ1 =
√
k1πσ/4k0. According to Eqs. (11) and (34b) one has c0 = Λ ≃

0.324 GeV. The quark model gives 0.333 GeV for the expression after the second

equality sign in Eq. (37), which means a very good agreement for the QCD scale
Λ. The terms of order 1/mQ lead to the identity

c
′

0 = 2mQ ∆MQ|
N=0

=
k1πσ

6k0

[
3
(√
2− 1

)(
1−

fσ

12k0µ
2
1

)
−
α0

6

(√
2− 1

)
+
4α1

3

]
. (38)

Note that to test this relation the value of mQ is not needed, like for the iden-
tity (37). The large Nc parameter, Λ = 0.324 GeV, gives for the left hand side of

(38) c
′

0 ∼ Λ2 = 0.096GeV2 and the quarkmodel gives for the right hand side 0.091
GeV2, which is again a good agreement. Finally, the SU(3)-flavor breaking term

is proportional to ǫΛχ ∼ ms −m ∼ ms in the mass formula (12). Equations (12),

(26), and (35) lead to

√
3

2
ǫΛχ = ∆M1s|N=0

=
m2s
µ1

[
1

2
−

1

36µ1

√
k1πσ

2k0

(
α0 + 2

√
2α1

)
+

fσ

12k0

(
3

4µ21
+
β

δ2

)]
.(39)

The large Nc value ǫΛχ = 0.206 GeV and the quark model estimate 0.170 GeV
also compare satisfactorily. We point out that, except for mc and mb, all the

model parameters are determined from theoretical arguments combined with

phenomenology, or are fitted on light baryon masses. The comparison of our re-
sults with the 1/Nc expansion coefficients c0, c

′

0 and ǫΛχ are independent of the

mQ values. So we can say that this analysis is parameter free.

An evaluation of the coefficients c2, c
′
2, and c

′′
2 through a computation of

the spin dependent effects is out of the scope of the present approach. But at the
dominant order, one expects from Eq. (18) that c2 ∝ µ−2

1 and c ′′2 ∝ µ−1
1 . The ratio

c ′′2 /c2 should thus be of order µ1 = 356MeV, which is roughly in agreement with
Eq. (11) stating that c ′′2 /c2 ∼ Λ. This gives an indication that the quark model

and the 1/Nc expansion method would remain compatible if the spin-dependent

effects were included.

6 Conclusions

We have established a connection between the quark model and the 1/Nc expan-
sion both for light baryons and for heavy baryons containing a heavy quark. In

the latter case the 1/Nc expansion is supplemented by an 1/mQ expansion due to
the heavy quark. A clear correspondence between the various terms appearing in

the 1/Nc and quark model mass formulas is observed, and the fitted coefficients

of the 1/Nc mass formulas can be quantitatively reproduced by the quark model.

These results bring reliable QCD-based support in favor of the constituent
quark model assumptions and lead to a better insight into the coefficients ci en-

coding the QCD dynamics in the 1/Ncmass operator. In particular, the dynamical
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origin of the band number labeling the baryons in largeNc QCD is explained by

the quark model.

As an outlook, we mention two important studies that we hope to make

in the future. First, the N = 1 baryons of qqQ type are poorly known in the
1/Nc, 1/mQ expansion. They should be reconsidered and compared to the quark

model. Second, the ground state baryons made of two heavy quarks and a light

quark could be studied in a combined 1/Nc, 1/mQ expansion-quark model ap-
proach, leading to predictions for the mass spectrum of these baryons.
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