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Abstract. The linearized Poisson-Boltzmann theory was
applied to the system of a charged cylindrical surface
in contact with an electrolyte solution composed of
monovalent counter- and co-ions. An analytical solution
for the spatial dependence of the electric potential and the
concentration of counter and co-ions inside the charged
tube was obtained.
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1 Introduction

In some biological systems, the walls of membrane
nanotubes are charged and in contact with the
electrolyte solution. Due to the electric charge of
the nanotube wall, counterions of the electrolyte are
accumulated near the charged wall while coions of the
electrolyte are depleted from the region near the wall.
At inner (Fig. 1) and outer (Fig. 2) surfaces of the
charged tube the electric double layers of cylindrical
geometry are therefore formed [1; 2].
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Figure 1. Schematic presentation of a cylindrical electric
double layer inside the tube with radius r; and surface
charge density o;. The counterions are accumulated near
the charged surface while the coions are depleted from
the charged surface.
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Figure 2. Schematic presentation of a cylindrical electric
double layer outside the tube with radius r, and surface
charge density o,. The counterions are accumulated near
the charged surface while the coions are depleted from
the charged surface.

The constituents of the biological membranes may
carry ionized or polar groups [2]. The ionized groups
contribute to the surface charge density of the inner
and outer surfaces of the membrane nanotube. The
examples of such membrane molecules with charged
groups are lipids, glycolipids, or proteins. The
molecules which are bound to or absorbed onto the
membrane surface may also contribute to the surface
charge density of nanotube surfaces [3]. A widely
used description of the electric double layer is given
by the Poisson-Boltzmann (PB) theory [4; 5; 6] in
which the ions are treated as point charges in a
dielectric continuum enclosed by a uniformly charged
surface. For monovalent salt, the predictions of the
PB theory are found to agree well with experiments
and simulations [7]. A quite useful approximation to
the PB theory is the linearized PB theory (LPB) [8],
where the electrostatic energy is assumed to be small
compared to the thermal energy.

In the present paper we consider the charged
micro or nano tube in contact with an electrolyte
solution composed of counterions and coions. We
study the inner charged surface of the tube in a
contact with the inner electrolyte solution and the
outer charged surface of the tube in a contact with
the outer electrolyte solution. The potential and the
concentration profiles are calculated.
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2 Theory

We consider the charged tube in contact with a
solution of symmetric monovalent electrolyte. The
electric double layer inside nanotube (concave case)
and outside nanotube (convex case) are studied. r; is
the radius of the inner tube, while r, is the radius of
the outer tube. The length I of the tube is assumed
to be much larger than the radius. The system of
the outer surface and outer electrolyte solution is
electrically neutral. Also the system of the inner
surface and inner electrolyte solution is electrically
neutral.

If the electrostatic energy is small compared to
the thermal energy ., |e®/kT| << 1, where ® is the
electrostatic potential, then the linearized Poisson
Boltzmann (LPB) equation can be used

AT = £2T (1)

where U = €2 ig the reduced electrostatic potential

kT
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the dielectric constant of the solution, €y is the
permittivity of vacuum, T is the temperature and
k is the Boltzmann constant, N4 is the Avogadro
number, nq is the bulk counterion concentration, eg
is the elementary charge, A is the Laplace operator
and r is the radial coordinate.

is the Debye length, € is

In the case of uniformly charged and very
long cylinder the three-dimensional problem reduces
to one-dimensional problem, i.e. the differential
equation (1) for the potential becomes

%% <r%§j’)> = k20(r) (2)

Multiplying Eq. (2) by 72 and performing the
derivation we get

P () + ¥ (r) - 827 U (r) = 0, ®)

where the symbol ' denotes derivation with respect
to the radial coordinate r.
The solution of differential Eq. (2) is [9]

U(r) = Aly(kr) + B Ko(kr) (4)

where Iy and K are the modified Bessel functions of
order 0. The constants A and B are determined by
boundary conditions.

In a convex case the outer charged surface of
the tube with the radius r, is in a contact with the
outer electrolyte solution. The boundary conditions
outside the tube are

d¥(r) _
Tlr—mo =0 (5)

d¥(r)

00€0
dr fr=r.
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where o, is the surface charge density of the outer
surface of the tube. The first boundary condition
(Eq. 5) gives A = 0, while from the second boundary
condition (Eq. 6) the constant B was calculated. The
electrostatic potential outside the tube is [7]

e Ko(kor
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where Kk, = T, g s the electrolyte strength

far from the charged tube and K, is the modified
Bessel function of order 1.

Inside the tube we consider electric double layer
being in contact with the concave surface of radius
ri, where the inner part of the tube is in contact with
the electrolyte solution. The boundary conditions
inside the tube are

d¥(r)

d?” |7’:0 = 0 (8)
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where o; is the surface charge density of the inner
surface of the tube. The first boundary condition
(Eq. 5) gives B = 0, while from the second boundary
condition (Eq. 6) the constant A was calculated. The
electrostatic potential inside the tube becomes

oieo  lo(kir)
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where k; = 2222\;@’}6%, nj is the electrolyte strength

along the axis of the tube and I; is the modified
Bessel function of order 1.

The concentration of counterions n. is given by
the Boltzmann distribution

¥, (11)

Net = Nge
where ngq is the bulk concentration of counterions. In
the LPB theory the exponent in Eq. (11) is expanded
in electrostatic potential up to the first odrer. The
concentration of counterions outside the charged tube
ng, thus becomes

ng =ng(1—¥(r)). (12)

Inserting Eq. (7) into Eq. (12) we obtain
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Within LPB the concentration of counterions inside
the charged tube nl, is

ng, = ng(1 —¥(r)), (14)
inserting Eq. (10) into Eq. (14) we obtain
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Figure 3. Reduced electric potential |¥(7;)| inside the
charged surface for two different surface charge densities
o; and ny = 0.lmol/l. We use dimensionless spatial
coordinates 7; = K;r.
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Figure 4. Reduced electric potential |¥(7,)| outside the
charged surface for two different surface charge densities
0, and ng = 0.lmol/l. We use dimensionless spatial
coordinates 7, = KoT.
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3 Results and Discussion

Figs. 3 and 4 show the reduced potential inside and
outside the charged tube, respectively. The linearized
PB theory was used. The electric potential decreases
with the increasing distance from the charged surface.
In centre of the tube and far from the tube the

electrostatic potential converges to 0. The absolute
value of the potential increases with the increasing
surface charge density.

The LPB theory is justified for the dimensionless
ions and the reduced potential |¥| smaller than
1. This corresponds to the potential & = 25mV
at room temperature. Our calculations show that
the maximal reduced potential is equal to 2 for
surface charge density o, = 0.038 As/m? and bulk
concentrations nj* = 0.1mol/l. This is nearly the
limit, of the validity of LPB. For smaller ¢, and
n]' the linearized Poisson-Boltzmann theory can be
applied.

We assumed a permittivity of 78.5 for the
solution. Large ion concentration near the charged
surface reduces the permittivity of the solution near
the charged surface. This change of the permittivity
near the charged surface will lead in a minor
correction of our calculation.

The length of the tube was much greater than the
radius of the tube. This improves the statistics of the
system and neglects the role of the edges of the tube.
We also assumed large radius of the tube compared
to the Debye length.  This assumption avoids
overlapping of concave double layers of opposite
surfaces of the charged tube [10; 11].

In summary, our model of the cylindrical double
layer is based on the TLPB theory. The convex
and concave electric double layer in cylindrical
geometry is studied. The analytical solution
for the electrostatic potential and the counterion
concentration inside the tube are obtained. We show
that the absoulte value of the electrostatic potential
as well as the counterion concentration decrease with
the increasing distance from the charged surface.
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