Acta geographica Slovenica, 53-1, 2013, 117-139 EUROPE'S LANDSCAPE HOTSPOTS POKRAJINSKE VROČE TOČKE EVROPE Rok Ciglic, Drago Perko Contact of the Alps and the Mediterranean in Slovenia (the Gorica Hills). Stik med Alpami in Sredozemljem v Sloveniji (Goriška brda). Europe's landscape hotspots DOI: 10.3986/AGS53106 UDC: 911.52(4) COBISS: 1.01 ABSTRACT: The main purpose of this analysis is to identify places in Europe that can be described as very diverse according to various natural landscape types or landscape regions. In order to obtain these »hotspots,« several geographical divisions of Europe were examined. The analysis was performed for most of Europe at 5 km resolution. First, maps of landscape variety were produced based on each division of Europe taken into account. This step was carried out for each cell by counting the number of different unique natural landscape types or regions that are present in a radius of 50 km around the cell. Several maps of landscape diversity were produced using this method. Each of them was then weighted; the cell values were divided by the number of all unique types or regions in a division. In the final stage, all of the maps were synthesized (averaged) into one map showing landscape diversity for Europe. With this data it was possible to determine Europe's landscape hotspots and to define the most naturally heterogeneous countries. Among all of the European countries, Slovenia has the highest average landscape diversity; the highest absolute landscape diversity is located in the Norwegian part of southern Scandinavia. KEY WORDS: geography, landscape hotspot, natural landscape, diversity, geographic information system, Europe, Slovenia, Norway. The article was submitted for publication on May 18, 2013. ADDRESSES: Rok Ciglic Anton Melik Geographical Institute Research Centre of the Slovenian Academy of Sciences and Arts Gosposka ulica 13, SI - 1000 Ljubljana, Slovenia; E-mail: rokci@zrc-sazu.si Drago Perko, Ph. D. Anton Melik Geographical Institute Research Centre of the Slovenian Academy of Sciences and Arts Gosposka ulica 13, SI - 1000 Ljubljana, Slovenia; E-mail: drago@zrc-sazu.si Contents 1 Introduction 2 Purpose 3 Selection and description of classifications 3. 1 Environmental stratification of Europe 3.2 European landscape classification 3.3 Biogeographic regions (version 2011) 3.4 Terrestrial ecoregions of the world 4 Defining the study area and selecting 119 120 120 121 121 121 121 geoinformation tools 5 The results of defining Europe's landscape diversity 123 125 127 6 Comparison of hotspots 6.1 A hotspot in southern Scandinavia (example of a physical geography region) 127 127 128 128 128 6.2 Slovenia as a hotspot (example of a country) 7 Conclusion 8 Acknowledgement 9 References 1 Introduction The area of central Europe where Slovenia lies, with a radius of 150 km, is at the intersection of the high Alps with their pre-Alpine hills and basins, the level land of the Pannonian Plain with its hilly margin, the karstified area of the Dinaric mountains with its karst plateaus, and the Mediterranean hills with the balmy effect of the Adriatic Sea. This is also the meeting point of four cultural areas - Slavic, Germanic, Romance, and Hungarian - and so this small area has seen the formation of many types of natural and cultural landscapes (Kladnik & Perko 1998). Despite its small size, Slovenia is therefore very diverse. Geographical studies of Slovenia show that it is precisely the contact points between various landscape types that prove to be especially interesting, and that the area along the borders between different landscape types can be defined as a kind of landscape hotspot. The goal of the study was to determine whether it is also possible to define European landscape hotspots (Ciglic & Perko 2013) based on various classifications of Europe (typifications and regionalizations). Various landscape classifications are common in geographical research. This is not surprising because it is normal for people to seek some kind of order in the landscape (Haggett 2001). Classification is one of the most basic human mental activities, which is used to organize the information that we receive because memorizing the features of every individual is impossible. Therefore people combine objects, other people, and events into groups according to some shared feature (Theodoridis & Koutroumbas 2006). Landscape classifications are important for preserving the landscape and planning its development (Romportl 2007; Bernertetal. 1997). Defining ecoregions can serve several purposes: monitoring, management, planning, inventorying, presenting facts, assessment, measuring, studying scenarios, specifying sample areas, transferring models into physical space, showing the diversity of a landscape, showing the connection between land and water systems, analyzing impacts on the environment, and so on (Loveland & Merchant 2004; Mücheretal. 2003; Bastian 2000; Bailey 1996, 146-152; Runhaaretal. 1994; Bunceetal. 1996). Although landscapes are not static and they change, an overview of landscape types is essential (Mücheretal. 2003) because space should be organized such that it enables the economical use of natural resources and thus their renewability. It is necessary to have a good knowledge of natural processes and how they function (Plut 1999). Classifying space based on natural geography features is a foundation for optimal spatial organization. Not least of all, environmental issues are also more suitably defined through natural features than through administrative boundaries (Bailey 1996; Olson et al. 2001). The absence of a common spatial unit also hinders multidisciplinary research (Bailey 1996), and such research could be facilitated by uniform landscape classification, in which studies would focus on a common spatial unit (Brabyn 2009). With a common ecosystem unit, data collection and analysis would apply to an area of the same spatial size (Bailey 1996). This is also one of the challenges of multidisciplinary studies on managing natural resources (Axelsson, Angelstam, & Tornblom 2010). Therefore spatial classifications created based on natural features are being used with increasing frequency because their users are seeking a classification that is better than a political one and better expresses natural conditions (Bernertetal. 1997). Thus, for example, the NUTS3 coastal regions in the Mediterranean often include rural and urban areas (Hazeu et al. 2010), which differ by both physical geography and human geography features. Plut (1999) used a combination of physical geography and human geography elements in his proposal for the administrative division of Slovenia. Realizing the principle of sustainability in business, social, and environmental areas necessitates the ongoing adaptation of an organization and the functioning of the social environment (Plut 2005, 59), which must therefore be understood as well as possible. Published research and online material include many classifications of countries, continents, and also smaller areas created based on natural and social features. Examples of such landscape classification can be found for various countries around the world (e.g., Van Eetvelde & Antrio 2009; Bryan 2000; Burrough et al. 2001; Soto & Pintó 2010; Hargrove & Hoffman 2005; Castillo-Rodríguez, López-Blanco, & Muñoz-Salinas 2010; Wolock, Winter, & McMahon 2004; Zhou et al. 2003; Leathwicket al. 2003; Breskvar @aucer & Marusic 2006; Perko 1998; [pesetal. 2002; Renetzeder et al. 2008). There is also a rich selection of European landscape classifications (Mücheretal. 2003; Metzgeretal. 2005; Jongmanetal. 2006; Mücheretal. 2003, 2006, 2009; Digital map... 2009; Bohnetal. 2002/2003; Meeus 1995; Europe's... 1995; Rivas-Martínez, Penas, & Díaz, 2009; Biogeographical regions... 2013) and also for the entire world (Olsonetal. 2001; Bailey 1996; Udvardy 1975). It must also be remembered that all of these classifications involve a certain abstraction. Namely, a model is a simplified representation of the real world (Demeritt & Wainwright 2005), and so there are also differences among landscape classifications for the same areas. 2 Purpose This article analyzes various digital natural landscape classifications for Europe and determines which areas of Europe can be characterized as having greater landscape diversity. The basic purpose is to find areas where different European natural landscape units (types or regions) meet. Areas where there is a mix of various natural factors are important from the aspect of biodiversity because landscape diversity has an important impact on biodiversity (i.e., habitat and species diversity; Dramstadet al. 2001; Hou & Walz 2013; Walz & Syrbe 2013). Areas with landscape diversity may also have an advantage in economic development, and especially in tourism, because »human perception values diversity, complexity, patterns, and local character« (Erhartic 2012, 36). Gray (2004) believes that the significance of diverse types of relief and richness of terrain details for the popularity of tourism areas is greatly underestimated. On the other hand, areas where various natural influences intertwine can also be areas where it is not simple to transfer best practice because of the varying response of the landscape to human influences. This article seeks to draw attention to such areas in Europe and also to determine whether »hotspots« at the intersection of units appear in the classifications of various authors; that is, whether they are marked as diverse in several sources. 3 Selection and description of classifications This analysis includes various landscape classifications, which are primarily based on natural landscape elements and are accessible in digital format. For this analysis, classifications were chosen that have a similar number of types or regions (Table 1, Figure 1). Table 1: Selected European landscape classifications. classification (source) number classification of categories level classification categories; categories that are not inside research area are put in brackets Environmental stratification of Europe Mücher s sod. 2003; Metzger s sod. 2005; Jongman s sod. 2006) second level (first level has two categories*) List of all biogeographical regions: Alpine, Anatolian, Atlantic, Boreal, Continental, Mediterranean European landscape classification (Mücher s sod. 2003; Mücher s sod. 2006; Mücher s sod. 2009) first level List of all types: Atlantic, Boreal, Continental, Arctic, Mediterranean, Steppic, Anatolian, Alpine Biogeographical regions (Biogeographical regions ^ 2013)_ Terrestrial ecoregions of the World** (Olsonetal. 2001) 11 classification has List of all biogeographical regions: Alpine, Anatolian, Arctic, only one level Atlantic, Black Sea, Boreal, Continental, (Macaronesian), Mediterranean, Pannonian, Steppic 14 this is first level that List of all biomes: (tropical and subtropical moist broadleaf divides Europe into forests); (tropical and subtropical dry broadleaf forests); different units (tropical and subtropical coniferous forests); temperate broadleaf and mixed forests; temperate coniferous forests; boreal forests/taiga; (tropical and subtropical grasslands, savannas and shrublands); temperate grasslands, savannas, and shrublands; (flooded grasslands and savannas); (montane grasslands and shrublands); tundra; mediterranean forests, woodlands, and scrub; (deserts and xeric shrublands); (mangroves); lakes etc.***; (rock and ice) * Classification was made using computer applications such that Europe was first divided into north and south based on climate data, and then a classification was carried out for both units based on various natural data. * The DMEER classification (Digital map...2013)was excluded because, in comparison to other classifications, it has a much larger number of units. The Terrestrial Ecoregions of the World classification is based on it also. " This category was not included in the analysis. 6 8 3.1 Environmental stratification of Europe This division of Europe was worked out for defining the units used for sampling, various models, and environmental reports (Metzgeret al. 2005; Mucheretal. 2003). They were classified in several steps. First, principal component analysis was applied to multiple data layers (elevation, inclination, distance from the sea, latitude, and several climate variables for January, April, July, and October) in order to determine three principal components. Then the principal components were used to classify the cells into groups. Europe was divided into eighty-four environmental classes, and these were then combined into thirteen environmental zones and further into six biogeographic regions. The entire division was worked out with a spatial resolution of 1km2 (Metzgeretal. 2005; Jongmanetal. 2006; Mucheretal. 2003). Territory was classified between 11° W and 32° E and between 34° N and 72° N (Metzger et al. 2005). Because of the great differences, the entire area was divided based on climate and treated as two divisions: north and south (Metzgeretal. 2005), which could also be understood as division at the highest level. 3.2 European landscape classification This landscape classification was made based on physical geography and human geography data. Individual steps used a segmentation method and a group classification of the segments obtained. The data used covered climate, elevation, soils, and land use. Major urban areas, bodies of water, and tide areas were defined separately (Mucheretal. 2003; Mucheretal. 2006). Based on the data on elevation, soil, and land use, Europe was first divided into smaller segments, and then climate data were used for further classification (Mucheretal. 2009). For classifying segments at the first level, climate was taken into account and eight types were defined, for classification at the second level elevation was also taken into account and thirty-one types were defined, for the third level soil was added and seventy-six types were defined, and for the fourth and lowest level special land-use areas were also taken into account and 350 landscape types were defined (Mucheretal. 2006). Data analysis took place at a resolution of 1 km2, and the polygons or units obtained that were smaller than 11 km2 were subsequently combined with neighboring ones. The final map was created at a scale of 1: 2,000,000 and covers all of Europe up to the Urals in the east, Azerbaijan in the southeast, and Novaya Zemlya in the northeast, although Cyprus is not included (Mucheretal. 2006). 3.3 Biogeographic regions (version 2011) The borders between biogeographic regions were also used in the text of the Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora (COUNCIL DIRECTIVE 92/43/EEC) and in preparing the EMERALD network (Biogeographical... 2013). The latest version from 2011 included all of Europe, including Iceland, Turkey, the Caucasus and western Russia, the Canary Islands, and the Azores. Both archipelagos are included in the biogeographic region of Macaronesia (Biogeographical regions... 2013). The first versions were based on a combination of natural vegetation of countries in the European Community and the Council of Europe (Noirfalise 1987). Forest communities were combined into biogeographic regions (these also included azonal units) and the map was generalized; later versions also used a map of potential vegetation, which was prepared by the German Federal Environment Agency (The Indicative Map ... 2006). The classification from 2011 has eleven biogeographic regions. In principle, it relies on natural vegetation, although some borders run along administrative or national borders (e.g., for Hungary and Greece), which distances it from a completely natural division. 3.4 Terrestrial ecoregions of the world The map of terrestrial ecoregions was created based on biogeographical information, and it relatively precisely shows the broad range of various flora and fauna. Ecoregions denote proportionally extensive units with a special combination of natural communities and species. Their borders correspond to the natural state of affairs before human intervention (Olson et al. 2001). According to this division, the land is divided into eight geographic realms (Oceania, Neoarctic, Neotropic, Afrotropic, Palearctic, Indo-Malay, Australasia) and fourteen biomes. In addition to biomes, the categories of major lakes and of cliffs and ice were also Figure 1: Presentation of individual classifications. p p. 122 Biogeographical regions/ Biogeografske regije oz. območja Environmental stratification of Europe/ Okoljska členitev Evrope Biogeographical regions/biogeografske regije oz. območja: Alpine/alpsko ^^ Atlantic/atlantski Continental/celinski J Anatolian/anatolski Black Sea/črnomorski Mediterranean/sredozemski Arctic/arktični Boreal/borealni Pannonian/panonski Source/Vir: Biogeographical regions ... 2013 Steppic/stepski European landscape classification/ Evropska pokrajinska klasifikacija Biogeographical regions/biogeografske regije oz. območja: Alpine/alpsko Boreal/borealno Anatolian/anatolsko Continental/celinsko Atlantic/atlantsko Mediterranean/sredozemsko Source/Vir: Mucher et al. 2003; Metzger et al. 2005; Jongman et al. 2006 Terrestrial biomes of the World/ Kopenske ekološke regije oz. območja sveta Types/tipi: Atlantic/atlantski Boreal/borealni Arctic/arktični Mediterranean/sredozemski Steppic/stepski Continental/celinski Anatolian/anatolski Alpine/alpski Source/Vir: Mücher et al. 2003; Mücher et al. 2006; Mücher et al. 2009 0 300 600 900 km Author of map/Kartograf: Rok Ciglič Biomes/biomi: Temperate Broadleaf and Mixed Forests/ širokolistni in mešani gozdovi zmernih geografskih širin Temperate Coniferous Forests/iglasti gozdovi zmernih geografskih širin Boreal Forests; Taiga/borealni gozdovi; tajga Temperate Grasslands, Savannas, and Shrubland/ travniki, savane in grmičevja zmernih geografskih širin Tundra/tundra Mediterranean forests, woodlands, and scrub/ sredozemski gozdovi, dobrave in grmovja Water/voda Rocks, ice/skalovje, led Source/Vir: Olson et al. 2001 separated. At the most detailed level, 867 ecoregions are identified altogether. The division was carried out based on various sources (for more information, see Olson et al. 2001); for the western Palearctic, which also includes Europe, the DMEER (Digital Map of European Ecological Regions, Digital Map ... 2013) was used. The divisions were corrected in places. The division of regions for which existing biogeographic classifications were not found was based on relief and vegetation (Olson et al. 2001). 4 Defining the study area and selecting geoinformation tools The part of Europe covered in all four classifications was analyzed. This ensured that the entire area analyzed had data for all classifications (Figure 2); extreme eastern Europe, Iceland, and Cyprus were excluded. 1 A A B R B B B A B D i > D A H C I 3 C D A [aJ D D A A A A B B B B B B D B A C C B D D A A C H D D 3 4 A A C C D D A A A C D D Figure 3: Calculation of various unique values (of types or regions) around the cell (example for two cells). All of the classifications were transformed from vector file format to raster file format because the remainder of the study used geoinformation tools for processing raster data layers. A 5 km resolution was used for rasterization, which is sufficiently precise for a general overview of landscape diversity in Europe. After preparing the data layers for each classification in the raster notation, the number of types appearing in a ten-cell or 50 km radius was calculated for each cell (Figure 3 shows a smaller radius simply for illustration). The radius was defined subjectively (a smaller radius would yield similar results, but landscape diversity would be limited to a smaller area, and a larger radius would yield higher landscape diversity). Thus some sort of landscape diversity map was obtained for each of the four classifications. After creating the landscape diversity maps for each classification analyzed, all of them were joined into a combined landscape diversity map. This was done such that each landscape diversity map was first divided by the number of all possible classification categories (landscape types or regions) in the study area. This therefore showed the share of all landscape categories in the study region of Europe in a radius of 50 km for each cell within a specific classification. Then all of the weighted landscape diversity maps were used to calculate an average, which is also the final result. 5 The results of defining Europe's landscape diversity The map of average landscape diversity in Europe (Figure 4) shows the percentage of landscape categories that appear in a radius of 50 km around each cell on average with regard to all of the classifications used. From the map it is clear that the points of contact of various landscapes, including the most diverse landscapes, are primarily along chains of mountains (the Pyrenees, the Alps, the Dinarides, the Carpathians, and the Massif Central), in southern Scandinavia, and in western Anatolia. These areas have on average contact of at least 30% of all categories that appear in individual landscape classifications. There is a clear reduction in the central region of the Alps (even below 15%), which is understandable because Figure 4: Europe's landscape diversity (share of landscape categories in percentages appearing in a 50 km radius of each cell, average for all classifications used). the central parts are remote from other landscape categories. Less than 20% is reached in the majority of the Iberian Peninsula, the southern parts of the Italian and Balkan peninsulas, the French lowlands, a large part of the German-Polish Plain, the East European Plain, the Finnish Lake District, the Pannonian and Wallachian plains, the British Isles, the large Mediterranean islands of Sicily, Sardinia, Corsica, and Crete, and eastern Scandinavia. The area where the most different types intersect is, somewhat surprisingly, extreme southern Scandinavia, where on average 49% of all landscape categories mix. Only a small area of the Massif Central and the western Alps also exceed 40%. These two areas can be characterized as true landscape hotspots of Europe because they include very diverse landscapes. Analyzing diversity by individual countries (Table 2) shows that small countries have the most landscape diversity (Slovenia, Liechtenstein, Montenegro, Switzerland, Macedonia, Andorra, Bosnia-Herzegovina, Austria, and Croatia average over 25%); however, many small countries (e.g., Malta, Ireland, Estonia, Latvia) do not exceed 15%. The fact that area is not a decisive factor was also confirmed mathematically. Spearman's coefficient showed that the average share of landscape categories and area of countries weakly correlate; a weak negative correlation was determined (Table 3). There is also weak correlation between the highest value within a country and the size of the country. The coefficient is positive, which means that larger countries have higher maximum values. This is understandable because the probability is greater that a larger country will have some kind of contact between several different landscape categories. From the perspective of the diversity of the entire country, an example of a hotspot is Slovenia, which is the most diverse country on average. Within Slovenia, in a 50 km radius the cells have an average of 32.5% of all categories defined for the European study area. The highest absolute value is in Norway, at 49.2%. Only France also exceeds 40%. These are absolute hotspots, already mentioned in the previous paragraph, and they are also apparent on the map (Figure 5). The highest among the lowest values is in Liechtenstein, at 32.1%. Table 2: Lowest, highest, and average share of landscape categories in Europe in a 50 km radius around an individual cell for all cells within individual countries. country minimum in % maximum average in % in % country minimum in % maximum in % average in % Slovenia 24.8 39.4 33.2 Portugal 14.0 32.1 19.7 Liechtenstein 32.1 32.1 32.1 Italy 14.0 35.2 19.6 Montenegro 18.1 34.6 30.1 Germany 14.0 32.1 19.6 Switzerland 14.0 39.4 29.8 Sweden 14.0 30.4 18.8 Macedonia 14.0 34.6 29.6 Denmark 14.0 23.8 18.3 Andorra 26.3 30.4 29.5 San Marino 18.1 18.1 18.1 Bosnia and Herzegovina 14.0 37.7 26.6 Spain 14.0 37.7 17.7 Austria 14.0 35.2 26.0 Greece 14.0 34.6 17.2 Croatia 14.0 37.7 25.2 Hungary 14.0 34.6 16.8 Norway 14.0 49.2 25.0 Poland 14.0 30.4 16.5 Kosovo 14.0 34.6 24.9 Lithuania 14.0 23.8 16.2 Romania 14.0 37.7 24.2 Serbia 14.0 27.9 15.7 Slovakia 14.0 30.4 22.9 Finland 14.0 31.0 15.6 Albania 14.0 34.6 22.8 Netherlands 14.0 23.8 15.3 Luxembourg 21.3 21.3 21.3 United Kingdom 14.0 18.1 14.8 Moldova 14.0 23.8 20.8 Latvia 14.0 21.3 14.7 Czech Republic 14.0 30.4 20.8 Estonia 14.0 18.1 14.2 Bulgaria 14.0 34.6 20.4 Ireland 14.0 14.0 14.0 France 14.0 46.0 20.1 Malta 14.0 14.0 14.0 Belgium 14.0 23.8 19.8 Table 3: Correlation between country size and greatest, and average value for the country. Correlation between country size and greatest landscape diversity value Correlation between country size and average landscape diversity value Spearman's coefficient 0.315 -0.333 Miscalculated coefficient risk (statistical significance), % 5.1 3.9 6 Comparison of hotspots The most interesting examples of European landscape hotspots are Norway (or the part of its territory in southern Scandinavia with the highest landscape diversity value) and Slovenia as an example of a country with the highest average landscape diversity in Europe. 6.1 A hotspot in southern Scandinavia (example of a physical geography region) The highest landscape diversity value was recorded in Norway, in southern Scandinavia, where nearly 50% of all landscape categories that the map creators defined for Europe appear in the hotspot area. After examining individual landscape classification maps, one sees that this is where the Atlantic (ocean), alpine (mountain), boreal, and continental types of landscapes meet (Table 4). Contact between continental and ocean features can also be confirmed by Peeletal.'s (2007) climate classification of southern Norway as Cfb and Dfb in the updated Koppen-Geiger climate classification-that is, as a temperate climate without a dry season and with a warm summer (Cfb) and a cold climate without a dry season and with a warm summer (Dfb). Nearly the entire area between Germany and Russia is also classified as type Dfb. In addition, southern Norway is primarily naturally covered with deciduous trees and not with conifers (Diekmann 1994). Table 4: Overview of units by individual classifications of southern Scandinavia. classification portion of all categories in Europe categories in the hotspot area and its surroundings Environmental stratification of Europe 4/6 Alpine, Atlantic, Boreal, Continental region European landscape classification 4/8 Alpine, Atlantic, Boreal, Continental type Biogeographical regions 3/10 Alpine, Atlantic, Boreal region Terrestrial biomes of the World 4/7 temperate coniferous forests, boreal forests/taiga, tundra, temperate broadleaf and mixed forests 6.2 Slovenia as a hotspot (example of a country) Among all of the countries, Slovenia has the highest average landscape diversity, which Slovenian researchers have long emphasized. Melik (1935) characterized Slovenia as a »land of contacts,« and Gams (1998), Perko (1998), and Plut (1999) emphasized the intersection of four European physical geography regions (the Alps, the Dinarides, the Mediterranean, and the Pannonian Basin). They all confirm that Slovenia is at the intersection of various European macroregions. An examination of European territory classifications prepared by Ciglic (2009) and by Ciglic and Perko (2012) shows that non-Slovenian researchers also place Slovenia at the intersection of various European landscape categories. With regard to the classifications that were examined in this analysis, it can be concluded that Slovenia is at the intersection of the mountain (Alps and Dinarides), continental (Pannonian Plain), and Mediterranean landscape types (Table 5). Table 5: Overview of units by individual classifications of Slovenia. classification portion of all categories in Europe categories in the country Environmental stratification of Europe 3/6 Alpine, Continental, Mediterranean region European landscape classification 3/8 Alpine, Continental, Mediterranean type Biogeographical regions 3/10 Alpine, Continental, Mediterranean region Terrestrial biomes of the World 3/7 temperate coniferous forests, temperate broadleaf and mixed forests, mediterranean forests, woodlands, and scrub 7 Conclusion The landscape diversity map of Europe that was created using relatively simple methods offered by geographic information systems and its analysis by country showed that as a rule the areas with the greatest landscape diversity are near mountains. The extensive plains in northern and eastern Europe, the British Isles, and parts of the Mediterranean are less diverse based on the analysis. The Massif Central, the western Alps, and southern Scandinavia stand out in terms of landscape diversity. The analysis was carried out based on research-based and officially recognized landscape classifications of Europe, which show various categories of landscapes (regions or types) at the highest level. It is therefore necessary to also be aware that research findings are relevant only at the highest level because it is apparent that within regions at lower levels landscapes can be considerably more or less diverse (e.g., the Sierra Nevada in southern Spain, mountainous Corsica, etc.). For individual regions and countries that were defined as having the greatest landscape diversity or as some kind of landscape hotspots, it can be concluded that, alongside minimal human development, they have extensive biodiversity, greater economic potential (especially due to tourism), and a greater likelihood of utilizing diverse natural resources. Alongside the advantages, it is also necessary to point out the dangers hidden primarily in the fact that in such regions it is more difficult to transfer best practices from one region to another because regions have different ecosystems that respond differently to various human interventions, which also encumbers regional planning. An examination of the cases of two hotspots (southern Scandinavia and Slovenia) showed that all of the classifications analyzed place them at the intersection of various landscape categories, which means that they are confirmed as landscape hotspots by multiple sources. Of course, agreement between sources increases their objectivity and raises their value. 8 Acknowledgement The paper is based on the research project Determination of natural landscape types of Slovenia using geographic information system (L6-3643), financed by the Slovenian Research Agency. 9 References Axelsson, R., Angelstam, P., Tornblom, J. 2010: Development of integrative landscape research towards problem-oriented science. Landscape structures, functions and management: response to global ecological change: book of abstracts. Praha. Bailey, R. G. 1996: Ecosystem geography. New York. Bastian, O. 2000: Landscape classification in Saxony (Germany) - a tool for holistic regional planning. Landscape and urban planning 50-1-3. DOI: 10.1016/S0169-2046(00)2900086-4 Bernert, J. A., Eilers, J. M., Sullivan, T. J., Freemark, K. E., Ribic, C. 1997: A Quantitative Method for Delineating Regions: An Example for the Western Corn Belt Plains Ecoregion of the USA. Environmental Management 21-3. New York. DOI: 10.1007/s002679900038 Biogeographical regions, Europe (version 2011). European Environmental Agency. Internet: http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1 (20.2.2013). Brabyn, L. 2009: NZ Landscape Classification Version II (Introduction). Internet: http://www.waikato.ac.nz/ wfass/subjects/geography/people/lars/landscape/index.shtml (16.10.2009). Breskvar Žaucer, L., Marušič, J. 2006: Analiza krajinskih tipov z uporabo umetnih nevronskih mrež. Geodetski vestnik 50-2. Ljubljana. Bryan, B. A. 2006: Synergistic techniques for better understanding and classifying the environmental structure of landscapes. Environmental Management 37-1. DOI: 10.1007/s00267-004-0058-1 Burrough, P. A., Wilson, J. P., van Gaans, P. F. M., Hansen, A.J. 2001: Fuzzy k-means classification of topo-cli-matic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape ecology 16-6. Castillo-Rodríguez, M., López-Blanco, J., Muñoz-Salinas, E. 2010: A geomorphologic GIS-multivariate analysis approach to delineate environmental units, a case study of La Malinche volcano (central México). Applied Geography 30-4. Sevenoaks. DOI: 10.1016/j.apgeog.2010.01.003 Ciglič, R. 2009: Slovenija v naravnogeografskih členitvah Evrope. Geografski vestnik 81-2. Ljubljana. Ciglič, R., Perko, D. 2012: Slovenia in geographical typifications and regionalizations of Europe. Geografski vestnik 84-1. Ljubljana. Ciglič, R., Perko, D. 2013: Europe's landscape hotspots. Geography: linking tradition and future: Conference programme. Brugge. Demeritt, D., Wainwright, J. 2005: Models, modelling and geography. Questioning geography: fundamental Debates. Malden. Diekmann, M. 1994: Deciduous forest vegetation in Boreo-nemoral Scandinavia. Acta phytogeographica suecica 80. Uppsala. Digital map of European ecological regions. European environmental agency. Internet: http://www.eea.eu- ropa.eu/data-and-maps/data/digital-map-of-european-ecological-regions (19.3.2013). Dramstad, W. E., Fry, G., Fjellstad, W. J., Skar, B., Helliksen, W., Sollund, M.-L. B., Tveit, M. S., Geelmuyden, A. K., Framstad, E. 2001: Integrating landscape-based values-Norwegian monitoring of agricultural landscapes. Landscape and Urban Planning 57-3-4. Amsterdam. DOI: 10.1016/S0169-2046(01) 00208-0 Erhartič, B. 2012: Geomorfološka dediščina v Dolini Triglavskih jezer. Geografija Slovenije 23. Ljubljana. Gams, I. 1998: Lega Slovenije v Evropi in med njenimi makroregijami. Geografija Slovenije. Ljubljana. Gray, M. 2004: Geodiversity, valuing and conserving abiotic nature. London. Haggett, P. 2001: Geography: a global synthesis. Harlow. Hargrove, W. W., Hoffman, F. M. 2005: Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environmental management 34-S1. New York. DOI: 10.1007/s00267-003-1084-0 Hazeu, G. W., Metzger, M. J., Mücher, C. A., Perez-Soba, M., Renetzeder, C., Andersen, E., 2010: European environmental stratifications and typologies: An overview. Agriculture, ecosystems and environment 142-1-2. DOI: 10.1016/j.agee.2010.01.009 Hou, W., Walz, U. 2013: Enhanced analysis of landscape structure: Inclusion of transition zones and small-scale landscape elements. Ecological Indicators (in press). Amsterdam. DOI: 10.1016/j.ecolind.2012.11.014 Jongman, R. H. G., Bunce, R. G. H., Metzger, M. J., Mücher, C. A., Howard, D. C., Mateus, V. L. 2006: Objectives and applications of a statistical environmental stratification of Europe. Landscape Ecology 21-3. DOI: 10.1007/s10980-005-6428-0 Leathwick, J. R., Overton McC., J., McLeod, M. 2003: An environmental domain classification of New Zealand and its use as a tool for biodiversity management. Conservation biology 17-6. Malden. DOI: 10.1111/j.1523-1739.2003.00469.x Loveland, T. R., Merchant, J. M. 2004: Ecoregions and ecoregionalization: geographical and ecological perspectives. Environmental Management 34-S1. New York. DOI: 10.1007/s00267-003-5181-x Melik, A. 1935: Slovenija, Geografski opis, I. splošni del, 1. zvezek. Ljubljana. Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A., Watkins, J. W. 2005: A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14-6. Oxford. DOI: 10.1111/j.1466-822X.2005.00190.x Mücher, C. A., Bunce, R. G. H., Jongman, R. H. G., Klijn, J. A., Koomen, A. J. M., Metzger, M. J., Wascher, D. M. 2003: Identification and Characterisation of Environments and Landscapes in Europe. Wageningen. Mücher, C. A., Wascher, D. M., Klijn, J. A., Koomen, A. J. M., Jongman, R. H. G. 2006: A new European landscape map as an integrative framework for landscape character assessment. Landscape ecology in the Mediterranean, inside and outside approaches, Proceedings of the European IALE conference. Faro. Mücher, C. A., Klijn, J. A., Wascher, D. M., Schaminée, J. H. J. 2009: A new European landscape classification (LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes. Ecological Indicators 10-1. Amsterdam. DOI: 10.1016/j.ecolind.2009.03.018 Noirfalise, A. 1987: Map of the natural vegetation of the member countries of the European community and of the Council of Europe. Luxembourg. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Ami-co, J. A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnut, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. 2001: Terrestrial ecoregions of the World: a new map of life on earth. BioScience 51-11. Washington. DOI: 10.1641/0006-3568(2001)051 [0933:TEOTWA]2.0.CO;2 Peel, M. C., Finlayson, B. L., McMahon, T. A. 2007: Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11-5. Katlenburg-Lindau. DOI: 10.5194/hess-11-1633-2007 Perko, D. 1998: The regionalizaton of Slovenia. Geografski zbornik 38. Ljubljana. Plut, D. 1999: Regionalizacija Slovenije po sonaravnih kriterijih. Geografski vestnik 71. Ljubljana. Plut, D. 2005: Teoretična in vsebinska zasnova trajnostno sonaravnega napredka. Dela 23. Ljubljana. Renetzeder, C., van Eupen, M., Mücher, C. A., Wrbka, T. 2008: A spatial regional reference framework for sustainability assessment in Europe. Sustainability impact assessment of land use changes. Berlin. Romportl, D., Chuman, T. 2007: Proposal method of landscape typology in the Czech Republic. Journal of Landscape Ecology 0-0. Praha. Runhaar, H. J., Udo de Haes, H. A. 1994: The use of site factors as classification characteristics for ecoto- pes. Ecosystem Classification for Environmental Management. Dordrecht. Soto, S., Pintó, J. 2010: Delineation of natural landscape units for Puerto Rico. Applied Geography 30-4. Sevenoaks. DOI: 10.1016/j.apgeog.2010.01.010 Špes, M., Cigale, D., Lampič, B., Natek, K., Plut, D., Smrekar, A. 2002: Študija ranljivosti okolja. Geographi- ca Slovenica 35, 1-2. Ljubljana. The indicative map of European biogeographical regions: methodology and development. 2006. European topic centre on biological diversity. Paris. Theodoridis, S., Koutroumbas, K. 2006: Pattern recognition. San Diego. Van Eetvelde, V., Antrop, M. 2009: A stepwise multi-scale typology and characterisation for trans-regional integration, applied on the federal state of Belgium. Landscape and Urban Planning 91-3. Amsterdam. DOI: 10.1016/j.landurbplan.2008.12.008 Walz, U., Syrbe, R.-U. 2013: Linking landscape structure and biodiversity. Ecological indicators 31. DOI: http://dx.doi.org/10.1016/j.ecolind.2013.01.032 Wolock, D. M., Winter, T. C., McMahon, G. 2004: Delineation and evaluation of hydrologica-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environmental Management 34-S1. New York. DOI: 10.1007/s00267-003-5077-9 Zhou, Y., Narumalani, S, Waltman, W.J., Waltman, S. W., Palecki, M. A. 2003: A, GIS-based spatial pattern analysis model for eco-region mapping and characterization. International Journal of Geographical Information Science 17-5. London. DOI: 10.1080/1365881031000086983 Pokrajinske vroče točke Evrope DOI: 10.3986/AGS3106 UDK: 911.52(4) COBISS: 1.01 IZVLEČEK: Namen analize je poiskati območja v Evropi, ki so z vidika različnih naravnopokrajinskih tipov in regij izjemno raznolika. V prispevku smo za določitev »pokrajinskih vročih točk« analizirali različne geografske členitve Evrope. V analizo smo večino Evrope vključili v 5 km ločljivosti. Najprej smo na podlagi vključenih pokrajinskih klasifikacij izdelali zemljevide pokrajinske raznolikosti. Za vsako celico smo prešteli število različnih naravnopokrajinskih tipov oziroma regij, ki so v okolici celice v razdalji 50km, in izdelali več zemljevidov pokrajinske raznolikosti. Vsakega smo obtežili tako, da smo vrednosti celic delili s številom vseh različnih tipov oziroma regij v členitvi. V zadnjem koraku smo iz vseh zemljevidov raznolikosti izračunali zemljevid s povprečnimi vrednostmi, ki prikazuje pokrajinsko raznolikost Evrope. Nato smo na podlagi tega podatka določili pokrajinske vroče točke Evrope in ugotovili najbolj raznolike države. Med vsemi evropskimi državami ima največjo povprečno pokrajinsko raznolikost prav Slovenija, sploh največja pokrajinska raznolikost pa je značilna za norveško ozemlje na jugu Skandinavskega polotoka. KLJUČNE BESEDE: geografija, pokrajinska vroča točka, naravna pokrajina, raznolikost, geografski informacijski sistem, Evropa, Slovenija, Norveška. Uredništvo je prispevek prejelo 9. aprila 2013. NASLOVA: Rok Ciglic Geografski inštitut Antona Melika Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti Gosposka ulica 13, SI - 1000 Ljubljana, Slovenija; E-pošta: rokci@zrc-sazu.si dr. Drago Perko Geografski inštitut Antona Melika Znanstvenoraziskovalni center Slovenske akademije znanosti in umetnosti Gosposka ulica 13, SI - 1000 Ljubljana, Slovenija; E-pošta: drago@zrc-sazu.si Vsebina i Uvod 133 2 Namen 134 3 Izbor in opis klasifikacij 134 3.1 Okoljska členitev Evrope 134 3.2 Evropska pokrajinska členitev 135 3.3 Biogeografske regije oziroma območja (različica 2011) 135 3.4 Kopenske ekološke regije oziroma območja sveta 135 4 Določitev območja preučevanja in izbor geoinformacijskih orodij 136 5 Rezultati določanja pokrajinske raznolikosti Evrope 136 6 Primeri vročih točk 138 6.1 Vroča točka na jugu Skandinavskega polotoka (kot primer naravnogeografske regije) 138 6.2 Vroča točka Slovenija (kot primer države) 138 7 Sklep 139 8 Zahvala 139 9 Literatura 139 1 Uvod Sredi Evrope se v krogu s polmerom 150 km, kjer leži Slovenija, prepletajo visokogorske Alpe s predalpskimi hribovji in kotlinami, ravninska Panonska nižina z gričevnatim obrobjem, zakraseli svet Dinarskega gorovja s kraškimi planotami in podolji ter sredozemska gričevja z blažilnimi vplivi Jadranskega morja. Ker se tu stikajo tudi štirje kulturni prostori, slovanski, germanski, romanski in madžarski, so se na majhnem območju izoblikovali številni tipi naravnih in kulturnih pokrajin (Kladnik in Perko 1998), Slovenija je zato kljub majhnosti zelo raznolika. Geografska preučevanja Slovenije kažejo, da so prav stiki različnih pokrajinskih tipov običajno še posebej zanimivi, oziroma, da območja vzdolž mej med posameznimi pokrajinskimi tipi lahko opredelimo kot neke vrste pokrajinske vroče točke. Zanimalo nas je, ali je na temelju različnih klasifikacij (tipizacij, regionalizacij) Evrope (Ciglič in Perko 2012) možno določiti tudi evropske pokrajinske vroče točke (Ciglič in Perko 2013). Različne pokrajinske klasifikacije so v geografski znanstveni literaturi pogoste. To ne preseneča, saj je običajno, da človek v pokrajini vedno išče nekakšen red (Haggett 2001). Klasifikacija je ena od najbolj osnovnih mentalnih človekovih dejavnosti, s katero urejamo informacije, ki jih dobimo, saj bi bilo pomnjenje lastnosti vsakega posameznika nemogoče. Zato ljudje objekte, osebe, dogodke združujemo v skupine po neki skupni lastnosti (Theodoridis in Koutroumbas 2006). Pokrajinske klasifikacije so pomembne za ohranjanje pokrajine in načrtovanje njenega razvoja (Rom-portl 2007; Bernert s sod. 1997). Določitev ekoloških območij ima lahko več namenov: spremljanje stanja, upravljanje, načrtovanje, inventarizacija, predstavitev dejstev, vrednotenje, izvajanje meritev, študija scenarijev, določanje vzorčnih območij, prenos modelov v prostoru, prikaz raznolikosti pokrajine, povezava med kopenskimi in vodnimi sistemi, analiza vplivov na okolje in podobno (Loveland in Merchant 2004; Mücher s sod. 2003; Bastian 2000; Bailey 1996, 146-152; Runhaar s sod. 1994; Bunce s sod. 1996). Čeprav pokrajine niso statične in se spreminjajo, je pregled nad pokrajinskimi tipi nujen (Mücher s sod. 2003), saj naj bi bil prostor organiziran tako, da omogoča varčno rabo naravnih virov in s tem njihovo obnavljanje. Poznavanje naravnih procesov in delovanja družbe sta nujna (Plut 1999). Klasifikacija prostora na podlagi naravnogeografskih značilnosti je temelj optimalne prostorske organizacije. Nenazadnje so tudi okoljski problemi ustrezneje opredeljeni z naravnimi značilnostmi kot pa z administrativnimi mejami (Bailey 1996; Olson s sod. 2001). Odsotnost skupne prostorske enote otežuje tudi multidisciplinarno raziskovanje (Bailey 1996) in prav enotna pokrajinska klasifikacija, po kateri bi se raziskave osredotočile na skupno prostorsko enoto, bi tovrstno raziskovanje olajšala (Brabyn 2009). Z skupno ekosistemsko enoto bi se namreč zbiranje in analiza podatkov nanašala na območje enakega prostorskega obsega (Bailey 1996). To je tudi eden izmed izzivov multidisciplinarnih raziskav upravljanja naravnih virov (Axelsson, Angelstam in Tornb-lom 2010). Zato so vse pogosteje v uporabi na podlagi naravnih dejavnikov izvedene prostorske klasifikacije, saj njihovi uporabniki iščejo razvrstitev, ki je boljša od politične in bolje odraža naravne razmere (Bernert s sod. 1997). Tako na primer obalne regije NUTS3 v Sredozemlju pogosto vključujejo podeželska in mestna območja (Hazeu s sod. 2010), ki se razlikujejo tako po naravnogeografskih kot družbenogeograf-skih lastnostih. Povezovanje naravnogeografskih in družbenogeografskih prvin je za svoj predlog upravne členitve Slovenije uporabil Plut (1999). Uresničevanje načela trajnostnosti na gospodarskem, družbenem in okoljskem področju pomeni trajno prilagajanje organizacije in delovanja družbe okolju (Plut 2005, 59), ki ga je torej treba čim bolje poznati. V znanstveni literaturi ter na spletnih straneh je predstavljenih precej klasifikacij držav, celin in tudi manjših območij, izvedenih na podlagi naravnih in družbenih dejavnikov. Primere tovrstnih pokrajinskih klasifikacij lahko najdemo s celega sveta, za različne države (na primer Van Eetvelde in Antrio 2009; Bryan 2000; Burrough s sod. 2001; Soto in Pintó 2010; Hargrove in Hoffman 2005; Castillo-Rodríguez, López-Blanco in Muñoz-Salinas 2010; Wolock, Winter in McMahon 2004; Zhou s sod. 2003; Leathwick s sod. 2003; Breskvar Žaucer in Marušič 2006; Perko 1998; Špes s sod. 2002; Renetzeder s sod. 2008). Prav tako obstaja pester nabor klasifikacij pokrajin Evrope (Mücher s sod. 2003; Metzger s sod. 2005; Jong-man s sod. 2006; Mücher s sod. 2003, 2006 in 2009; Digital map... 2009; Bohn s sod. 2002/2003; Meeus 1995; Europe's... 1995; Rivas-Martínez, Penas in Díaz, 2009; Biogeographical regions .2013) in tudi celega sveta (Olson s sod. 2001; Bailey 1996; Udvardy 1975). Ne smemo pozabiti, da gre pri vseh teh klasifikacijah tudi za določeno abstrakcijo. Model je namreč poenostavljen prikaz resničnega sveta (Demeritt in Wain-wright 2005), zato tudi med pokrajinskimi klasifikacijami istih območij prihaja do razlik. 2 Namen Prispevek analizira različne digitalne naravnopokrajinske klasifikacije Evrope in ugotavlja, kje v Evropi so območja, ki jih lahko označimo za pokrajinsko bolj pestra. Temeljni namen je poiskati območja, kjer se stikajo različne evropske naravnopokrajinske enote (tipi ali regije). Območja, kjer se prepletajo različni naravni dejavniki, so pomembna z vidika biodiverzitete, saj pokrajinska raznolikost pomembno vpliva na biodiverzi-teto oziroma raznolikost habitatov in vrst (Dramstad s sod. 2001; Hou in Walz 2013; Walz in Syrbe 2013). Pokrajinsko pestra območja imajo lahko tudi prednost v gospodarskem razvoju, še posebej v turizmu, saj »... človekovo zaznavanje ceni raznolikost, kompleksnost, vzorce in lokalni značaj...« (Erhartič 2012, 36). Gray (2004) meni, da je pomen različnih tipov reliefnih oblik in bogastva površinskih detajlov za priljubljenost turističnih območij močno podcenjen. Po drugi strani pa so območja, kjer se prepletajo raznoliki naravni vplivi, lahko tudi območja, kjer prenos dobrih praks zaradi različnega odziva pokrajine na človekove posege ni preprost. V prispevku želimo opozoriti na takšna območja v Evropi, hkrati pa ugotoviti, ali se »vroče točke« na stičišču raznih enot pojavljajo pri klasifikacijah različnih avtorjev, torej, ali so kot raznolike označene v več virih. 3 Izbor in opis klasifikacij V analizo smo vključili različne pokrajinske klasifikacije, ki temeljijo predvsem na naravnih pokrajinskih sestavinah in so dostopne v digitalni obliki. Za našo analizo smo izbrali klasifikacije s podobnim številom tipov ali regij (preglednica 1 in slika 1). Preglednica 1: Izbrane evropske pokrajinske klasifikacije. klasifikacija (vir) število kategorij raven znotraj klasifikacije kategorije klasifikacije; v oklepaju so kategorije, ki niso na obravnavanem območju analize Okoljska členitev Evrope (Mucher s sod. 2003; Metzger s sod. 2005; Jongman s sod. 2006) 6 druga raven klasifikacije (prva raven ima le dve enoti*) Vse biogeografske regije oziroma območja: alpska, anatolska, atlantska, borealna, celinska in sredozemska Evropska pokrajinska členitev (Mucher s sod. 2003, 2006 in 2009) 8 prva raven klasifikacije Vsi tipi: arktični, borealni, atlantski, alpski, sredozemski, celinski, anatolski in stepski Biogeografske regije oziroma območja (Biogeographical regions. 2013) 11 klasifikacija ima le eno raven Vse biogeografske regije oziroma območja: alpsko, anatolsko, arktično, atlantsko, črnomorsko, borealno, celinsko, (makaronezijsko), sredozemsko, panonsko in stepsko Kopenske ekološke regije oziroma območja sveta** (Olson s sod. 2001) 14 prva raven klasifikacije, ki deli Evropo na enote Vsi biomi (14): (tropski in subtropski vlažni širokolistni gozdovi); (tropski in subtropski sušni širokolistni gozdovi); (tropski in subtropski iglasti gozdovi); širokolistni in mešani gozdovi zmernih zemljepisnih širin; iglasti gozdovi zmernih zemljepisnih širin; borealni gozdovi/tajga; (tropski in subtropski travniki, savana in grmičevja); travniki, savana in grmičevja zmernih zemljepisnih širin; (poplavni travniki in savane); (gorski travniki in grmičevja); tundra; sredozemski gozdovi, dobrave in grmovja; (puščave in sušno grmičevje); (mangrove), jezera oziroma večje vodne površine***; (skalovja in ledeniki) * Klasifikacijo so izvedli računalniško, tako da so Evropo na podlagi podnebnih podatkov najprej razdelili na severno in južno, nato pa so za obe enoti izvedli klasifikacijo na podlagi različnih naravnih podatkov. **Izločili smo klasifikacijo DMEER (Digital map...2013), ker ima v primerjavi z ostalimi klasifikacijami veliko večje število enot. Na njej temelji tudi klasifikacija Kopenske ekološke regije oziroma območja sveta. *** Ta kategorija ni vključena v analizo. 3.1 Okoljska členitev Evrope Členitev Evrope so izdelali za določitev enot, uporabnih za vzorčenje, razne modele in poročila o okolju (Metzger s sod. 2005; Mucher s sod. 2003). Klasificirali so v več korakih. Najprej so z metodo glavnih kom- ponent več podatkovnih slojev (višina, naklon, oddaljenost od oceana, zemljepisna širina in več podnebnih spremenljivk za mesece januar, april, j ulij in oktober) nadomestili z le tremi glavnimi komponentami. Nato so z glavnimi komponentami celice klasificirali v skupine. Evropo so razdelili na 84 okoljskih razredov, nato pa so te združili v 13 okoljskih con in nadalje v 6 biogeografskih regij oziroma območij. Celotna členitev je izdelana s prostorsko ločljivostjo 1 km2 (Metzger s sod. 2005; Jongman s sod. 2006; Mucher s sod. 2003). Klasificirali so ozemlje med 11° zahodne zemljepisne dolžine in 32° vzhodne zemljepisne dolžine ter 34° in 72° severne zemljepisne širine (Metzger s sod. 2005). Zaradi velikih razlik je bilo celotno območje na podlagi podnebja razdeljeno in obdelano v dveh delih: severnem in južnem (Metzger s sod. 2005), kar bi lahko razumeli tudi kot členitev na najvišji ravni. 3.2 Evropska pokrajinska členitev Ta pokrajinska klasifikacija je bila izvedena na podlagi naravnogeografskih in družbenogeografskih podatkov. Snovalci so znotraj posameznih korakov uporabili metodo segmentacije in klasifikacijo dobljenih segmentov v skupine. Uporabili so podatke o podnebju, nadmorski višini, prsteh in rabi tal. Posebej so določili večja urbana območja, vodne površine in območja plimovanja (Mucher s sod. 2003; Mucher s sod. 2006). Na podlagi podatkov za nadmorsko višino, prsti in rabo tal so Evropo najprej razdelili na manjše segmente, nato pa so za nadaljnjo tipizacijo upoštevali še podatke o podnebju (Mucher s sod. 2009). Pri klasifikaciji segmentov na prvi ravni so upoštevali podnebje in določili osem tipov, pri razvrstitvi na drugi ravni so upoštevali še nadmorsko višino in določili 31 tipov, pri tretji ravni so dodali prst in določili 76 tipov, pri četrti, najnižji ravni, pa so upoštevali še posebna območja rabe tal in določili 350 pokrajinskih tipov (Mucher s sod. 2006). Analiza podatkov je potekala v ločljivosti 1 km2, dobljene poligone oziroma enote, ki so bili manjši od 11 km2, pa so naknadno združili s sosednjimi. Končni zemljevid je bil narejen v merilu 1: 2.000.000 in pokriva celotno Evropo do Urala na vzhodu, Azerbajdžana na jugovzhodu in Nove dežele na severovzhodu, vendar Ciper ni vključen (Mucher s sod. 2006). 3.3 Biogeografske regije oziroma območja (različica 2011) Meje biogeografskih regij oziroma območij so uporabili tudi v besedilu Habitatne direktive - COUNCIL DIRECTIVE 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (COUNCIL DIRECTIVE 92/43/EEC) ter pri pripravi omrežja EMERALD (Biogeographical.. .2013). V zadnjo različico iz leta 2011 so vključili celotno Evropo, vključno z Islandijo, Turčijo, Kavkazom in zahodnim delom Rusije ter s Kanarskimi otoki in Azori. Obe otočji sta vključeni v biogeografsko območje oziroma regijo Makaronezija (Biogeographical regions .2013). Prve različice so temeljile na združevanju naravnega rastlinstva članic Evropske skupnosti in Sveta Evrope (Noirfalise 1987). Gozdne združbe so združevali v biogeografske regije oziroma območja (mednje so vključili tudi aconalne enote) ter zemljevid posplošili; pri poznejših različicah so uporabili tudi zemljevid potencialne vegetacije, ki ga je pripravil nemški Zvezni urad za varstvo okolja (The indicative map... 2006). Klasifikacija iz leta 2011 ima 11 biogeografskih regij oziroma območij. Načeloma se opira na naravno rastlinstvo, vendar nekatere meje potekajo po administrativnih oziroma državnih mejah (na primer pri Madžarski in Grčiji), kar jo oddaljuje od povsem naravne delitve. 3.4 Kopenske ekološke regije oziroma območja sveta Zemljevid kopenskih ekoloških regij oziroma območij je bil izdelan na podlagi biogeografskega znanja in razmeroma natančno prikazuje širok razpon raznovrstne favne in flore. Ekološke regije oziroma območja avtorji označujejo kot sorazmerno prostrane enote s posebno kombinacijo naravnih združb in vrst. Njihove meje ustrezajo naravnemu stanju pred večjimi posegi človeka (Olson s sod. 2001). Po tej členitvi je kopno razdeljeno na 8 geografskih območij (Oceanija, Nearktika, Neotropi, Afrotropi, Palearktika, Indo-Malaja, Avstralazija) in 14 biomov. Poleg biomov so ločili še kategoriji večja jezera ter skalovje in led. Na najbolj podrobni ravni je določenih skupno 867 ekoloških regij oziroma območij. Delitev so izvedli na podlagi različnih virov (za več informacij glej Olson s sod. 2001); za zahodno Palearktično območje, kamor spa- da tudi Evropa, so uporabili zemljevid DMEER (Digital map of European ecological regions; Digital map... 2013). Členitev so ponekod popravili. Pri členitvi območij, za katera niso našli že obstoječih bio-geografskih klasifikacij, so se oprli na relief in vegetacijo (Olson s sod. 2001). Slika 1: Prikaz posameznih klasifikacij. Glej angleški del prispevka. 4 Določitev območja preučevanja in izbor geoinformacijskih orodij Analizirali smo le tisti del Evrope, ki ga pokrivajo vse štiri klasifikacije. S tem smo zagotovili, da ima celotno analizirano območje podatke za vse klasifikacije (slika 2), izločili pa smo skrajni vzhodni del Evrope, Islandijo in Ciper. Vse klasifikacije smo iz vektorskega zapisa prenesli v rastrski zapis, saj smo v nadaljevanju uporabili geoinformacijska orodja za obdelavo rastrskih podatkovnih slojev. Pri rasterizaciji smo izbrali 5 km ločljivost, ki je za splošen pregled raznolikosti pokrajin v Evropi dovolj natančna. Slika 2: Obravnavano območje Evrope. Glej angleški del prispevka. Po pripravi podatkovnih slojev za vsako klasifikacijo v rastrskem zapisu smo znotraj posamezne klasifikacije za vsako celico izračunali število tipov, ki se pojavljajo v radiju 10 celic oziroma 50 km (na sliki 3 je zgolj za ponazoritev prikazan manjši radij). Radij je bil določen subjektivno (pri manjšem radiju bi dobili podobne rezultate, a raznolikost pokrajin bi bila omejena na manjša območja, pri večjem radiju pa bi se raznolikost pokrajin na splošno povečala). Tako smo za vsako od štirih klasifikacij dobili nekakšen zemljevid pokrajinske raznolikosti. Slika 3: Izračun različnih unikatnih vrednosti (tipov ali regij) okrog celice (primer za dve celici). Glej angleški del prispevka. Po izdelanih zemljevidih pokrajinske raznolikosti za vsako analizirano klasifikacijo smo vse združili v skupen zemljevid pokrajinske raznolikosti. To smo naredili tako, da smo najprej vsak zemljevid pokrajinske raznolikosti delili s številom vseh možnih kategorij klasifikacije (tipov pokrajin, regij) na obravnavanem območju. Tako smo glede na posamezno klasifikacijo za vsako celico prikazali, koliko odstotkov od vseh pokrajinskih kategorij na obravnavanem območju Evrope je v radiju 50 km. Nato smo na podlagi vseh obteženih zemljevidov pokrajinske raznolikosti izračunali povprečje, kar je tudi končni rezultat. 5 Rezultati določanja pokrajinske raznolikosti Evrope Zemljevid povprečne pokrajinske raznolikosti Evrope (slika 4) prikazuje, koliko odstotkov pokrajinskih kategorij se pojavlja v radiju 50 km okrog vsake celice povprečno glede na vse upoštevane klasifikacije. Slika 4: Pokrajinska raznolikost Evrope (delež pokrajinskih kategorij v odstotkih, ki se pojavljajo v radiju 50 km okrog vsake celice, povprečno glede na vse upoštevane klasifikacije). Glej angleški del prispevka. Po pregledu zemljevida je opazno, da so stičišča različnih pokrajin, s tem pa tudi najbolj raznolike pokrajine, predvsem vzdolž gorstev (Pireneji, Alpe, Dinarsko gorovje, Karpati, Centralni masiv), na območju južne Skandinavije ter na območju zahodne Anatolije. Našteta območja so v povprečju na stiku vsaj 30 % od vseh kategorij, ki se pojavljajo pri posameznih pokrajinskih klasifikacijah. Opazno je zmanjšanje na osrednjem območju Alp (tudi pod 15 %), kar je razumljivo, saj so osrednji deli odmaknjeni od drugih pokrajinskih kategorij. Manj kot 20 % imajo večina Pirenejskega polotoka, južna dela Apeninskega in Balkanskega polotoka, Francosko nižavje, velik del Nemško-Poljskega nižavja, Rusko nižavje, Finsko pojezerje, Panonsko in Vlaško nižavje, Britansko otočje, veliki sredozemski otoki Sicilija, Sardinija, Korzika in Kreta ter vzhodna Skandinavija. Pokrajina, kjer se stika največ različnih tipov, je, nekoliko presenetljivo, na skrajnem jugu Skandinavije, kjer se v povprečju prepleta 49 % od vseh pokrajinskih kategorij. 40 % presegata le še manjše območje Centralnega masiva in zahodni del Alp. Ti dve območji lahko označimo kot pravi pokrajinski vroči točki Evrope, saj so tamkaj zelo raznolike pokrajine. Če analiziramo raznolikost po posameznih državah (preglednica 2), ugotovimo, da so pokrajinsko najbolj raznolike površinsko manjše države (Slovenija, Lihtenštajn, Črna gora, Švica, Makedonija, Andora, Bosna in Hercegovina, Avstrija in Hrvaška imajo povprečno vrednost nad 25 %), vendar na drugi strani precej manjših držav (na primer Malta, Irska, Estonija, Latvija) ne presega vrednosti 15 %. Da površina ni odločilen dejavnik, smo potrdili tudi računsko. Z izračunom Spearmanovega koeficienta smo namreč ugotovili, da sta povprečen delež in površina držav šibko statistično povezana; ugotovljena je bila blaga negativna povezanost (preglednica 3). Šibka povezanost je tudi med največjo vrednostjo znotraj države in velikostjo države. Koeficient je sicer pozitiven, kar pomeni, da imajo večje države višje maksimalne vrednosti. To je razumljivo, saj je verjetnost, da bomo znotraj velike države naleteli na kakšen stik več različnih pokrajinskih kategorij, večja. Z vidika raznolikosti celotnih držav bi lahko kot vročo točko izpostavili Slovenijo, ki je povprečno naj -bolj raznolika država. Celice znotraj Slovenije imajo v svojem radiju 50 km v povprečju 33,2 % vseh kategorij, ki so določene na obravnavanem območju Evrope. Najvišja absolutna vrednost pa je na območju Norveške, in sicer 49,2 %. Več kot 40 % doseže le še Francija. Gre za absolutni vroči točki, ki smo ju omenili že v prejšnjem odstavku, opazni pa sta tudi na zemljevidu (slika 5). Najvišja izmed najnižjih vrednosti je v Lihtenštajnu, in sicer 32,1 %. Preglednica 2: Najnižji, najvišji in povprečni delež pokrajinskih kategorij Evrope znotraj radija 50 km okrog posamezne celice za vse celice znotraj posameznih držav. država najnižja vrednost v % najvišja vrednost v % povprečna vrednost v % država najnižja vrednost v % najvišja vrednost v % povprečna vrednost v % Slovenija 24,8 39,4 33,2 Portugalska 14,0 32,1 19,7 Lihtenštajn 32,1 32,1 32,1 Italija 14,0 35,2 19,6 Črna gora 18,1 34,6 30,1 Nemčija 14,0 32,1 19,6 Švica 14,0 39,4 29,8 Švedska 14,0 30,4 18,8 Makedonija 14,0 34,6 29,6 Danska 14,0 23,8 18,3 Andora 26,3 30,4 29,5 San Marino 18,1 18,1 18,1 Bosna in Hercegovina 14,0 37,7 26,6 Španija 14,0 37,7 17,7 Avstrija 14,0 35,2 26,0 Grčija 14,0 34,6 17,2 Hrvaška 14,0 37,7 25,2 Madžarska 14,0 34,6 16,8 Norveška 14,0 49,2 25,0 Poljska 14,0 30,4 16,5 Kosovo 14,0 34,6 24,9 Litva 14,0 23,8 16,2 Romunija 14,0 37,7 24,2 Srbija 14,0 27,9 15,7 Slovaška 14,0 30,4 22,9 Finska 14,0 31,0 15,6 Albanija 14,0 34,6 22,8 Nizozemska 14,0 23,8 15,3 Preglednica 3: Povezanost med velikostjo države ter največjo in povprečno vrednostjo za države. povezanost med velikostjo države in največjo vrednostjo pokrajinske raznolikosti povezanost med velikostjo države in povprečno vrednostjo pokrajinske raznolikosti Spearmanov koeficient 0,315 -0,333 tveganje napačno izračunanega koeficienta (statistična značilnost) v % 5,1 3,9 6 Primeri vročih točk Najbolj zanimiva primera evropskih pokrajinskih vročih točk sta Norveška oziroma del njenega ozemlja na jugu Skandinavskega polotoka z najvišjo vrednostjo pokrajinske raznolikosti in Slovenija kot primer države z najvišjo povprečno pokrajinsko raznolikostjo v Evropi. 6.1 Vroča točka na jugu Skandinavskega polotoka (kot primer naravnogeografske regije) Najvišjo vrednost pokrajinske raznolikosti smo zabeležili na ozemlju Norveške v južnem delu Skandinavskega polotoka, kjer se na območju vroče točke pojavi skoraj 50 % vseh pokrajinskih kategorij, ki so jih snovalci zemljevidov določili za območje Evrope. Po pregledu posameznih zemljevidov pokrajinskih klasifikacij vidimo, da je na tem območju stičišče atlantskega (oceanskega), alpskega (gorskega), borealnega in celinskega tipa pokrajin (preglednica 4). Stik celinskih in oceanskih lastnosti lahko potrdimo tudi s tem, da so Peel in sodelavci (2007) v posodobljeni Koppnovi in Geigerjevi podnebni klasifikaciji jug Norveške klasificirali kot Cfb in Dfb, torej kot zmerno podnebje brez sušne dobe in s toplim poletjem (Cfb) oziroma hladno podnebje brez sušne dobe in s toplim poletjem (Dfb). V tip Dfb se uvršča tudi skoraj celotno območje med Nemčijo in Rusijo. Razen tega je jug Norveške naravno poraščen predvsem z listavci in ne iglavci (Diekmann 1994). Preglednica 4: Pregled enot po posameznih klasifikacijah južnega dela Skandinavskega polotoka. klasifikacija delež kategorij od vseh v Evropi kategorije na območju ali v bližini vroče točke Okoljska členitev Evrope 4/6 alpsko, atlantsko, borealno, celinsko območje Evropska pokrajinska členitev 4/8 alpski, atlantski, borealni, celinski tip Biogeografske regije oziroma območja 3/10 alpsko, atlantsko, borealno območje Kopenske ekološke regije oziroma območja sveta 4/7 iglasti gozdovi zmernih zemljepisnih širin; borealni gozdovi/tajga; tundra; širokolistni in mešani gozdovi zmernih zemljepisnih širin 6.2 Vroča točka Slovenija (kot primer države) Med vsemi državami ima najvišje povprečje pokrajinske raznolikosti Slovenija, kar slovenski znanstveniki poudarjajo že zelo dolgo. Melik (1935) je Slovenijo označil kot »zemljo stikov«, stik štirih evropskih narav-nogeografskih regij (Alpe, Dinarsko gorstvo, Sredozemlje, Panonska kotlina) pa so izpostavili Gams (1998), Perko (1998) in Plut (1999). Vsi trdijo, da je Slovenija na stiku različnih evropskih makroregij. Po pregledu klasifikacij evropskega ozemlja, ki sta ju pripravila Ciglič (2009) ter Ciglič in Perko (2012), je očitno, da tudi tuji znanstveniki Slovenijo umeščajo na stičišče različnih evropskih pokrajinskih kategorij. Glede na klasifikacije, ki smo jih preverili v tej analizi, lahko sklenemo, da je Slovenija na stičišču gorskega (Alpe in Dinarsko gorovje), celinskega (Panonsko nižavje) in sredozemskega (Sredozemlje) pokrajinskega tipa (preglednica 5). Preglednica 5: Pregled enot po posameznih klasifikacijah Slovenije. klasifikacija delež kategorij od vseh v Evropi kategorije znotraj države Okoljska členitev Evrope 3/6 alpsko, celinsko, sredozemsko območje Evropska pokrajinska členitev 3/8 alpski, celinski, sredozemski tip Biogeografske regije oziroma območja 3/10 alpsko, celinsko, sredozemsko območje Kopenske ekološke regije oziroma območja sveta 3/7 iglasti gozdovi zmernih zemljepisnih širin; širokolistni in mešani gozdovi zmernih geografskih širin; sredozemski gozdovi, dobrave in grmovja 7 Sklep Zemljevid pokrajinske raznolikosti Evrope, do katerega smo prišli z uporabo sorazmerno preprostih metod oziroma tehnik, ki jih nudi geografski informacijski sistem, in njegova analiza po državah sta pokazala, da so pokrajinsko praviloma najbolj raznolika območja v bližini gorovij. Obsežne ravnine na severu in vzhodu Evrope, Britansko otočje in deli Sredozemlja so, po analizi sodeč, manj raznoliki. Po pokrajinski raznolikosti izstopajo Centralni masiv, zahodni del Alp ter južni del Skandinavskega polotoka. Analiza je bila izvedena na podlagi znanstvenih in uradno priznanih pokrajinskih klasifikacij Evrope, ki prikazujejo različne kategorije pokrajin (regije, tipe) na najvišji ravni. Zato se moramo zavedati, da so tudi izsledki raziskav relevantni le na najvišji ravni, saj se zavedamo, da so znotraj območij na nižjih ravneh pokrajine lahko še precej bolj ali precej manj raznolike (na primer gorovje Sierra Nevada v južni Španiji, gorata Korzika...). Za posamezna območja in države, ki smo jih določili kot pokrajinsko najbolj raznolike oziroma kot nekakšne pokrajinske vroče točke, lahko sklepamo, da imajo ob ne prevelikih posegih človeka veliko bio-diverziteto, vešji gospodarski potencial (zlasti zaradi turizma) in večjo verjetnost izkoriščanja raznolikih naravnih virov. Ob prednostih je treba izpostaviti tudi nevarnosti, ki se skrivajo predvsem v dejstvu, da je na takih območjih težji prenos dobrih praks z enega območja na drugega, saj imajo območja različne ekosisteme, ki se različno odzivajo na razne posege, zato je oteženo tudi regionalno planiranje. Pregled primerov dveh vročih točk (južni del Skandinavskega polotoka in Slovenija) je pokazal, da ju na stik različnih pokrajinskih kategorij uvrščajo prav vse analizirane klasifikacije, kar pomeni, da jih kot pokrajinske vroče točke potrjuje več virov. Usklajenost med viri seveda zvišuje njihovo objektivnost in povečuje vrednost. 8 Zahvala Prispevek temelji na raziskovalnem projektu Določanje naravnih pokrajinskih tipov Slovenije z geografskim informacijskim sistemom (L6-3643), ki ga je financirala Javna agencija za raziskovalno dejavnost Republike Slovenije. 9 Literatura Glej angleški del prispevka.