
Volume 18 N u m b e r 4 December 1994 ISSN 0350-5596»

Informatic
An International Journal of Computinj
and Informatics

Special Issue: Artificial Life
Guest Editor: Xin Yao

The Slovene Societv Informatika, Ljubljana, Slovenii

Informatica
An International Journal of Computing and Informatics

Basic info about Informatica and back issues may be FTP'd from ftp.arnes.si in
magazines/informatica ID: anonymous PASSWORD: <your mail address>
FTP archive may be also accessed with WWW (worldwide web) clients with
URL: ftp://ftp.arnes.si/magazines/informatica

Subscription Information: Informatica (ISSN 0350-5596) is published four times a year in
Spring, Summer, Autumn, and Winter (4 issues per year) by the Slovene Society Informatika,
Vožarski pot 12, 61000 Ljubljana, Slovenia.

The subscription rate for 1994 (Volume 18) is
- DEM 50 (US$ 34) for institutions,
- DEM 25 (US$ 17) for individuals, and
- DEM 10 (US$ 4) for students
plus the mail charge DEM 10 (US$ 4).

Claims for missing issues will be honored free of charge within six months after the
publication date of the issiie.

MEX Tech. Support: Borut Žnidar, DALCOM d.o.o., Stegne 27, 61000 Ljubljana, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d'.o.o., Zibertova 1, 61000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please
call Mr. R. Murn, Department for Computer Science, Jožef Štefan Institute: Tel (+386) 61
1259 199, Fax (+386) 61 219 385, or use the bank account number 900-27620-5159/4
Ljubljanska banka d.d. Slovenia (LB 50101-678-51841 for domestic subscribers only).

According to the opinion of the Ministry for Informing (number 23/216-92 of March 27,
1992), the scientific journal Informatica is a product of informative matter (point 13 of the
tariff number 3), for which the tax of traffic amounts to 5%.

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Societv of Slovenia (Jadran Lenarčič)
Slovene Societv for Pat tern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Societv (Matjaž Gams)
Slovenian Societv of Mathematicians, Phvsicists and Astronomers (Bojan Mohar)
Automatic Control Societv of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences (Janez Peklenik)

Referees: Guido Belforte, Andrej Blejec, Marko Bohanec, David Duff, Pete Edwards,
Mohamed El-Sharkawi, Tomaž Erjavec, Thomas Fahringer, Dotis Flotzinger, Hugo de Garis,
David Hille, Tom Ioerger, Mark Kamath, Yves Kodratoff, Peter Kopaček, Gabriele Kotsis,
Ockkeun Lee, Aleš Leonardis, Zongtiang Liu, Bet Lowden, Rich Maclin, Raymond Mooney,
Peter Pachowicz, Vincenzo Parenti, Nikola Pavešič, Niki Pissinou, Petr Pivonka, Aswin Ram,
Borut Robič, Paola Rossaro, Alberto Rovetta, Lorenza Saitta, Jude Shavlik, Derek Sleeman,
Sabine Stifter, Tadeus Szuba, Jure Šile, Miroslav Šveda, Jurij Tasič, Luis Torgo, Gerhard
Widmer, David Wilkins, Bradley Whitehall, Jianping Zhang, Hans P. Zima, Jan Žižka

The issuing ofthe Informatica journal is h"nancially supported by the Ministry for Science and
Technology, Slovenska 50, 61000 Ljubljana, Slovenia.

ftp://ftp.arnes.si
ftp://ftp.arnes.si/magazines/informatica

Informatica 18 (1994) 377-386 377

The Artificial Evolution of Adaptive Processes

Douglas T. Crosher
School of Electrical Engineering
Swinburne University of Technology
P.O. Box 218, Hawthorn 3122, Australia
E-mail: dtc@scrooge.ee.swin.oz.au

Keywords: evolution, learning, adaptation

Edited by: Xin Yao

Received: November 16, 1993 Revised: April 11, 1994 Accepted: April 18, 1994

It is hypothesised that the answer to the question ofhow adaptive or learning processes
can evolve is through an appropriately designed evolutionary search domain, search
technique, and problem environment. A representation is described that is able to
represent a generai class of adaptive processes. The hypothesis is explored through
three experiments with a Hxed evolutionary search algorithm and graded problems. The
search algorithm is able to find solutions to two of the problems but fails on a slightly
more difficult problem. The failure is explained by the lack of a priori knowledge, thus
supporting the hypothesis. The implications for the study of the evolution of learning
are discussed.

1 IntroductlOIl onthescoreofthemembers, and the applica-
tion of random changes to randomlv chosen
members. The general question that this paper contributes

to is: how do adaptive processes evolve? The
hvpothesised answer to this question, with the as-
sumptions mentioned below, is that adaptive pro­
cesses will emerge through an evolutionarv search
if the designer has chosen a priori an appropri-
ate evolutionarv search domain, search technique,
and an appropriate environmental task requiring
learning.

The following assumptions are made about the
model of evolution:

- Assuming a fixed population size with each
generation being marked by the testing and
assignment of a resultant score to each mem-
ber of the population.

- Assuming a statistically stationary enviro­
nment in which each member of the popu­
lation is independently tested (The members
do not interact during their life span).

- Assuming that at the end of each generation
a new generation is created from the previ-
ous generation through both selection based

t-.

These assumptions are made in the studies of a
number of researchers who address the evolution
of learning. Typically additional specific assump­
tions need to be made to achieve success. Miller
et. al. (Miller et. al. 1989) describe the design of
neural networks using genetic algorithms, they as-
sume a feedforward neural network and use a ge­
netic algorithm to search for a constraint matrix
that defines the connections between these neu-
rons. David Chalmers's (Chalmers 1990) studies
the evolution of the updating function used by
neural networks, which was followed up by Fon-
tanari and Meir (Fontanari & Meir 1991) evolving
a learning algorithm for the binary perceptron.

The search domain is largely determined by the
representation of possible adaptive algorithms,
and partly by the evolutionary search algorithm
which is an evolutionary strategy. An original re­
presentation was iteratively developed such that
it had enough generality to represent a class of
adaptive and learning algorithms, while at the
same time being specific enough that the search
algorithm would be able to find at least minimal

mailto:dtc@scrooge.ee.swin.oz.au

378 Informatica 18 (1994) 377-386 D. T. Crosher

solutions to some problems. This representation
describes the adaptive mechanism at a more gene­
ral level than considered by Todd and Miller and
Chalmers, it consists of memory locations connec-
ted via addition and multiplication operations.

To add support to the hypothesis a.series of
three experiments was conducted each with a di-
fferent problem, while obtaining two successes
and a failure. Finally it is shown that the fai-
lure can be trivially overcome by suitably biasing
the search algorithm.

The problems are graded in difficulty with re-
spect to the search algorithm. The first is borro-
wed from control theory, the task is to control a
plant to track a reference signal, the plant being
an integrator. The second problem is the habitua-
tion and sensitisation task described by Todd and
Miller (Todd k Miller 1990). The third problem
is the associative learning task described by Todd
and Miller (Todd k Miller 1991) for which the
evolutionary search fails to find a solution even
after lengthy simulation runs. However by bia­
sing the search algorithm, through an initial solu­
tion, a solution to the third problem was trivially
found.

Below the three experiments are presented each
with a minor discussion, followed by a concluding
discussion of the implications of the hypothesis,
its relation to relevant research programs, and su-
ggestions for further lines of study. But firstly the
search algorithm is described as it is common to
ali the experiments.

2 The search algorithm /
evolutionary strategy

This section describes the evolutionary search al­
gorithm, this can be broken down into the repre­
sentation of the functionality of each member of
the population, and the evolutionary model in-
cluding its initialisation, its main loop, and the
termination.

2.1 The representation / functionality

The goal in the design of the representation was
to be able to represent the functionality of a class
of adaptive algorithms, and to bias the search so
that solutions could be found to the planned pro­
blems.

It was decided to explore a class of adaptive al­
gorithms that could represent solutions to linear
and non-linear discrete control problems, and so­
lutions to some simple unsupervised learning pro­
blems. The functionality of this class was achie-
ved through networks of memory nodes connected
via addition and multiplication functions.

To facilitate the smooth evolution of solutions
two representational features were decided upon.
Firstly aparallel executional model was used, and
secondly at each time step the value of a node was
updated with the sum of its inputs.

The choice of the parallel computational repre­
sentation had two advantages over a sequential
computational representation.

Firstly in a parallel model the functionality is a
lot more independent than in a sequential model
which aids a smooth incremental evolution thro­
ugh random changes. For example the mutation
of one instruction in a sequential model can effect
the course of ali other instructions, whereas in a
parallel model the effect of a random mutation is
likely to have little effect on the functioning of the
larger system.

Secondly it was considered desirable to have
the evolutionary search freely explore the perfor-
mance of large networks. With a parallel repre­
sentation the time delay can be independent of
the number of nodes and functions. Whereas with
a sequential representation time delays can grow
as the number of steps in its evaluation loop in-
creases, this can decrease performance and bias
the evolutionary search away from exploring lar­
ger networks.

The decision to have functions summing into
the nodes was based on the general desirability
of linearity within search domains, and also to
support the smooth addition of functionality to a
network through the evolutionary search.

The model settled on is a network of nodes.
The nodes have a combination of two functions
summing into them, these functions are the sum
of constants, and the sum of the product of pairs
of nodes. At each time step the nodes are upda­
ted, the new value for a node n{ is calculated as
follows:

n , ' t+i = Z ^ i "^ A^i nxt nvt

This model can be represented graphically in
the same way that a discrete signal processing or
control algorithm might be, see Figure 1.

THE ARTIFICIAL EVOLUTION OF... Informatica 18 (1994) 377-386 379

^ X •$£ I > ~
Constant Node Multiplication

Figure 1: Graph symbols

-iU0 >(x) >0^U

Figure 2: Example population member

The interaction of a member of the population
with its environment was handled by. having spe-
cial nodes for its inputs and outputs. The input
nodes were clamped to signals from the enviro­
nment, and the output nodes were passed back to
the environment.

An example is shown in Figure 2. It consists of
three nodes, one input, one output, and one nor-
mal node. Two functions are show, there is one
constant summing into node 2, and the product of
nodes 2 and 0 sum into node 1. Mathematically
the network would behave as follows:

«i t + 1 = n2t n0,

n2t+1 = 1.234

Since node 0 is clamped to the input and the ou­
tput is taken from node 1, and noting that node 2
is constant, the above equations are equivalent to:

outputt+i = 1.234 X int

2.2 T h e evolutionary search mode l

An Evolutionary Strategy (ES) was chosen for the
simplicity of avoiding a crossover operator. This
is in contrast to the more commonly used Genetic
Algorithms (GA) in which the genetic crossover
operator is empk>yed (Goldberg 1989). The use of
an ES frees up restrictions that would be present
with a GA. There is a growing awareness that

GAs do have limitations (Forrest & Mitchell 1993,
Forrest & Mitchell 1992), and of the abilities of
ESs.

The procedure can be broken down into the ini-
tialisation, a main loop, the termination.

2.2.1 Initialisation

The initialisation was simple, consisting of setting
up a population in which each member had only
a minimal number of nodes for its communication
with the environment. Needless to say the initial
performance is poor! The population size used
in the experiments was 100 members, this was
not a critical factor, typically an increase in the
population size reduced the number of iterations
to find a solution.

2.2.2 The main loop

Testing consists of evaluating the functional ne-
twork of each member of the population in the
test environment. Three environments are descri-
bed later, at this point it is sufficient to know
that as a result of the interaction of the members
networks with the environment they are assigned
a performance result. So after the testing stage
each member has a score which is a function of
how well it performed.

After ali the members have been tested a riew
generation is formed by selecting members from
the previous generation with a probability pro-
portional to their performance, and by mutating
some of them.

The way in which the search algorithm muta-
ted the existing members of the population was
critical to it finding a solution as this is a major
contributor to the exploratioh bias of the algo­
rithm. Three classes of changes could be made,
network additions, constant mutations, and ne-
twork deletions.

The expected number of network additions to
a member was 33% of the current netwprk size.
It needed to be scaled by the current network size
because of the diminishing effect of a function ad­
dition as the network grows large. Each mem­
ber had a limit to the size of its network which
was 100 nodes and 100 constant and multiplica­
tion functions. If a member had free space then a
network addition could occur. There were three
types of network additions, the addition of a con-

380 Informatica 18 (1994) 377-386 D. T. Crosher

stant summing into a node, the addition of a mul-
tiplication function summing into a node with its
input determined randomly, and finaHy the addi­
tion of a multiplication function summing into a
node with one input taken from a node and the
other from a newly created constant node.

There was 10% chance of a constant being sca-
led by a random factor between 0.0 and 2.0.

There was a 33% chance that a constant or mul­
tiplication network function would be removed.
This helped to clear out junk nodes that made no
contribution and to free up space for the addition
of new nodes.

2.2.3 Termination

The main loop would cycle and the user was able
to watch the simulation proceeding, after it had
found a stable solution the user could stop it and
examine the result. However as the simulation
proceeds the network size grows until it reaches
the limit. Trying to interpret a member was al-
most impossible due to the large number of junk
nodes and functions which had little or no effect.
Often it was difficult to identify what was junk.

To overcome this difficulty and to facilitate an
analysis the user was allowed to trigger the pro­
gram to stop adding new instructions near the
end of the experiment. Without the continual
addition of new instructions and with continuing
instruction removals ali the junk instructions are
removed and you are typically left with less than
10 instructions to scrutinise, and you can be as-
sured that they are ali necessary to maintain per-
formance.

3 Experiment 1: Evolution of a
feedback controller

This is the first of the experiments, the evolutio-
nary search algorithm described above is applied
to evolve solutions of the following problem. The
members of the population are controllers which
have two inputs, a reference which it is required
to track and the plant output. It also had one
output which was the input to the plant. See Fi­
gure 3. On each iteration a member's node 0 is
clamped to the reference input, node 1 is clamped
to the plant output, and the controller output is
read from node 2.

r

C Controller
y

r

Plant
C

Figure 3: Control problem

. !r- rPt_

f

1
t

'

1 ucirasa — -

$^*s<£^š*«^#&fc&/ž(&^:'\&'<^Vi!n

?M

0 100 300"' ' 300 400 500 (00

Figure 4:' Evolution of feedback controller

The reference signal was always the same, the
equation used was:

. ,2 X 3.1415 X*N r = 100.0 X s n(r r ^ r r) v 5000.0 ;

The plant used is a simple integrator which is
not an uncommon problem. The update equation
for the plant output is:

The score s of a member was:

1

\ / s (r - c) 2

3.1 Results

Figure 4 shows how the search proceeded. It
shows the population maximum and average plot-
ted against the number of generations.

A detailed analysis of the resultant evolved ne-
twork of one characteristic and successful member
(score on 2.505101) from the run is presented be-
low, including a graph of its network in Figure 5,

THE ARTIFICIAL EVOLUTION OF... Informatica 18 (1994) 377-386 381

12.640
input

Unreliable sensor
Controller

output

Figure 5: Graphical representation of member 0

and a mathematical simplification of the network
below.

The graph can be simplified as follows:

yt+1 = (12.640+ 7.593) rt

+ (-20.340 + 0.107) ct)
+ 0.798 X yt

= 20.233 xrt- 20.233 X ct + 0.798 X yt

Now it can be noticed that the factors of rt and
ct both come to 20.233, this close correlation is
explained with the following step in which is is
shown that it is solving the control problem by
acting as a negative feedback controller. So assu-
ming the two factors are equal allows the rewri-
ting of the equation in the form:

yt+1 = 20.233 (rt - ct\ + 0.798 X yt

Negative feedback Filter

Now the negative feedback can be clearlv seen.
The two factors are held at the same value beca-
use any drifting apart would degrade the perfor-
mance of the controller, and it would be selected
against by the evolutionary algorithm. The requi-
rement for coordination in the changing of these
factors makes it unlikely that the evolutionary al­
gorithm could adjust the gain if required. It has
become trapped in a local optimum.

Although it is easy to imagine a configuration
in which the gain could be in a single parameter,
the search consistently discovers the above confi­
guration. In any čase there is no selective pressure

Figure 6: Evolution of sensitisation and habitua-
tion

to choose this configuration over the other, they
both solve the problem perfectly. Only if the pro­
blem were changed to require rapid gain changes
would there be any benefit in choosirig one over
another. This draws out a weakness in this mo­
del of the evolution of adaptability, with a fixed
problem there is a definite limit to what is meant
by adaptability.

Typically also simple feedback loops also evol-
ved although there was variation between runs.
These feedback loops were unexpected. In the
čase above the loop acts to filter the output which
gave some benefit.

4 Experiment 2: Evolution of
sensitisation and habituation

The next problem to be studied is based on the
work of Todd and Miller (Todd & Miller 1990).
They created an environment and an evolutio-
nary ANN in which habituation and sensitisation
emerge. In an environment in which good and bad
events do not occur at random but are clumped
together, and in which there is sensor noise, it is
found that 'cluster-tracking' is of adaptive value.
The problem is illustrated in Figure 6.

Each member has one input and one output. It
is simulated in an environment for 1000 * 2 tirne
steps. The input to a member was an unreliable
sensor of a slowly varving signal. The member re-
ceived an increase in its score if it acted when the
signal was at a high level, but due to the unrelia­
ble sensor members may mis-interpret the signal
which could lead to incorrect decisions.

Based on the results of Todd and Miller, in or-
der to encourage the evolution of a solution, the
sensor was given a 75% chance of being correct
and a 25% chance of being incorrect. To allow for
propagation through the network the input was
set for two time steps between each update, and

382 Informatica 18 (1994) 377-386 D. T. Crosher

81.389

500 1000 1500 2000 3500 3000

i Q ,
Figure 7: Evolution of sensitisation and habitua­
tion

was converted to an analog value of positive or
negative one.

The analog output value was converted to a di-
gital value via a threshold function (if it was gre-
ater than one then it indicated an output action).
If an output was indicated then the score was in-
creased if the true environmental signal was high
else the score was decreased.

The environmental signal was slowly changing
from one state to another every 50 * 2 time steps.
A member which evolves an ability to smooth the
signal can extract a cleaner measure of the real
signal and achieve a better score.

4.1 R e s u l t s

Figure 7 shows how the search proceeded, it shows
the population maximum and average plotted
against the number of generations.

An analysis of one characteristic and success-
ful member from the run is presented (score of
396.00), it network is graphed in Figure 8.

The graph can be simplified to give:

Oi+i = 81.389 x it + 0.919 X ot
> v ' V ^ '

Scaled Input Filter

The same typology of solution was consisten-
tly found, it is a simple filter. This cannot be
seen to be directly analogous to habituation and
sensitisation as I have only used one input.

A more complex filter has not been discovered
which suggests a possible weakness in the repre-
sentation for this problem. E.g. If a filter function

Mj) output

MIU0—Kg

Figure 8: Graphical representation of member 4

Unreliable,
constant meaning

inO

inl Controller
output

Reliable,
changing meaning

Figure 9: Evolution of associative learning

block was introduced then it would have a grea-
ter chance of finding a topology of interconnected
filters.

5 Experiment 3: Evolution of
associative learning

The third problem to be considered is based on
another problem developed by Todd and Miller
(Todd & Miller 1991). They created an enviro-
nment and an evolutionary ANN that supported
the emergence of associative learning. The pro­
blem is illustrated in Figure 9.

There are two inputs. The first (inO) is unre­
liable, with only a 75% chance of being correct,
but its meaning is always the same , a high or a
low level had a consistent meaning.

The other input (inl) is reliable but its mea­
ning would change between members so that they
could not depend on a consistent interpretation,
which must be learnt.

Each population member was tested for 1000
trials at three time steps per trial. Its inputs were
set for these three time steps before being upda-

THE ARTIFICIAL EVOLUTION OF... Informatica 18 (1994) 377-386 383

111.

11L
<#*?*

•

t&?0#i ¥ « ¥ * ^

Ha: Imam

0 200 400 600 800 1000 1200 1400

Figure 10: Evolution of associative learning

ted. The inputs were converted to analog values
of positive or negative one and clamped to this
value. A member had 3 tirne steps to update its
output with the inputs for a trial set.

The output was checked after the inputs had
been applied for three tirne steps. It was conver­
ted to a digital value via a threshold function (if
it was greater than one then it indicated an ou­
tput action). The member receives an increase in
its score if it acts when the environmental signal
is at a high level, and .a decrease if it acts at an
inappropriate time.

Thus the member had to interpret its two sen-
sors to determine whether to take an action. If
it depended only on the unreliable sensor then it
would be correct 75% of the time but make mi-
stakes 25% of the time. On the other hand if it
relied on the accurate sensor it may not interpret
its meaning correctly but has a 50% chance of ma-
king a correct interpretation and thus acting with
100% accuracy.

A better solution for a member would be to use
the unreliable sensors to learn how to interpre­
tation the accurate sensor, this can be done by
correlating the two sensors and filtering.

If a member takes the correct action for the
appropriate input state for each of the, on ave-
rage, 1000/2 rewardable trials then it would ob-
tain an expected score of 500.

5.1 Results

Figure 10 shows how the search proceeded, it
shows the population maximum and the average

-• Kg) -©=*!-

Figure 11: Graphical representation of member 2

plotted against the number of generations.
After letting this run proceed for 200 generati­

ons the simulator was signalled to stop inserting
new instruction, and the end state after 1274 ge­
nerations is shown below.

The code of a typical successful member with
a score of 254.00 is presented below, and it is
graphed in Figure 11.

The graph can be simplified to:

outputt+\ = 6.251 X in0t

This experiment failed to find a solution using
associative learning. Longer runs of 10000+ gene­
rations also failed to find a solution. The solution
it found ušes the unreliable signal which only has
a 75% accuracy, but at least has a consistent me­
aning.

5.2 Initialised with a solution

In order to verify that a solution does exist and
that it is stable a simulation run was performed in
which the population was initialised with a known
solution. The code used to initialise the popula­
tion is shown below, and graphed in Figure 12.
This member achieved an average score of 500.85.

Figure 13 shows how the search proceeded, it
shows the population maximum and average plot­
ted against the number of generations.

After letting this run proceed for 200 genera­
tions the simulator was signalled to stop inser­
ting new instruction, and the end state after 808
generations was a slightly different code, a sligh-
tly lower average score. This can be accounted
for by the random instruction removals and ran-
dom changes to constants which was stili procee-
ding, which would have created some below ave­
rage members. The code is essentially the same
as the original which at least shows that there was
a solution.

384 Informatica 18 (1994) 377-386 D. T. Crosher

Figure 12:
members

Graphical representation of initial
Figure 14: Graphical representation of member 3

100 200 300 400 600 600 700 B00 900

Figure 13: Initialised with a known solution

The code of a typical successful member is pre-
sented below, and it is graphed in Figure 14.

6 Discussion and Conclusion

In my investigations of the question of how le­
arning has evolved I aimed to develop a model
that allowed a general class of learning algori-
thms to emerge. I tried to generalise the work
of others who had obtained limited success but
with very narrow search domains (Miller & Todd
1990, Chalmers 1990). I defined some simple pro-
blems and developed an evolutionary algorithm
with a search domain of adaptive processes that
could result in a useful search while at the same
tirne being relatively general. This was applied
with success to the search for a solution to a sim­
ple control problem, and to the artificial evolu-
tion of habituation and sensitisation, but without

success to the problem of the evolution of associa-
tive learning. The failure to obtain an associative
learning mechanism is explained by the lack of
a priori knowledge in this experiment compared
with that of Todd & Miller.

It is concluded that a learning algorithm will
evolve if the designer selects an appropriate a pri­
ori evolutionary search domain and search tech-
nique that is appropriate to the problem which
presumably requires learning.

Since solutions to problems requiring learning
tend to be rather specific the evolutionary algo­
rithm must be specifically biased in order to find
these solutions. In the Krnit the obvious thing
to do is to simply initialise the system with the
known answer. In order to solve any specific pro­
blem the adaptive process should be as adapted
as possible and have as little adaptability as re-
quired. Well adapted adaptive processes give the
best performance on specific problems.

One way in which a priori knowledge can be
put into the search algorithm is to initialise the
population with an approximate solution. This
was shown to offer a trivial solution to the third
failed experiment.

In the series of experiments presented it is
shown that a trivial solution to the question of
how learning mechanisms can evolve, is to start
with the solution! If this is considered cheating
then you could initialise it to almost the solution
so that the solution is easily found. I suggest
that in getting a learning mechanism to evolve
one must inevitably do just this.

If čare is not taken a research program addres-
sing this question can degenerate into examining
toy problems with ad hoc solutions.

THE ARTIFICIAL EVOLUTION OF... Informatica 18 (1994) 377-386 385

If you recognise that learning is something spe­
cific then the answer to the question of how le­
arning evolves is that it depends on the problem
or the selection pressures, and on the state of the
evolving system. Thus the question is too general
to be of value.

However the question can be sharpened thro-
ugh ammendments and changes to the assumpti-
ons, so that answers may make a useful contri-
bution. Some possible approaches are mentioned
below.

6.1 Development of adaptive
processes to solve problems

If there are constraints on the problem and/or
the search technique such that finding a solution
becomes difficult, then research could contribute
through the development of an adaptive process
to solve the problem with the given constraints.

Multiple layers of adaptation would obviously
only be used if necessary, so there may be no need
for an evolutionary algorithm.

When searching for a solution to a specific
problem, if the methodology reduces to iteration
(perhaps due to process, controller, or cost func-
tion complexity) then an evolutionary algorithm
may be a useful heuristic in helping to solve the
problem.

Much of the work ori the evolution of artifi-
cial neural networks (ANN) is justified in similar
terms by noting that there are many aspects of
an ANN that need tuning and that this can be
fruitfully done with genetic algorithms. The desi-
gner will be required to define the problem, cost
function, search space, the search method, and
importantly to speculate that the heuristic will
have value.

Unfortunately as the number of ANN parame-
ters to be optimised by the genetic algorithm in-
creases the search space will likely grow to such
an extent that the technique becomes practically
useless. It was noted by Xin Yao that "Trying to
develop a universal representation scheme which
can specify any kind of dynamic behaviours of an
EANN is clearly impractical, let alone the prohi-
bitive long computation time required to search
such a learning rule space." (Yao 1993).

The field of adaptive control has been develo-
ping methods for implementing multi-layer adap­
tive processes to solve particular problems and

thus has a similarity to an evolutionary algori­
thm tuning a learning algorithm. It is interesting
to note that it is conventional wisdom in the fi­
eld of adaptive control (Astrom & Wittenmark
1989) that the controller used should be as simple
as possible and domain specific information sho­
uld be used to design specific heuristics to achieve
good performance.

6.2 The evolution of learning

If the constraints that have to be placed on the
evolutionary search in order for learning to evolve
are mappable to some other real problem or to the
history of natural evolution then their study may
have more then just ad hoc value. These constra­
ints may be something internal to the search such
as its current state, or some aspect of the enviro-
nment which could be seen to lead the search to
the solution.

It is argued by Miller and Todd (Todd & Miller
1990) that "learning mechanisms must be under-
stood in terms of their specific adaptive functi-
ons", my results support this view.

Many would feel that Humans are proof that
complex adaptive processes have emerged thro­
ugh evolution, and an explanation is needed.

Perhaps the human perceptual system has co-
evolved with its learning system to be able to un-
derstand learning in ourselves and others and that
there may be a reason for the coupling (perhaps
a need to be understood both personally and so-
cially).

So perhaps the question needs to be reframed as
how and why has the perception of a complex ca-
pacity to learning evolve? This would loosen the
need for a specific and particular learning problem
and solution which may be just the break needed
to develop an explanation? The assumption, in
the experiments presented here, that the members
of the population are independent would need to
be dropped.

There is much literature dealing with these is-
sues of evolution (Monod 1971, Dawkins 1986).
The view is that evolution proceeds with constra­
ints imposed on it, but that it also creates and
chooses the particular problem(s) which it solves.

If this hypothesis were true then an implemen-
tation would only have applicability in so far as
the constraints can direct the course of evolution,
and by the lučk that the problems it chooses to

386 Informatica 18 (1994) 377-386 D. T. Crosher

solve are similar to a real problem. If the path
of evolution is determined greatlv by chance then
re-running it may result in the emergence of a si-
gnificantlv. different form of intelligence compared
to ours.

Studying such issues may help us understand
the environment which shaped the forms of life
including its adaptability, how heavily our parti-
cular form is dependent on this environment, and
thus how general our own perceptual perspective
and intelligence really is.

Acknowledgments

This work has benefitted from interactions with
Brendan Rogers, Richard Dluzniak, and Alan Bo-
the who I thank for their encouragement, and su-
pport. I also thank the editor Xin Yao and the
referees for their comments and suggestions.

The research was partly supported by an
APRA-I scholarship.

References

[1] Astrom, K. J. & Wittenmark, B. (1989).
Adaptive Control. Reading, MA: Addison-
Wesley.

[2] Chalmers, D. J. (1990). The evolution of le-
arning - An experiment in genetic connecti-
onism. In (Touretzky et. al. 1990).

[3] Dawkins, R. (1986). The Blind IVatchmaker.
Penguin Books.

[4] Fontanari, J. F. & Meir, R. (1991). Evolving
a learning algorithm for the binary percep-
tron. Netivork, 2, p. 353-359.

[5] Forrest, S. & Mitchell, M. (1992). Relative
building-block fitness and the building-block
hvpothesis. In Whitley, D., editor, Foundati-
ons of Genetic Algorithms 2. San Mateo, CA:
Morgan Kaufmann.

[6] Forrest, S. & Mitchell, M. (1993). What ma-
kes a problem hard for a genetic algorithm?
some anomalous results and their explana-
tion. Machine Learning.

[7] Goldberg, D. E. (1989). Genetic Algorithms
in Search, Optimization, and Machine Lear­
ning. Reading, MA: Addison-Wes]<\y.

[8] Miller, G. F. & Todd, P. M. (1990). Explo-
ring adaptive agency I - Theory and methods
for simulating the evolution of learning. In
(Touretzky et. al. 1990), p. 65-80.

[9] Miller, G. F., Todd, P. M., & Hegde, S. U.
(1989). Designing neural networks using ge­
netic algorithms. In Schaffer, J. D., editor,
Proceedings of the Third International Con-
ference on Genetic Algorithms, Held at the
George Mason University, June 4-7, 1989,
p. 379-384. San Mateo, CA: Morgan Kau­
fmann.

[10] Monod, J. (1971). Chance and Necessity.
New Vork: Alfred A. Knopf.

[11] Todd, P. M. & Miller, G. F. (1990). Explo-
ring adaptive agency III - Simulating the evo­
lution of habituation and sensitization. In
Schwefel, H. P. & Manner, R., editors, Proce­
edings of the lst Workshop on Parallel Pro­
blem Solving from Nature, p. 307-313. Berlin:
Springer-Verlag.

[12] Todd, P. M. & Miller, G. F. (1991). Explo-
ring adaptive agency II - Simulating the evo­
lution of associative learning. In Meyer, J.-
A. k Wilson, S. W., editors, Proceedings of
the First International Conference on Simu-
lation of Adaptive Behavior: From Animals
to Animats, p. 306-315. MIT Press/Bradford
Books.

[13] Touretzky, D. S., Elman, J. L., Sejnowski,
T. J., & Hinton, G. E., editors (1990). Proce­
edings of the 1990 Connectionist Model Sum-
mer School. Sed Mateo, CA: Morgan Kau­
fmann.

[14] Yao, X. (1993). A review of evolutionary arti-
ficial neural networks. International Journal
of Intelligent Systems, 8, p. 539-567.

Informatica 18 (1994) 387-398 387

A Preliminary Investigation on Extending Evolutionarv
Programming to Include Self-Adaptation on Finite State Machines

Lawrence J. Fogel and David B. Fogel
Natural Selection Inc.
1591 Calle De Cinco, La Jolla, CA 92037
AND
Peter J. Angeline
Loral Federal Systems
Rt. 17C, Mail Drop 0210, Owego, NY 13827

Keywords: evolutionary programming, evolutionary computation, self-adaptation

Edited by: Xin Yao

Received: November 16, 1993 Revised: June 13, 1994 Accepted: June 20, 1994

Evolutiona.ry programming was first offered as an alternative, method for generating
artificial intelligence. Experiments were offered in which finite state machines were
used to predict tirne series with respect to an arbitrarj payoff'function. Mutations were
imposed on the evolving machines such that each ofthe possible modes of variation were
given equal probability. The current study investigates the use of self-adaptive methods
of evolutionary programming on finite state machines. Each machine incorporates a
coding for its structure and an additional set of parameters that determine in part how
it will distribute new trials. Two methods for accomplishing this self-adaptation are
implemented and tested on two simple prediction problems. The results appear to favor
the use of such self-adaptive methods.

1 Introduction

Evolutionary computation has a long history (Fo­
gel, 1995, Ch. 3). Some ofthe first efforts mode-
led evolution as a genetic process (Fraser, 1957;
Bremermann, 1962; Holland, 1975). In these si-
mulations, a population of abstracted chromoso-
mes are modified via operations of crossover, in-
version and simple point mutation. An external
selection criterion (objective function) is used to
determine which chromosomes to maintain as pa-
rents for successive generations. These procedu-
res have come to be termed genetic algorithms.
Alternativelv, Rechenberg (1965) and Schwefel
(1965), and also Fogel (1962, 1964), offered me­
thods for simulating evolution as a phenotvpic
process, that is, a process emphasizing the be-
havioral link between parents and offspring, ra-
ther than their genetic link. These simulations
also maintain a population of abstracted organi-
sms (either as individuals or species) but empha-
sis is placed on the use of mutation operations

that generate a continuous range of behavioral di-
versity yet maintain a strong correlation between
the behavior ofthe parent and its offspring. These
methods are known as evolution strategies and
evolutionary programming, respectivelv.

This paper focuses on experiments with evoluti-
onary programming. In particular, self-adaptive
parameters that provide information on the ge-
neration of offspring are incorporated into evol­
ving solutions and are simultaneously subjected
to mutation and selection. Such operations were
first offered by researchers in evolution strategies
and applied to real-valued function optimization
problems, but can be extended to problems in di-
screte combinatorial optimization. The paper be-
gins with background on evolutionary program­
ming and the use of self-adaptation in evoluti-
onary computation. The results of experiments
that compare the efficiency of self-adaptive me­
thods on finite state machines for tirne series pre­
diction are described. Finally, potential avenues
for further investigation are discussed.

388 Informatica 18 (1994) 387-398 L. J. Fogel et al.

2 Background on Evolutionary
Programming

Evolutionary programming was originally offered
(Fogel, 1962, 1964; Fogel et al., 1966) as a method
for generating artificial intelligence (Al). Other
attempts to generate Al had been directed to-
ward neural networks (e.g., McCulloch and Pitts,
1943; Rosenblatt, 1958) and heuristic program­
ming (e.g., Simon and Newell, 1958). Each of
these avenues focused on modeling or emulating
human intelligence, rather than the process that
generates intelligent organisms.

Intelligence can be viewed as the ability to
adapt behavior to meet goals in a range of en-
vironments (Fogel et al., 1966, p. 2; Fogel, 1995).
Intelligent behavior requires the composite ability
to predict the surrounding environment coupled
with a translation of the predictions into a suita-
ble response in light of a given goal. To provide
maximum generality, in a series of experiments,
Fogel (1964; Fogel et al., 1966) described a simu-
lated environment as a sequence of symbols taken
from a finite alphabet. The problem was defined
to evolve an algorithm that would operate on the
sequence of symbols thus far observed and pro-
duce an output symbol that maximizes the bene-
fit to the algorithm in light of the next symbol
to appear in the environment and a well-defined
payoff function. Finite state machines provided a
useful representation for the required behavior.

A finite state machine (Figure 1) is a transdu-
cer that can be stimulated by a finite alphabet
of input symbols, can respond in a finite alphabet
of output symbols, and possesses some finite num-
ber of different internal states. The corresponding
input-output symbol pairs and next-state transiti-
ons for each input symbol, taken over every state,
specifies the behavior of any finite state machine,
given any starting state. For a review of finite
state machines, see Fogel et al. (1966, pp. 149-
155).

Evolutionary programming was proposed as
operating on finite state machines as follows. A
population of "parent" finite state machines is
exposed to the environment, that is, the sequence
of symbols which have been observed up to the
current time. For each parent machine, as each
next input symbol is offered to the machine, each
output symbol is compared to the next input sym-

Figure 1: A three-state finite state machine. The
input alphabet is {0,1}. The output alphabet is
{a, b, g}. Input symbols are shown to the left of
the virgule, output symbols to the right.

bol. The worth of this prediction is then measured
with respect to the given payoff function (e.g., all-
none, absolute error, squared error, or any other
expression of the meaning of the symbols). Af-
ter the last prediction is made, a function of the
payoff for each symbol (e.g., average payoff per
symbol) indicates the fitness of the machine.

Offspring machines are created by randomly
mutating each parent machine. For convenience,
each parent is typically made to produce a single
offspring. There are five possible modes of ran-
dom mutation that naturally result from the de-
scription of the machine: change an output sym-
bol, change a state transition, add a state, delete a
state, or change the initial state. The deletion of a
state and the changing of the initial state are only
allowed when the parent machine has more than
one state. Mutations are chosen with respect to
a probability distribution, which is typically uni­
form. The number of mutations per offspring is
also chosen with respect to a probability distribu­
tion (e.g., Poisson) or may be fixed a priori. These
offspring are then evaluated over the existing en­
vironment in the same manner as their parents.
Other mutations, such as majority logic mating,
were proposed but results with these mutations
were not described in Fogel et al. (1966).

Those machines which provide the greatest

A PRELIMINARY INVESTIGATION... Informatica 18 (1994) 387-398 389

payoff are retained to become parents of the next
generation. Typically, half of the total machines
are saved so that the parent population remains
the same size, but this is not required nor is ne-
cessary optimal. This process is iterated until it
is required to make an actual prediction of the
next symbol (as yet not experienced) in the en-
vironment. The "best" machine is chosen to ge-
nerate this prediction, the new symbol is added
to the experienced environment, and the process
is repeated. Fogel originally used "nonregressive"
evolution. For a machine to be retained it had
to score in the top half of the population. Sa-
ving lesser adapted machines was discussed as a
possibility (Fogel et al., 1966, p. 21) but not in-
corporated.

There is an inherent versatility in such evolu-
tionary programming. The payoff function can
be arbitrarily complex and possess temporal cpm-
ponents; there is no requirement for the classi-
cal squared error criterion or any other "smooth"
function. Further, it is not required that the pre­
diction be made with a one-step look ahead. The
prediction of symbols to appear at an arbitrary
length of tirne in the future can be made. Multiva-
riate environments can be handled and the overall
environmental process need not be stationary as
the simulated evolution will adapt to the changes
in the transition statistics.

For example, a nonstationary sequence of sym-
bols was generated by classifying each of the incre-
asing integers as being prime (symbol 1) or non-
prime (symbol 0). Thus the environment consi-
sted of the sequence 01101010001... where each
symbol depicts the primeness of the positive inte­
gers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , . . . respectivelv.
The payoff for prediction was all-or-none, that is,
one point for each correct prediction, zero points
for each error, modified by subtracting 0.01 mul-
tiplied by the number of states of the machine.
This penalty for complexity was provided to ma-
intain parsimonious machines in light of the limi-
ted memory of the available computer (an IBM
7094).

Figure 2 shows the cumulative percentage of
correct predictions in the first 200 symbols. After
the initial fluctuation (due to the small sample
size), the prediction score increased to 78 percent
at the 115th symbol and then essentially remained
constant until the 200th prediction. At this po­

int, the best machine possessed four states. At
the 201st prediction, the best machine possessed
three states, and at the 202nd prediction, the best
machine possessed only one state with both ou-
tput symbols being 0. After 719 symbols, the
process was halted with the cumulative percen­
tage of correct predictions reaching 81.9 percent.
The asymptotic worth of this machine would be
100 percent correct because the prime numbers
become increasingly infrequent and the machine
continues to predict "nonprime."

The goal was then changed to offer a greater
payoff for predicting a rare event. Correctly pre-
dicting a prime was worth one plus the number
of nonprimes that preceded it. Similarly, correc- ,
tly predicting a nonprime was worth one plus the
number of nonprimes which preceded that non­
prime. During the first 150 symbols there were 30
correct predictions of primes, 37 incorrect predic­
tions (false alarms) and five missed primes. From
the 151st symbol to the 547th there were 65 cor­
rect predictions of primes and 67 false alarms.
That is, of the first 35 primes, five were missed;
of the next 65 primes, none was missed. Fogel et
al. (1966) indicated that the evolutionary algo-
rithm quickly learned to recognize numbers that
are divisible by two or three as being nonprime.
Some recognition that numbers divisible by five
are nonprime was also evidenced. Fogel (1968) la-
ter remarked that the evolutionary programming
had successively discovered "cyclic properties wi-
thin the environment... in essence, the equivalent
of first recognizing that numbers divisible by two
are not prime, etc. In other words, the program
was synthesizing a definition of primeness without
prior knowledge of the nature of primeness or an
ability to divide."

More recently, evolutionary programming has
been applied to diverse combinatorial and ge­
neral function optimization problems. These
include the traveling salesman problem (Fogel,
1988, 1993), evolving neural networks (Fogel et
al., 1990; McDonnell and Waagen, 1994; Angeline
et al., 1994), system identification (Fogel, 1991),
automatic control (Sebald and Schlenzig, 1994;
Saravanan, 1994), pattern recognition (Bhatta-
charjya and Roysam, 1994), and others. In many
cases, the approaches are very similar to those of
evolution strategies (see Davidor et al., 1994) in
that the chosen representation follows from the

390 Informatica 18 (1994) 387-398 L. J. Fogel ti al.

80 100 120 140
Number of symbols experienced

Figure 2: The cumulative percent correct score when using evolutionary programming to design finite
state machines to predict the primeness of theincreasing integers (after Fogel et al., 1966).

task at hand and the primary method of sear-
ching the space of potential solutions relies on the
use of carefully constructed mutation operations
that maintain a functional (behavioral) link be-
tween parent and offspring. The approaches often
differ from those of genetic algorithms (see Da­
viš, 1991) in that no emphasis is placed on the
use of crossover or any other operator that would
overtly mimic natural genetic mechanisms, and
that no effort is made to assess credit to subsec-
tions of a solution (cf. schema theory, Holland,
1975). Several direct comparisons of evolutionary
programming and evolution strategies to genetic
algorithms on benchmark optimization problems
have indicated statistically significant evidence fa-
voring the use of the former techniques (Fogel
and Atmar, 1990; Back and Schwefel, 1993; Back,
1994; Fogel, 1994; Fogel and Stayton, 1994; Net-
tleton and Garigliano, 1994; and others).

3 Incorporating Self-Adaptive
Mutation Noise

The ultimate effectiveness of any evolutionary op­
timization algorithm is determined bythe relati-

onship between the shape of the response surface
(landscape) being searched and the mutation ope­
rations that are used to generate new trial soluti­
ons. The rate of optimization may be much gre-
ater if the mutative distribution can be tuned to
follow grooves and valleys on the surface, rather
than simply spray new trials with equal average
step sizes in each dimension. The idea for allowing
an evolutionary algorithm to self-adapt the man-
ner in which it distributes new trials goes back to
Rechenberg in 1967 (Rechenberg, 1994), but was
more explicitly detailed in Schwefel (1981).

For example, consider the problem of finding
the real-valued n-dimensional vector x that mi-
nimizes F(x). Each trial solution is taken to be
a pair of vectors (x, a), where x is the vector of
object variables to be assessed by F(x), and a is a
vector of standard deviations (often described as
strategy parameters) corresponding to the step si­
zes of a zero mean multivariate Gaussian random
variable. Offspring are created from each parent
by the following rules:

x'i = Zi + N(0, (Ti)

a'i = a • exp(r • JV(0,1) + r ' • JV;(0,1))

A PRELIMINARY INVESTIGATION...

C I ~y line of equal probability density to plače an offspring

Figure 3: Contour plots of a response surface ma-
pped onto two variable dimensions. Under inde-
pendent Gaussian perturbations to each compo-
nent of every parent, new trials are distributed
such that the contours of equal probability are
aligned with coordinate axes (left picture). This
will not be optimal in general because the conto­
urs of the response surface are rarely similarly ali­
gned. Schwefel (1981) suggested a mechanism for
incorporating self-adaptive covariance terms. Un­
der this procedure, new trial can be distributed in
any orientation (right picture). The evolutionary
process adapts to the contours of the response su­
rface, distributing trials so as to maximize the
probability of discovering improved solutions.

where r and T' are operator-set parameters,
N(fi,a) is a normally distributed random vari­
able with mean fj, and standard deviation a, and
Ni(0,1) describes a standard Gaussian resampled
a new for the ith component of a. Figure 3 indi-
cates the potential for such a method to distribute
trials in relation to the contours of the adaptive
landscape. The technique distributes solutions in
directions that have provided improved solutions
in the past. Schvvefel (1981) extended this me­
thod to allow for arbitrary correlations between
perturbations.

Fogel et al. (1991) independently offered a simi-
lar self-adaptive procedure for evolutionary pro­
gramming in which the standard deviations are
altered using a Gaussian random variable. Speci-
fically, the method is:

x; = Xi.+ iV(0,cri)

a\ = Vi + a(TiN(0,1)

where a is a scaling parameter. If any value a\
becomes nonpositive, it is reset to a small arbi-

Informatica 18 (1994) 387-398 391

trary value e. Fogel et al. (1992), at the sugge-
stion of Sebald (1991), incorporated an additio-
nal procedure to allow for arbitrary correlations
between the strategy parameters. Comparisons
by Saravanan and Fogel (1994) indicate that the
method of Schwefel (1981) generally outperforms
the method of Fogel et al. (1991) when limited
to uncorrelated perturbations of the strategy pa­
rameters. No comparisons have been made be-
tween the methods incorporating complete cova­
riance matrices.

The idea for self-adapting the distribution of
new trials also arose independently in genetic
algorithms and genetic programming. Schaffer
and Morishima (1987) offered a method for self-
adapting crnssover points, Each binary string en-
coded not only the n-bit solution vector, but an
additional n-bit binary mask that determined the
crossover points on the solution vector and was
itself subject to mutation. Angeline and Pollack
(1992) added mutation operators to a genetic pro­
gram (Koza, 1992) that protected entire subtrees
from both crossover and mutation. Angeline and
Pollack (1994) argued that protected subtrees ra-
ise the representational level of the primitive lan-
guage in a task-specific manner.

Recently, Angeline and Pollack (1993) provided
a different form of self-adaptation in evolutionary
programming as applied to finite state automata
in which individual links and output symbols co-
uld be randomly "frozen," effectively negating any
probability for mutation. The current investiga-
tion examines the potential for more gradually
affecting the probability of mutating links and ou­
tput symbols in finite state machines used for tirne
series prediction.

4 Experiments

The base-line method of evolutionary program­
ming investigated was similar to that of Fogel et
al. (1966) and refined in Fogel (1991). Each ma-
chine in the population was judged in terms of a
fitness function which represents the cost and be-
nefit of each possible error or correct prediction.
Each machine received a tournament score based
on its fitness relative to q other machines selec-
ted at random from the population (Fogel, 1991);
in each competitionj if its fitness was equal to or
greater than its opponent, it received a "win."

392 Informatica 18 (1994) 387-398 L. J. Fogel et al.

Parents for the next generation were chosen by
ranking the population based on the number of
wins (instead of raw fitness) and selecting those
individuals scoring in the top half. Each parent
created a single offspring in accordance to specific
mutation operations.

Five modes of mutation were used to create off­
spring: add a state, delete a state, change the ini-
tial state, change an output symbol, and change
a next-state transition. The mutation operation
selects a specific mode of mutation for any single
manipulation of a machine uniformly across mo­
des. The specific component to modify is chosen
in accordance with a uniform distribution from
the set of such components in the machine (e.g.,
if an output symbol is to be changed, each output
symbol has an equal chance of being selected).
The number of mutations per parent was given
by a Poisson random variable with a rate of 3.0.
The maximum number of states for any machine
was set to 25 and the minimum number of states
was set to three. Two self-adaptive methods for
evolving finite state machines were examined: se-
lective self-adaptation and multi-mutational self-
adaptation.

4.1 Selective Self-Adaptation

In this method of self-adaptation, a mutability
parameter was associated with each component
of a finite state machine. For each mutation, a
component was selected based on its mutability
parameters. Specifically, the probability that the
ith component was selected was given by:

where P,- is the mutability parameter for the ith
component, and the summation is taken with the
index k running over ali components. Separate
mutability parameters were maintained for each
state (i.e., probability of deleting the state), each
output symbol on a transition based on an input
symbol, and each next-state transition. For exam-
ple, if the chosen mutation was to delete a state,
the mutability parameters associated with each
state of the machine were used to determine the
relative probability of deleting each state. Simi-
larly, when the chosen mutation indicated chan-
ging an output symbol associated with a tran­
sition in the machine, the particiilar transition

was chosen using the mutability parameters asso­
ciated with the output symbols of the machine's
transitions.

Ali mutability parameters for each machine
were initially set to a minimum value of 0.001.
Thus each component of any initial machine was
equally likely to be selected for mutation at the
beginning of any trial. Mutability parameters for
components of states subsequently incorporated
as a result of an add state mutation were also set
to the minimum value. The mutability parame­
ters were themselves mutated in a similar fashion
to Fogel et al. (1991), specifically

a'i = ^ + aN(0,1)

where <7,- is the parenfs mutability parameter for
the ith component, a\ is the offspring's mutability
parameter for the ith component, and a = 0.01.
Any mutability parameter that fell below the mi­
nimum value of 0.001 was reset to the minimum;
no upper limit was imposed.

4.2 Multi-mutational Self-Adaptation

In a similar manner as selective self-adaptation,
multi-mutational self-adaptation associated a mu-
tability parameter with each component of each
machine. But in contrast, each mutability para­
meter designated the absolute probability of mo-
dification for that particular component. Thus
the probability for each component to be muta­
ted was independent of the probabilities of other
components to be mutated, this offering greater
diversity in the types of offspring machines that
could be generated from a parent. For each off­
spring, each mutability parameter was compared
to the outcome of a uniform random variable on
(0,1) (denoted U(0,1)). If the random number was
lower than the mutability parameter, the appro-
priate mutation was executed. For example, mu­
tation would delete each state for which the out­
come of the U(0,1) fell below that state's muta-
bility parameter. Similarly, each output symbol
and next-state transition were mutated when the
resampled U(0,1) fell below the associated muta-
bility parameter. The creation of an offspring was
completed after each component of the parent had
been tested.

Multi-mutational self-adaptation also modified
the mutability parameters using the same tech-
nique and standard deviation as with selective

A PRELIMINARY INVESTIGATION... Informatica 18 (1994) 387-398 393

self-adaptation. Unlike selective self-adaptation
in which the chosen standard deviation is of lit-
tle importance because the probabilities of speci-
fic mutations are ali relative to other mutations,
the standard deviation of the Gaussian noise is
extremely important under the multi-mutational
approach. Given too large a variance, the muta-
bility parameters can decrease the stability and
potential evolvability of the resulting ofFspring.
For the current study, the minimum value for
a mutability parameter in multi-mutational self-
adaptation was set to 0.005. Thus no component
had less than a 1 in 200 chance of being modified
at any tirne. If adding Gaussian noise to the para­
meter resulted in a value less than this minimum
it was reset to 0.005. The maximum value for
the parameter was set to 0.999. Initial values for
the parameters of machines in the initial popula­
tion and for components added to machines by an
add state mutation were set to the minimum va­
lue. This ensured that newly added components
were initially stable and had to evolve increased
mutability.

To offset the potential increase in the deletion
rate of states in evolving machines, the probabi-
lity of adding a state to an ofFspring was increased
to 0.3. The chance of mutating the initial state
of a machine in multi-mutational self-adaptation
remained at 0.2.

4.3 Design

The above methods were tested on two simple
prediction tasks. The first was offered in Fo-
gel et al. (1966). A base string of symbols
served as an initial observation from an enviro-
nment. The environment was taken to be the
string (101110011101)*. Fitness was assessed as
the fraction of correct predictions made over ali
observed symbols. A new symbolwas introdu-
ced into the environment every five generations
(i.e., a complete iteration of mutation, compe-
tition, and selection). Ten symbols were provi-
ded as the initial set of observations. The se-
cond environment was taken to be the string
(101100111000110010)*. For each environment,
the population size was 100 machines and trials
were executed over 750 generations. Each experi-
ment consisted of 50 trials with the basic evoluti-
onary program (i.e., ali modes of mutation having
equal probability, ali specific components having

equal probability), the selective self-adaptation
method and the multi-mutational self-adaptation
method.

5 Results

Figure 4 indicates the score of the best machine in
the population at each generation averaged over
ali 50 trials with each of the three methods on the
environment (101110011101)*. The curves de-
monstrate an asymptotic rise toward 100 percent
correct, as the cyclic pattern in the environment
is mapped by successively better finite state ma­
chines. But the rate of improvement across the
three methods appears to favor the self-adaptive
methods, and more clearly the multi-mutational
self-adaptation. Figure 5 shows the t-test score
comparing both self-adaptive methods to the ba­
sic evolutionary programming. Although there
appears to be significant evidence of an impro­
vement with the self-adaptive methods, caution
must be used when interpreting these data beca­
use they represent a sequence of dependent trials.
Figure 6.indicates the score of the best machine in
the population at each generation averaged over
ali trials with each method on the environment
(101100111000110010)*. The results are similar
to those depicted in Figure 4. Figure 7 indicates
the relevant t-scores comparing the self-adaptive
methods with the base-line method for this more
complex environment.

6 Discussion

The practicality of evolutionary optimization al-
gorithms can be significantly increased through
the incorporation of self-adaptive parameters that
determine how each parent will distribute future
trials (Back and Schwefel, 1993). Including such
parameters frees the human operator from having
to select mutation distributions (or genetic ope-
rators in genetic algorithms) ad hoc. The majo-
rity of efforts in self-adaptation have pertained to
real-valued continuous function optimization pro-
blems (Schwefel, 1981; Back and Schwefel, 1981;
Fogel et al., 1991; Saravanan and Fogel, 1994),
but they can be extended to discrete combinato-
rial optimization problems such as the evolution
of finite state machines for tirne series prediction.

394 Informatica 18 (1994) 387-398 L. J. Fogel et al.

.98

.96

.94

.92

o

I .8

.86-

.84-

.82-

lh^

100 200 300 400 500
Generations

600 700 800

Figure 4: The fraction correct of the best ma-
chine in the population at each generation avera-
ged over ali 50 trials with each method applied
to the environment (101110011101)*. (A) No
self-adaptation. (B) Selective self-adaptation.
(C) Multi-mutational self-adaptation. Both self-
adaptive methods appear to be at least as effici-
ent as (B) or more efflcient than (C) the evolu-
tionarv program without self-adaptation on the
chosen environment.

Self-adaptation on continuous representations
allows for parents to continue to generate off-
spring in directions on the adaptive landscape (er-
ror surface) that have proved useful in the past. It
essentiallv serves as a memorv of previous trajec-
tories; those that have worked well recentlv are
reinforced while those that have not generated
useful trial solutions are purged from the popu­
lation. But "direction" is difncult to apply to
discrete representations. Although it might be
useful in some particular real-valued continuous
optimization problem to iteratively increase the
value of a certain parameter (e.g., move toward
increasingly greater values of x while searching
for the minimum of f(x)), it is not, by analogy,
useful to continue changing an output symbol or
next-state transition if such changes have been of
value in the past (cf. Lenat, 1983).

Self-adaptation has proved useful on discrete
structures (e.g., finite state machines) when a
possibility for freezing parameters has been in-
cluded (Angeline and Pollack, 1993), prohibiting

t
s

300 400 500
Generations

Figure 5: Consecutive t-test scores comparing the
results of each self-adaptive method to the ba-
seline results without any self-adaptation on the
environment (101110011101)*. (a) Selective self-
adaptation vs. no self-adaptation. (b) Multi-
mutational self-adaptation vs. no self-adaptation.
Positive scores favor the self-adaptive methods
while negative scores favor the method without
self-adaptation. A typical critical score would be
approximately 1.96 under a level of significance of
a = 0.05, but the t-scores across generations are
correlated and thus no definitive statistical con-
clusion can be firmly stated. The results do justify
an expectation that further analysis will indicate
statistically significant differences in favor of the
self-adaptive methods.

A PRELIMINARY INVESTIGATION... Informatica 18 (1994) 387-398 395

Figure 6: The fraction correct of the best ma-
chine in the population at each generation avera-
ged over ali 50 trials with each method applied
to the environment (101110011101)*. (A) No
self-adaptation. (B) Selective self-adaptation.
(C) Multi-mutational self-adaptation. Both self-
adaptive methods appear to be at least as effici-
ent as (B) or more efficient than (C) the evolu-
tionary program without self-adaptation on the
chosen environment.

mutation to certain components and therebv ma-
intaining informational gains held within the co-
ding structure. Rather than mandating either
the extreme of completely freezing parameters
or the extreme of mutating ali parameters with
equal probability, the self-adaptive methods exa-
mined in the current investigation can transition
between these extremes. In essence, the methods
allow for a gradual freezing of useful input-output
and next-state transitions.

The efficiency of any evoliitionary optimization
algorithm is directly dependent on the shape of
the adaptive landscape being searched and the
mutation operations that are used to search the
state space. It is crucial that there be a strong
functional relationship between each parent and
its offspring, while simultaneously offering the po-
tential for nearly continuous functional diversity
(Fogel, 1988; and others). This can often be
accomplished by the use of zero mean multivariate
Gaussian mutations on real-valued function opti­
mization problems (Fogel and Atmar,1990; Back

300 400 500
Generations

Figure 7: Consecutive t-test scores comparing the
results of each self-adaptive method to the base-
line results without any self-adaptation on the en­
vironment (101100111000110010)*. (a) Selective
self-adaptation vs. no self-adaptation. (b) Multi-
mutational self-adaptation vs. no self-adaptation.
Positive scores favor the self-adaptive methods
while negative scores favor the method without
self-adaptation. See Figure 5 for a discussion of
the interpretation of these data.

396 Informatica 18 (1994) 387-398 L. J. Fogel tt al.

and Schwefel, 1993; Fogel and Stayton, 1994; and
others). Maintaining functional links between
parents and offspring when using discrete repre-
sentations is more difficult. The proposed self-
adaptive methods may provide a general mecha-
nism for achieving this end. The preliminary
results appear to indicate improved convergence
rates when using either self-adaptive method as
compared to failing to use any such method. Mo-
reover, the multi-mutation mechanism in which
each parameter is given its own probability of mu-
tation yielded the best results. More careful as-
sessment of the statistical significance of these re­
sults, extensions to more complex environments
and comparisons between the realized mutation
variance (i.e., the mean number of imposed mu-
tations per machine) remain for further investiga-
tion.

7 Acknowledgments

The authors would like to thank Dr. X. Yao for
both his patience and encouragement to partici-
pate in this special issue.

References

[1] P.J. AngeUne and J.B. PoUack (1992) "The
Evolutionary Induction of Subroutines,"
Proceedings of the 14th Annual Conference
of the Cognitive Science Society, Lawrence
Erlbaum Associates, Inc., HiUsdale, NJ, pp.
236-241.

[2] P.J. AngeUne and J. PoUack (1993) "Evolu-
tionary Module Acquisition," Proceedings of
the Second Annual Conference on Evolutio-
nary Programming, D.B. Fogel and W. At-
mar (eds.), Evolutionary Programming Soci-
ety, La JoUa, CA, pp. 154-163.

[3] P.J. AngeUne and J.B. PoUack (1994) "Co-
evolving High-Level Representations," Arti-
flcial Life III, C.G. Langton (ed.), Addison-
Wesley, Reading, MA, pp. 55-71.

[4] P.J. AngeUne, G.M. Saunders and J.B.
PoUack (1994) "An Evolutionary Algori-
thm That Constructs Recurrent Neural Ne-
tworks," IEEE Trans. Neural Networks, Vol.
5:1, pp. 54-65.

[5] T. Back (1994) Evolutioary Algorithms in
Theory and Practice, IOP Press, Philadel-
phia, PA, in press.

[6] T. Back and H. -P. Schwefel (1993) "An
Overview of Evolutionary Algorithms for Pa­
rameter Optimization," Evolutionary Com-
putation, Vol. 1:1, pp. 1-24.

[7] A.K. Bhattacharjya and B. Roysam (1994)
"Joint Solution of Low-, Intermediate-, and
High-Level Vision Tasks by Evolutionary
Optimization: AppUcation to Computer Vi­
sion at Low SNR," IEEE Trans. Neural Ne-
tworks, Vol. 5:1, pp. 83-95.

[8] H.J. Bremermann (1962) "Optimization
through Evolution and Recombination,"
Self-Organizing Systems, M.C. Yovits, G.T.
Jacobi, and G.D. Goldstine (eds.), Spartan
Books, Washington D.C, pp. 93-106.

[9] Y. Davidor, H.-P. Schwefel and R. Manner
(eds.) (1994) ParaUel Problem Solving from
Nature 3, Springer-Verlag, BerUn.

[10] L. Daviš (ed.) (1991) Handbook of Genetic
Algorithms, Van Nostrand Reinhold, NY.

[11] D.B. Fogel (1988) "An Evolutionary Appro-
ach to the TraveUng Salesman Problem," Bi-
ological Cybernetics, Vol. 60:2, pp. 139-144.

[12] D.B. Fogel (1991) System Identification thro­
ugh Simulated Evolution: A Machine Lear-
ning Approach to ModeUng, Ginn Press, Ne-
edham, M A.

[13] D.B. Fogel (1993) "Applying Evolutionary
Programming to Selected TraveUng Sale­
sman Problems," Cybernetics and Systems,
Vol. 24, pp. 27-36

[14] D.B. Fogel (1994) "Asymptotic Convergence
Properties of Genetic Algorithms and Evolu-
tionary Programming: Analysis and Experi-
ments," Cybernetics and Systems, Vol. 25:3,
pp. 389-407.

[15] D.B. Fogel (1995) Evolutionary Computa-
tion: Toward a New Philosophy of Machine
IntelUgence, IEEE Press, Piscataway, NJ, in
press.

A PRELIMINARY INVESTIGATION... Informatica 18 (1994) 387-398 397

[16] D.B. Fogel and J.W. Atmar (1990) "Compa-
ring Genetic Operators with Gaussian Mu-
tations in Simulated Evolutionary Processes
Using Linear Systems," Biological Cyberne-
tics, Vol. 63, pp. 111-114.

[17] D.B. Fogel, L.J. Fogel and J.W. Atmar
(1991) "Meta-Evolutionary Programming,"
Proč. of the 25th Asilomar Conference on Si-
gnals, Systems and Computers, R.R. Chen
(ed.), Maple Press, San Jose, CA, pp. 540-
545.

[18] D.B. Fogel, L.J. Fogel, W. Atmar and G.B.
Fogel (1992) "Hierarchic Methods of Evolu-
tionary Programming," Proceedings of the
First Annual Conference on Evolutionary
Programming, D.B. Fogel and W. Atmar
(eds.), Evolutionary Programming Society,
La JoUa, CA, pp. 175-182.

[19] D.B. Fogel, L.J. Fogel and V.W. Porto
(1990) "Evolving Neural Networks," Biolo­
gical Cybernetics, Vol. 63, pp. 487-493.

[20] D.B. Fogel and L.C. Stayton (1994) "On the
Effectiveness of Crossover in Simulated Evo-
lutionary Optimization," BioSystems, Vol.
32:3, pp. 171-182.

[21] L.J. Fogel (1962) "Autonomous Automata,"
Industrial Research, Vol. 4:2, pp. 14-19.

[22] L.J. Fogel (1964) "On the Organization of
Intellect," Doctoral Dissertation, UCLA.

[23] L.J. Fogel (1968) "Extending Communica-
tion and Control through Simulated Evolu-
tion," Bioengineering An Engineering View,
Proč. Symp. Engineering Significance of the
Biological Sciences, G. Bugliarello (ed.), San
Francisco Press, San Francisco, CA, pp. 286-
304.

[24] L.J. Fogel, A.J. Owens and M.J. Walsh
(1966) Artificial Intelligence through Simu­
lated Evolution, John Wiley, NY.

[25] A.S. Fraser (195.7) "Simulation of Genetic
Systems by Automatic Digital Computers. I.
Introduction," Australian Journal of Biologi­
cal Sciences, Vol. 10, pp. 484-491.

[26] J.H. Holland (1975) Adaptation in Natural
and Artificial Systems, University of Michi-
gan Press, Ann Arbor, MI.

[27] J.R. Koza (1992) Genetic Programming: On
the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge,
MA.

[28] D.B. Lenat (1983) "The Role of Heuristics in
Learning by Discovery: Three Čase Studies,"
Machine Learning, R.S. Michalski, J.G. Car-
bonell, T.M. MitcheD (eds.), Tioga Publi-
shing, Palo Alto, CA, pp. 243-306.

[29] W.S. McCulloch and W. Pitts (1943) "A Lo-
gical Calculus of the Ideas Immanent in Ner-
vous Activity," Bulletin of Mathematics and
Biophysics, Vol. 5, pp. 115-123.

[30] J.R. McDonnell and D. Waagen (1994)
"Evolving Recurrent Perceptrons for Time-
Series Modeling," IEEE Trans. Neural Ne-
tworks, Vol. 5:1, pp. 24-38.

[31] D.J. Nettleton and R. Garigliano (1994)
"Evolutionary Algorithms and a Fractal In-
verse Problem," BioSystems, in press.

[32] I. Rechenberg (1965) "Cybernetic Solution
Path of an Experimental Problem," Royal
Aircraft Establishment, Library Translation
1122, Farnborough, Hants, U.K.

[33] I. Rechenberg (1994) personal communica-
tion, Technical University of Berlin, Ger­
man^

[34] F. Rosenblatt (1958) "The Perceptron: A
Probabilistic Model for Information Storage
and Organization in the Brain," Psychologi-
cal Review, Vol. 65, p. 386.

[35] N. Saravanan (1994) "Reinforcement Le­
arning Using Evolutionary Programming,"
Proceedings of the Third Annual Conference
on Evolutionary Programming, A.V. Sebald
and L.J. Fogel (eds.), World Scientific Publi-
shing, River Edge, NJ, in press.

[36] N. Saravanan and D.B. Fogel (1994) "Le­
arning Strategy Parameters in Evolutionary
Programming: An Empirical Study," Proce­
edings of the Third Annual Conference on

398 Informatica 18 (1994) 387-398 L. J. Fogel et al.

Evolutionary Programming, A.V. Sebald and
L.J. Fogel (eds.), World Scientific Publishing,
River Edge, NJ, pp. 175-184.

[37] J.D. Schaffer and A. Morishima (1987) "An
Adaptive Crossover Distribution Mechanism
for Genetic Algorithms," Proč. of the Second
International Conference on Genetic Algori­
thms, J.J. Grefenstette (ed.), Lawrence Erl-
baum, Hillsdale, NJ, pp. 36-40.

[38] H.-P. Schwefel (1965) "Kybernetišche Evolu-
tion als Strategie der Experimentellen
Forschungin der Stromungstechnik," Di­
ploma Thesis, Technical University of Berlin.

[39] H.-P. Schwefel (1981) Numerical Optimiza-
tion of Computer Models, John Wiley, Chi-
chester, U.K.

[40] A.V. Sebald (1991) personal communication,
UCSD.

[41] A.V. Sebald and J. Schlenzig (1994) "Mini-
max Design of Neural Net Controllers for Hi-
ghly Uncertain Plants," IEEE Trans. Neural
Networks, Vol. 5:1, pp. 73-82.

[42] H.A. Simon and A. NeweU (1958) "Heuristic
Problem Solving: The Next Advance in Ope-
rations Research," Operations Research, Vol.
6, p. 6.

Informatica 18 (1994) 399-410 399

Analysis and Comparisons of Genetic Algorithm, Simulated
Annealing, TABU Search, and Evolutionary Combination Algorithm

Takashi Kido, Kazuo Takagi and Masakazu Nakanishi
Faculty of Science and Technology, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan
kidoQmath.keio.ac.jp, takagi@math.keio.ac.jp,czl@math.keio.ac.jp

Keywords: genetic algorithms, hybrid search

Edited by: Xin Yao

Received: November 16, 1993 Revised: August 20, 1994 Accepted: August 27, 1994

This paper describes a hybrid search scheme for genetic algorithms (GAs). Since GA's
weakness in local search is well-known, many GA applications combine genetic algori­
thms with a local search scheme. We have discovered that solution quality and stability
can be improved further by using multiple local search strategies with GAs. In parti-
cular, we have combined GAs with two major local search mechanisms: TABU search
and simulated annealing (SA). We have tested our approach (GA+SA+TABU) using a
100-city traveling salesman problem (TSP). The results indicate that solution quality
and stability are superior than those of the GA, S A, or TABU alone.

1 Introduction

GAs are well known for their weakness in local se­
arch. To overcome this, many real applications of
GAs use domain-specific local search mechanisms
[8]. This paper examines hybridization of GAs
and local search mechanisms, and proposes the
combination of multiple local search algorithms
and GAs as a general hybrid GA architecture. In
particular, we use TABU search and Simulated
Annealing (SA) as the local search mechanisms
in this paper. As a benchmark, we use a typical
combinatorial problem — a 100-city TSP.

While several algorithms for solving combina­
torial optimization problems exist, only a handful
of studies have been made on general hybrid me-
thods. Malek proposed a hybrid technique for im-
proving solution quality by mixing two or more al­
gorithms and obtained improved results for TSPs
[4]. Malek's idea was to execute each low level
algorithm for some specified tirne, and have the
results evaluated by a high level algorithm which
then restarts the low level routines in more pro-
mising areas in the solution space. In their work,
the high level algorithm selects best local Solu­
tions from the local search, and ušes the results

as starting points for the next iteration. Howe-
ver, because Malek's method ušes only the best
solution from the previous search, it does not ma-
intain global sampling and is vulnerable to local
minima.

A different algorithm, genetic annealing, pro­
posed by Yao [18] ušes GAs as the high level al­
gorithm and SA as the low level one. The results
generated by SA are subject to crossover and mu-
tation.

We have extended Malek's model to maintain
diversity by using a GA as the high level algo­
rithm. We also introduce multiple local search
mechanisms so that sampling point diversity can
be maintained even with the different convergence
characteristics of each local search scheme.

First, we describe GAs and local search. We po­
int out a weakness of GA and give an explanation
of the simulated annealing (SA) and tabu search
(TABU) algorithms as local search algorithms.
Second, we propose the GA+SA+TABU method
which combines a GA with SA and TABU.

Finally, we examine the convergence cha­
racteristics of the GA, SA, TABU, GA+SA,
GA+TABU, and GA+SA+TABU. Results indi­
cate that solution quality and stability with this

http://kidoQmath.keio.ac.jp
mailto:takagi@math.keio.ac.jp
mailto:czl@math.keio.ac.jp

400 Informatica 18 (1994) 399-410 T. Kido ti al.

approach are superior than those of the GA, SA,
TABU, GA+SA, or GA+TABU.

2 An outline of the Traveling
Salesman Problem

The traveling salesman problem (TSP) is a tvpical
NP-complete problem. It is easy to describe, but
difficult to solve. A salesman, starting from his
home city, is to visit each city once and only once
in a given list and then return home. The pro­
blem is to find the tour that minimizes the total
distance. Mathematically, given a sequence of ci-
ties c\, C2, • • •, cn and intercity distances d(c{,Cj),
the permutation TT must be found that minimizes
the sum of distances.

£ d(C,r(»), C„(i + 1)) + d{C*{n), CV(1))

There are many practical applications of the TSP
in the real world. Thus finding an effective me-
thod to solve the TSP is very important. In
this paper, we focus on the čase of symmetric
TSPs, where the distances satisfy the condition
d(ci, Cj) = d(cj, a) for 1 < i, j < n.

The TSP has been approachedvby many rese­
archers. Lawler et al. have summarized the expe-
rimental and theoretical issues around TSPs [1].
There are exact, heuristic, probabilistic methods
to solve TSPs. Exact methods include cutting
planeš, branch and bound, and dynamic program-
ming. However, because the TSP is NP-complete,
exact methods are only able to solve small pro-
blems without specialized problem reduction. He­
uristic and probabilistic methods are able to solve
large problems. Some examples of these methods
include 2-opt, markov chains, TABU Search, ne-
ural networks, simulated annealing, and genetic
algorithms.

A 532-city problem was solved to optimality by
Padberg and Rinaldi using combination of pro­
blem reduction, cutting planeš, and branch and
bound [12]. Johnson provided optimal solutions
for several selected problems from the literature
using an iterated Lin-Kernighan algorithm [13].
Malek reported that TABU search and a version
of simulated annealing exhibited similar perfor-
mance [4]. Among the most promising GA results
are those of Muhlenbein where the solution length

mi l e n 10

120.00

100.00

i |

':!

i
j

1 i

ji /

\\\ /

V;"~~

Vor.1

^--."„L-

, Bot

•A»„J> *:„._«..

Crouovti rito • 0.7

„•_;*«...-. '.,XJ..„

1/60.

CPU-TIME(1/B0ucond>)

Figure 1: Tour length for 100-city TSP by GA

of 27702 for the 532-city problem is close to the
known optimal length of 27686 [16].

3 Genetic Algorithms and
Local Search

3.1 Genetic Algorithms

Although GAs exhibit very fast convergence to an
approximate solution in a search space, a genetic
algorithm itself does not include a local search
mechanism. When a population reaches a state
where it is dominated by the best chromosome,
finding better genetic solutions requires mutati-
ons. This would result in a very inefficient search.

This is clearly seen in Figure 1, which shows
the tour length at each generation.

In this paper, we use the TSP to compare the
effectiveness of each approach. We chose the TSP
because it has been extensively investigated by va-
rious researchers in the GA community (such as
[2]), and optimization research groups. We em-
ploy path representation encoding. The fitness of

ANALYSIS AND COMPARISONS...

Heuristic Crossover (By Grefenstette [1985])

Parentl [2 3 6 1 0 4 7 5] Parent2 [7 0 1 4 5 2 6 3]

Child(1,2) [4 7 5 2 6 3 1 0]
t

Random

Choosa (5,7)

Figure 2: Heuristic greedy crossover

a chromosome is defined as:

1
Fitness = — ; -

1 ourlength

The reproduction strategy ušes a proportional re­
production scheme. In addition, we adopt elitist
reproduction which always chooses the best chro­
mosome and copied it, without crossover or mu-
tation, to the next generation. We use the greedy
crossover presented by [11] (Figure 2). This ope­
rator constructs offspring from two parent tours
as follows: Pick a random city as the starting po-
int for the child's tour. Compare the two edges
leaving the starting city in the parenfs tours, and
choose the shorter edge. Continue to extend the
partial tour by choosing the shorter of the two ed­
ges in the parenfs tours which extend the tour. If
the shorter parental edge introduces a cycle into
the partial tour, then extend the tour by a random
edge. Continue until a complete tour is genera-
ted. We used a crossover probability of 70.0%,
and mutation probability of 0%. We have.raised
mutation rate up to 5%, but no significant change
was observed.

Informatica 18 (1994) 399-410 401

Figure 3: 2-opt move

3.2 Local Search Techniques

3.2.1 Simulated Annealing (SA)

SA is an efficient stochastic search inspired by the
physical annealing analogy [3]. To avoid being
trapped in local minima, SA moves probablisti-
cally and allows uphill movement with probability
exp(—SC/T), where SC is the uphill cost and T
(temperature)is the control parameter.

Annealing performance varies greatly depen-
ding upon the changing mechanism used [17]. We
use the same changing mechanism and implemen-
tation as Malek. The main body of the algori-
thm consists of two loops, with one nested wi-
thin the other. The inner loop runs until a quasi-
equilibrium is reached. In this loop, possible mo­
ves are generated using 2-opt exchange (Figure 3)
and the accept decision is made using a function
call. Basically, a 2-opt move (swap) exchanges
two non-adjacent edges. In Figure 3, we delete
the edges between nodes 1 and 6 and between 4
and 3. We replace them with edges between no­
des 1 and 3 and between 4 and 6. In path repre-
sentation encoding, the 2-opt swap can then be
performed simply by reversing the order of ali the
cities in the tour from node 6 to node 3.

If the move is accepted, it is applied to the
current tour to generate the next state. Equi-
librium is reached when large swings in energy
(tour length) no longer occur.

The outer loop checks if the stopping condition

402 Informatica 18 (1994) 399-410 T. Kido et al.

has been met. Each time the inner loop is comple-
ted, temperature T is updated and the stopping
criterion is checked.

The accept function

if(dc < 0) return(true)

elseif(exp(-dc/T) <= random(0, 1))

return(true)
else return(false)

A random number is used to test whether the
move is accepted. In our implementation of the
simulated annealing algorithm, we choose the sto­
pping criteria to be a temperature such that the
probability of accepting an uphill move is very
close to zero. After a fixed number of iterations we
assume equilibrium is reached. Finally, to update
temperature following the equilibrium, we simply
multiply the current temperature by a constant
a. These parameters allow the algorithm to be
tuned for the TSP.

WHILE(stopping c r i t e r i o n not met)
WHILE(equilibrium not reached)

Generate-next-move()
IF(Accept(Temperature, change-in-cost)

Update-tourO
ENDWHILE
Calculate-new-temperature()

ENDWHILE

To implement the simulated annealing algori­
thm, as described earlier, the stopping and equi-
librium criteria, and the update temperature rule
must be specified. The stopping criterion chosen
for the algorithm is for the temperature to reach
a specified value. This stopping temperature is
chosen such that the probability of accepting an
uphill move is very close to 0. We make the typical
assumption that the equilibrium is reached after
a fixed number of iterations. The update rule is

N etuTemperature = a * Temperature

where a is a constant less than one. The con-
sequence of choosing simple constants as parame­
ters is some increase in computation time. It for-
ces the choice of a and the number of iterations
to be tuned for critical temperature regions. Such
regions require a slow annealing rates. It is pos-
sible, however, at high and low temperatures to
anneal at faster rates.

As inputs, our S A algorithm implemented has
the initial temperature, the number of iterations
to simulate equilibrium, and a. These parameters
allow the algorithm to be tuned for any TSPs.

3.2.2 TABU Search

Tabu search is another optimization technique for
solving permutation problems [14] [15]. In this te-
chnique, we start with an arbitrary permutation
and make a succession of moves to make this per­
mutation optimal (or as close to the optimum as
possible). In determining the shortest tour for
a given set of cities, the tabu search procedure
starts with a randomly generated tour and makes
a succession of 2-opt exchanges that reduce the
cost. At each step, ali possible 2-opt moves are
examined and the one which gives the best im-
provement in tour cost is chosen. To prevent the
process from being trapped at a local optimum,
this algorithm allows moves that increase the tour
cost (uphill moves). It is more than likely that the
moves succeeding an uphill move will turn back
to the local optimum. To avoid cycling, the pro­
cedure maintains a history of recent moves and
classifies such moves as tabu. This enables the
search process to escape local optima and explore
new areas of the solution state space.

Creating a tabu classification for the moves me-
ans identifying swap attributes which could indi-
cate one of the following:

the cities involved in the swap, or
the positions they occupy before/after the

swap, or
the direction in which the cities move in the

swap.
The tour of ali cities is represented in a one-

dimensional array format, with the array index
denoting the position of the city in the tour. If the
city moves from a lower to a higher index during
a swap, then it is said to move right. Converselv,
if it moves from a higher index to a lower one,
then it is said to move left.

We also need to identify the tabu classifications
based on the attributes so that we can specify a
set of moves as tabu. These attributes are dis-
cussed in detail later. Figure 4 shows the tabu
search strategy superimposed on the hill climbing
heuristic.

The algorithm examines ali the swaps of the
current tour and keeps track of the best-swap-

ANALYSIS AND COMPARISONS... Informatica 18 (1994) 399-410 403

value. However, those that are classified as tabu
are rejected if they do not satisfy the aspiration
criteria. In other words, we restrict the set of
available swaps. The tabu status of the move is
overridden and the move is accepted if the swap-
value satisfies the aspiration level. The best-swap
among ali the available swaps for the current tour
is obtained at the exit of the inner loop. In the hill
climbing method, the best-swap-value is usuallv
negative indicating a reduction in the current tour
length. When it becomes positive, the process has
reached its termination condition.

In tabu search, the best swap is executed re-
gardless of the sign of the best-swap-value. The
best swap from the inner loop is accepted even if
it results in a higher tour length. This helps the
process climb out of local optima. The outer loop
keeps track of the best tour and its length. The
tabu list is also updated by including the current
move made. The stopping criteria is usually a fi-
xed number of iterations or a fixed coiriputation
time specified in the input.

The following are examples of the move attribu-
tes and the tabu restrictions based on these attri-
butes. In our implementation, we select only one
tabu condition for a specific tabu search process.

Tabu Conditions

1. Vector(I<J<POSITION(I)<POSITION(J))
this vector is maintained to prevent any fu-
ture swaps from resulting in a tour with cities
I and J occupying POSITION(I) and posi-
tion(J) respectivelv.

2. Vector(I, J, POSITION(I), POSITION(J))
the same vector to prevent a swap resulting
in city I occupying POSITION(I) or city j
occupying POSITION(J).

i - —
generala startlng
tour'S'
Besl-touKosfceost(s)

MTIAUZE
Best-airip-vilue=l

flECOR0hisswjpis
theBesl-swap.

Best-amp-vilus
= s w i p M ;

BesH=i,BtisH=j

Stopping ride bas«
on lotil number d
IteraUons or
total tirno atapsed

UPDATE ton eoi

bur-cosMour-cost
• Bestavvap-valiN
EiecutoBestawap:
(BesHBsstj)

IMPROVES
SOLUTION

BesMouKO«!
scurrenllour-cosl

Update Best-tour

3. Vector(I, POSITION(I))
to prevent city I from returning to POSI-
TION(I).

4. CITY I
to prevent city I from moving LEFT of cur­
rent position.

Figure 4: TABU Search

5. Ci ty l
to prevent city I from moving in any direc-
tion.

404 Informatica 18 (1994) 399-410 T. Kido et al.

6. Vector(J, POSITION(J))
to prevent city J from returning to POSI-
TION(J).

7. Ci tyJ
to prevent city J from moving RIGHT of cur-
rent position.

8. City J
to prevent city J from moving in any direc-
tion.

9. Cities I and J
to prevent both from moving.

Conditions 3 through 9 were established assuming
that for cities I and J, POSITION(I) < POSI-
TION(J). It is obvious that condition 1 is the least
restrictive and 9 is the most restrictive. Conditi­
ons 3, 4 and 5 are also increasingly restrictive.
Implementation issues are as follows.

— Data structufes
To determine the tabu status of a move and
efficiently update the tabu list , we need well-
designed data structures. As an example,
tabu identification and tabu-list update for
one of the tabu conditions (condition-4) are
described below.

We use two lists; Tabu-left and Tabu-list.
Tabu-left indicates which cities are preven-
ted from moving left of their current position.
A tabu-list contains a fixed number of cities
that had been moved to the right in the last
k iterations (the Tabu-list size k is an input
parameter). The Tabu-list is updated with a
new city I which was moved right by incre-
menting the Tabu-list index (ring-index) and
overwriting with city I at this new index po­
sition. This automatically removes the tabu
status of the city which was at the position.
For the index to stay within list range, in-
crement is done using a mod operator: new-
ring-index = (ring-index+l) mod tabu size.
Similar data structures have been implemen-
ted for other tabu conditions.

- Aspiration criterion
We used a simple aspiration criterion. Any
tabu move is accepted that reduces the cur­
rent tour length below the present best tour
length. When the move results in a tour
length lower than the best tour length, it in­
dicates a tour not previously visited and so

the move can no longer be considered tabu.
This simple aspiration criterion is:

TourLength+SwapValue(I, J) < BestTourLength

— Tabu list size
This parameter must be tuned experimen-
tally. For highly restrictive tabu conditions,
the tabu list size must be smaller than those
for less restrictive conditions. If the tabu list
size is small, a cycling phenomenon will be
evident, whereas, if it is large, the process
might be driven away from the vicinity of
global optimum. The optimum tabu list size
will be the one which is long enough to pre­
vent cycling but short enough to explore a
continuum of solution space.

3.3 Problems of Local Search

Many problems may be encountered by local se­
arch routines. Due to the lack of global sampling
capability, local search methods run the risk of
being trapped in local minima. In fact, as the
best solution for the 100-city TSP, SA obtained
21255 and TABU obtained 21352 under a variety
of parameters, whereas the best known solution
is 21247. It is obvious that these methods are
trapped at local minima.

There are additional difficulties in parameter
setting. Optimal parameters must be hand picked
over a number of trials.

4 Hybrid GAs

One way to mitigate this problem is to combine
GAs with local search (Figure 5). A hybrid algo-
rithm that can combine the strengths of its com-
ponent algorithms is expected to: (1) produce
better solutions, (2) produce solutions with less
computing cost, (3) automatically tune parame­
ters, and (4) effectively handle larger problems
(especially NP problems).

There are several ways to combine GAs with lo­
cal search. This paper examines the combination
of SA and TABU with GAs. GA+SA+TABU use
both SA and TABU for local search and a GA is
used as the global search manager.

Although it is possible to use a single local se­
arch mechanism, this runs the risk of being biased

ANALYSIS AND COMPARISONS... Informatica 18 (1994) 399-410 405

Hybrid Algorithm using GA

High-M»IAIgorlthfn

Unttr

Figure 5: Organization of hybrid GA

Loo«ISolutino(TABU

Loc*l Solution of SA

Figure (i: Scope of Local Search

TS SA

SA

SA

Figure 7: The idea oi' Hybrid GA

the characteristics of the local search mechanism
(Figure 6).

For example, if we use a local search scheme
with a rather larger local search area, the solu­
tion diversity would be minimized, undermining
the utility of the GA. On the other hand, a local
search mechanism with a small search area would
plače a heavy burden on the GA, because the GA
requires sampling points close to the global op-
tima.

By using multiple local search schemes, we
expect to eliminate this problem. The basic idea
of our method is to execute each low level algo­
rithm (SA, TABU) for some specified amount of
tirne, and leave result evaluation to the high le­
vel algorithm (GA) which restarts the low level
routines in more promising areas in the solution
space. This process is repeated as many times as
necessary.

The overall algorithm for our method is as fol-
lows:

(1) Set N different initial tours. (2) Run TABU
Search for Time T% and get Nt local solutions. (3)
Run SA for Time Ta and get Na local solutions.
(4) Get the new population with GA. (5) Return
to 2 unless the stop condition has been met. This
process is illustrated in Figure 7. In our expe-
riment, N = 100 and JVt = Na = 50. Tt and
Ta should be selected heuristically. However, fre-
quent solution exchanging among the local search
routines seems to give good results. We used the
elitist strategy for the GA, each tirne a new best-
so-far solution has been found, an SA or TABU
local search is initialized with that solution.

406 Informatica 18 (1994) 399-410 T. Kido et al.

This algorithm can be realized with simulated
annealing and tabu search implemented as su-
broutines. These subroutines could be executed
sequentially followed by high level routine ana-
lysis. However, one of the most important fea-
tures of this hybrid algorithm is the ease with
which it may be executed in parallel. Each low
level algorithm can be executed in parallel with a
supervising process to synchronize execution and
analyze results. This opens up the possibility
of executing several low level algorithms in pa­
rallel, any number of which may be instances of
SA or TABU with different operation parameters.
Interprocess communication is minimal and only
occurs between the high and low level algorithms.
The algorithm can therefore be sped up linearly
with the number of processors as long as they do
not exceed the number of low level algorithms.

5 Experimental Results

The TSP experiments were performed on a
Sun4/75 computer. Our programs were written
in the C programming language.

Experiments were conducted using the 100-city
problem, which has a known optimum solution of
21247 miles [4]. 100 tours were generated rando-
mly and this set was used as the starting tour set
by ali algorithms (mean population size=100).

Table 1 shows the best solution, standard devi-
ation, and computational cost for each method.

5.1 The Genetic Algorithm

The best solution found by the GA for the 100-
city problem was 22253 miles. The average solu­
tion value was 23316 with a standard deviation
514 over 10 trials. The average tirne to find the
best solution was about 640 seconds (290 genera-
tions). GA performance is sensitive to chromo-
some representation and the crossover operator
used. We found that heuristic crossover (as de-
scribed earlier) worked better than simple cros­
sover or partial mapped crossover [2]. There has
been an extensive comparative study of various
crossover operators for the TSP [19].

5.2 Simulated Annealing

The simulated annealing algorithm has the fol-
lowing input parameters; the number of iterati-

TOUR-COST TABU Search vs Simulated Annealing
(milu X1000) °

200.00 400.00 600.00

CPU-T1ME(1/l0HCond>)

Figure 8: The best run by SA and TABU

Simulated Annealing

200.00 40000 600.00

CPU-TIHE(1/UMCondi)

Figure 9: Effect of cooling schedule of SA

ANALYSIS AND COMPARISONS... Informatica 18 (1994) 399-410 407

Algorithm
GA

TABU
SA(a = 0.63)
SA(a = 0.90)

GA+SA+TABU

Best Cost
22253
21352
21331
21255
21247

Average Cost
23316
21433
21372
21284
21247

Standard Deviation
514
68.4
30.3
27.5

0

Average time(seconds)
640 (290 generations)

210
310
1340

420 (5 generations)

Table 1: Experimental Results

ons to approximate equilibrium, starting tempe­
rature, and cooling rate a. They allow the algo­
rithm t o b e tuned for specific problems. SA per-
formance is very sensitive to the cooling schedule.
In Figure 9, we show how cooling schedule affects
SA. The best solution found by SA(a = 0.63) for
the 100-city problem was 21331 miles. The ave­
rage solution was 21372 with a standard deviation
of the solutions over 10 trials of 30.3. Average
tirne to best solution is about 310.

The best solution found by SA(a = 0.90) was
21255 miles. The average solution was 21284 with
a standard deviation 27.5 over 10 trials. The ave­
rage time to find the best solution was about 1340
seconds.

The convergence curve is shown in Figure 8. In
this čase, we never reached the optimal solution.

5.3 Tabu search

The first stage in developing the tabu search al­
gorithm was to implement the hill climbing heu-
ristic (In this čase 2-opt). We then transformed
this into our tabu search routine using the nine
different tabu conditions discussed earlier. The
tabu search process has the following input para-
meters: tabu condition, tabu list size, and total
number of iterations. The tabu condition and list
size are interdependent parameters. The algori­
thm is very sensitive to them. A small tabu list
size with a weak tabu condition results in cycling,
whereas, a large list with a strong tabu condition
drives search away from the global optimum. To
reach a compromise, we conducted experiments
for each of the nine tabu conditions to find reaso-
nable tabu list sizes. Generally, the list sizes range
from a quarter to a third of the number of cities
for condition 4 and 7. A size of about a fifth for
conditions 5, 8, and 9 gave the best results for the
problem tested. Conditions 1, 2, 3, and 6 requi-

red tabu list sizes in the vicinity of the problem
size, i.e., the number of cities. On average, tabu
conditions 4 and 7 produced better results in less
time than other conditions. In our experiment,
the best solution found by TABU for the 100-city
problem was 21352 miles. The average solution
was 21433 with a standard deviation 68.4 over
10 trials. The average time to best solution was
about 210 seconds. Examining the problem over
1000 trials, we never reached the optimal solution.
The convergence curve is shown in Figure 8.

5.4 G A + S A + T A B U

The convergence curve is shown for this method
in Figure 10. The.result clearly shows the impor-
tance in combining multiple local search methods
with the GA.

5.5 GA+SA and GA+TABU

We examined the convergence of GA+SA,
GA+TABU, and GA+SA+TABU(Figure 11).
GA+SA finds better solutions than SA. Also.
GA+TABU finds better solutions than TABU.
These results show that the GA is useful
as a high level algorithm which controls low
lovel algorithms. However, the result of
GA+SA+TABU produced better results than
GA+SA or GA+TABU. In our 100-city TSP,
GA+SA+TABU always found better solutions in
fewer generations.

6 Discussion

For the four search algorithms we investigated,
our experiments demonstrated the following;

Simulated Annealing: If the cooling schedule
is very carefully determined, SA can find near

408 Informatica 18 (1994) 399-410 T. Kido et al.

TOUR_COST(MU«t X1000)

100.00

80.00

20.00—

j

jI /
j \ /

/
/

GAvs

GUUSA«

a /
/

/

GA+SA+TABU

ABU

\

0.00 10.00 20.00 30.00 40.00 50

CPU-TIM E(1ff0ncon <!•)

*/ OMCondolOOO

.00 60.00

Figure 10: The best run for GA and
GA+TABU+SA

GA+TABU vs GA+SA vs GA+SA+TABU

TMjr_Co»l(Mllu z 1000)

21.65.

21.55

21.50

OA«SA(a*0.$3)

21.35

21.30

Figure 11: Performance Comparison

optimal solutions better than GA or TABU.
Standard deviation of local solutions from
SA is smaller than that from TABU. The
problem with SA is in tuning the cooling
schedule,which is a computationally expen-
sive task.

TABU Search: TABU can find local solutions
faster than GA or S A, but the quality of so-
lution is not as good as that of SA. Standard
deviation of local solutions from TABU is lar-
ger than that from SA. The tabu conditions
must be selected heuristically since they de-
pend on the problem.

Genetic Algorithms: GA performance is sen-
sitive to chromosome representation and the
crossover operator used. Better representa­
tion and crossover and local search combina-
tion methods are needed to improve perfor­
mance.

Hybrid GA: A GA itself does not have local se­
arch capabilities, but it can be improved by
combination with a local search algorithm.
Our hybrid GA has better solution quality
than the GA or any of the local search algori­
thms investigated. Our experiments showed
that GA+SA+TABU always found optimal
solution in the 100-city TSP and is superior
to SA, TABU, GA+SA, or GA+TABU. We
found that solution recombination (i.e., cros­
sover) is very useful for finding the optimal
solution. We also found that using multiple
local search algorithms is very useful for im-
proving performance.

7 Conclusions and Future Work

In this paper, we proposed and examined a hybrid
GA which ušes more than one local search rou-
tines with a GA. For the local routines, we used
TABU and SA. Experimental results were presen-
ted for a 100-city TSP. These results demonstrate
that this approach to combine TABU and SA as
local searchers for the GA is very promising. It
seems that a good hybrid method should use at
least two different local search methods. We do
not think, however, that this method is best one
for TSP. Other combinations are possible, such
as using Lin-Kernighan (LK) algorithm and GAs.

ANALYSIS AND COMPARISONS... Informatica 18 (1994) 399-410 409

As Malek described, hybrid algorithms are very
well suited for a variety of problems. With the ad-
vent of parallel machines, inherent parallelism in
hybrid algorithms becomes especially attractive.
Yet another advantage of proposed approach is its
ability to tolerate software faults due to multiple
algorithm implementations.

8 Acknowledgments

We have benefited immensely from the many su-
ggestions and discussions with Miroslaw Malek
and Hiroaki Kitano.

References

[1] E. L. Lawler et al. The Traveling Salesman
Problem, A Guided Tour of Combinatorial Op­
timization, Wiley, 1990.

[2] D. E. Goldberg, Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-
Wesley, Reading, Mass, 1989.

[3] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,
Optimization by Simulated Annealing, Science
vohune 220, pp. 671-680, 1983.

[4] Miroslaw Malek, Mohan Guruswamy, et al.,:
A Hybrid ALGORITHM TECHNIQUE, tech-
nical report of Texas Univ at Austin, TR-89-06,
1990.

[5] Hiroaki Kitano, Empirical Studies on the
Speed of Convergence of Neural Netvrork Tra-
ining using Genetic Algorithms, AAAI-90 Pro-
ceeding Eight National Conference on Artificial
Intelligence, 1990.

[6] Lawrence Daviš, Handbook of Genetic Algo­
rithms , Van Nostrand Reinhold, 1991.

[7] Genetic Algorithms and Simulated Annealing,
Lawrence Daviš (ed): Pitman, London', Morgan
Kaufmann Publishers Inc., Los Altos, Califor-
nia, 1987.

[8] Powell, D., Tong, S. and Skolnick, M.: En-
GENEous: Domain independent, machine lear­
ning for design optimization, Proc.of ICGA-89,
1989.

[9] S. Geman, D. Geman: Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restora-
tion oflmages, IEEE Trans. Patt. Anan. Mac.
Int. 6, pp. 721-741, 1984.

[10] H. Szu, R. Hartley: FAST SIMULATED
ANNEALING, Phys. Lett. A 122, pp. 157-162,
1987.

[11] John J. Grefenstette, Rajeev Gopal, Brian
Rosmatia, Dirk Van Gucht: Genetic Algori­
thms for the Traveling Salesman Problem, Pro-
ceeding of lst International Conference on Ge­
netic Algorithms and Their Applications, John
J. Grefenstette (ed), 1985.

[12] Padberg, M. and Rinaldi G: Optimization of
a 532-city symmetric traveling salesman pro­
blem by branch and cut, Operations Res. Lett.
6, pp. 224 - 230, 1987.

[13] Johnson, S. D.: Local Optimization and the
Traveling Salesman Problem, Proceedings of
the 17th Colloquium on Automata, Langu-
adges and Programming, Springer-Verlag, pp.
446-461, 1990.

[14] TABU search-part I. O RS A Journal on Com-
puting 1(3) pp. 190-206.

[15] TABU search-part II. ORSA Journal on
Computing 2(1) pp. 4-32.

[16] Muhlenbein, H.: Parallel Genetic Algori­
thms, Population Genetics and Combinatorial
Optimization, in the J. D. Schaffer (ed), Pro-
ceeding of The Third International Conference
for Genetic Algorithms, Morgan Kaufmann Pu­
blishers, Inc., pp. 224 - 230.

[17] Lister, R.: Annealing Networks and Fractal
Landscapes, IEEE International Conference on
Neural Networks, San Francisco, March 1993,
Vol. I, pp. 257 - 262.

[18] X. Yao.: Optimization by genetic annealing,
Proč. of Second Australian Conf. on Neural Ne-
tworks, 1991, pp. 94 - 97.

[19] X. Yao.: An empirical study of genetic opera-
tors in genetic algorithms, Microprogramming
and Microprocessing, 38 (1 - 5), pp. 707 - 714,
1993.

410 Informatica 18 (1994) 399-410 T. Kido ti o/.

Appendix
A 532-city TSP

We challenged our method on a larger problem: a
532-city TSP. Our 532 city TSP experiments were
performed on a Sun4 (Sparc-station-10) com-
puter. First we randomly initialized the tour.
This approach proved computationally expensive.
Next, we initialized the tour by the nearest nei­
ghbor method. Figures 12 and refinit-neighbour
show the initial tours generated at random and
by the nearest neighbour method. The published
optimal solution for the 532-city problem is 27686
by Padberg. This corresponds to a tour cost of
86900 miles in our experiment. Our best result af-
ter 30 generations was 88415. Figure 14 shows the
tour generated by GA+SA+TABU after 30 gene­
rations, which was reached at 18th generation. In
this čase, the relative deviation from optimal tour
length is 0.0174. This result is comparable to the
result in Muhlenbein [16].

Figure 13: Initial tour by the nearest neighbor
method

Figure 14: Best tour by GA+SA+TABU (30 ge­
nerations)

Figure 12: Randomly generated initial tour

I

Informatica 18 (1994) 411-416 411

Sacrificial Acts in Single Round Prisoner's Dilemma

Masam Tomita
Department of Enviromental Information, Keio University
5322, Endo Fujisavva, 252 Japan
mt9s fc .ke io .ac . jp
AND
Takashi Kido
Faculty of Science and Technology, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan
kido@math.keio.ac.jp

Keywords: prisoner's dilemma, suicide acts

Edited by: Xin Yao

Received: November 16, 1993 Revised: April 11, 1994 Accepted: April 18, 1994

In this paper, we say an act is sacrificial if it hurts the actor as an individual but
benefits his species as a whole. We will present two situations in single round prisoner's
dilemma where such sacrificial acts are so important that species cannot survive without
them. Those two cases are: Cooperate with Justice (CWJ) and Cooperate with Suicide
(CWS). The former is an act to punish defectors. The latter is more counter-intuituve;
an act to hurt himself fornothing. We will show by computer simulation that those two
strategies survive in population dynamics, vrhilethe simple Cooperate (C) strategies
cannot survive in the same situations.

1 Introduction

The game of Prisoner's Dilemma has been studied
for many years [1, 2, 3, 5, 6, 7, 8, 9, 10, 11]. It is
a two player non-zero-sum game, and each player
has to choose from two actions: Cooperate (C)
and Defect (D). Its pay-off matrix is shown below.

C
D

C D
3/3 0/5
5/0 1/1

Iterative Prisbner's Dilemma is that a player
plays Prisoner's Dilemma multiple times in a row
with the same opponent. Axelrod organized tour­
naments of Iterative Prisoner's Dilemma in 1981
and 1988 [1, 2, 3]. The most successful strategy
in the tournaments is known as TIT-FOR-TAT.
This strategy is to cooperate as long as the oppo­
nent cooprates, and to retaliate by defecting in
the next round if the opponent defected. This
retaliation will discourage the opponent from de­
fecting, and higher pay-off can be expected thro-
ughout the rest of the rounds. It is important

to note that TIT-FOR-TAT is effective because a
player will play many rounds with the same oppo­
nent.

2 Single Round Prisoner's
Dilemma

In the single round Prisoner's Dilemma, on the
other hand, the strategy of TIT-FOR-TAT can­
not be used. If you are defected, sorry, that is
the last (and first) game with the opponent, and
there is no opportunity to retaliate. If you stili
defect in the next round for retaliation as in TIT-
FOR-TAT, you would retaliate a different oppo­
nent, who may be innocent from defecting in the
previous round. Thus, in the Single Round Pri-
sner's Dilemma, the most beneficial strategy is to
always defect. As the pay-off matrix indicates,
you will always get higher pay-off no matter what
action the opponent will take.

Let us now consider population dynamics of two
species: Cooperate (C) and Defect (D). Each in­
dividual of the Cooperate species always coope-

http://mt9sfc.keio.ac.jp
mailto:kido@math.keio.ac.jp

4 1 2 Informatica 18 (1994) 411-416 M. Tomita et al.

rates, and each individual of the Defect species
always defects. We then play a round-robin tour-
nament of Single Round Prisner's Dilemma, and
the survivability of each individual is proportio-
nal to the total pay-off value he has obtained. We
also assume that the size of total population is
constant at each generation.

More precisely, let S\...Sn be n different species
(strategies) in the population, where n = 2, S\ =
C, and 5*2 = D.
Let P{tk be the size of population of S,- over the
entire population in the fc-th generation. Thus,
E? = 1 Pi,k = 1 for ali k.
Let E(Si,Sj) be a pay-off function which returns
the pay-off value of 5,- against Sj.

Now the dynamics can be defined as follows:

"m,k+\ —
J2j E{Sm> S j) • Pm,k • Pj,k _ ^1

Figure 1 is the result of simulation with the ini-
tial population ratio of 0.5 and 0.5 (-Pi.o = A.o =
0.5). It takes only several generations for C's to
be beaten by D's and wiped out from the popu­
lation.

3 Sacrificial Acts: Cooperate
with Justice

Suppose that a player has a chance to punish de-
fecters in the Single Round Prisner's Dilemma.
If a player is defected, he has an option to exer-
cise the "act of justice", by forfeiting ali of the
defecter's flve (5) points gained by the defective
action. Uniike TIT-FOR-TAT, the "act of justi­
ce" is expensive; it costs one (1) point to exercise
the act.

Let us consider a new species, "cooperate with
justice" (CWJ). CWJ behaves like C against ali of
the species including CWJ itself. However, after
CWJ gets defected by a D, it will execute the "act
of justice", to make sure that D's defective action
is ne ver rewarded.

Notice that the act of justice by a CWJ is sa­
crificial. x CWJ has to pay one point, and due to
single round mat, it cannot benefit from the oppo-
nenfs penitential behavior (if any) for the rest of
the game. Thus, in terms of individual pay-off,
this act does not make sense; a CWJ only hurts
himself. However, the sacrificial act by an indivi­
dual CWJ can greatly benefit the entire CWJ's,
because it damages their natural enemies, i.e., De-
fecters.

The payoff matrix with CWJ instead of C is
shown below.

n\nn

/'

/

i

Figure 1: C and D, historical diagram

CWJ
D

CWJ D
3/3 -1/0
0/-1 1/1

The result of simulation with the same initial
population ratio (0.5 and 0.5) is shown in figure 2.
As we can see in the figure, D's get wiped out by
the acts of justice, and CWJ's will soon dominate
the entire population. We can therefore conclude
that we have shown a clear čase where individual's
sacrificial acts can help the species as a whole: C's
without the sacrificial acts get ruined by D's, but
C's with the sacrificial acts (CWJ's) ruin D's.

^IT-FOR-TAT, on the other hand, can be considered
as "selfish" action, because (1) payoff of the particular de­
fective action is greater than a cooperative action, and (2)
it expects the opponent to refrain from defecting, increa-
sing its total pavoff throughout the rest of the game.

SACRIFICIAL ACTS IN... Informatica 18 (1994) 411-416 413

Figure 2: CWJ and D, historical diagram

4 Free Riders: Cooperate
without Justice

In this section, we shall consider population of
three species: Defectors (D), Cooperators with
Justice (CWJ) and Cooperators without Justice
(C). The pay-off matrix is shown below.

C
CWJ

D

C CWJ D
3/3 3/3 0/5
3/3 3/3 -1/0
5/0 0/-1 1/1

We did an experiment similar to the previous
sections with

Si = C,S2 = CWJ,S3 = D,Pi,o = 0.2,P2,o = 0.45, F3,o = 0.35

The result is shown in figure 3. At the first 20
generations or so, D's are largely controlled by
CWJ's acts of justice. Cs.and CWJ's are increa-
sing at the beginning, because decrease of D's be-
nefits both C's and CWJ's. However, only CWJ's
are paying the priče for controlling D's, and thus,
C's are "free riders". This makes C's predominant
over CWJ's, and the population of CWJ's gradu-
ally decreases due to the existence of C's. And
at the 17th generation, the population of CWJ's

gets so small that they can no longer control D's.
D's then revive, increasing the size of their po­
pulation, and eventuallv, D's dominate the entire
population as in section 2.

In short, free riders (C) unwilling to pay the
priče will hurt their best friends (CWJ) and in
turn they (C) will get ruined by enemies (D).

This result is consistent with the result of Axe-
lrod's work [1]. In his paper, Axelrod suggested
the notion of "meta-norm"; that is, one should
punish not only defectors but also those who do
not punish defectors.

In the next section, however, we introduce a
different notion, "suicide", that can help stabilize
population of the species.

10.00

, / x
^ ^

^

""""

--..

,,**"' \

\ \

CWJ

u

10.00 20.00

Figure 3: C and CWJ and D, historical diagram

5 Suicidal Acts: Cooperate
with Suicide

In the previous section, we described sacrificial
acts. That is, reducing points of his own in order
to reduce significantly more points from enemies
bf his species. Thus; it is intuitively sound that
this kind of sacrificial acts can help his species as
a whole.

414 Informatica 18 (1994) 411-416 M. Tomita et al.

Y

70.00 . .

/

"''

\

y
\

/

0.00 3.00 10.00 15.00 20.00 25.00 30.00

Figure 4: CWS and CWJ and D, historical dia­
gram

In this section, we introduce less intuitive acts
of "suicide". The act of suicide reduces points
of his own, and does not reduce or increase his
opponefs point. It simply hurts oneself without
any return. This seemingly counter-intuitive act
can help stabilize the population of the species,
as demonstrated in the following experiment.

In the experiment, we have D's, CWJ's, and
CWS's (Cooperate with Suicide) instead of C's in
the previous experiment. The pay-off matrix is
shown below.

cws
CWJ

D

CWS CWJ D
3/3 3/3 -1/5
3/3 3/3 -1/0
5/0 0/-1 1/1

Only the difference between this matrix and the
previous matrix is C and CWS. That is, if a CWS
is defected by a D, rather than do nothing (like C's
in the previous experiment), he commits suicide
reducing one point of his own. The opponent will
keep the 5 points gained by the defective action.

The result of the experiment with the same
initial population ratio (Pi,o = 0.2, P2,o =
0.45, i^o = 0.35) is shown in figure 4. In the

short term, the suicidal acts by CWS's hurt them-
selves, resulting less rapid growth than in figure 3.
However, in the long term, the suicidal acts help
CWJ's survive; CWS's slow growth keeps CWJ's
from being predominated, and D's (CWS's ene-
mies) can be kept controlled by CWJ's.

6 General Analysis
The process at work can be visualized with more
generality and precision if we shift from the histo­
rical illustration to the phase diagram in figure 5
[4]. In such a diagram any point of the triangle re-
presents a distribution of the population over the
three stragegy options. The vertical coordinate
indicates the proportion of "CWJ", the horizon­
tal coordinate shows the proportion of "C", and
finally the remaining proportion of "D" is mea-
sured by the horizontal distance from the point
to the hypotenuse. The population dyanamics is
effected by the initial population ratios as illustra-
ted in Figure 5. There are two kinds of evolutio-
nary equilibrium (EE). (1) EE is at Vertex D. (2)
EE is along Edge C and CWJ. Figure 6 shows this
situation. If we select the initial population ratio
from the black part of the triangle, D exploits C
and CWJ. And If we select the initial population
ratio from the white part of the triangle, D beco-
mes extinct, C and CWJ can survive. In the čase
of CWS and CWJ and D, the results are shown
in Figure 7. The black part of the Figure 6 are
a little larger than that of Figure 7. Figure 8
shows the difference between Fingre 7 and Figure
8 where suicide act can be meaningful.

7 Concluding Remarks

In this paper, we have presented a situation where
species with sacrificial acts can sur.vive while those
without would not. We have also presented a situ­
ation where species with suicide can survive while
those without would not.

SACRIFICIAL ACTS IN... Informatica 18 (1994) 411-416 415

Figure 5: C and CWJ and D, phase diagram

^M ALLD
I I CWSudC

30

30

10 20 30 40 50 60 70 BO 90 C

Figure 7: CWS and CWJ and D, evolutionary
equilibrium

Figure 5: C and CWJ and D , phase diagram

• • ALLD
| 1 CWJ.nl C

CWJ

10 20 30 40 50 60 70 80 90 C

10 20 30 40 50 60 70 80 90 C

Figure 6: C and CWJ and D, evolutionary equi-
librium

Figure 8: The regions that suicide act can be me-
aningful

http://CWJ.nl

416 Informatica 18 (1994) 411-416 M. Tomita ti al.

References

[I] R.Axelrod: The Evolution of Cooperation, Ba­
sic Books, 1984.

[2] R.Axelrod, VV.D.Hamilton: The Evolution of
Cooperation, Science, vol.211, 27 March 1981,
pp.1390-1396.

[3] R.Axelrod, D.Dion: The Further Evolution of
Cooperation, Science, vol. 242, 9 Dec 1988,
pp.1385-1390.

[4] J.Mavnard Smith: Evolution and The Theorv
of Games, Cambridge Univ. Press, 1982.

[5] Cory Fujiki: Using the Genetic Algorithm to
generate LISP source code to solve the Priso-
ner's Dilemma, ICGA 2nd, 1987, pp.236-240.

[6] James P. Kahan, Dwight J. Goehring: The
Uniform N-Person Prisoner's Dilemma Game,
Journal of Conflict Resolution, vol.20(l), Mar
1976, pp.111-128.

[7] Marks R.E.: Breeding Hybrid Strategies,
ICGA 3rd, 1989, pp.198-207.

[8] John R.Hauser, Peter S. Fader: Implicit Co-
alitions in a Generalized Prisoner's Dilemma,
Journal of Conflict Resolution, vol. 32(2), Jun
1988, pp.402-408.

[9] Theodore To: More Realism in the Priso-
ner's Dilemma, Journal of Conflict Resolution,
vol:32(2), Jun 1988, pp.402-408.

[10] K.Lindgren: Evolutionary Phenomena in
Simple Dynamics, Artificial Life II, Addison-
Wesley, 1992.

[II] Jack Hirshleifer, J.C.Martinez Coll: What
Strategies Can Support the Evolutionary
Emergence of Cooperation?, Journal of Conflict
Resolution, vol.32(2), Jun 1988, pp.367-398.

[12] David B. Fogel: Evolving Behaviors in the
Iterated Prisoner's Dilemma, journal of evolu-
tionary computation, 1993, pp77 - pp97.

Informatica 18 (1994) 417-434 417

From Evolutionary Computation to Computational Evolution

Jari Vaario
Evolutionary Systems Department, ATR Human Information Processing Research Laboratories
2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN
Phone: +81 7749 5 1004, Fax: +81 7749 5 1008
jari@hip.atr.co.jp

Keywords: evolutionary computation, growing neural networks, adaptive behavior

Edited by: Xin Yao

Received: November 16, 1993 Revised: April 11, 1994 Accepted: April 18, 1994

This paper proposes that evolutionary computation be understood more like computa­
tional evolution, i.e., to use the evolutionary process for construction, ratier than for
optimization. For this purpose simulation of the evolutionary process should include a
non-linear developmental process from genotype to phenotype. In this developmental
process the environment has an important role. In order to model the developmental
process under the influence of the environment, a new modeling language is introdu-
ced. The focus of this language is on the interactions, which are considered to be the
basic elements for environmental adaptation. The developed modeling method provides
a complete simulation environment for the construction of organisms. The developed
system aims to construct intelligence as adaptive behavior based on artificial neural
networks.

1 Introduction

Artificial Intelligence has failed to model intelli­
gence as it appears in natural systems. This is an
actual problem for applications that should be-
have independently in an unknown and unpredic-
table, environment, e.g., intelligent autonomous
systems.

There are two points where natural systems de-
part remarkably from common engineering prin-
ciples. First, information from the old system to
the new system is transformed in two parts: the
genetic information and the celi machine needed
to interpret the former. The genetic information
does not directly define the final result, but in-
stead describes it in a non-linear way through the
development process.

Second, the development process that leads
from a single celi to a multicellular organism is
a non-linear process that happens in close inte-
raction with the environment. For the final result
the environment is as important as the initial de-
scription. The systems that are capable of self-
modification in the dynamic environment will be
favored in evolution.

This approach has implications for engineering:
instead of direct design, the complex systems are
engineered indirectly. The focus will be on self-
adaptation rather than on the final functionality.
The design subject may be, in principle, anything,
but here we will restrict our analysis to autono­
mous systems, and in particular to control unit
based on simple cellular structures.

2 Background

In engineering the usual concept is to separate a
system from the environment by replacing it with
some system parameters. This is based on the
old understanding that biological organisms are
well bounded systems. However, as engineers -
like biologists - become increasingly aware of the
embodiment of the system in the environment,
they should concentrate their efforts on finding a
mechanism to lower the system bounding conditi-
ons, which will lead toward the design of general
adaptive systems.

In the following we review how the understan­
ding of biological systems has been changed to-

mailto:jari@hip.atr.co.jp

418 Informatica 18 (1994) 417-434 J. Vaario

ward more tightly embodied systems, and then,
following by this, we introduce the concept of
computational evolution in contrast to evolutio-
nary computation.

2.1 Environmental Embodiment

Opinions of how much the environment effects the
development and evolution of natural systems are
wide-ranging. According to the neo-Darwinian
view, the^effect of the environment applies only
to the natural selection process.

This opinion is challenged by Piagetian envi­
ronmental adaptation, where the actions of orga-
nisms cause a continuous feedback from the en­
vironment, and behavior is considered to be the
prime source of evolution. [1, 6]. The next step
has been proposed by Wesson [13] with arguments
of direct genetic adaptations to the environmen­
tal changes. Both of these opinions suggest that
the Darwinian natural selection mechanism is ina-
dequate for creating the biological life now present
in nature. This is the same conclusion than Stu-
art Kauffman made in [2]. The environment has
to have a more direct method for affecting the
direction of evolution than Darwinian survival se­
lection.

These theories can be compared to software te-
chnology. Current software technologies are ba-
sed on the idea of predetermination, i.e., the pro­
gram does not change after it has been written.
Recently the Darwian ideas of selectionism have
been applied by Koza [3] as Genetic Program-
ming. The next step is to extend software accor­
ding to the general theories of self-organizing sy-
stems.

2.2 Structuralism vs. Functionalism

The recent experiments in modeling the evolu-
tionary process have once again raised the old
question of the actual relation between form and
function. The previous topic was wether "struc­
turalism" (the primacy of form over function)
or "functionalism" (the primacy of function over
form) is more valid (see, for example, [8]. Now the
same question seems to be emerging from evolu-
tionary computation: Do we need to model the
form in order to create a function, or could we
concentrate only on the function and forget the
form in the simulations of evolution?

Current models of evolutionary computation
ignore the form and concentrate on the explici-
tly defined functions. This approach leads to a
powerful "search" mechanism in a known function
space, ie., optimization, but does not demonstrate
any of the creativity that is clearly visible in na­
tural systems. For modeling this creativeness, the
form, and its developmental process, must also be
included in the models.

2.3 Computational Evolution

We would like to make a distinction between the
research on genetic algorithms, i.e., evolutionary
computation, and our research. We would like to
explore purposeless evolution, not optimization in
a known space. However, purposeless is not me-
aningless. We have a mechanism to create struc-
tures that result in behavior in the environment.
The explicitly defined fitness function is replaced
by an implicitly defined behavior capable of re-
production. We call this Computational Evolu­
tion, rather than evolutionary computation. The
difference between these two approaches can be
seen in Figure 1.

The idea is to find the mechanism by which
the biological systems respond to novel problems.
This could also be called adaptive behavior. The
question is does there exist any single mechanism,
or principle, that gives rise to organisms and their
"intelligent" behavior. If there exists such a me­
chanism, could it be transferred to artificial sy-
stems to provide the principle for spontaneous in­
telligent behavior.

It is clear that evolution (phylogenesis) based
only on a selection mechanism does not provide an
answer. It must be combined with morphogenesis
and ontogenesis. How to make a computational
model for ali these processes is the problem that
must first be answered. After we have a compu­
tational model for these processes, we can explore
the effect of each of them in order to create arti­
ficial systems.

2.4 Focus of this r e sea rch

The above theoretical arguments should be elabo-
rated with concrete examples. A computational
model would be very useful to verify what kind
of environmental effects can be modeled, and how
these effects can replace genetic predetermination.

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 419

Evolutionary Computation

GOAL

t+n

t+2

t+1 i i i i i V J i

klimination

Computational Evolution

"'•.,' Unequal distribution y''
creation'\ over tHe environment .-'creation

t+n *TTI 11 i j,ut\ii i i in in HKfCj I III l
environmentai'' \ / ^environmental
pressure , ' \ ,' ^ s pressure

START

Figure 1: Comparison between Evolutionary Computation and Computational Evolution. The result
computational evolution is an unequal distribution of individuals. The creation of new individuals
will fill the space and exert a pressure on the existing individuals. In evolutionary computation this
pressure is replaced by the explicitly defined selectiori of the fittest individuals. This explicitness
destroys the creativity of evolution.

A computational model is capable of capturing
the essence of the above arguments, and makes
it is easy to conduct experiments with different
initial conditions.

However, it is not obvious what kind of compu­
tational model is most suitable. First, we have
to recognize tha t the model should be capable
of embedding organisms in the environment. Se-
cond, the model should be capable of the local
interactions between the organisms and the en­
vironment. Third, the model should be capable
of covering ali the different envirdnmental adap-
tation phases. These include the development of
an organism (morphogenesis), the plasticity that
results in behavior (ontogenesis), and a selection
mechanism with genetic variations (phylogenesis).
These processes are illustrated in Figure 2.

We have thus far reported the results of a si­
mulation mechanism as a method to construct in-
telligent behavior in [12, 10]. A mechanism for
evolutionary design and model building has been
discussed in [11, 5]. A detailed description of the
simulation mechanism can be found in [9]. This
paper is a continuation of the previous work re-
porting the latest results.

3 Computational Model

A computational model is based on the concept
of production rules inspired by Lindenmaver sy-
stems [7]. However, instead of using alinear string
of letters we describe abstract objects, which have
their own production rules to execute.

Unlike L-systems having position ordered para-
meters for letters, we use attributes (a tuple of key
and value) to describe the parameters of objects.
Each object can also have sub-objects with their
own production rules and attr ibutes. This forms
a hierarchical representation of the objects tha t
also allow an environment model in the same mo­
del.

Because of these fundamental changes we prefer
to call our system Multilevel Interaction Simula­
tion language (MLIS) [9].

3.1 Multi level Interaction Simulat ion
language

In traditional object-oriented systems the action
of an object is based on the sent message, i.e.,
the object is passive unless someone sends a mes­
sage for action. This implies tha t the message
control mechanism must be svnchronized in the
sense that the sender must know to whom and

420 Informatica 18 (1994) 417-434 J. Vaario

Genotype

Gene_l

Gene_2

Gene..n

Gene_l
Gene_2

Phenotype Behavior Reproduction
Morphogenesis

>

Environment

Ontogenesis

>

Environment

•:••
Phylogenesis

l\
Environment

gg) K3
u

Gene_l
Gene 2

Gene n

+ =
Gene_l
Gene 2

Gene n

Gene 1
Gene 2

Gene n

Evolutionarv loop

Figure 2: Possible environmental adaptations: morphogenesis, ontogenesis and phylogenesis. The
organism starts with genetic information and a basic mechanism to interpret it, and interact with
the environment (celi) resulting in a phenotype, and further behavior. Through a selection process
based on the result of the earlier phases, new genetic information with an interpretation machine (celi)
results in closing the evolutionary loop.

X
Visible environment for

objects at this level

£ Visible environment for
objects at this level

•^^J To-, fr
\

Visible environment for
objects at this level

t"
•* *• Interaction between an object and its visible environment

Figure 3: The hierarchical organization of objects.
Each object has its own local visible environment.
The interactions are executed in parallel and si-
multaneously.

when to send the messages.

In the MLIS language each object is actively
"checking" the environment and, based on the in­
formation in the environment, the objects take
appropriate actions. The environment visible to
each object depends on its position in the hierar­
chical organization (see Figure 3). Because each
object is autonomously executing its own instruc-
tions, the system possesses a strong parallelism.

The simulation of such a system must focus
on the interactions (actions that the objects take
based on the visible environment). Each object
should possess a set of definitions describing the

actions to be taken, i.e., a set of production ru­
les. The general form of these rules is f(x + 1) =
g(f(x),e(x)), where f(x) represents the state of
the object and e(x) the state of the environment
at time x. The simulation environment assures
that ali objects are executing these production ru­
les in an "infinite" loop, i.e., the execution cycles
that simulate the passage of time.

In this execution cycle the production rules are
executed in parallel and simultaneously. This me-
ans that during each execution cycle the data vi­
sible for each production rule do not change until
ali the production rules are executed.

Initially, the production rules are given expli-
citly for each object. These initial rules describe
the basic interactions, and can be compared to
the simulation of physical phenomena. Another
set of production rules might be used to modify
the object itself. These rules can be compared to
a celi machine that interprets genetic information.
If these production rules can be handled as data
by other production rules, the system is capable
of self-modification.

3.2 Objects

An object is parsed from its string representation
(obj(ATTRI, ATTR 2 , ... , ATTRn)), which descri-
bes the name of the object (obj), and its attribu-
tes in parentheses.

For example, an object might take the following

FROM EVOLUTIONARY COMPUTATION TO ...

form.

obj(ATTRi=value, ATTR2=value,
. . . , ATTRn=value,
RULEI=(obj :: cond -* [obj(...)]),
RULE2=(obj :: cond -> [obj(...) j),

'(RuLEi(this), RuLE2(this))
/ / Ezecution of rules

)

The above describes the initial state of an
object with some attributes and two production
rules. The execution of the production rules is
defined by an explicit call to the rule with a pa­
rameter to define the object on which the rule
will be applied. The parameter can be a reserved
word (this meaning this object, or up meaning
the upper level object) or the attribute name of a
list of objects. (A detailed explanation will follow
in section 3.4).

If we have a hierarchical representation of
objects, we have the problem of defining whether
the production rules are called before applying
the production rules of sub-objects, or afterwards.
This is solved in the current implementation by
explicitly defining 'before' and 'after' execution of
production rules. The execution order of multile-
vel production rules is shown in Figure 4.

In the following example (Figure 5) the exe-
cution order of the rules is as follows (|| means
in parallel): RuLEi, (RULE^ || RULEC), RuLEg,
RULE 2 .

3.3 Attr ibutes

Each object has an attribute list, where each at­
tribute has a name and a value (e.g., a chemical
compound with its concentration). A general de-
scription of an attribute is 'ATTR=value'. The
attribute value can have a wide variety of prede-
fined types with dynamic type resolution during
execution. The predefined types include produc­
tion rules, objects, arithmetic types (integer, dou-
ble, etc), geometrical types (point, segment, po-
lygon, vector, etc), and nested lists of the above.
Attributes are modified by expression statements.

3.4 Interaction rules

Each interaction rule is described as a production
rule. A production rule describes the conditions

Informatica 18 (1994) 417-434 421

and the kind of action that will take plače. Pro­
duction rules are divided into the following types,
according to the possible actions.

— Modification of internal state based on the
internal state (celi machine)

— Modification of internal state based on the
external state (celi membrane)

- Creation of a new object
- Deletion of an object

Below we explaine each type briefly.

3.4.1 Internal-state-based modification

These modifications, which have access only to
the internal state of an object, have the following
form of production rule.

RuLE=(obj :: cond
—• obj(ATTR—expr(ATTK))),

'(RuLE(this))

This means that the value of this object (in-
dicated by the reserved vvord this) is given to
the production rule as a value of obj and the at­
tributes are modified according to the expression
(ATTR=ea;pr(ATTR)).

3.4.2 External-state-based modification

Access to the upper level values has the following
form of production rule.

RuLE=(obj, mobj :: cond
—> obj(ATTR=ea;pr(mobj.ATTR)))

'(RuLE(this, up))

The interpretation of the above rule is to call
it with the value of this object (this) given to
obj, and the value of the upper level object (in-
dicated by the keyword up) given to mobj. In
same cases (see examples in Figures 12 and
tab:reproduction) we need to access not only the
upper-level object, but also ali the neighbors of
the upper level object. Although this can be im-
plemented by additional rules, we have a shortcut
with the keyword up* meaning that the rule is
called by ali the upper-level given objects in turn,
as the value to mobj.

Access to the sub-objects has the following form
of production rule.

422 Informatica 18 (1994) 417-434 J. Vaario

Before
prod. rules

1 1
'

1 1

1 1 i

r"-:::\ i

i i i
1

i i i

Level 1 subobjects Before '—j—'—T—'—T—'—T—'—T—'
prod.nues | ' | ' , * I V - r H

After I~T
prod. rules i

Level 2 subobjects Before I—|—I—,—I—.—I
prod. rules I I I

After 1 1 1
prod. rules | | |——|

/ . , * <

P^P
T ^ ^

1 - -

1
After J

prod. rules i

Isiiiiiiiii i
l i l i

l i l i

B i l i I I I
1 ; ; ;; ; .

I I I

Figure 4: The execution of multilevel production rules. First, the 'before' rules are applied in parallel to
the outmost object. This is repeated for each sub-object in parallel until there are no more sub-objects.
Then the 'after' rules of the innermost sub-objects are applied and the sub-objects are rewritten into
the upper level. This is continued until ali 'after' rules are applied at ali levels.

obj(RuLEi=(obj :: cond —• obj(...)),
RULE2=(obj :: cond —• obj(. ••)),
SuBOBJS=[sob/i(RuLEA=(ob/ :: cond - • obj(...)),

RuLEa=(obj :: cond —• obj(...)),

'(RuLE^this)),
'(RuLEB(this))),

sojf>j2(RuLEc=(obj :: cond obj(...)),

•],
'(RuLEc(this))),

)

'(RULEi(this))
'(RULE2(this))

/ / Ezecution of before rules
// Execution of after rules

// Ezecution of before rules

// Ezecution of before rules
// Ezecution of after rules

Figure 5: An example of production rules to illustrate the execution order.

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 423

S U B O B J S = [sobj(ATTR, . . .) , . . .] ,
RuLE=(obj, sobj :: cond

—> obj(ATTR=expr(sobj.ATTR)))

'(RuLE(this, SUBOBJS))

The interpretation of the above rule is to call
it with a vame of this object (this) given to obj,
and each sub-object (in SUBOBJS) as the value
for sobj.

Both these mechanisms are illustrated by the
example shown in Figure 6. The cells in the envi-
ronment has access to the environment attribute
ENVATTR through the production rule ADAPT.
The environment object (environment) access of
the attribute EFFECTATTR of each celi through
the production rule EFFECT.

3.4.3 Creation of a new object

Creation of a new object takes plače when there
is an extra successor, as follows.

RuLE=(obj :: cond
-*• obj(ATTR=ea;pr(ATTR)),

objnew(ATTK= expr(ATTK)))

This rule has an extra successor, which is reco-
gnized by a difFerent name (i.e., obj = obj results
in only attribute modifications, but obj ^ objnew
results in the creation of a new object). The de-
fault behavior is to copy the attribute values of
the original object. However, the attributes can
be modified within the same rule. Thus by mo-
difying the attribute values we can achieve the
following basic celi lineage types:

— The celi divides into two cells of same type
(A^A,A)

— The celi creates a new celi type (A —» A, B)
— The celi divides into two cells of different

types (A -* B,C)

3.4.4 Deletion of an object

Deletion of an object is simple with the following
rule.

RuLE=(obj :: cond —»• ~obj())

When we apply the rule we delete the objects
where successor is preceded by '"' are deleted as

a result of applying the rule. An alternative me-
thod would be to follow the principle of rewriting
systems, i.e., if the object is not rewritten by any
rule, it will disappear. However, this would have
required a default rule without any modification,
and thus it was considered an unnecessary com-
putational requirement.

3.5 Simulation of Physical Space

The basic idea that the environment cannot be di-
stinguished from the system requires the modeling
of physical phenomena to some extent. Curren-
tly, physical phenomena have been implemented
by production rules similar to the rules controlling
the self-modifications. This requires a complica-
ted set of production rules to handle the physical
properties of each object. Some of these proper-
ties, such as intersection in space, can be deter-
mined by built-in functions.

4 Morphogenesis of Organisms
The following example illustrates the MLIS langu-
age. With a simple morphogenesis process we can
create a cellular structure. The celi divisions and
differentiation are shown. In the final structure,
some cells act as sensors, some cells as effectors,
and some cells as neurons. The neuron cells start
to grow connections that will terminate at other
neurons, effectors and sensors. The created beha­
vior will control the organisms in the environment
and, based on this behavior, simple reproduction
is demonstrated.

The examples given were executed by a serial
implementation of the interpreter while the paral-
lel implementation is under construction.

4.1 Divis ions

Figure 7 describes how to create a simple morpho­
genesis. The description consists of environment
object, which contains a list of organisms (ORGA-
NISMS). Each organism (organism) is defined by a
list of cells (CELLS). Initially, the list consists of
description of a single celi (celi). In the example
the celi has a production rule that defines when,
and in what direction, to divide (DIVISION). Each
of the divided cells will inherit the same produc­
tion rule. Thus, the rule consists of five alter­
native branches, which are selected based on the

424 Informatica 18 (1994) 417-434 J. Vaario

environment(ENVATTR, / / Factor effecting the cells
CELLS = [ce]i(ADAPTATTR, / / Factor effected by the environment

EFFECT ATTR, / / Factor effecting the environment
ADAPT=(ceii, env // Celi <= Env

:: cond(cell. ADAPTATTR, env.ENV ATTR)
-* cei](ADAPTATTR=/(ceiJ.ADAPTATTR, env.ENV ATTR))

).
'(ADAPT(this, up))

), / / End of celi description

EFFECT=(env, celi :: cond(env.ENvATTR, ceJl.EFFECTATTR) / / Env <= Cells
—> env(ENVATTR=/(ENVATTR, ceii.EFFECTATTR))),

' (EFFECT(this , C E L L S))
) / / End of environment description

Figure 6: An example of a production rule to illustrate the access of external attributes. The rule
ADAPT accesses the attribute ENVATTR of the environment object (environment), which is assigned
to the parameter env by using the keyword up. In contrast the EFFECT rule accesses each celi in
CELLS (list of objects) that are assigned in turn to the parameter celi.

current stage of the celi (STAGE). The direction
of possible divisions is given by a two-dimensional
array of vectors (D I R) .

Close study of the production rule reveals that
the first branch divides the initial celi into 'up'
and 'down' cells. The next branch will divide both
of these cells into 'left' and 'right' cells. The four
cells thus far created are capable of creating a
structure that is symmetrical about the horizon­
tal and vertical axes. The next three branches are
used to create symmetrical quadrants, which di-
ffer only in the division direction. The first of the
remaining rules gives a stem celi for the further
celi lineage. The next branch starts a diagonal di­
vision lineage. The last rule creates a horizontal
division lineage.

The celi divisions are shown in Figure 9. The
development consists of eight celi divisions resul-
ting in a 36-cell structure. The size of the struc­
ture is controlled by the number of diagonal and
horizontal divisions (M A X D I V) . This variable can
be presented as an array similar to division direc­
tion (DlR.), or as a function of the environment.
This breaks the symmetry of the organisms as di-
scussed below (4.3 Environmental effect).

4.2 Differentiation
During division the cells differentiate based on
the production rule shown in Figure 8). The first

branch of the production rule determines that the
celi will end as an effector (muscle celi). The se-
cond branch will produce a sensor celi. The last
branch will produce a neuron. The selection of
the applied branch is based on the simple rule
that "edge" cells will become effectors, "head"
cells will become sensors, and "inter" cells will
become neurons.

As shown in Figure 9 the celi size changes. This
indicates that the celi becomes mature (STAGE=
=mature). In the čase of neural cells a slight ro-
tation is used to distinguish them from immature
cells (on the computer screen these are shown in
color).

4.3 Environmental effect

The above examples demonstrate hov/ the system
is capable of morphogenesis of organisms based
on simple genetic information. Lefs assume that
some of the control variables of the above produc­
tion rules of celi divisions depend on the enviro­
nment. For example, the value of MAXDIV can
be defined based on some environmental factors,
and produce the organism shown in Figure 10.

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 425

environment(..., // Atiributes of environment
ORGANISMS=[/ / Environment consists of organisms

organism(... / / Attributes of organism
CELLS=[... / / Organism consists of ceils

ceIi(Pos=<0.0,0.0>, CNT, MAXDIV,

D I R = [[< 0 . 0 , 1 0 . 0 > , <180.0,10.0>], [<90.0,10.0», <270.0,10.0>],
[<60.0,10.0>, <120.0,10.0>],.[<300.0,10.0>> <240.0,10.0>]],
RIGHT=1, LEFT=2, UP=3, D0WN=4,

DlviDE=(celI :: (ceJI.STAGE=stem) / / 'Up' and 'dovrn' stem cells
-» [new(STAGE=steml, P O S + = D I R [2] [1] , L O C = U P) ,

ceJJ(STAGE=steml, LOC=DOWN)]
:: (celi.STAGE=sternl) / / 'Left' and 'right' stem cells
-* [new(STAGE=stem2, P O S + = D I R [1] [1] , SIDE=RIGHT) ,

ceii(STAGE=stem2, SIDE=LEFT)]
:: (celi.STAGE^stem2) / / Stem celi of quatro-body
—• [new(STAGE=stem3, POS+=DIR[1] [S IDE]) ,

ceJI(STAGE=edge)]
:: (celi.STAGE^stem3) / / Diagonal celi lineage
—» [new(STAGE=(CNT<MAXDlv?stem3:edge),

POS+=DIR[LOC][SIDE]) ,

ceii(STAGE=stem4)]
:: (celi.STAGE=stem4) / / Horizontal celi lineage
—• [new(STAGE=(Cnt<MaxDiv?stem4:head),

POS+=DIR[1] [SIDE]) ,

ceil(ŠTAGE=inter)]), / * DIVIDE */
'(DiviDE(this))

) , . . .] , . . .) , . . .] , . . .
) / * environment */

Figure 7: An example of production rules to generate celi divisions. (" < angle, length > " is a vector
value; " . . . ? . . . : . . . " is a conditional statement "if . . . then . . . else . . . " ; "4-=" is an addition to
the previous value (here as a vector operation).)

5 Ontogenesis of Organisms the list contains a generic connection from which
the other connections are initiated.

The transition from morphogenesis to ontogenesis The generic connection has the production ru-
is not clear. We refer here to the neural activi- l e s needed to model the growth. These rules are
ties, namelv the growth of the connections and the shown in Figure 11. The first rule (B U D) creates
signal propagation between neurons, as ontogene- the initial connections with the necessary initial
tic phenomena. Thus far the signal propagation value of the genetic growth force (G F) , i.e., the di-
is not modeled to cause any permanent changes rection in which the connection intends to grow.
in the neural behavior, although this could easily T h e n e x t r u l e (B R A N C H) is a branching rule,

be included in the model. which duplicates the connection by changing the

direction of the growth force by, in this example, a

5.1 The growth of a neural network constm? f a c t o / (B B A N C H A N G L E) . The condition
for applying the branchmg rule is also determined

When the celi structure has been formed, the ne- by a constant factor (B R A N C H C N T) .

uron cells start to grow connections. The growth The growth of the connection is modeled by the
mechanism is similar to the cellular division me- next production rule (G R O W T H . It contains three
chanism. Each celi has a list of parts (CoNNEC- alternative execution branchs. The first branch
T I O N S) , which contains the connections. Initially, calculates a new position (P o s) by adding the ge-

426 Informatica 18 (1994) 417-434 J. Vaario

cell{...
DlFFER=(ceii :: (ce7i.STAGE = edge) kk (celi.CNT > celi.MAXDIV)

->• [ceI2(STAGE=mature, TYPE=effector, SHAPE * = 1.6)]
:: (celi.STAGE = head) kk (celi.CNT > celi.MAXDIV)
-»• [ceii(STAGE=mature, TYPE=sensor, SHAPE * = 1.6)]
:: (celi.STAGE = inter) kk (cei/.CNT > celi.MAXDIV)
-> [ceii(STAGE=mature, TYPE=neuron, R += 15.0)]

'(DlFFER(this))
) / * celi */

Figure 8: An example of a production rule that generates celi differentiations. (See explanation in
text.)

Figure 9: An example of the formation of a struc-
ture. Through multiple celi divisions and diffe­
rentiations, the final form is gradually reached. A Figure 10: Variation of organisms by changing the
celi that no longer divides as is represented by a value of a single control variable.
large celi or, in the čase of a neural celi, by a slight
rotation.

FROM EVOLUTIONARY COMPUTATION TO

netic growth vector (G F) . The new position is sa-
ved in the list (CONNPATH). The growth force is
modeled to decrease as a function (/, a sigmoid
function returning a value of less than one) of time
(C N T) .

The next branch is executed if the connection
was not able to connect to any neuron by a spe-
cific number of growth steps (WITHDRAW). The
withdrawal of the connection is implemented by
repeated 'pop' operations until the list of connec­
tion growth steps (CONNPATH) is empty. When
the list becomes empty the last branch will delete
the connection.

5.1.1 Environmental effect

The above genetic growth of connections is insuffi-
cient to simulate realistic neural growth. We also
need a targeting mechanism that includes physical
and chemical factors. These can be implemented
by the production rules shown in Figure 12.

The first rule (ATTRACTION) implements the
chemical attraction of other cells. In order to
make this work we need a target label (TARGET)

for each that connection corresponds to the che­
mical diffusion labels (D I F F) of other cells. For
each of the matching labels we calculate an attrac­
tion force (A F) as a function (/, as in Figure 13)
of distance (| cell.Pos - Pos |) directed toward the
attraction celi (norm(cell.Pos - Pos)).

In the above growth production rule (G R O -
WTH) the new position calculation is modified to
include the attraction force, and to suppress the
genetic force in the vicinity of target celi.

5.1.2 Example of the growth of a neural
network

In the following example we use a simplified mo­
del of the organisms. The celi positions are given
explicitly as are the targeting labels, i.e., what
neuron will be connected to which sensors and
effectors. The initial description is given in Fi­
gure 14. These values could be the result of the
above described morphogenesis process, but due
to the computational requirements, this has not
yet been modeled.

An example of a created network is shown in
Figure 15. The effecting forces include the simu-
lation of mechanical collisions, and the chemical

Informatica 18 (1994) 417-434 427
length

width

AnimaVs local coordinate system

Enuironment coordinate system

Figure 14: Each organism has its own local co­
ordinate system. The length and width of an or­
ganism, and the positions of sensors and effectors
are given relative to this.

Q

II m
&c

#r

O;

fO

Figure 15: The neural cells grow connections that
target other neurons, sensors and effectors. When
to branch, and the branching angle are deter-
mined by the genetic rules. Three phases are
shown: initial growth (top), initial withdrawal
(middle), and after ali unconnected connections
are withdrawn (bottom).

428 Informatica 18 (1994) 417-434 J. Vaario

ceii(Pos=<C . . . , . . » , / / Celi as a neuron Capable of grotving connections
CONNECTIONS=[

generic(BRANCHCNT=10, BRANCHANGLE=[30.0 , -30.0], W I T H D R A W = 0 . 1 ,
DiR=[<60.0, 5.0>, <120.0, 5.0», <180.0, 5.0>,

<240.0, 5.0>, <300.0, 5.0>, <360.0, 5.0»]
Div=l , CONNPATH=Q, CoNNECT=False,
BuD=(conn, celi //Start of a neto connection

:: (conn.Drv<6)
- • [new(GF=DlR[Div], Pos=ceii.Pos+GF, C O N N P A T H + = P O S)

conn(DlV-H-)]),
BRANCH=(conn / / A new connection by branching

:: ((conn.CNT%conn.BRANCHCNT)=0)
-»• [new(GF=rotate(GF, BRANCHANGLE[1])),

conn(GF=ro*aie(GF, BRANCHANGLE[2])]),
GROWTH=(conn / / Growth of a connection

:: (Iconn.CoNNECT) kk (|conn.GF|>conn.WlTHDRAW)
—» [conn(Pos+=GF, C O N N P A T H + = P O S , G F * = / (C N T)]
:: (Iconn.CoNNECT) kk (conn.CoNNPATH^O)
-> [conn(Pos=/irsi(CoNNPATH), CoNNPATH=resi(CoNNPATH)]
:: (Iconn.CoNNECT) kk (conn.CoNNPATH=Q)
—* [~conn()]

'(BuD(this, up) , BRANCH(this, up) , GROWTH(this))
) / * celi */

Figure 11: An example of production rules that produce genetic growth of connections. The first rule
(B U D s tarts new connections with initial values. The second rule B R A N C H creates new connections
through a branching operation. The third rule G R O W T H grows, withdraws, or removes the connections
according to the W I T H D R A W factor.

ATTRACTlON=(conn, celi // Chemical gradient field
:: (conn.TARGET==ceii.DlFF)
-+ [conn(AF+=/(|ceii.Pos - Pos|)*norm(ceiI.Pos-Pos))]),

GROWTH=(conn . . . Pos + = / (A F) * G F + A F . . .) ,
CoLLlslON=(conn, obj // Mechanical collision

:: (Iconn.CoNNECT) kk (conn.TARGET^obj.DlFF) kk
(inter(obj.SHAPE, conn.CoNNPATH))

—*• [conn(GF=rotfaie(GF, -2.0*interAng()),
Pos=interP()+norm(GF)*\interPQ-first(CoNNPATu)\,
CONNPATH=^«SA(POS, push(interPQ, restf(CoNNPATH))))]

/ / ... or hitting the target
:: (Iconn.CoNNECT) kk (conn.TARGET=obj.DiFF) kk

(inter(obj.SHAPE, conn.CoNNPATH)) kk (obj.TYPE = efF)
—• [conn(CoNNECT=connec<(conn, obj), TYPE=axon)])
:: (Iconn.CoNNECT) kk (conn.TARGET=obj.DiFF) kk

(inter(obj.SHAPE, conn.CoNNPATH)) kk (obj.TYPE = sen)
—> [conn(CoNNECT=co7inec<(obj, conn), TYPE=dend)])

. . . ,
'(ATTRACTION(this, u p *) , COLLISION(this, up*))

Figure 12: Examples to show production rules to model the mechanical (C O L L I S I O N) and the chemi-
cal (A T T R A C T I O N) effect on growth. Notice that the last production rule also creates a 'svnaptical
connection' if the grown connection hits the target. This is implemented by making an internal link
between the connected objects.

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 429

Figure 13: The attraction field created by the chemical diffusion of a celi located at the middle of
picture. (The depression of the field close to celi is used to model the slowdown of growth when
approaching the target celi. A more realistic approach might be to use two gradient fields: one for the
rough approaching, and one for the final approaching.)

430 Informatica 18 (1994) 417-434 J. Vaario

gradient field on which the connection is "clim-
bing".

5.2 Signal propagation in the network

After the network is created the same modeling
method is used to propagate signals with in it.
Signal propagation is governed by the production
rules shown in Figure 16.

Signal propagation is divided into three pha-
ses: from celi or axon to dendrite, from dendrite
to neuron (the generic connection), from neuron
to axon. These are rules at the sub-object level of
the celi, and implemented by three separate rules:
PROPAGATEI, PROPAGATE2, and PROPAGATE3.
The separation is needed to assure the correct or-
der of signal propagation.

After signal propagation at the sub-object level
of the celi we stili need to get the signal to the cel-
lular level objects, namely to the effectors. This is
implemented with a separate rule (PROPAGATE).

The example shows signal propagation with no
learning included. It would be easy to include a
threshold, connection weights, or other internal
modifications in the above rules.

5.2.1 Example of created behavior

In order to observe the behavior of the above ne-
ural network, it should be placed in an enviro­
nment where sensors generate signals into the ne-
twork, and the created effector activity moves the
organism according to the received signals. To
simulate this, the above production rules can be
extended to model the sensor activity as well as
the movement of organisms according to the ge-
nerated forces. This is discussed in [11] and here
only a short summary is given in Figure 17.

6 Phylogenesis of Organisms

The organisms behaving in the environment could
own a behavior that leads to reproduction. As a
result of reproduction, a new initial description is
created. In this process some genetic variations
can take plače. The initial celi with its genetic in-
formation is placed in the environment and closes
the evolutionary loop. The evolution of organisms
is thought to be a result of this process.

Figure 19: Reproduction: An organism (center)
ejects four seeds into the environment, each of
which will give rise to a new organism with sligh-
tly different control variables. These new organi­
sms in turn each create two new organisms.

6.1 Reproduct ion

The first example describes reproduction that is
biologically plausible given the structure used in
section 4 Morphogenesis of Organisms. In Fi­
gure 18, the production rule (E J E C T 'ejects' an
initial celi into the environment resulting in the
growth of a new organism. By identifving some
control variables as genetic information with mu-
tations, we can create a great variation of shapes
in the environment. This is seen in Figure 19,
where MAXDIV is used as mutable genetic infor­
mation.

The above example reveals the problem of cre-
ating a selection of favorable structures based on
local interactions. With no behavior included in
the model, there is little change of creating a se­
lection mechanism. In order to use behavior in
the selection process, we use the example intro-
duced in section 5 Ontogenesis of Organisms.

Here we define the genetic code as the positions

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 431

cell(..., / / Celi capable of propagating signals
PARTS=[generic(TYPE=neuro, . . . ,

PROPAGATEl=(objJ, obj2 // From celi or axon to dendrite
:: (obji.TYPE = dend) -+ [objl(SIGNAL = obj2.SIGNAL)])

PROPAGATE2=(objJ, obj2 // From dendrite to neuron
:: (objl.TYPE = neuro) -»• [obji (SIGNAL + = obj2.SIGNAL)]),

PROPAGATE3=(objI,,'obj2 // From neuron to axon
:: (obji .TYPE = axon) -»• [objJ(SIGNAL = obj2.SIGNAL)]),

. . . ,
' (. . . , PROPAGATEl(this, Connected()),

PR0PAGATE2(this, Connected()),
PROPAGATE3(this, Connected()), . . .) ,

PROPAGATE=(objJ, obj2 // From axon to effector
:: (obji. TYPE = eff) -» [obji (SIGNAL + = objS.SiGNAL)])

' (. . . , PROPAGATE(this, ConnectedQ), . . .))])

Figure 16: Example to show signal propagation in the network. The rules PROPAGATEI, PROPAGATE2,
and PROPAGATE3 are used to propagate the signal from sensor celi to dendrite, from dendrite to
neuron, and from neuron to axon, respectively. The rule PROPAGATE is used to transfer a signal to
the effectors. The function Connected() is used to give a list of objectš that are connected to .the
current object.

of the explicitly given sensors and effectors. Pro-
duction rules to select organisms for reproduction
and to introduce genetic variations are shown in
Figure 20. The selection is based on the intersec­
tion of the physical shapes. When an intersection
is detected, a new offspring inherits its parents
genetic information is created.

6.2 Evolution

The current implementation does not allow si-
mulation of evolution with a complicated beha-
vior model. However, a simple example is used
to demonstrate how the behavior can enforce it-
self. Although the example does not include any
creation of new behavior the previously described
non-linear development process can provide it.

In the following example we allow a single or-
ganism to move in the environment, and another
to follow it. Whenever the following organism re-
aches the target, a new organism is created. In
this example, only the location of the sensors and
effectors is varied. Gradually an organism capa­
ble of better following behavior will evolve. This
is shown in Figure 21.

7 Conclusion

In this paper we have discussed computational
evolution rather than evolutionary computation.
By computational evolution we mean a model of
evolution at a detailed level with a goal to better
understand the evolutionary process itself. The
evolutionary process is greatly affected by the en­
vironment in a way that is not yet fully under-
stood.

The usual technique for modeling evolutionary
systems ignores the developmental phase. It is
important to encode and transcribe the genetic
information in a way that can provide a non-
linear developmental process. As has been obser-
ved [13], biological life has not developed through
small steps only, but has also developed through
larger jumps. This cannot easily be explained by
random mutation alone.

By modeling the non-linear developmental pro­
cess, a single variation in the genetic information
can create a completely different phenotype. If
this variation is caused by environmental factors,
the probability that this will happen at the same
time in several individuals is great. Thus, the sy-
stem would be capable of generating new species
for different environmental niches.

In the last part of this paper we presented a de-

432 Informatica 18 (1994) 417-434 J. Vaario

Figure 17: Sensor activity is modeled based on a simple model. The signal generated by the sensor is
a function of distance and angle (at top) to the source of stimulus. The simplified chart (left) shows
how the signal is propagated to effectors, which generate a force vector proportional to the signal.
This results in tracking behavior (right).

)

EJECT=(ceJi :: (celi.TYPE = eject) && / / Rule to eject a seed
(celi.CNT > celi.REPRODAGE) kk (cei].CNT%ceiJ.EJECTRATE = 0)

-»• [seed(lNlTED=False, MAXDIV = random(5, 6, 7),
Pos + = random(l0.0, 25.0) *

cell.DlR[random(up, DOWN)][ran<fom(LEFT, RIGHT)]),
cell()]

) / / EJECT

Figure 18: An example of production rules to implement reproduction. The production rule E J E C T

creates a seed celi in the environment. This celi is capable of growing new structure similar to the
original one.

FROM EVOLUTIONARY COMPUTATION TO ... Informatica 18 (1994) 417-434 4 3 3

orga,nism(// Organism capable of creating offsprings
S E N P O S I = (. . .) , S E N P O S 2 = (. . .) ,

E F F P O S ! = (. . .) , E F F P O S 2 = (. . .) ,

MATE=(orgi, org2

:: (inter(orgi.SHAPE, org2.SHAPE))
—y [offsprmg(SENPosi=mutate(crossover(oTgi.SE^PoSi, or^-SENPosj)),

SENPos2=mutate(crossover(orgi.SENPos2, org2-SENRPos)),
EFFPosi—mutaie(crossover(orgi.EFFPoSi, oigi.EFFPOSI)),
EFFPoS2=mutate(crossover(orgi.EFFPos2, o rg 2 .EFFPOS 2)) ,
Pos=<rons/o<e(Pos, OFFSETVECTOR), . . .)]) ,

' (. . . , MATE(this, up*) , . . .)

)

Figure 20: An example of production rules to implement reproduction. The production rule (Mate)
tests ali other organisms (up*) against the calling organism (this) to determine whether there is an
intersection in their physical shapes. If they intersect, a new offspring is created. The condition can
include tests for sex, maturity, etc. There should also be some threshold variable to insure tha t only
one offspring is created at a time. The crossover function (crossover) can be an average function, and
the mutation function (mutate) can be a random change of the value, for example, in the range of
[-0 .5 ,0 .5]uni ts . •

scription language tha t provides a computational
basis for experiments on non-linear developmen-
tal and evolutionary processes. The language is
based on production rules that simulate the in-
teractions between objects. This means that our
focus is not on the structure itself, but on the inte-
ractions between objects tha t define a higher level
object. This is conceptually similar to autopoiesis
theory [4].

The examples given at the end of the paper
are presented more to demonstrate the simulation
language and to illustrate the power of the non-
linear construction process. The actual analvsis
of the creation of new species and, in general, the
evolvability of the modeled organisms, is left for
future work.

The main merit of the presented modeling me-
thod is its capability of covering ali the needed
detailed phases needed for the simulation of evolu-
tion. This can also be cited as the main critics.
Too much is included in one model and the mo­
deling of populations is not possible with current
computer technology. However, the method al-
lows us to focus on the essential: local interaction.
Thus, it can be used as a powerful tool for mo­
deling self-organization in order to achieve deeper
understanding of the factors tha t cause evolution.

References

[1] Jean Claude Brinquier. Conversations with
Jean Piaget. The University of Chicago
Press, 1980.

[2] Stuart A. Kauffman. The Origins of Order -
Self-organization and selection in evolution.
Oxford University Press, New York, Oxford,
1993.

[3] John R. Koza. Genetic Programming: On

the programming of computers by means of

natural selection. The MIT Press, 1992.

[4] H. R. Maturana and F. J. Varela. Autopoiesis
and Cognition: The Realization of the Living.
Reidel, 1980.

[5] Setsuo Ohsuga and Jari Vaario. A study of
artificial life as a model of automatic mo­
del building. In Hannu Jaakkola, Hannu
Kangassalo, Tadahiro Kitahashi, and Andras
Markus, editors, Information Modelling and
Knowledge Bases V, pages 1-22. 10S Press,
1994.

[6] Jean Piaget. Le comportment, moteur de
1'evolution. Colloection Idees. Gallinard, Pa­
riš, 1976.

434 Informatica 18 (1994) 417-434 J. Vaario

Figure 21: An example of evolution where initially a single organism follows target and, when reaching
it generates an offspring with some mutations that also begins to follow the same target. Gradually
a structure capable of better following behavior will evolve. The simulation does not include any
explicitly given fitness function.

[7] Premyslaw Prusinkiewicz and Aristid Linde-
nmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, 1990.

[8] Olliver C. Rieppel. Fundamentals of Com-
porative Biology. Birkhauser-Verlag, Basel,
1988.

[9] Jari Vaario. An Emergent Modeling Method
for Artificial Neural Netivorks. PhD thesis,
The University of Tokyo, 1993.

[10] Jari Vaario. Artificial life as constructivist
AL Journal of SICE (Societv of Instrument
and Control Engineers), 33(1):65—71, 1994.

[11] Jari Vaario, Koichi Hori, and Setsuo Ohsuga.
Toward evolutionary design of autonomous
systems. The International Journal in Com­
puter Simulation, 1994. (to appear).

ural Netuiorks and a New Al. Chapman &
Hali, London, 1994.

[13] Robert Wesson. Beyond Natural Selection.
The MIT Press, 1993.

[12] Jari Vaario and Setsuo Ohsuga. On growing
intelligence. In Georg Dorffner, editor, Ne-

Informatica 18 (1994) 435-450 435

An Experimental Study of iV-Person Iterated Prisoner's Dilemma
Games

Xin Yao and Paul J. Darwen
Department of Computer Science
University College, The University of New South Wales
Australian Defence Force Academy
Canberra, ACT, Australia 2600

Keywords: genetic algorithms, prisoner's dilemma, learning, generalisation

Edited by: Matjaž Gams

Received: November 9, 1994 Revised: November 28, 1994 Accepted: December 6, 1994

The Iterated Prisoner's Dilemma game has been used extensively in the study of the
evolution of cooperative behaviours in social and biological systems. There have been
a lot of experimental studies on evolving strategies for 2-player Iterated Prisoner's Di­
lemma games (2IPD). However, there are many real world problems, especially many
social and economic ones, which cannot be modelled by the 2IPD. The n-player Itera­
ted Prisoner's Dilemma (NIPD) is a more realistic and general game which can model
those problems. This paper presents two sets of experiments on evolving strategies for
the NIPD. The first set of experiments examine the impact of the number of players
in the NIPD on the evolution of cooperation in the group. Our experiments show that
cooperation is less likely to emerge in a large group than in a small group. The second
set of experiments study the generalisation ability ofevolved strategies from the point of
view ofmachine learning. Our experiments reveal the effect of changing the evolutionary
environment of evolution on the generalisation ability of evolved strategies.•

1 Introduction

The 2-player Iterated Prisoner's Dilemma game
(2IPD) is a 2 X 2 non-zerosum noncooperative
game, where "non-zerosum" indicates that the be-
nefits obtained by a player are not necessarily the
same as the penalties received by another player
and "noncooperative" indicates that no preplay
communication is permitted between the plavers
[1, 2]. It has been widely studied in such diverse
fields as economics, mathematical game theory,
political science, and artificial intelligence.

In the Prisoner's Dilemma, each player has a
choice of two operations: either cooperate with
the other player, or defect. Payoff to both players
is calculated according to Figure 1. In the Itera­
ted Prisoner's Dilemma (IPD), this step is repe­
ated many times, and each player can remember
previous steps.

While the 2IPD has been studied extensively
for more than three decades, there are many real

Cooperate Defect

R

R

S

T

T

S

P

P

Cooperate

Defect

Figure 1: The payoff matrix for the 2-player priso-
ner's dilemma game. The values S,P,R,T must
satisfy T>R>P>S<mdR>(S + T)/2.
In 2-player Iterated Prisoner's Dilemma (2IPD),
the above interaction is repeated many times, and
both players can remember previous outcomes.

436 Informatica 18 (1994) 435-450 X. Yao et al.

world problems, especially many social and econo-
mic ones, which cannot be modelled by the 2IPD.
Hardin [3] described some examples of such pro­
blems. More examples can be found in Colman's
book [l](pp.156-159). The «-player Iterated Pri-
soner's Dilemma (NIPD) is a more realistic and
general game which can model those problems. In
comparing the NIPD with the 2IPD, Daviš et al.
[4](pp.520) commented that

The iV-player čase (NPD) has grea-
ter generality and applicability to real-
life situations. In addition to the pro­
blems of energy conservation, ecology,
and overpopulation, many other real-life
problems can be represented by the NPD
paradigm.

Colman [l](pp.l42) and Glance and Huberman
[5, 6] have also indicated that the NIPD is "qua-
litatively different" from the 2IPD and that "...
certain strategies that work well for individuals
in the Prisoner's Dilemma fail in large groups."

The n-player Prisoner's Dilemma game can
be defined by the following three properties
[l](pP.159):

1. each player faces two choices between coope-
ration (C) and defection (D);

2. the D option is dominant for each player, i.e.,
each is better off choosing D than C no mat-
ter how many of the other players choose C;

3. the dominant D strategies intersect in a de-
ficient equilibrium. In particular, the out-
come if ali players choose their non-dominant
C strategies is preferable from every player's
point of view to the one in which everyone
chooses D, but no one is motivated to devi-
ate unilaterally from D.

Figure 2 shows the payoff matrix of the n-player
game.

A large number of values satisfy the require-
ments of Figure 2. We choose values so that, if
nc is the number of cooperators in the ra-player
game, then the payoff for cooperation is 2nc — 2
and the payoff for defection is 2nc + 1. Figure 3
shows an example of the n-player game.

With this choice, simple algebra reveals that if
Nc cooperative moves are made out of N moves

of an n-player game, then the average per-round
payoff a is given by:

a = l + ^ (2 n - 3) (1)

This lets us measure how common cooperation
was just by looking at the average per-round
payoff.

There has been a lot of research on the evolu-
tion of cooperation in the 2IPD using genetic al-
gorithms and evolutionary programming in recent
years [7, 8, 9, 10, 11, 12]. Axelrod [7] used ge­
netic algorithms to evolve a population of stra­
tegies where each strategy plays the 2IPD with
every other strategy in the population. In other
words, the performance or fitness of a strategy is
evaluated by playing the 2IPD with every other
strategy in the population. The environment in
which a strategy evolves consists of ali the remain-
ing strategies in the population. Since strategies
in the population are constantly changing as a re-
sult of evolution, a strategy will be evaluated by
a different environment in every generation. Ali
the strategies in the population are co-evolving in
their dynamic environments. Axelrod found that
such dynamic environments produced strategies
that performed very well against their population.
Fogel [11] described similar experiments, but used
finite state machines to represent strategies and
evolutionary programming to evolve them.

However, very few experimental studies have
been carried out on the NIPD in spite of its im-
portance and its qualitative difference from the
2IPD. This paper presents two sets of experiments
carried out on the NIPD. We first describe our
experiment setup in Section 2. Then we investi-
gate the impact of the number of players in the
Prisoner's Dilemma game on the evolution of coo­
peration in Section 3. We are mainly interested in
two questions here: (1) whether cooperation can
stili emerge from a larger group, and (2) whether
it is more difficult to evolve cooperation in a larger
group. The evolution of strategies for the NIPD
can be regarded as a form of machine learning
using the evolutionary approach. An important
issue in machine learning is generalisation. Sec­
tion 4 of this paper discusses the generalisation is­
sue associated with co-evolutionary learning and
presents some experiments with different evoluti-
onary environments. Finally, Section 5 concludes
with some remarks and future research directions.

AN EXPERIMENTAL STUDY OF ... Informatica 18 (1994) 435-450 437

Number of cooperators among the remaining n — 1 plavers

0 1 2 n - 1

player A

D

Co

Do

C,

•Di

c2

D2

. . . Cn_i

Dn-1

Figure 2: The payoff matrix of the n-player Prisoner's Dilemma game, where the following conditions
must be satisfied: (1) A > Ci for 0 < i < n - 1; (2) Di+1 > Di and Ci+1 > d for 0 < i < n - 1; (3)
d > (Di + C,-_i)/2 for 0 < i < n — 1. The payoff matrix is symmetric for each player.

Number of cooperators among the remaining n — 1 plavers

0 1 2 n-1

player A

D

0

1

2

3

4

5 . . .

2 (n - l)

2 (» - l) + l

Figure 3: An example of the N-player game.

2 Experiment Setup

2.1 Genotypical Representation of
Strategies

We use genetic algorithms to evolve strategies for
the NIPD. The most important issue here is the
representation of strategies. We will use two di-
fferent representations, both of which are look-up
tables that give an action for every possible con-
tingency.

One way of representing strategies for the NIPD
is to generalise the representation scheme used by
Axelrod [7]. In this scheme, each genotype is a
lookup table that covers every possible history of
the last few steps. A history in such a game is
represented as a binary string of In bits, where
the first / bits represent the player's own previous
/ actions (most recent to the left, oldest to the
right), and the other n — 1 groups of / bits repre­
sent the previous actions of the other players. For
example, during a game of 3IPD with a remem-

bered history of 2 steps, n = 3, / = 2, one player
might see this history:

n - 3, / = 2: Example history 11 00 01

The first l bits, 11, means this player has defected
(a "1") for both of the previous l = 2 steps. The
previous steps of the other plavers are then listed
in order: the 00 means the first of the other pla-
yers cooperated (a "0") on the previous l steps,
and the last of the other players cooperated (0)
on the most recent step, and defected (1) on the
step before, as represented by 01.

For the NIPD remembering / previous steps,
there are 2ln possible histories. The lookup table
genotype therefore contains an action (cooperate
"0" or defect "1") for each of these possible hi­
stories. So we need at least 2ln bits to represent
a strategy. At the beginning of each game, there
are no previous / steps of play from which to look
up the next action, so each genotype should also
contain its own extra bits that define the presu-
med pre-game moves. The total genotype length

438 Informatica 18 (1994) 435-450 X. Yao et al.

is therefore 2ln+ln bits. We will use this genotype
for the first set of results below, Figure 5 through
to Figure 8.

This Axelrod-style representation scheme,
however, suffers from two disadvantages. First, it
does not scale well as the number of plavers incre-
ases. Second, it provides more information than is
necessary by telling which of the other players co-
operated or defected, when the only information
needed is how many of the other players coopera-
ted or defected. Such redundant information had
reduced the efficiency of the evolution greatly in
our experiments with this representation scheme.
To improve on this, we use a new representation
scheme which is more compact and efficient.

In our new representation scheme, each indivi-
dual is regarded as a set of rules stored in a look-
up table that covers every possible history. As a
game that runs for, say, 500 rounds would have
an enormous number of possible histories, and as
only the most recent steps will have significance
for the next move, we only consider every possi­
ble history over the most recent Z steps, where l
is less than 4 steps. This means an individual can
only remember the / most recent rounds. Such a
history of l rounds is represented by:

1. / bits for the player's own previous / moves,
where a " 1 " indicates defection, a "0" coope-
ration; and

2. another Hog2 n bits for the number of coope-
rators among the other n — 1 players, where
n is the number of the players in the game.
This requires that n is a power of 2.

For example, if we are looking at 8 players who
can remember the 3 most recent rounds, then one
of the players would see the history as:

History for 8 players, 3 steps: 001 111 110 101
(12 bits)

Here, the 001 indicates the player's own acti-
ons: the most recent action (on the left) was a "0",
indicating cooperation, and the action 3 steps ago
(on the right), was a " 1 " , i.e., defection. The 111
gives the number of cooperators among the other
7 players in the most recent round, i.e., there were
III2 = 7 cooperators. The 101 gives the number
of cooperators among the other 7 players 3 steps
ago, i.e., there were IOI2 = 5 cooperators. The

most recent events are always on the left, previous
events on the right.

In the above example, there are 212 = 2048
possible histories. So 2048 bits are needed to
represent ali possible strategies. In the general
čase of an n-player game with history length Z,
each history needs / + Hog2 n bits to represent
and there are 2'+ ' l o g2n such histories. A stra-
tegy is represented by a binary string that gives
an action for each of those possible histories. In
the above example, the history 001 111 110 101
would cause the strategy to do whatever is listed
in bit 1013, the decimal number for the binary
001111110101.

Since there are no previous / rounds at the be-
ginning of a game, we have to specify them with
another /(1 + log2 n) bits. Hence each strategy
is finally represented by a binary string of length
2M-nog2n + / (1 + l o g 2 n) .

2.2 Genet ic Algor i thm Parameters

For ali the experiments presented in this paper,
the population size is 100, the mutation rate is
0.001, and the crossover rate is 0.6. Rank-based
selection was used, with the worst performer as-
signed an average of 0.75 offspring, the best 1.25
offspring.

2.3 A Typical R u n

A tyical run with four players with a history 1
(n = 4, / = 1) is shown in Figure 4. At each
generation, 1000 games of the 4-player Iterated
Prisoner's Dilemma are plaved, with each group
of 4 players selected randomly with replacement.
Each of these 1000 games lasts for 100 rounds.
Starting from a random population, defection is
usually the better strategy, and the average payoff
plummets initially. As time passes, some coope­
ration becomes more profitable. We will examine
more results in detail later.

3 Group Size of the NIPD
This section discusses the impact of group size,
i.e., the number of players in the NIPD, on the
evolution of cooperation and presents some expe-
rimental results. It is well-known that coopera­
tion can be evolved from a population of random
strategies for the 2IPD. Can cooperation stili be

AN EXPERIMENTAL STUDY OF .. . Informatica 18 (1994) 435-450 439

A typical run: 4 plavers, remembering one step
4.5

4

3.5

3
Per-step pavoff

2.5

2

1.5

1
50 100 150 200

Generations
250 300

Figure 4: This shows the average and best payoff at each generation for a population of 100 individuals.
Each individual is a strategy.

3 prisoners, history 2

Figure 5: For the 3-player prisoner's dilemma with a history of 2, cooperation almost always emerges.
Only 1 out of 20 runs fail to reach 95% cooperation using Axelrod's representation shceme.

440 Informatica 18 (1994) 435-450 X. Yao et al.

2 l i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000

Generation

Figure 6: For the 4-player prisoner's dilemma with a history of 2, cooperation almost always emerges.
Only 4 out of 20 runs fail to reach 95% cooperation using Axelrod's representation shceme.

3 5 I l l l i i l l l l I
0 100 200 300 400 500 600 700 800 900 1000

Generation

Figure 7: For the 5-player prisoner's dilemma with a history of 2, cooperation almost always emerges.
6 out of 20 runs fail to reach 80% cooperation using Axelrod's representation shceme.

AN EXPERIMENTAL STUDY OF .. . Informatica 18 (1994) 435-450 441

evolved from a population of strategies for the
NIPD where the number of players is greater than
2? If the answer is yes, does the group size affect
the evolution of cooperation in the NIPD?

Using the Axelrod-style genotype described
above, we carried out a series of experiments with
the 3IPD, 4IPD, 5IPD, and 6IPD games. In each
of the following runs, the program stopped when
more than 5 generations passed with the average
payoff above the 95% cooperation level. Figure 5
shows the results of 20 runs of the 3IPD game
with history length 2: out of 20 runs, there is
only 1 which fails to reach 95% cooperation. Fi­
gure 6 shows the results of 20 runs of the 4IPD
game with history length 2: 4 out of 20 runs fail
to reach the 95% cooperation level, but only 1 of
those fails to reach 80% cooperation. Figure 7
shows the results of 20 runs of the 5IPD game
with history length 2: 6 out of 20 runs do not
reach the 80% cooperation level. Figure 8 shows
the results of 20 runs of the 6IPD game with hi-
story length 2: 9 out of 20 runs stay below the
80% cooperation level.

Figures 5 through 8 demonstrate that the
evolution of cooperation becomes less likely as
group size increases. Nonetheless, cooperation
stili emerges most of the time. As Axelrod's re-
presentation scheme used in those figures does not
scale well with the group size, we use the second
representation scheme described in Section 2 to
carry out experiments with larger groups.

We have carried out a series. of experiments
with the 2IPD, 4IPD, 8IPD, and 16IPD games.
Figure 9 shows the results of 10 runs of the 2IPD
game with history length 3. Out of 10 runs, there
are only 3 which fail to reach 90% cooperation
and only 1 which goes to almost ali defection. Fi­
gure 10 shows the results of 10 runs of the 4IPD
game with history length 3, where some of the
runs reach cooperation but more than half of the
10 runs fail to evolve cooperation. Figure 11
shows the results of 10 runs of the 8IPD game
with history length 2, where none of the runs re­
ach cooperation. Figure 12 shows the population
bias in the runs in Figure 11, to demonstrate that
those populations have pretty much converged.
Figure 13 shows 10 runs of the 16IPD game.

These results confirm that cooperation can stili
be evolved in larger groups, but it is more diffi-
cult to evolve cooperation as the group size incre­

ases. Glance and Huberman [5, 6] have arrived
at a similar conclusion using a model based on
many particle systems. We first suspected that
the failure to evolve cooperation in larger groups
was caused by larger search spaces and insuffici­
ent running time since more players were involved
in 8IPD and 16IPD games. This is, however, not
the čase. The search space of the 8IPD game with
history length 2 is actually smaller than that of
the 4IPD game with history length 3. To confirm
that the failure to evolve cooperation is not cau­
sed by insufficient running time, we examined the
convergence of the 8IPD game. Figure 12 shows
that at generation 200 the population has mostly
converged for ali the 10 runs.

It is worth mentioning that the evolution of co­
operation using simulations does depend on some
implementation details, such as the genotypical
representation of strategies and the values used in
the payoff matrix. So cooperation may be evol­
ved in the 8IPD game if a different representation
scheme and different payoff values are used. Al-
though we cannot prove it vigorously, we think
for any representation scheme and payoff values
there would always be an upper limit on the group
size over which cooperation cannot be evolved.
Our experimental finding is rather similar to some
phenomena in our human society, e.g., coopera­
tion is usually easier to emerge in a small group
of people than in a larger one.

4 Co-Evolutionary Learning
and Generalisation

The idea of having a computer algorithm learn
from its own experience and thus create exper-
tise without being exposed to a human teacher
has been around for a long time. For genetic al-
gorithms, both Hillis [13] and Axelrod [7] have
attempted co-evolution, where a GA population
is evaluated by how well it performs against itself
or another GA population, starting from a ran-
dom population. Expertise is thus bootstrapped
from nothing, without an expert teacher. This is
certainly an promising idea, but does it work? So
far, no-one has investigated if the results of co-
evolutionary learning are robust, that is, whether
they generalise well? If a strategy is produced by
a co-evolving population, will that strategy per-
form well against opponents never seen by that

442 Informatica 18 (1994) 435-450 X. Yao et al.

10

9.5

9

8.5

8

& 7'5

6 prisoners, history 2

3 7

6.5

6

5.5

5

T

II

1 1 1

WtW$WM
l'hl 1

II
Vi 1 i1*1 Pil Ji

— i — i — i — i —

• ^ i

^ , A * hAfouJUvUldšAk

i i i i

-

-

100 200 300 400 500 600 700 800
Generation

900 1000

Figure 8: For the 6-player prisoner's dilemma with a history of 2, cooperation almost always emerges.
9 1 out of 20 runs fail to reach 80% cooperation using Axelrod's representation shceme.

Average payoff

2

1.8

1.6
->ff

1.4

1.2

1

2 players, history 3 (same as Axelrod [7])

• A ' ' / V ^ T O ^ ^ ^ C ^ S S ^ ^

J (f(r/ f

U i A// UM ' 0 U t s 2 P 1 3 ' —

vi*Ž^V / / / L/*Wl J

\ V%teO$^w^$^^ r

1 1 ^ ^ O ^ N ^ ^ C ^ ^ A ^ s - ^ . ^ 1 J^^I-^M. J ^ V ^ * A ^ ^ A ^ -

20 40 60 80 —100 120 140 160 180 200
Generations

Figure 9: For 2-pJayer prisoner's dilemma with a history of 3, cooperation emerges most of the tirne.
Only 3 out of 10 runs fail to reach 90% cooperation, and only 1 run goes to almost ali defection.

AN EXPERIMENTAL STUDY OF ... Informatica 18 (1994) 435-450 443

4 players, history 3 (521 bits)

0 20 40 60 80 100 120 140 160 180 200
Generation

Figure 10: For 10 runs of 4-player prisoner's dilemma with a history of 3, cooperation breaks out some
of the time.

8 plavers, history 2 (216 bits)

80 100 120
Generations

200

Figure 11: For 10 runs of 8-player prisoner's dilemma with a history of 2, cooperation never emerges.
The horizontal lines at the top show the 95%, 90%, and 80% levels of cooperation. To demonstrate
that these runs have converged, figure 12 shows the bias of the populations.

444 Informatica 18 (1994) 435-450 X. Yao et al.

Bias

Bias in populations plaving 8IPD with historv 2
_i]

outs.8pl2

80 100 120
Generation

Figure 12: In 10 runs of 8-player prisoner's dilemma with a history of 2, where cooperation never
emerges, the bias demonstrates that the populations have converged. Bias is the average proportion
of the most prominent value in each position. A bias of 0.75 means that, on average, each bit position
has converged to either 75% "0" or 75% " 1 " .

population? In order to investigate this issue, we
need to pick the best strategies produced by the
co-evolutionary learning system and let them play
against a set of test strategies which had not been
seen by the co-evolutionary system. This section
describes some experiments which test the gene-
ralisation ability of co-evolved strategies for the
8IPD game with history length 1.

4.1 Test Strategies

The unseen test strategies used in our study sho-
uld be of reasonable standard and representative,
that is, they are neither very poor (or else they
will be exploited by their evolved opponents) nor
very good (or else the will exploit their evolved
opponent). We need unseen strategies that are
adequate against a large range of opponents, but
not the best.

To obtain such strategies, we did a limited enu-
merative search to find the strategies that perfor-
med best against a large mimber of random oppo­
nents. As most random opponents are very stu-
pid, beating many random opponents provides a
mediocre standard of play against a wide range of
opponents. We limited this search to manageable
proportions by fixing certain bits in a strategy's

genotype that seemed to be sensible, such as al-
ways defecting after every other strategy defects.
The top few strategies found from such a limited
enumerative search are listed in Table 1.

4.2 Learning and Test ing

We have compared three different methods for im-
plementing the co-evolutionary learning system.
The three methods differ in the way each indivi-
dual is evaluated, i.e., which opponents are chosen
to evaluate an individuaPs fitness. The three me­
thods are

1. Choosing from among the individuals in the
GA population, i.e., normal co-evolution of a
single population like Axelrod's implementa-
tion [7];

2. Choosing from a pool made of the evolving
GA population and the best 25 strategies
from the enumerative search, which remain
fixed;

3. Choosing from a pool made of the evolving
GA population and the best 25 strategies
from the enumerative search, but the proba-

AN EXPERIMENTAL STUDY OF ... Informatica 18 (1994) 435-450 445

30

28 h

26

24

22 -
Average payoff

20

18

16

14

12

16 players, history 2
1 1 1

'outs.l6pl2'
95% • •
90% -
80% • •

20 40 60 80 100 120
Generation

140 160 180 200

Figure 13: For 10 runs of 16-player prisoner's dilemma with a history of 2, cooperation never emerges.
The horizontal lines at the top show the 95%, 90%, and 80% levels of cooperation.

Mean

8.100

8.093

8.091

8.088

8.088

8.082 .

8.077

8.076

8.076

Std Dev

0.083

0.083

0.083

0.083

0.083

0.083

0.083

0.083

0.083

Decimal

1026040
1022965

1018871

1032181

1020921

1028087

1023990

1037305

1017846

Binary genotype

1111 1010 0111 1111 1000
1111 1001 1011 1111 0101

1111 1000 1011 1111 0111

1111 1011 1111 11110101

1111 1001 0011 1111 1001

1111 1010 1111 11110111

m i IOOI m i i i i i ono
1111 1101 0011 1111 1001

1111 1000 0111 11110110

Table 1: Top few strategies from a partial emimerative search for strategies that play well against a
large number of random opponents. This provides unseen test opponents to test the generalisation of
strategies produced by co-evolution. The first 4 bits were fixed to " 1 " , as were the eleventh through
sixteenth bits. Virtually ali of the best 50 strategies started by cooperating.

446 Informatica 18 (1994) 435-450 X. Yao et al.

bility of choosing one of the 25 is four times
higher.

For each of these, we obtained the best 25 stra­
tegies from the last generation of the GA, and
tested it against a pool made up of both the seen
and unseen enumerative search strategies, 50 in
ali.

4.3 Experimental Results

For each of the three evaluation methods, Tables 2
through 4 show the performance of the best stra­
tegies from the GA's last generation against oppo-
nents from (1) themselves, and (2) a pool made
up of both the seen and unseen strategies from
the enumerative search.

4.4 Discussion

Table 2 demonstrates that the co-evolution with
the 8IPD produces strategies that are not very
cooperative, as also demonstrated in Figure 11
earlier. Since the 8IPD is a game where it is easy
to get exploited, co-evolution will first create stra­
tegies that can deal with non-cooperative strate­
gies. The evolved strategies in Table 2 are cauti-
ous with each other and are not exploited by the
unseen strategies from the enumerative search.

Adding fixed but not very cooperative strate­
gies to the GA's evaluation procedure has a sur-
prising effect. The evolved strategies in Tables 3
and 4 can cooperate well with other cooperators
without being exploited by the strategies from the
enumerative search, half of which it has never
seen before. That is, normal co-evolution pro­
duces strategies which don't cooperate well with
each other, and are not exploited by unseen non-
cooperative strategies. Co-evolution with the ad-
dition of extra non-cooperative strategies gives
more general strategies that do cooperate well
with each other, but are stili not exploited by
unseen non-cooperative strategies. The experi-
mental results also seem to indicate that the evol­
ved strategies learn to cooperate with other coo­
perators better while maintaining their ability in
dealing with non-cooperative strategies when the
evolutionary environment contains a higher pro-
portion of extra fixed strategies.

5 Conclusion

This paper describes two sets of experiments on
the NIPD. The first set of experiments on the
group size of the NIPD demonstrate that coope-
ration can stili be evolved in the n-player IPD
game where n > 2. However, it is more diffi-
cult to evolve cooperation as the group size in-
creases. There are two research issues here which
are worth pursuing; one is the upper limit of the
group size over which cooperation cannot be evol­
ved, the other is the quantitative relation between
the group size and the time used to evolve coope­
ration. Glance and Huberman [5, 6] have addres-
sed these two issues, but did not give a complete
answer.

The second set of experiments in this paper de-
als with an important issue in co-evolutionary le-
arning — the generalisation issue. Although the
issue is the main theme in machine learning, very
few people in the evolutionary computation com-
munity seem to be interested in it or address the
issue explicitly and directly. We have presented
some experimental results which show the impor-
tance of the environments in which each indivi-
dual is evaluated, and their effects on generalisa­
tion ability.

References

[1] A. M. Colman, Game Theory and Ezperi-
mental Games, Pergamon Press, Oxford, En-
gland, 1982.

[2] A. Rapoport, Optimal policies for the pri-
soner's dilemma, Technical Report 50, The
Psychometric Lab., Univ. of North Carolina,
Chapel HiU, NC, USA, July 1966.

[3] G. Hardin, The tragedy of the commons, Sci­
ence, 162:1243-1248,1968.

[4] J. H. Daviš, P. R. Laughlin, and S. S. Ko-
morita, The social psychology of small gro-
ups, Annual Review of Psychology, 27:501-
542, 1976.

[5] N. S. Glance and B. A. Huberman, The out-
break of cooperation, Journal of Mathemati-
cal Sociology, 17(4):281-302, 1993.

AN EXPERIMENTAL STUDY OF .. . Informatica 18 (1994) 435-450 447

Normal co-evolution, no extra strategies in evaluation.
GA strategies play against themselves.

Mean Stdv Stdv of Mean of
mean opponents

8pll (35'/, cooperative) against itself

0
1
2
3
4
5
6
7
8
9
10

11100001111011010011

11000001111011011011

11100000111111110011
01100010111111010011

11100101111111110011

01100000111111010011
11100101111111010011

01100001111111010011
00100000111111010110
01100100111111110110

10100000111111110001

7
7
7
7
7
7
7
7
7
7
7

240
285
335
258
180
000
171
241
165
706
274

3
3
3
3
4
3
4
4
3
3
3

978
985
052
202
160
090
125
027
122
523
083

0
0
0
0
0
0
0
0
0
0
0

126
126
097
101
132
098
130
127
099
111
097

6
6
8
7
5
8
6
6
8
7
8

296
392
434
889
883
111
127
286
341
949
395

GA strategies play against unseen strategies from enumerative search.

0
1
2
3
4
5
6
7
8
9
10

11100001111011010011

11000001111011011011

11100000111111110011

01100010111111010011
11100101111111110011

01100000111111010011
11100101111111010011
01100001111111010011

00100000111111010110

01100100111111110110
10100000111111110001

Mean

5.525

5.627
5.605

5.087
5.283

5.477
5.116

5.392
5.385

5.146
5.461

Stdv

2.330

2.421
2.568

2.064
2.210

2.547

1.877
2.370

2.531

2.271
2.383

Stdv of

mean

0.074

0.077

0.081

0.065
0.070

0.081
0.059
0.075

0.080

0.072
0.075

Nean of

opponents

5.340

5.502

5.027

5.419
4.532

6.337
4.473

5.378
6.530

5.237
4.900

Table 2: Results of ordinary co-evolution, with no extra strategies during the GA evaluation. The
GA strategies manage some cooperation among themselves, and hold their own against strategies they
have not seen before.

448 Informatica 18 (1994) 435-450 X. Yao et al.

Co-evolution, with addition of 25 fixed strategies from enumerative search.
GA strategies play against themselves.

Mean Stdv Stdv ol Hean of
mean opponents

0
1
2
3
4
5
6
7
8
9
10

111110000111J
1111100001113

111110000111J

lllllOOOOlllJ
1111100011111

1111100001111
1111100001111

liiiiooooin:
1101100000112
1111100001111

liiiiooooin:

L1110100
L1110100

L1110110

L1111110
L1110100

L1111110
L1110110
L1110100

L1110100

Llllllll
L1110100

11
11
11
11
13
11
11
11
11
11
11

678
706
440
721
264
714
420
678
618
670
649

1
1
1
1
2
1
1
1
1
1
1

715
553
603
581
521
584
669
705
781
688
697

0
0
0
0
0
0
0
0
0
0
0

054
049
051
050
080
050
053
054
056
053
054

11
11
11
12
10
12
11
11
11
11
11

965
994
922
027
636
025
895
985
958
974
973

GA strategies play against pool of 25 seen and 25 unseen strategies from enumerative search.

0
1
2
3
4
5
6
7
8
9
10

1111100001111

1111100001111
1111100001111

1111100001111

1111100011111
1111100001111

1111100001111
1111100001111
1101100000111
1111100001111

1111100001111

L1110100

L1110100

L1110110

L1111110
L1110100

L1111110

L1110110
L1110100
L1110100

Llllllll
L1110100

Hean

5.209

5.494

5.152

5.600
5.619

5.336

4.971
5.447
5.591
5.245

5.392

Stdev

3.212
3.451

2.771

3.561
2.929

3.369

2.541
3.481
3.276
3.200

3.341

Stddev
of mean

0.102
0.109

0.088

0.113
0.093

0.107

0.080
0.110
0.104

0.101
0.106

Hean of
opponents

5.634

5.828

5.934

5.907
4.629

5.724

5.741
5.791
5.923
5.673

5.771

Table 3: Adding 25 fixed strategies to the evaluation procedure, along with the 100 co-evolving GA
individuals, causes the GA to produce strategies that can cooperate more with each other, but are
not exploited by the more non-cooperative strategies from the enumerative search.

AN EXPERIMENTAL STUDY OF ... Informatica 18 (1994) 435-450 449

Co-evolution, with the addition of 25 fixed strategies, which are 4 times as likely to be šelected into
the group of 8 players for 8IPD.

GA strategies play against themselves.

0
1
2
3
4
5
6
7
8
9
10

11111000011111110010
11111000011111110011
10111000011111010010

11111000011111111110

11111000011111110111

11111000011111010110
10111000011111110011
11111001011111111111

11111000011111111111

11111000011111110010
11111000011111110010

Mean

12.B75

12.468
12.400

12.557

12.556

12.490
12.392
13.204

12.551

12.560
12.494

Stdev

1.737

1.939
2.130

1.864

1.488

1.454
2.087
2.457

1.852

1.904
1.835

Stddev

of mean
0.055

0.061

0.067
0.059

0.047

0.046

0.066
0.078

0.059

0.060
0.058

Hean of
opponents

12.740
12.641

12.593

12.709

12.820

12.772
12.568
10.713

12.700

12.718

12.669

Best 25 strategies from GA search play against a pool of (1) 25 best from enumerative search, and (2)
25 unseen strategies from enumerative search. Note there is little diyersity in the GA population.
GA strategies play against pool of 25 seen and 25 unseen strategies from enumerative search.

0 11111000011111110010
1 11111000011111110011
2 10111000011111010010

3 11111000011111111110
4 11111000011111110111

5 11111000011111010110
6 10111000011111110011
7 11111001011111111111
8 11111000011111111111
9 11111000011111110010
10 11111000011111110010

Hean

5.209

5.494
5.635
5.600

5.187
5.132
5.375
5.447

5.422
5.245

5.392

Stdev

3.212
3.451

3.120
3.561

2.835

2.762
3.159
3.481

3.340

3.200
3.341

Stddev

of mean

0.102
0.109
0.099

0.113
0.090

0.087
0.100
0.110

0.106 .
0.101

0.106

Hean of

opponents

5.634
5.828
6.217

5.907
5.966

5.910
5.753
5.788

5.765
5.673

5.771

Table 4: Increasing the impbrtance of the extra 25 fixed strategies causes the co-evolutionary GA to
produce strategies that are even more cooperative among themselves, but are stili not exploited by
the unseen strategies of the enumerative search.

450 Informatica 18 (1994) 435-450 X. Yao et al.

[6] N. S. Glance and B. A. Huberman, The dyna-
mics of social dilemmas, Scientific American,
pages 58-63, March 1994.

[7] R. Axelrod, The evolution of strategies in
the iterated prisoner's dilemma, In L. Da­
viš, editor, Genetic Algorithms and Simula-
ted Annealing, chapter 3, pages 32-41. Mor­
gan Kaufmann, San Mateo, CA, 1987.

[8] D. M. Chess, Simulating the evolution of be­
haviors: the iterated prisoners' dilemma pro­
blem, Complez Systems, 2:663-670, 1988.

[9] K. Lindgren, Evolutionarv phenomena in
simple dvnamics, In C. G. Langton, C. Tay-
lor, J. D. Farmer, and S. Rasmussen, editors,
Artificial Life II: SFI Studies in the Sciences
of Complexity, Vol. X, pages 295-312, Rea-
ding, MA, 1991. Addison-Wesley.

[10] D. B. Fogel, The evolution of intelligent de-
cision making in gaming, Cybernetics and
Systems: An International Journal, 22:223-
236,1991.

[11] D. B. Fogel, Evolving behaviors in the itera­
ted prisoner's dilemma, Evolutionary Com-
putation, l(l):77-97,1993.

[12] P. J. Darwen and X. Yao, On evolving robust
strategies for iterated prisoner's dilemma, In
X. Yao, editor, Proč. of the AI'93 Workshop
on Evolutionary Computation, pages 49-63,
Canberra, Australia, November 1993. Uni-
versity College, UNSW, Australian Defence
Force Academy.

[13] W. Daniel Hillis, Co-evolving parasites im-
prove simulated evolution as an optimization
procedure, In Santa Fe Institute Studies in
the Sciences of Complexity, Volume 10, pa­
ges 313-323. Addison-Wesley, 1991.

Informatica 18 (1994) 451-465 4 5 1

Benchmarking Indicates Relevance of Multiple Knowledge

Matjaž Gams
Jožef Štefan Institute, Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 125 91 99, Fax: +386 61 219 677
E-mail: matjaz.gams@ijs.si

Keywords: artificial intelligence, multiple knowledge, multistrategy learning

Edited by: Anton P. Železnikar
Received: March 17, 1994 Revised: November 11, 1994 Accepted: November 15, 1994

Over the last 7 years, detailed measurements of available learning systems were per-
formed on two real-life medical domains with the purpose to verify the importance of
multiple knowledge. The performance of the combined system GINESYS, consisting
of an artificial intelligence and a statistical method, was analysed with and without
multiple knowledge and by varying the number of learning examples, the amount of
artificially added noise, the impurity and the error estimate functions. These mea­
surements and those of other researchers indicate that multiple knowledge can provide
essential improvements. Measurements also indicate that improvements over "one-level"
or monostrategy knovrledge representation representations are quite common in real-life
noisy andincomplete domains.

1 Introduction

In easing the bottleneck of knowledge acquisi-
tion in expert svstems (Harmon et al. 1988),
automatic knowledge construction from examples
has proven useful in many practical tasks. Quite
often, examples are described in terms of attribu-
tes and their values and each example belongs to a
certain class. The task of the svstem is to induce
concept descriptions from examples. First sv­
stems were designed for exact domains like chess
end-games and constructed trees (ID3 - Quinlan
1983) or lists of rules (AQ11 - Michalski & Lar-
son 1983). But in many real-life domains (Gams
& Karalič 1989), because of noise or incomplete
description (Manago h Kodratoff 1987) speciali-
sed mechanisms have to be applied. In noisy do­
mains, longer rules (or longer branches in trees)
perform better on learning examples while trun-
cated rules (pruned tees with shorter branches)
perform better on unseen examples. On the ba-
sis of this principle, the second group of inductive
svstems emerged (CART - Breiman et al. 1984;
AQ15 - Michalski et al. 1986; ASSISTANT - Ko-
nonenko 1985; CN2 - Clark & Niblett 1989; C4 -

Quinlan 1987). Around five years ago the third
group of systems began emerging (GINESYS -
Gams 1988; 1989; LOGART - Cestnik, Bratko
1988; new CN2 - Clark & Boswell 1991), based
on the explicit use of multiple knowledge.1 Each
of these groups of systems usually achieves better
performance than previous. Better performance
of multiple knowledge systems was especially no-
ticeable in classification accuracy, also in better
comprehensibility (although more difficult to me-
asure) when compared to the other two groups.
At the same tirne, their efficiency remained simi-
lar to those in the second group.

With measurements presentedin this paper we
give additional arguments for successfulness of
multiple knowledge by explicitly measuring the
influence of the number of learning examples and
the influence of noise, as well as the influence of
the error estimate and impurity functions. Ben­
chmarking was performed on two often used do­
mains - lymphography and primary tumor (Clark
& Niblett 1989; Michalski et al. 1986; Cestnik &
Bratko 1988; Gams 1988).

'By 'multiple knowledge' we refer to multiple models,
multiple systems or multiple methods.

mailto:matjaz.gams@ijs.si

452 Informatica 18 (1994) 451-465 M. Gams

Here we present results of benchmarking over
a period of 7 years. Testing was performed al-
ways on the same two oncological domains. Al-
together, around 20 systems were benchmarked.
Our system GINESYS was constructed on the ba-
ses of first benchmarking of around 10 systems in
1987 from a frustration since statistical systems
have regularly achieved better accuracy than sin-
gle Al systems. GINESYS is described in Section
3, benchmarking in Sections 4 and 5.

2 Multiple Knowledge and
Multistrategy Learning

Even first expert systems like MYCIN (Shortliffe
1976) and most rule-based systems already ena-
bled a certain amount of multiplicity, i.e. redun-
dancy, since rules can be more or less multiple.
Newer systems like CN2 (Clark & Niblett 1989)
or C4 (Quinlan 1987) contain similar amount of
redundancy which is probably one of the reasons
for their successful behaviour in noisy domains. In
(Catlett & Jack 1987) it was reported that con­
structing a separate decision tree for each class
with the same method as when constructing one
decision tree for ali classes significantly increased
accuracy. Similar conclusion was derived by Clark
& Boswell (1991) when constructing several lists
of rules and by Buntine (1989) when combining 5
decision trees with different roots.

In Communications, the positive efFect of using
redundant bits is known for decades and even sim-
ple ID numbers in banking have additional digits
in order to improve the robustness of the whole sy-
stem. Theoretical aspects of redundancy in such
cases are described e.g. in (Shannon & Weaver
1964).

In most every-day activities, people use multi­
ple knowledge whenever there is any possibility of
biasing (Utgoff 1986). For example, when hiring
a new employee, one checks several reports which
are basically multiple (e.g. biography, recommen-
dations e tc) . When bringing an important deci­
sion, humans often discuss possibilities in groups
of relevant people. A council of physicians is con-
sulted when dealing with difficult or important
cases. One physician suffices for most of normal
activities since one is substantially cheaper than
a group of them.

It is commonly accepted that cross-checking of

several knowledge sources is generally better than
using one source of knowledge alone. Humans
are intrinsically multiple. They apply multiple
strategies in every-day activities without paying
much attention to that phenomenom. Therefore,
machine and human multistrategy learning have
natural interrelationship and potential benefits in
both directions.

In recent years there were several distinguished
events related to mutistrategy learning. Among
them: a book edited by R. Michalski & G. Te-
cuci: Machine Learning, A Multistrategy Appro-
ach, Vol. IV, Morgan Kaufmann (1994), speci-
alised international workshops on multistrategy
learning organised by George Mason Universitv,
special issue of Informatica (Tecuci 1993), and
IJCAI-93 workshop on integration of machine le­
arning and knowledge acquisition (Tecuci, Kedar
& KodratofF 1993).

3 GINESYS

GINESYS (Generic INductive Expert SYstem
Shell) is one of the oldest systems actively uti-
lising multiple knowledge representations (Gams
1988). It consists of two systems (i.e. methods),
one from Al and one from statistics. There were
sensible reasons for combining methods from di­
fferent fields. First of ali, artificial intelligence
methods enable construction of knowledge bases
which are typically very transparent and under-
standable; therefore, it was hoped that a combi-
nation would stili be more understandable than
statistical knowledge bases. A statistical method
was chosen on the basis of the hypothesis that
knowledge representations should be as different
as possible.

GINESYS utilises two different strategies on
the basis of these two svstems: the Al svstem
constructs and consults lists of rules, and the
statistical system multiplies probabilities accor-
ding to the distribution of classes corresponding
to each attribute of the tested example. Both
single systems already implicitly utilise multiple
knowledge - the Al part through a couple (typi-
cally 5) of rules attached to the main one which
are triggered when classifying, and the statistical
part through combining probabilities relating to
the value of each attribute of the tested example.

The Al part of GINESYS is named INESYS

BENCHMARKING INDICATES RELEVANCE .. . Informatica 18 (1994) 451-465 453

d : = (0) ; (*d i s initialised*)
repeat

Star := (NP); BestRules := (NP);
repeat

for ali Rulej from Star generate ali specialisations
NetvRulei that do not fulfil the stopping criteria;
Star := ();
put into Star at best MAXSTAR the best NeivRulei
evaluated by user defined impurity function;
from rules in BestRules and significant NewRule{ choose
the best MAXBEST rules, evaluated by user defined
error estimate function, and put them into BestRules

until Star is empty;
add BestRules into d;
L := L - examples, covered by the best evaluated rule from
BestRules

until L is empty

The INESYS algorithm

(see top of the page). It reimplements many of
mechanisms of the ID3 and AQ (CN2) family of
algorithms. It was primarily designed as an at-
tempt to fully simulate the family of ID3 and
AQ inductive empirical learning systems (Gams
k Lavrač 1987). Theoretically, it simulates NM

different algorithms where M is the number of
modules of the algorithm and N is the number of
variations of each module (Gams 1989). The ac-
tual number of different variations of GINESYS
can be estimated to severa! hundreds.

INESYS constructs rules with a beam search
over ali possible combinations of attributes. In
addition, it utilises several search-guiding and
error-estimate functions such as informativitv, the
Gini index, Laplacean error estimate and signi-
ficance. Due to elaborate mechanisms for noise
handling, INESYS typically constructs a small
number of short rules, i.e. with a small number
of attributes. For example, on average, 5.1 main
rules with 1.4 attributes in a rule were construc-
ted in lymphography. In primary tumor, there
were 11.0 main rules with 2.3 attributes in a rule.
Therefore, a typical rule had the form:

if (Ai = Vij)fc(Ak = Vki) then Distributionn

where

— (A{ = Vij) is a Boolean test whether attribute
i has value j , and

— Distributionn is a class probability distribu-
tion corresponding.to.the cpndition part of
the rule, i.e. a complex.

A general description of INESYS is:

repeat
construct Rule(s);
add Rule(s) to d;
L := L - ExamplesCoveredByRule

until satisfiable d

where L is the set of learning examples, d is
constructed knowledge in the form of trees or lists
of rules and Rule(s) is one or many branches in
a tree or one or many rules in the list of rules.
A procedural description of INESYS is presented
at the top of the page where d is the constructed
knowledge in the form of an ofdered list ofordered
lists of rules, Star and BestRules are ordered lists
of rules and L is the set of learning examples. NP
is a rule with an uninstantiated complex and class
probability distribution of L.

In INESYS, the main improvement regarding
existing rule-based systems are rules attached to
the main rule. The aim of these multiple rules
is twofold. First, to give the user more rules and
thus more opportunities to analyse the laws,of the
domain. Second, to improve classification accu-
racy by cross-checking the matched rule with con-

454 Informatica 18 (1994) 451-465 M. Gams

firmation rules. This mechanism already enables
the use of multiple knowledge to a certain degree:

i f Complexl then Class l
(Complexll then Class l l

ComplexlR then Class1R)
e l se i f Complex2 then Class2

(Complex2i then Class21

Complex2R then Class2R)

Classification in INESYS starts by sequentially
checking main rules. When the first main rule
matches a new example, corresponding multiple
rules that match the new example add their class
probability distribution according to the formula
for the union of independent events

Pi2 = P\ + (1 - Pi) X p2.

Probabilities are multiplied by error estimates in
order to calibrate the effect of rules with diffe-
rent credibility, and finally normalised. There are
two threshold parameters that present a heuristic
estimate of the goodness of classification by a rule:
the smallest necessary percentage of the majority
class (MINACC) and the smallest difference be-
tween the percentage of the majority class and the
second to majority class (MINDIFF). Each con-
structed rule in GINESYS has to satisfy both con-
ditibns. Parameter MINDIFF additionally affects
the classification process in the sense that the
class probability distribution of a combined main
and confirmation rules must satisfy it.

The second method in GINESYS is the appro-
ximation of the Bayesian classifier which assumes
independence of attributes. It is often referred to
as "naive Bayes"(Good 1950), in this paper also
"Bayes". Naive Bayes constructs ali possible ru­
les with only one attribute in the complex. The-
refore, the form of these rules is:

if (A, = Vij) then Distributionn.

The classification schema is as follows: ali rules,
that match a new example, are taken in considera-
tion. The probability of each class c is computed
by the following formula:

P(c\A) = P.(c) X {P{Ax\c)lPa{A{)) x . . .

x(P(Av\c)/Pa(Av)) (Eq.l)

where P(c|A) denotes probability of class c given
attributes and values A of the tested example,
Pa(c) denotes the a priori probability of class c,
P(Ai\c) the probability that attribute A{ has the
same value as the classified example regarding the
class c, Pa(Ai) the same as before, but regardless
of class, and v is the number of attributes. By
calculating probabilities of ali classes by (Eq.l.), a
class probability is obtained. Therefore, although
naive Bayes constructs rules similar to INESYS,
in the process of classification ali attributes are
considered in Bayes and on average only around
two in INESYS.

Cooperation between the Al and the statistical
system is relevant only when they propose diffe-
rent classes. In that čase, the goodness of trigge-
red rules in INESYS is estimated by the simple he-
uristics mentioned above. If the goodness of com­
bined rules exceeds the value of a given threshold
(parameter MINDIFF), classification by INESYS
is adopted. Otherwise, the classification by naive
Bayes prevails. In other words: If class proba-
bility distribution of combined rules is estimated
as unreliable, the statistical method is called as
a supervisor to decide which class is estimated as
the most probable.

The combining schema is based on the follo-
wing reasoning: When multiple rules confirm the
main ones, classification is very likely to be cor-
rect. If a significant disagreement occurs then the
list of rules is not credible and the other method
using difFerent knowledge representation should
be consulted. It was expected that short rules
constructed by INESYS will be more successful
when they have high confidence in their predic-
tion, and the approximation of the Bayesian clas­
sifier to be more successful when dealing with di-
fficult cases where truncated rules capturing the
main and most important laws of the domain are
not predicting with great certainty.

4 Benchmarking
Since 1987, systematic measurements are being
performed on two oncological domains, lympho-
graphy and primary tumor. Data were obtained
from real patients from the Oncological institute
Ljubljana (Kononenko 1985; Cestnik & Bratko
1988). Unknown values of attributes were re-

BENCHMARKING INDICATES RELEVANCE .. . Informatica 18 (1994) 451-465 455

SYSTEM

GINESYS*
GINESYS
BAYES
CN2-newl
GB*
CN2-newl'
NEAREST NEIG.
C4.5-rules
C4.5-trees-u
C4.5-trees-p
CN2-likel
CN2-likel'
ID3-like
CN2-like2
CN2-like2'
AQ-likel
AQ-like2

LYMPHOGRAPHY
class.acc.

70.5
70.5
68.6
68.7
67.4
65.6
72.9
64.7
63.1
66.7
67.3
66.1
61.8
66.8
65.0
60.6
55.2

no.rules

5.1
5.1

56.0

5.1

4.8
5.0

25.0
10.8
9.4
7.0
7.0

no.att.

7
7

56

7

8
6

110
21
16
80
80

PRIMARY TUMOR
class.acc.

52.2
52.0
50.1
50.3
47.6
46.9
40.4
38.2
48.9
48.8
48.7
45.6
48.7
45.7
46.2
48.8
32.0

no.rules

11.0
11.0
37.0

11.0

11.4
10.8
28.6
19.3
19.4
16.0
16.0

no.att.

25
1 25

37

25

27
22

129
70
68

423
423

Table 1: Benchmarking systems on two oncological domains.

placed by the most common values regarding the
class.

4.1 Domain Description

Basic statistics of the whole set of data are:

LYMPHOGRAPHY
18 attributes
2 - 8 (average 3.3) values per attribute
9 classes
150 examples
distribution: 2 1 12 8 69 53 1 4 0
ali examples differ even if one attribute is deleted

PRIMARY TUMOR
17 attributes
2 - 3 (average 2.2) values per attribute
22 classes
339 examples
distribution: 84 20 9 14 39 1 14 6 0 2 28 16 7 24
2 1 10 29 6 2 1 24
75 examples in the data set have another example

with the same values of attributes and different
class; if we delete one attribute, this number is:
114 111 81 122 84 75 93 79 97 91 77 83 76 77 79
94 94

4.2 Benchmarked Systems

On the benchmark domains, around 20 Al and
statistical systems were compared over more than
half of a decade. Ali the systems were given the
same set of 10 random distributions of data, each
tirne taking 70% of data for learning and 30% of
data for testing. Results of relevant systems are
presented in Table 1. The rov/ in the middle of
the Table divides multiple and single systems, i.e.
those that use only one rule or combine many ru-
les during one classification.

GINESYS* is a version of GINESYS using "ne-
gation" multiple rules, which try to confront the
main rule if possible. BG* is GINESYS* without
the statistical method, i.e. INESYS with func-
tions B and G. First nearest neighbour algori-
thm classifies with the class of the nearest nei-

456 Informatica 18 (1994) 451-465 M. Gams

LYMPHOGRAPHY
FUNCTIONS

AB
GB
BB
BG
BA

INESYS**

68.4
67.4
66.4
62.6
62.4

GINESYS**

69.7
69.9
70.8
68.4
68.4

PRIMARY TUMOR
FUNCTIONS

BA
BG
GB
AB
BB

INESYS**

48.3
48.1
47.6
46.6
46.4

GINESYS**

52.3
51.8
52.0
51.3
52.5

Table 2: Accuracv under different impuritv and error estimate functions.

ghbour where distance is measured by the number
of attributes with different values. BAYES is an
approximation of the Bavesian classifier using an
assumption that attributes are independent. ID3-
like is a version of the ASSISTANT svstem using
cross-validation pruning. CN2-like systems are di­
fferent modifications of the CN2 algorithm, and
CN2-new systems are latest versions. C4.5-rules
constructs rules, C4.5-trees-u unpruned trees, and
C4.5-trees-p pruned trees. AQ-like systems are
modifications of the AQ15 systems.

Classification accuracy (column 1 in each do-
main in Table 1) was measured as an average per-
centage of correct classifications in ten test runs.
The second column in each domain represents the
average number of rules in a rule list or branches
in the tree. The third column is a product of
the number of rules (branches) times the average
length of a rule (branch) times the number of in-
ternal disjunctions.

The relations between systems are similar to
those observed in other measurements (Clark &
Niblett 1989; Rendell et al. 1987; Rendell et al.
1988). Systems of the AQ family usually achieve
lower classification accuracy than CN2 or ASSIS­
TANT, while ASSISTANT and CN2 achieve simi­
lar classification accuracy. AQ-likel represents an
estimate of the upper possible classification accu-
racy of the rules, constructed by the AQ-like sy-
stem. BAYES achieved better results than other
systems except GINESYS. Nearest neighbour al­
gorithm seems to be very domain dependent. GI­
NESVS achieved the best average classification
accuracy over both domains.

AQ-like systems construct more complex ru­
les than other systems. However, the third co­

lumn might be misleading for tree constructing
algorithms like ID3-like because it represents tree
as a list of separated branches. GINESYS* and
GINESYS are measured only by the main rules
and not by the multiple ones. On the other side,
from the results in Table 1 it follows that systems
like GINESYS and CN2 construct smaller num­
ber of shorter main rules while AQ-like systems
construct more complex rules.

The efficiency of the benchmarked algorithms
was also analysed. AQ systems are about an or­
der of magnitude slower than ASSISTANT, CN2
and GINESYS, and these are about an order of
magnitude slower than BAYES. Results are simi­
lar to other measurements when having in mind
that our versions of CN2 and GINESYS use a data
compression mechanism which speeds up the algo­
rithm roughly five times. GINESYS PC, another
version of GINESYS, runs on IBM PC computers
and is available as a free scientific software.

4.3 Varying Impurity and Error
Estimate Functions

In order to verify whether improvements in GI­
NESVS were caused by multiple knowledge or
by domain-dependent parameters, several para-
meters were varied, and functions were the first
among them. GINESYS ušes two different gro-
ups of functions: informativity functions and er­
ror estimate functions. Informativity functions
strategically guide search by trying to determine
the amount of impurity. Error estimate functions
try to estimate classification error. Four func­
tions were used in ali 16 possible combinations
in each domain. Classification accuracy of GI-

BENCHMARKING INDICATES RELEVANCE ... Informatica 18 (1994) 451-465 457

LYMPHOGRAPHY
SYSTEM

GINESYS
BAYES
INESYS
ASSISTANT
ASSIST 0

% OF LEARNING EXAMPLES
20%

52,8
52.8
39.2
53.9
53.2

30%

58.2
59.3
51.7
60.5
60.7

40%

63.1
60.8
54.1
57.9
57.4

50%

63.7
61.2
62.6
57.5
57.8

60%

60.1
58.2
59.0
55.2
55.9

70%

70.5
68.6
67.4
62.1
62.4

80%

75.3
72.1
74.3
65.2
66.8

Table 3: Accuracy in lymphography at different percentages of learning.data.

NESYS with (GINESYS**) and without (INE-
SYS**) top-level multiple knowledge was compa-
red. In Table 2 we present only the best three
combinations of INESYS** in both domains. The
four functions used were: I - informativity (Quin-
lan 1986); A - % of majority class; G - Gini index
(Breiman et al. 1984); B - Laplacean error esti­
mate (Niblett k Bratko 1986). The flrst letter
denotes the impurity function and the second let­
ter the error estimate function.

Measurements presented in Table 2 indicate
that Laplacean error estimate is one of the most
successful functions used for impurity or error
estimates. Informativity is unexpectedly not pre­
sent in the best three combinations. Default func­
tions for GINESYS systems (GB) were taken in
advance from the literature (Breiman et al. 1984;
Niblett k Bratko 1986).

4.4 Varying Percentage of Learning
Examples

Benchmarks in sections 4.2 and 4.3 were perfor-
med on 10 distributions of data each time taking
70% of data for learning and 30% of data for te-
sting. In Table 3 and 4 we varied the percentage
of learning data from 20% to 80% and used the
remaining data for testing. Graphical represen-
tation of data in Table 4 is shown in Figure 1.
Systems in Figure 1 are denoted as in column 1
of Table 4. ASSIST 0 is ASSISTANT without
pruning and INESYS is GINESYS without the
statistical method.

Probably the main reason for unproportionally
low classification accuracy of INESYS with small
number of learning examples are functions which

work well only with several ten examples. But
even then there are some cases when INESYS
classifies better than BAYES. The combining me-
chanism usually decides well when to choose the
right method. The performance of INESYS incre-
ases with the number of learning examples, and
the gain of GINESYS over BAYES also proporti-
onally increases. In lymphography, ASSISTANT
prunes the tree by approximately 50% and achie-
ves very similar classification accuracy as ASSIST
0. In primary tumor, the pruned tree constructed
by ASSISTANT is roughly 4 times smaller than
the tree of ASSIST 0 which besides constructing
more complex trees also achieves lower classifica­
tion accuracy.

The improvement of GINESYS over the best of
it's two subparts was typically around 1-2% lea-
ding to a conclusion that the combining mecha-
nism performed well when changing the number
of learning examples.

4.5 Varying Additional Noise

Noise was introduced into the lymphography and
primary tumor domain to attributes and classes
in the learning and test examples. For example,
1% of noise means that, on average, each hun-
dred's value of attribute and each hundred's class
was randomly changed in learning and test data.
Average results of 10 tests (see section 4.2) are
presented in Tables 5 and 6, and in Figure 2.

When the amount of noise increases, the per­
formance of INESYS relatively improves and achi­
eves even better classification accuracy that GI-
NESYS. As expected, in a very noisy situation, a
small number of short rules performs the best. Si-

458 Informatica 18 (1994) 451-465 M. Gams

P. TUMOR
SYSTEM

GINESYS (G)
BAYES (B)
INESYS (I)
ASSISTANT (A)
ASSIST 0 (AO)

% OF LEARNING EXAMPLES
20%

41.9
41.8
26.9
39.8
39.6

30%

44.6
45.2
35.6
43.5
41.6

40%

48.1
47.5
33.8
43.5
39.9

50%

49.0
48.0
43.5
45.9
41.1

60%

48.1
47.2
41.2
44.3
39.6

70%

52.0
50.1
45.9
47.9
41.3

80%

52.3
50.3
46.7
49.2
41.7

Table 4: As in Table 3, but for the primary tumor domain.

G

B
I

A

A0

20 30 AO 50 60 70 80 %

Figure 1: Graphical representation of data in Table 4. On the x-axis is the percentage of learning
data and on the y-axis is classification accuracy.

30

BENCHMARKING INDICATES RELEVANCE . . . Informatica 18 (1994) 451-465 459

LYMPHOGRAPHY
SYSTEM

GINESYS
BAYES
INESYS
ASSISTANT
ASSIST 0

% OF ADDITIONAL NOISE •
0%

70.5
68.6
67.4
62.1
62.4

1%

65.3
65.8
63.4
60.2
60.5

5%

63.7
61.7
59.1
52.8
51.8

10%

53.1
51.1
53.0
34.1
41.6

20%

43.8
41.8
41.4
33.3
29.9

35%

28.9
28.0
30.3
23.4
23.5

50%

21.1
20.7
25.4
18.4
17.6

Table 5: The influence of additional noise - lymphography.

P. TUMOR
SYSTEM

GINESYS (G)
BAYES (B)
INESYS (I)
ASSISTANT (A)
ASSIST 0 (A0)

% OF ADDITIONAL NOISE
0%

52.0
50.1
45.9
47.9
41.3

1%

50.6
47.8
43.5
44.9
39.1

5%

42.6
40.3
36.2
39.4
32.4

10%

35.2
33.5
30.7
30.5
25.3

20%

23.5
23.6
20.0
16.7
14.5

35%

13.8
13.9
16.1
8.4
8.7

Table 6: The influence of additional noise - primary tumor.

milar effect is noticeable in the lymphography do-
main especially compared to ASSISTANT and is
probably connected to the fact that ASSISTANT
constructs a tree of several tens of leaves while
INESYS constructs from 2 to 5 rules. With a
growing amount of noise, the gain of GINESYS
slowly decreases but remains around 2% as long
as any rule of INESYS can be trusted as the me-
aningful one.

5 New Measurements

In further attempts to verify the obtained results
presented in Section 4, GINESYS and benchmark
data were around five years ago sent to over 50
laboratories and declared to be freely available
for scientific purposes. The obtained answers can
be clustered into two groups: several laboratories
benchmarked systems on the proposed two do-
mains, or at least approved the approach. On the
other hand, there were some researchers who con-
sidered proposed benchmarking of classification

accuracy as a numerical measurement belonging
to statistics. In their opinion, artificial intelli-
gence methods should be evaluated mainly at the
level of ideas. Indeed, measuring only classifica­
tion accuracy does not consider several important
advantages of artificial intelligence, e.g., the tran-
sparency of the constructed knowledge base or the
comprehensibility of classifications. However, in
the last two years we have observed a constant
shift in a direction which accepts such verificati-
ons as crucial in evaluating quality.

In 1990 we received the first, and so far only
report of a system, NAIVE BAYES* (Cestnik
1992), which achieved better accuracy than GI-
NESYS in both domains (54.1% in primary tumor
and 70.9% in lymphography). The improvement
is based on a correction of the weakness of NA­
IVE BAYES which happens whenever there is a
gap in the data, meaning there is no example with
the particular value of the attribute. Then, one
factor in the product becomes 0 and the resul-
ting product (Eq.l) becomes 0. This was already

460 Informatica 18 (1994) 451-465 M. Gams

Figure 2: Graphical representation of data in Table 6. On the x-axis is the percentage of additional
noise and on the y-axis is classification accuracy.

observed in (Gams k, Drobnič 1988; Gams et al.
1991) where e was used instead of 0. In NAIVE
BAYES*, the Laplacean estimate is introduced
for a correction instead of e.

The reported improvements enabled additional
experiments in trying to construct a multiple sy-
stem, achieving even better classification accu-
racy. In the first attempt, NAIVE BAYES* was
directly embedded into GINESYS, but the obser­
ved classification accuracy was lower than that of
NAIVE BAYES*. Obviously, a smaller number
of stronger rules had to be constructed since NA­
IVE BAYES* achieved significantly better clas­
sification accuracy than GB. Several parameters
in GINESYS deal with rules, such as significance
(Kalbfleish 1979), modified Laplacean error esti­
mate (Niblett & Bratko 1986) or MINDIFF and
MINACC. In the second attempt, MINDIFF was
set to 0.5 instead of the previous 0.3, and MI­
NACC to 0.7. Consequently, GINESYS90 achie­
ved an additional 0.8% increase in primary tumor
and 1.3% in lymphography over NAIVE BAYES*.
Later it was found that the values of MINACC
and MINDIFF belong to the set of optimal com-
binations, as can be observed in Tables 8 and 9.

The updated versions of NAIVE BAYES and
GINESYS achieve the best two classification
accuracies (compare Table 1 and Table 7). The
percentage of corrections by NAIVE BAYES was
8% in lymphography and 27% in primary tumor
in GINESYS and, correspondingly, 25% and 45%
in GINESYS90.

New values of parameters MINDIFF and MI­
NACC force GINESYS90 to construct a smaller
number of longer rules. Also, rules are usually ro-
ughly twice more often corrected by NAIVE BA-
YES* than in GINESYS. To a great extent, this
is due to the increased average number of classi-
fications performed by the null or uninstantiated
rule, i.e. the last rule in a rule list. This num­
ber increased from 9.2 to 15.9 in lymphography
(45 classifications), and from 18.0 to 55.1 in pri-
mary tumor (102 classifications). Understanda-
bly, the last uninstantiated rule is always conside-
red as unreliable in GINESYS and GINESYS90.
But in the INESYS and INESYS90 algorithm, the
classification is stili performed by corresponding
null-rule class distribution which is typically only
slightly better than the default rule. Therefore,
it is understandable that on average accuracy of

BENCHMARKING INDICATES RELEVANCE .., Informatica 18 (1994) 451-465 461

SYSTEM

INESYS90
NAIVE BAYES*
GINESYS90

LYMPHOGRAPHY
class.acc.

63.7
70.9
72.2

no.rules

3.8
56.0
59.6

no.att.

7
56
63

PRIMARY TUMOR
class.acc.

36.3
54.1
54.9

no.rules

6.9
37. 0
44.3

no.att.

19
37
56

Table 7: Accuracy, number of rules, of ali attributes.

.9

.8

.7

.6

.5

.4

.3

.2

.1

LYMPHOGRAPHY
ACC.

71.0
72.0
71.6
72.0
72.2
70.2
70.7
70.2
68.2

.1

+
<?
+
<?
<?
-
-
-
-

.2 .3

-

.4

-

.5

9
-

-

.6

<?

-

.7

9
<?

-

.8

<?

+
V
+
+

+

.9

+

+
+ •

+

Table 8: Influence of the goodness criterion, GINESYS90, lymphography.

INESYS90 decreased from 67.4% to 63.7% in lym-
phography and more, from 45.9% to 36.3% in pri-
mary tumor. This should not blur the fact that
the effective part of INESYS90 which takes part
in classifications of GINESYS90 actually achieves
better classification accuracy than INESYS.

The influence of the MINDIFF and the MI-
NACC parameters on the classification accuracy
of GINESYS90 was further measured, and it was
found that there is a wide range of possible com-
binations which enable similar improvements (see
Tables 8 and 9).

The x-axis in Tables 8 and 9 corresponds to MI-
NACC and the y-axis corresponds to MINDIFF
ranging from 0.1 to 0.9. The second column of
classification accuracies in each Table represents
accuracy with current MINDIFF and MINACC
< = MINDIFF. Each mark in Tables 8 and 9 re­
presents one ten-runs measurement as follows (in
percents):

— bellow 70.9 in lymphography, bellow 54.1 in pri-
mary tumor

+ between 70.9 and 71.9, between 54.1 and 54.6
correspondingly and,

V over 71.9 (+1) in lymphography and over 54.6
(+0.5) in primary tumor.

Top-level or global multiplicity in any version of
GINESYS can be estimated by the percentage of
different classifications of both single systems. In
Table 10, it is presented for GINESYS90 in both
domains with MINDIFF = 0.3 and 0.5 (MINDIFF
= MINACC) on training and testing examples.

Let us measure the internal multiplicity of each
monostrategy system. INESYS90 constructs a list-
of sublists of rules. However, the order of rules
is important and the confirmation rules are atta-
ched to the main rules. Therefore, each sublist of
rules corresponds to a particular subset of train-

462 Informatica 18 (1994) 451-465 M. Gams

.9

.8

.7

.6

.5

.4

.3

.2

.1

PR]
ACC.

54.3
54.3
54.3
54.5
54.9
53.5
53.6
53.1
51.9

.1
+
+
+
+
<?
-
-
-
-

.2
[MARY TUMOR

.3

-

.4

-

.5

9
-

-

.6

V

.7

9
-

-

.8

+
+
+
+
+

+

.9

+

Table 9: As in Table 8, but primary tumor.

MINDIFF

0.3
0.5

LYMPHOGRAPHY
train

28
26

test
26
29

PRIMARY TUMOR
train

28
44

test
34
49

Table 10: Percentage of different classifications, i.e. top-level or global multiplicity in GINESYS90.

ing data and there seems to be no natural way to
extract many knowledge bases such that each co-
vers the whole measurement space. On the other
hand, rules in both NAIVE BAYES and NAIVE
BAYES* have the form
if(Ai = Vij) then Distributionn
and are constructed on the whole training data.
Therefore, a list of rules with the same attribute
and ali possible values of that attribute represents
one knowledge base covering the whole measu­
rement space. The average percentage of diffe­
rent classifications of each such knowledge base
and the combined knowledge base is presented in
Table 11. It should be observed that the same
single knowledge bases are used in NAIVE BA-
YES and NAIVE BAYES*, but they are differen-
tly combined. Whatever the čase, both NAIVE
BAYES and NAIVE BAYES* can be regarded as
internally consisting of multiple knowledge bases.
Furthermore, these knowledge subbases are quite
independent of each other, although they are con­

structed on the same training data.
Overall, finding areasonable combination of the

two knowledge bases, i.e. GINESYS90, took only
one day of work and resulted in achieving an ave­
rage 1% increase in classification accuracy. The
amount of efforts needed was evidently small be-
cause only already existing systems had to be mo-
dified.

6 Discussion

Multiple knowledge has proven useful in many
measurements, first in (Brazdil & Torgo 1990;
Buntine 1989; Catlett & Jack 1987; Cestnik &
Bratko 1988; Clark k Boswell 1991; Gams 1988;
1989; Gams, Drobnič & Petkovšek 1991), and fol-
lowed by tens of reports in the last couple of years.
In our measurements, classification accuracy of
the combined knowledge base was typically bet-
ter than the accuracy of each single knowledge

BENCHMARKING INDICATES RELEVANCE .. . Informatica 18 (1994) 451-465 463

SYSTEM

NAIVE BAYES
NAIVE BAYES*

LYMPHOGRAPHY
train

48
44

test
50
46

PRIMARY TUMOR
train

72
65

test
70
66

Table 11: Percentage of different classifications in BAYES, i.e. internal multiplicity.

base. However, due to a relatively high standard
deviation the statistical significance of this im-
provement cannot be proved in 10 tests (Gams
1989). On the other hand, additional measure-
ments were performed by varying parameters of
GB (form and number of multiple rules, goodness
of rules, factor of significance, impurity functions,
error estimate functions) and domain parameters
(percentage of training and testing data, percen­
tage of additional noise). In this paper we pre-
sent over 200 measurements each tirne averaging
10 tests. If we delete measurements with more
than 20% of additional noise and those with less
than 70 learning examples, we obtain 167 mea­
surements with only 3 cases where (a version of)
GINESYS has not achieved the best classification
accuracy. The improvement was typically around
1%.

Therefore, the improvement in 167 measure­
ments (each time averaging over 10 tests) is stati-
stically highly significant. Although more inten-
sive measurements were performed in recent ye-
ars, e.g., (Brazdil et al. 1994), measurements in
this paper present one of the longer-lasting efforts.

Besides better classification accuracy, impro-
ved explainability and understandability were
also reported. Indeed, the informativity of the
knowledge base with multiple rules seems to be
much better than without them. Multiple rules
can be trimmed off and a "usual" knowledge base
is obtained as a downgraded version. Since a user
can define the number of multiple rules, the prefe­
rence function and other parameters, it enables a
thorough extradition of most valuable rules. The
efnciency of the learning algorithms remains prac-
tically the same when using multiple knowledge.

In conclusion, more and more indications
emerge that "single-knowledge" systems in ge­
neral do not achieve the performance of

"multiple-knowledge" systems. Therefore, multi­
ple knovvledge isbecoming regularly implemented
in recent systems. The reported gains are usually
substantial at small additional cost.

While research on monostrategy methods and
one-level knowledge representations continues to
be of great importance to the machine learning
community, the interest and amount of rese­
arch work in multistrategy learning and multiple
knowledge representations rapidly increases over
the last couple of years. Expansion is accompa-
nied by great diversification and new approaches.

In general, multiple systems enable greater
competence than monostrategy systems relying
on one knowledge representation and one com-
puting mechanism. On the other hand, multiple
systems demand more understanding of capaci-
ties, limitations and cooperation between single
systems. Due to the constant growth of compu-
ter power, speed and memory requirements have
to a great extend diminished, thus bringing the
focus to essential research and engineering que-
stions.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Sci­
ence, Research and Technology, Republic of Slove-
nia and was carried out as a part of European Pro-
ječt ESPRIT II Basic Research Action number
3095, Project ECOLES. Research facilities were
provided by the "Jožef Štefan" Institute. Data
were provided by the Oncological institute of the
University medical centre in Ljubljana. We are
grateful for suggestions from prof. Ivan Bratko.

References

[1] Brazdil P., Gama J. & Henery B. (1994),

464 Informatica 18 (1994) 451-465 M. Gams

"Characterizing the Applicability of. Classi-
fication Algorithms Using Meta-Level Lear­
ning", Proč. ofECML-94, Italy.

[2] Brazdil P.B. k Torgo L. (1990) "Knowledge
Acquisition via Knowledge Integration",
Proč. ofEKAW-90.

[3] Breiman L., Priedman J.H., Olshen R.A. k
Stone C.J. (1984) Classification and Regres-
sion Trees, Wadsworth International Group.

[4] Buntine W. (1989) "Learning Classification
Rules Using Bayes", Proceedings of the 6th
International Workshop on Machine Lear­
ning, Ithaca, New York.

[5] Catlett J. k Jack C. (1987) "Is it Better to
Learn Each Class Separately?", Technical re-
port.

[6] Cestnik, B. (1992), Probability Estimations
in Automatic Learning, Ph.D. Dissertation.

[7] Cestnik B. k Bratko I. (1988) "Learning Re-
dundant Rules in Noisy Domains", Proč. of
EGAI, Munich.

[8] Clark P. k Boswell R. (1991) "Rule In-
duction with CN2: Some Recent Improve-
ments", Proceedings of EWSL-91, Porto.

[9] Clark P. k Niblett P. (1989) "The CN2 In-
duction Algorithm", Machine Learning, Vol.
3, No. 4, Kluwer Academic Press.

[10] Gams M. (1988) Unifying Principles in Au­
tomatic Learning, Ph.D. thesis, Ljubljana.

[11] Gams M. (1989) "New Measurements Hi-
ghlight the Importance of Redundant Kno-
wledge", Proč. of EWSL-89, Montpellier.

[12] Gams M. k Drobnič M. (1988) Approaching
the Limit of Classification Accuracy, Infor­
matica, No. 2.

[13] Gams M., Drobnič M. k Petkovšek M. (1991)
"Learning from Examples - a Uniform View",
International Journal of Man-Machine Stu-
dies, Vol. 34, No. 1.

[14] Gams M. k Karalič A. (1989) "New Empi-
rical Learning Mechanisms Perform Signifi-
cantly Better in Real Life Domains", Proč.

of the International Workshop on Machine
Learning, Ithaca, New York.

[15] Gams M. k Lavrač N. (1987) "Review of Five
Empirical Leaning Systems Within a Propo-
sed Schemata", in Progress in Machine Lear­
ning, (ed. Bratko L, Lavrač N.), Sigma Press.

[16] Good I.J. (1950) Probability and the Weigh-
ting of Evidence, Charles Griffing k Co. Li­
mited, London.

[17] Harmon P., Maus R. k Morrisey W. (1988)
Ezpert Systems, Tools and Applications,
John Wiley k sons.

[18] Kalbfleish J. (1979) Probability and Statisti-
cal Inference II, Springer-Verlag.

[19] Kononenko I. (1985) "ASSISTANT: A Sy-
stem for Inductive Learning", M.Se. thesis,
Ljubljana.

[20] Manago M.V. k Kodratoff Y. (1987) "No-
ise and Knowledge Acquisition", Proč. of IJ-
CAI, Milano.

[21] Michalski, R. (1994) "Inferential Theory of
Learning: Developing Foundations of Mul-
tistrategy Learning", in Michalski, Tecuci
(ed.), Machine Learnine, A Multistrategy
Approach, Vol. IV, Morgan Kaufmann.

[22] Michalski R.S. k Larson J. (1983) "Incre-
mental Generation of VL1 Hypotheses: The
Underlaying Methodology and Description of
the Program AQ11", Technical Report ISG
83-5, Urbana: University of Illinois.

[23] Michalski R.S., Mozetič L, Hong J. k La­
vrač N. (1986) "The Multi-purpose Incre-
mental Learning System AQ15 and its Te-
sting Application to three Medical Doma­
ins", Proč. of A A Al 86, Philadelphia, USA.

[24] Michalski, R. k Tecuci G. (ed.) (1994) Ma­
chine Learning, A Multistrategy Approach,
Vol. IV, Morgan Kaufmann.

[25] Niblett T. k Bratko I. (1986) "Learning De-
cision Rules in Noisy Domains", Ezpert Sy-
stems, Brighton, UK.

BENCHMARKING INDICATES RELEVANCE ... Informatica 18 (1994) 451-465 465

[26] Quinlan J.R. (1983) "Learning Efficient Clas-
sification Procedures and Their Applica­
tion to Chess End Games", in MichalT

ski R.S., Carbonell J.G. & Mitchell T.M.
(Eds.), Machine Learning: an Artificial In-
telligence Approach, Tioga Publishing, Palo
Alto, USA.

[27] Quinlan J.R. (1986) "Induction of Decision
Trees", Machine Learning 1, Kluwer Acade-
mic Publishers.

[28] Quinlan J.R. (1987) "Generating Production
Rules From Decision Trees", Proč. of H CA I,
Milano.

[29] RendeU L., PoweU B., Cho H. & Seshu
R. (1988) "Improving the Design of Rule-
Learning Systems", Proč. of The 8th In­
ternational Workshop on Ezpert Systems &
Their Applications, Avignon, France.

[30] RendeU L., Seshu R. & Tcheng D. (1987)
"Layered Concept-Learning and Dynami-
caUy-Variable Bias Management", Proč. of
IJCAI, Milano.'

[31] Shannon C.E. k Weaver W. (1964) The Ma-
thematical Theory of Communications, Ur­
bana, Illinois, University of Illinois Press.

[32] ShortUffe E.H. (1976) Computer-Based Me-
dical Consultations: MYCIN, American El­
sevier PubUshing.

[33] Tecuci G. (ed.) (1993) "Special Issue: Multi-
strategy Learning", Informatica, 4 (1993).

[34] Tecuci G., Kedar S. & Kodratoff, Y. (ed.)
(1993) Proč. of IJCAI-93 Workshop Machine
Learning and Knowledge Acquisition, France.

[35] Utgoff P.E. (1986) Machine Learning of In-
ductive Bias., Kluver Academic Publishers.

Informatica 18 (1994) 467-484 467

Object Migration in Temporal Object-oriented Databases

Angelo Montanari and Elisa Peressi
Dipartimento di Matematica e Informatica, Universita di Udine
Via Zanon, 6 - 33100 Udine, Italy
e-mail: [montana,peressi]Qdimi.uniud.it
AND
Barbara Pernici
Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
e-mail: pernici9elet.polimi.it

Keywords: object-oriented databases, temporal databases, query languages, roles

Edited by: Rudi Murn
Received: March 10, 1994 Revised: November 7, 1994 Accepted: November 15, 1994

The paper presents T-ORM (Temporal Objects with Roles Model), an object-oriented
data model based on the concepts of class and role. In order to represent the evolution
of real-world entities, T-ORM allows objects to change state, roles and class in their
lifetime. In particular, it handles structural and behavioral changes that occurin objects
when they migrate from a given class to another. First, the paper introduces the basic
features ofthe T-ORM data model, emphasizing those related to object migration. Then,
it presents the query and manipulation languages associated with T-ORM, focusing on
the treatment of the temporal aspects of object evolution.

1 Introduction

Since the '70s, relational databases have been
successfully used in many application domains.
In the last years, however, many advanced appli­
cation areas have been identified for which the
data model underlying relational databases is not
the most appropriate one. A number of applica-
tions in the areas of CAD/CAM, office automa-
tion, knowledge representation, software enginee-
ring indeed require semantically richer data mo-
dels. New constructs are needed to model struc-
tured entities, complex attribute domains, diffe-
rent types of relationships among entities, rela-
tionships among entity types. To support such
features, object-oriented databases have been de-
veloped, and severa! commercial systems based
on the object-oriented paradigm are now availa-
ble. In addition, many of these applications must
čope with problems involving temporal informa-
tion about object evolution. For this reason, con-
ventional snapshot databases, that maintain in-

formation about the current state of the world
only, need to be replaced by temporal databases
that record information about past, present and,
possibly, future states. In order to model the
evolution of real-world entities, object-oriented
database must be able to handle both changes
in object states and changes in object structures
due to their migration to other classes [30]. As an
example, they must be able to represent the fact
that a person becomes an adult (class change),
that a študent becomes a professor (role change),
and that a študent moves from a given univer-
sity to another one (state change) in a uniform
framework.

During the last fifteen years, several time mo-
dels have been proposed to manage temporal
knowledge in database systems. Most of them
extend the relational model with one or more time
dimensions, e.g. [13, 28]. Temporal extensions
of object-oriented models have been proposed in
[6, 7, 8, 29, 31]. Most extensions are only con-
cerned with the representation of state evolution,

http://Qdimi.uniud.it
http://pernici9elet.polimi.it

468 Informatica 18 (1994) 467-484 A. Montanari et al.

and neither support the notion of object role, nor
allow the shift of an object from one class to ano-
ther (they assign a class to an object once and for
ali).

In the paper we consider the problem of provi-
ding temporal object-oriented databases with the
notion of object migration. The importance of
such a notion has been pointed out by [20, 30].
In object-oriented databases objects belong to hi-
erarchically structured classes, and remain stati-
cally linked to their original position in the hi-
erarchy. On the contrary, in many application
domains it is quite natural to allow objects to
dynamically change the class(es) they belong to.
For example, it seems fairly acceptable to allow
an object belonging to the class PERSON to mi-
grate to the subclass ADULT. Only few papers
deal with object migration in object-oriented da­
tabases using either behavioral constructs to de-
scribe semantic information [4], or dynamic inte-
grity constraints [30], or considering a restricted
notion of migration [10, 11]. The issue of object
migration has not been addressed at ali in the
context of temporal object-oriented databases.

The paper describes T-ORM [19], a temporal
extension of the object-oriented conceptual model
ORM (Object with Roles Model [20]), that gene-
ralizes the temporal models proposed in [6, 8, 27]
by adding the notion of object migration. It first
analyzes in detail the notion of object evolution,
and consider different types of evolution which
can be of interest for database applications; then,
it identifies the basic requirements that a tempo­
ral model of object evolution must satisfy; finally,
it shows how object evolution may affect state,
structure and behavior of the evolving object and
of the objects related to it. Ali the features of the
T-ORM model are illustrated in terms of query
and manipulation languages. There is plenty of
literature on temporal extensions to query lan­
guages [7, 21, 22, 24, 25, 28, 29, 31] and we do
not deviate from them defining a query language
which is based on the SQL syntax. Besides the
usual primitives of structured query languages, it
is provided with ali temporal relations of Allen's
interval logic and with some specific constructs
that allow one to query the history of objects.

The organization of the paper is as follows. Sec­
tion 2 first illustrates the ORM model and then
describes the basic features of its temporal exten-

sion T-ORM. Section 3 introduces and discusses
the notion of object migration, and shows how
it is dealt with in T-ORM. Section 4 provides a
detailed presentation of the T-ORM query lan­
guage. Section 5 sketches out the basic featu­
res of T-ORM data manipulation language. The
concluding remarks provide an assessment of the
work.

2 The T-ORM data model

2.1 Classes a n d ro les

One of the main problems in real-world mode-
ling is the management of object behavior. Most
of the efforts in this area have been limited fey
static schema definitions, supplying objects with
methods which operate on object states. Recen-
tly, it has been suggested to incorporate rules wi-
thin objects for expressing object behaviors. Besi­
des the necessity of representing changes in state,
another problem occurs. Many applications have
the necessity of describing particular entities from
different perspectives, dealing with multifaceted
object states, that is, an object can play different
roles and its behavior depends on the role it plays.
The term role has been used in various contexts
with different meanings. As regards our appro-
ach, similar concepts have been developed by Ri-
chardson and Schwarz [23], Su [30], Wieringa [32],
Sciore [26], and Papazoglou [18].

The ORM model has been originally proposed
as an object-oriented design framework for speci-
fying information systems requirements. Such a
model allows one to represent object behavior by
means of the concept of role. A role is a state
in which an object can be and if the object is in
that state, we say that it plays that role. Tradi-
tional class-based object-oriented systems model
the various states which an entity may assume
using specialization hierarchies and representing
real-world entities as instances of the most speci­
fic class they belong to. This approach has nume-
rous drawbacks. Consider the following example
appeared in [32].

Assume t h a t passenger i s a
subclass of person and consider a
person who migrates t o the
passenger subclass of person, say
by enter ing a bus. This bus may

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 469

carry 4000 passengers in one
week, but counted dif ferent ly , i t
may carry 1000 persons in the
same week. So counting persons
di f fers from counting passengers.

The conclusion of this observation can be sta-
ted in terms of identifiers. If PASSENGER would
be a subclass of PERSON, then each passenger
identifier would also be a person identifier. Since
this is not the čase, persons and passengers appa-
rently have difFerent identifiers. We should have
a difFerent way to represent those instances. We
must realize that a passenger is not identical to a
person, but that it is a state of a person, or, more
properly, it is a role of the class PERSON. So,
when we count passengers, we really count how
often persons have been playing the role of passen­
ger. Moreover, using only the mechanism of class
specialization, when we have an entity which can
assume difFerent roles independently (for exam-
ple a person may be a študent and an employee),
we have to define a separate class which is a sub­
class of both EMPLOYEE and ŠTUDENT clas­
ses. Subclasses of this type should be defined for
every possible combination of roles.

In ORM, an object assumes a certain role via
a mechanism of instantiation which is analogous
to that used to populate classes. We talk about
role instances in the same way in which we speak
about class instances. Every time that a role is in-
stantiated, we associate a unique identifier (Role
Identifier o RID) with the instance which preser-
ves instance identity across changes of its state
(i.e., changes to attribute values). We assume
that this identifier is unique across the database.
Ali instances of roles evolve independently.

From another point of view, the reason why ro­
les cannot be implemented as subclasses is that
the classification mechanism does not allow mul-
tiple instantiation. As we said, a person could be-
come a passenger more then once during a week.
We cannot instantiate the same person as a pas­
senger more than once and also we cannot think
of representing ali difFerent kinds of passengers
as difFerent subclasses. On the contrary, the role
mechanism allows an object to play difFerent ro­
les at difFerent times, to play more than one role
at the same time, and to have more than one
instance of the same role at the same time (for
example, a person who is employed in two difFe­

rent firms). This capability is one of the featu-
res that distinguishes the ORM model from other
object-oriented models with roles. As an exam-
ple, in the model proposed in [18] an entity can
play se ver al roles simultaneously, but only a sin-
gle occurrence of each role type is permitted per
entity.

At a first glance, one could object that roles
represent only particular states which an entity
could assume during its lifetime and, as such, one
could implement them as a multi-valued time-
stamped attribute "state". In general, this is not
possible because an object playing a role has a
particular behavior specific of that role, which is
specified in the role component of a class descrip-
tion through a set of rules and messages and that
could not be represented with the traditional way
of modeling classes.

A class in the ORM model is defined by a name
Cn and a set of roles R,-, each one representing a
difFerent behavior of this object:

class = (Cn,R0 ,Ri,. . . ,R n)
Each role R; is a 5-uple:

Rj = < Ril,- »P;.Sj ,M4-,Rr,- >
consisting of a role name Rn,, a set of properties
P; of that role (abstract description of object cha-
racteristics), a set of abstract states S,- that the
object can be at while playing this role, a set of
messages M,- that the object can receive and send
in this role, and a set of rules Rr;.

Rules fall into two categories: state transition
rules and integrity rules. State transition rules
define which messages an object can receive/send
in each state and the state changes these messa­
ges cause. Integrity rules specify constraints on
object evolution. This is another aspect which
characterizes roles: we can represent object evolu­
tion by means of rules and constraints on those
rules [9].

Every class has a base-role Ro that describes
the initial characteristics of an instance and the
global properties concerning its evolution.* These
properties are inherited by ali the other roles; the
messages of the base-role are used to add, delete,
suspend and resume instances of roles; the possi­
ble states in the base-role are pre-defined (active
and suspended); and the rules define transitions
between roles and global constraints for the class.
Each property has a property name and a domain.
Domains may be simple, composite or complex.

470 Informatica 18 (1994) 467-484 A. Montanari et al.

Simple domains are predefined domains (such as
string, integer, real, boolean), classes, or roles;
composite domains are classes and roles; complex
domains are defined as aggregates, sets (unorde-
red collections of objects) or sequences (ordered
collections of homogeneous objects) of other do­
mains (simple or complex).

Finally, a class can be a subclass of one or more
classes (multiple inheritance) and inherits ali roles
specified in the parent class(es).

2.2 Adding tirne to objects

Adding the tirne dimension to object-oriented
systems is required for modeling hov/ the enti-
ties and the relationships the object denote may
change over time [6]. Often an object is created
at a given time and is relevant to a system for
only a limited period of time. Furthermore, du-
ring their existence, objects may change the va-
lues of their attributes, the roles that they play,
and even the classes they belong to. Temporal
(object-oriented) databases may differ from each
other both in the structure of the underlying time
domain and in the way of associating time infor-
mation to database entities.

The basic features of time domains have been
precisely identified in the literature. Referring to
the classiflcation given in [1], we assume that the
T-ORM time domain is bidimensional (both va-
lid time and transaction time are supported) and
linear in both dimensions, the valid time axis is
unbound in both directions, whereas the transac­
tion time axis is bound in both directions (it spans
from database creation until the current instant),
and both axes map to integers. Furthermore, the
time point is taken as the primitive temporal en-
tity (intervals are defined as a derived concept)
and the usual metric on integers is defined to me-
asure distances between time points.

With respect to the association of time with
data, object attributes can be partitioned in time-
vartjing and constant ones [17], depending on the
fact that their value may change or not over time.
The values of time-varying attributes are usually
time-stamped at specific time points or intervals;
therefore we do not know their value at a time
where there is no a specific entry. Common as-
sumptions about their value in such points fall
into three categories: (i) step-wise constant va­
lues, (ii) discrete values, and (iii) values changing

according to a given function of time (e.g. unifor­
m i changing values) [17]. In cases (i) and (iii),
the unknov/n values can be derived from the sto­
red values using a suitable interpolation function.
In čase (ii), if there is no a specific entry stored
at a given time, the attribute must be conside-
red undeflned. A further distinction is concerned
with the choice of the data unit to time stamp.
Two approaches have been proposed in the lite­
rature: attribute versioning [5], and object versi-
oning [1]. In the first čase, valid and transaction
times are associated with each time-varying at­
tribute; in the second čase, they are associated
with the whole object, and so to ali attributes of
that object. Attribute versioning presents seve-
ral advantages, including the following ones: (i)
different properties may be associated with time
at different granularities; (ii) some properties are
inherently not time-varying, so recording time in-
formation for them is useless; (iii) time-varving
properties of the same object may change asyn-
chronously over time, so as we have to record ali
object values when a change occurs, we have to
duplicate a lot of information (the values which
did not change).

Besides associating time information to at­
tributes, object-oriented temporal databases
(OOTDBs) can temporally characterize the exi-
stence of objects, that is, they can specify when
and hov/ an object exists in the database. In most
OOTDBs, the set of time intervals during which
an object logically exists in the database is called
its lifespan [6]. This object lifespan spans from the
object creation (the point in time when the data­
base first records any information about it) till its
complete termination (i.e., logical deletion). As
an object can be member of different classes, an
object lifespan is the union of its lifespans in ali
classes in which it has participated. An object
lifespan v/ithin a class coincides with the union of
the lifespans of its properties as a member of that
class. In historical object-oriented databases the
notion of "reincarnation" is also supported, beca-
use a death of an object is not necessarily terminal
[6]. For example, employees can be hired, fired,
and subsequently rehired.

In the T-ORM model, time is associated with
single attributes, class instances and role instan-
ces.

With respect to attributes, we assume that

OBJECTMIGRATIONIN... Informatica 18 (1994) 467-484 471

their values are step-wise constant. Therefore
an object attribute identifies a sequence of va­
lues, each one associated with a different time
interval, which has been called time seauence
(TS) in the literature [27]. Due to the bidi-
mensionalitv of time, time sequences are con-
stituted by triples < attribute value,valid —
time interval,transaction — time interval >.
Each time interval is represented by a pair [s,e),
where s denotes the starting point of the interval,
and e its ending point. The interval is closed at
the left and open at the right. We assume that va-
lid time intervals for a given attribute are totally
ordered with respect to any given transaction po­
int. Finally, if the attribute value has a complex
structure, e.g. an aggregate, a set, or a list, we
assume that valid and transaction times can be as­
sociated with both the whole structure and each
of its components. As an example, suppose that
the attribute address is defined as the aggregate
composed of street and town. Time sequences for
address represent changes of values of either street
or tovm, or both.

With respect to classes and roles, we associate
a time sequence with each class (role) instance
to denote the time peridds during which it is ac-
tive. The lifespans of role instances and those of
the corresponding objects are linked by specific
constraints. An object after being suspended can
neither send nor receive messages. Therefore, life­
spans of role instances are always contained in the
lifespan of the corresponding object. Formally, let
o be an object instance of a class C, p(C) be a
function that maps C to the set of roles its in­
stances can play and r{o, R) be a function that
maps an object o to the set of its role instances of
the role R. The following constraint must hold:

VE e p(C) Vr G r(o, R)

(r.LIFESPAN) C (o.LIFESPAN)

If

and

(r.LIFESPAN) = { [^ , e D , - . . , [«) }

(o.LIFESPAN) = { [s i ^ !) , . . . , ^ ™) }

the given constraint states that
Vi = l,...,n3j G {l , . . . ,m} such that [sj:,e£) C

[Sj,ej)

Ali role instances are deleted when the correspon­
ding object is deleted. When an object is suspen­
ded, ali the roles it has instantiated are also su­
spended. Object suspension allows us to repre­
sent what has been called in [6] object killing and
reincarnation.

Let us introduce now a simple schema that will
be used in the rest of the paper as a source of
exemplification (see Figure 1). We consider four
classes, namely PROJECT, DOCUMENT, PER-
SON and ADULT, which is a subclass of PER­
SON. Objects belonging to the class PERSON
can play two different roles (Employee and Štu­
dent), each one characterized by its own proper-
ties. Projects are developed by persons playing
the role of employee. Each project has associated
a set of documents written by the employees who
participate in the project.

PROJECT PERSON

• simple propertjr
- • > • multivalued propertjr

• is-a hierarchjr
* time-varyingproperty

BASE-ROLE
driving_lioence

ADULT

Figure 1: Example of ORM schema

In the following we present some extensions
to the ORM model defined in [20] regarding the
object-oriented data modeling aspects, and then
we explore them in the temporal context. The
main concept we examine is object migration.
This important issue has stili been little resear-
ched on. In fact, while existing OODBMSs may
capture the notion that an adult is a person, thro-
ugh the mechanism of is-a hierarchies, most of
them do not support the notion of a given en-
tity being created as a person and then becoming
an adult, that is an entity "migrating" along the
class hierarchy it belongs to.

472 Informatica 18 (1994) 467-484 A. Montanari et al.

2.3 C o m p o s i t e objects

In object-oriented data models the value of an at­
tribute can itself be an object. In this way, an
object can refer to another object. In our model
we adopt the categorization of references propo-
sed in ORION [15]:

- weak references: they are the standard refe­
rences used in object-oriented systems, and
are not provided with any special semantics;

- composite references (called also part-of re-
lationships): they allow one to define compo­
site objects, i.e., objects composed of other
objects.

A composite reference can be:

— exclusive or shared
In the first čase, the referred object can be
part of one and only one object; in the se-
cond čase, it can be part of several compo­
site objects. Two interpretations of exclu-
sivity are possible, depending on its tempo-
ral characterization. According to a time-
independent interpretation of exclusivity, an
object can be part of only one object during
its existence. According to a time-dependent
interpretation, an object can be part of only
one object at each time instant, but it can
be part of different objects at different in-
stants. In this second čase, exclusivity can
be expressed by the following constraint: if
an object o is part of the composite objects
o' and o", then the period during which it is
part of o' must have an empty intersection
with the period during which it is part of o".

— dependent or independent
In the first čase, the referred object exists
(if and) only if the composite object exists,
while in the second čase, the existence of the
referred object does not depend on the exi-
stence of the composite object.

The classification of composite references as
exclusive or shared, and as dependent or indepen­
dent are orthogonal, and thus identify four diffe­
rent types composite references.

The mam problems involved in the manage-
ment of composite references concern the relation-
ships between the creation and deletion of compo­
site objects and the creation and deletion of their

components. As an example, let o' be a composite
object and o be a component of o'. We could state
that the deletion of o' causes the deletion of o if
one of the following two conditions hold: (i) o' has
a dependent exclusive reference to o; (ii) o' has a
dependent shared reference to o, but it is the only
object currently involved in such a relation with
o.

In [6], for instance, a rather restrictive notion
of pari-o/relationship is adopted, based on the as-
sumption that a composite object can exist only
when its components exist. Such an assump-
tion can be formalized as follows. Let us assume
that some composite object o' is defined in terms
of n other objects 0},..,on and that its lifespan
consists of a set of m disjoint intervals, that is,
o'.LIFESPAN = {[«i,ei),. . ,[am>em)}. More-
over, let im be the number of disjoint intervals
belonging to the lifespan of the component object
i, for each i — l , . . ,n . According to the given
assumption, the following constraint must always
be satisfied:

Vi o'.LIFE S P AN C Oi.LIFESPAN

which is equivalent to:

V*,j(l < i < n A 1 < j < m A [SJ, ej] €

o'.LIFESPAN D 3k(l < k < im A

[sk,ek) 6 Oi.LIFESPAN) A [sj,ej) C [sk,ek)))

S.uch a solution has two major drawbacks: (i) a
composite object cannot be created until ali its
components have been created; (ii) a composite
object must be deleted when one of its compo­
nents is deleted.

An alternative approach consists in making the
existence of a composite object independent from
the existence of its components by modeling the
part-of relationship in terms of roles. This allows
us to deal with composite objects which dyna-
mically change their components, supporting the
addition/dropping of components to/from a com­
posite object.

3 Migration
In most object-oriented data models proposed in
the literature an object is created as an instance
of a class with some attribute values and opera-
tions associated with it, and remains an instance

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 473

of that class till its deletion from the database.
This restriction strongly limits the expressiveness
of those models. In ORM, it has been partially re-
moved by adding the concept of role, that allows
one to deal with the čase of an object that plays
the same role more than once by the mechanism of
multiple role instantiation, preserving the single
object identity. As an example, an object of the
class PERSON can simultaneously play the roles
of Študent and Employee (instantiation) and, la-
ter, can lose the role of Employee (suspension).
The notion of role, however, does not suffice to
model the čase of an object that migrates from
one class to another maintaining its identity (its
oid). This means that a member of the class PER­
SON cannot migrate to the class ADULT main­
taining its oid. In the literature, these aspects of
object modeling are classified under the general
term of instance evolution.

3.1 Instance evolution

Instance evolution may assume different forms. In
particular, it is possible :

— to let the object migrate to a different class
(the object becomes an instance of the new
class);

— to specialize the object, that is, it migrates
to a subclass (the object becomes an instance
of the subclass, but remains a member of the
original class);

— to generalize the object, that is, it migrates to
a superclass (the object becomes an instance
of the superclass and it is no more a member
of the original class);

— to dynamically add new classes to an object,
so that it can be an instance of more than
one class at the same tirne;

— to dynamically delete classes from an object;

— to specialize or generalize at instance level
adding/redefining/deleting attributes and
methods for single objects.

These evolutions are controlled by specific se-
mantic constraints in order to restrict the set of
classes where an object can migrate to. For exam-
ple, referring to the schema of Figure 1, a PER­
SON can become an ADULT, but he/she cannot

become a PROJECT. In [33] those constraints are
treated as special integrity constraints, which al-
low one to specifv, for each class, its essentiality
or its exclusivity. A class C is essential if object
migration is constrained on the inheritance hie-
rarchy rooted at C. An object could be member
of more than one essential class if the model al-
lows multiple inheritance. A class C is ezclusive
with respect to a class C if its instances cannot
migrate to C .

In T-ORM we only support two forms of object
migration: object generalization and object spe-
cialization. In such a way, object migration is
allowed only along a unique class hierarchy. This
is not an unacceptable restriction if the data mo­
del allows the definition of a common root for ali
class hierarchies. In that čase, using an appro-
priate combination of generalization and specia-
lization operations, we may allow an object to
migrate everywhere. In general, hbwever, object
migration does not make sense when it occurs be-
tween different hierarchies, because it can involve
a complete change of the nature and the structure
of an object. For example, it does not make sense
to allow a person to become a vehicle. One simple
way to avoid the problem of unrestricted migra-
tions is to define different class hierarchies (e.g.
one rooted on the class PERSON and one rooted
on the class VEHICLE) and maintain them sepa-
rated. The usefulness of having a common root
is advocated in [15]. Accordingly, in the ORION
system the class hierarchy forms a direct, rooted,
acyclic graph (a DAG), having the svstem-defined
class OBJECT as root. That constitutes one of
the schema invariants defined by the ORION mo­
del in order to maintain schema consistency after
schema updating. For example, when we add a
new class to the schema hierarchy without speci-
fying its superclass(es), the new class is added as
a subclass of the root class OBJECT. It is worth
noting that, even in the presence of a common
root, one can stili avoid object migration between
different hierarchies preventing the migration of
objects to pass through the root.

In T-ORM, we asssume to have a number of
disjoint class hierarchies, that is, T-ORM classes
form a disconnected forest and not a tree.

474 Informatica 18 (1994) 467-484 A. Montanari et al.

(1)

i

(2)

C-

(3) (4)

is-a hierarchy

-> migration direction

Figure 2: Different cases of object migration

3.2 Constraints on object migration

The inheritance mechanism requires to impose se-
mantic constraints on object migration operators.
Let us assume that there is an object o which is
an instance of class C,- and the object migrates
to class C j . Consider the four cases illustrated in
Figure 2.

čase 1) specialization with single inheri­
tance: non-inherited properties defined for
class C j are added to the object; their values
are either provided by the user or considered
to be null; the object starts its life cycle as a
member of class Cy;

čase 2) generalization with single inheri­
tance: ali properties that are specific for C,-,
i.e., not inherited from Cj, are dropped from
the object; the lifespan of object o as an in­
stance of class C,- is terminated;

čase 3) generalization with multiple inhe­
ritance: ali properties which are not defined
for Cj are dropped; these properties include
ali properties which are specific for C,-, and ali
specific or inherited Cfc properties not defined
for Cj through inheritance links; the lifespan
of o as an instance of class C,- is terminated;
the lifespans of o as a member of class C*
and its ancestors are terminated appropria-
tely, depending on possible inheritance links
between C& and its ancestors and CJ: life­
spans in classes belonging also to Cj ance­
stors are not terminated;

čase 4) specialization with multiple inheri­
tance: ali properties of class Cj that are in­
herited from a superclass Cm of Cj, where
Cm is not a superclass of C,-, and ali proper­
ties specific for C j are added to the object;
their values are either provided by the user
or considered to be null. The lifespan of o in
classes C,- and ali its ancestors, excluded C,-
and its ancestors, which are already active,
are started.

Consistency of data referring to composite
objects has also to be examined in view of object
migration. In fact most object-oriented DBMS
establish that if an attribute has a class C as do-
main, its values may be ali objects belonging to
C or to any subclass of C. If an object o instance
of a class C is used as value of an attribute A
(with domain C) of an object o', the migration
of o to a superclass of C violates the domain in-
tegrity constraint of A. In fact object o', after
the migration of o, will have, as a value of A, an
object which is neither instance nor member of
A's domain. We remember that an object is said
to be an instance of a class C, if C is the most
specialized class which the object belongs to. An
object is said to be a member of a class C if it is an
instance of C or of a subclass of C. A solution pro-
posed in [33] allows temporary inconsistency and
provides a notification mechanism to determine
which objects are inconsistent. In these cases, we
adopt the same constraints defined above for the
deletion of objects, so that inconsistent references
must be dropped.

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 475

3.3 Storing information about object
life cycle

During its lifetime an object can change roles and
migrate along the class hierarchy.

As mentioned in Sect. 2, different kinds of tem-
poral information can be associated to objects:

— The object has associated a lifespan for
each instantiated role and for each class of
which it is (has been) a member, as di-
scussed in section 2.2. We denote with
oid.LIFESPAN(classname) the lifespan of
oid as a member of class classname i.e., the
set of intervals in which oid is instance of
the class classname. Similarly, we indicate
with oid.LIFESPAN(rolename) the history
of instantiations of role rolename for a given
object indicated by oid.

— The class-lifespan stores the history of object
migration. It is a time sequence represen-
ting the various classes the object is (or
was) instance of. The value components
are sets of the class types the object be-
longs to, during the associated valid and
transaction time intervals. We indicate with
oid.CLASSLIFESPANthe time sequence re-
presenting migration history for object oid.

— The role-lifespan is a time sequence which re-
presents the union of the lifespans of the sin-
gle role instances the object has played du­
ring its history. The value components in the
time sequence are the sets of role identifiers
of the active instances of roles in the associa­
ted valid and transaction time intervals. We
indicate with oid.ROLELIFESPANthe role-
lifespan of object oid.

and class migrations (the example is based on the
T-ORM schema illustrated in Figure 3 and the
history of the object is schematically represented
in Figure 4):

The object migration mechanism leads us to
impose some temporal constraints on the object
lifespan. In particular, if class Cj is an ancestor
of class C,-, and oid is the identifier of an object
which has been member both of C,- and Cj, the
following temporal constraint must hold, accor-
ding to the consistency constraints on migration
indicated in the previous section:

oid.LIFESPAN(Ci) C oid.LIFESPAN(Cj)

Example
Consider the following example of evolution of

an object through a series of role instantiations

Figure 3: Example of T-ORM schema

— at time t i , the object ol is created as an in­
stance of the class Ci

— at t2, role R of class Ci is instantiated the
first time as role instance r l

— at t3, role R is instantiated the second time
as role instance r2

— at t4, ol migrates to class C2

— at t5, role r l is suspended

— at 16, role r l is resumed and role S of class
C2 is instantiated as role instance r3

— at 17, role r2 is suspended

— at t8, the object ol is suspended

— at t9, the object ol is resumed

— at tlO, role r l is suspended again

— at t l i , role r2 is resumed

— at t l2 , role r l is resumed

Given the class hierarchy shown in Figure 3,
when the object ol, instance of class CI, is mi-
grated to class C2 at time tA, its life cycle as an
instance of class Ci continues; in addition, besi-
des starting being an instance of class C2, it starts
also as an instance of class C3. When the object

476 Informatica 18 (1994) 467-484 A. Montanari et al.

suspended object

ol.LIFESPAN(Cl)

ol.LIPESPAN(C2)

ol.LIFESPAN(C3)

rl .LIFESPAN

r2.LIFESPAN

r3.LIFESPAN
ti

tirne

ol.CLASSLIFESPAN

ol.ROLELIFESPAN

ol.LIFESPAN(R)

ol.LIFESPAN(S)

suspended role

t2 ! t3 1 t4

i s

**•

t5

'-A

t6 t7 1 t8

j

T

t9 tio tl i tl2

•

•

• — •

: ^

•

Figure 4: Lifespan dimensions

is suspended at time t8, ali active roles are also
suspended; roles which were active at the object
suspension time are also resumed when the object
is resumed.

For the given example, the object lifespan, the
role-lifespan, and some of the roles and classes
lifespans graphically represented in Figure 4 are
shown (for sake of simplicity, only valid times are
indicated):

ol.CLASSLIFESPAN = < { c i } , [t l , t 4)> ,
<{ci ,C2,C3},[t4,t8)>, <{Cl,C2,C3},[t9,+00)>

ol.ROLELIFESPAN = < { r l } , [t2 , t3)> , < { r l , r 2 } ,
[t3 , tS)> , <{r2} , [t5 , t6)> ,
<{r l , r2 , r3} , [t6 , t7)> , < { r l , r 3 } , [t7 , t8)> ,
<{r3} , [t lO , t l l)> , <{r2 ,r3} , [t l l , t l 2) > ,
<{r l , r2 ,r3 , [tl2,+00)>

o 1.LIFESPAN(C2) = < [t 4 , t 8) , [t9,+00)>

ol.LIFESPAN(R) = < < { r l } , [t2,t3) > ,
< { r l , r 2 } , [t 3 , t 5) > , . . .

rl.LIFESPAN = <[t2 , tS) , [t6,t8) , [t9 , t l0) ,
[tl2,+00) > < r l , [t 6 , t 8) > , . . .

4 Querying T-ORM databases

The complete definition of a data model requires
the definition of the corresponding query and data

manipulation languages. The goal of querying a
temporal database is the retrieval of stored in-
formation, taking into account the modifications
performed on it. Since bitemporal databases mo­
del two temporal dimensions, we can distinguish
two basic types of queries: (i) queries that retrieve
the sequence of historical values of time-varying
information (along the valid time axis); (ii) que-
ries that retrieve data as of a past database state
(along the transaction time axis).

In this paper, we focus mainly on queries of the
first type that allow us to:

— select an attribute value valid at a given in-
stant, e.g. find John's salary on 04/15/1986;

— select an attribute value valid at a time in-
stant associated with another attribute value
of the same object, e.g. find John's salary
when Mary was his manager;

— select an attribute value valid at a time in-
stant associated with another attribute va­
lue of another object, e.g. find John's salary
when Mary's salary was $4000;

— select objects stored in the database during
a given time interval, e.g. find ali employees
in year 1992;

OBJECT MIGRATION IN...

- select time intervals starting from attribute
values, e.g. find the time.period during which
Mary was John's manager.

General aspects of temporal object-oriented
data models require special retrieving properties
in order to deal with the concepts of class hierar-
chy, object identifier, complex domain, complex
relationship, valid time, transaction time, time
intervals, part-of relationships. Some authors at-
tempted to provide a new query language which is
compatible with a relational query language (e.g.
SQL in the čase of IRIS [12]). Other systems, such
as ORION, support a new query language which
is based on the nested-relational model. Moreo-
ver, there are other features which our query lan­
guage must take into account introduced by the
ORM model, such as the concept of role. Due to
those new concepts, we define a language which
has suitable operators for additional attribute do-
mains (e.g. time), for ali kinds of entity composi-
tions and relationships and which allows selecting
a portion of object histories.

Query languages for temporal object-oriented
databases, like query languages for conventional
databases, are divided in two categories: decla-
rative languages and procedural languages. De-
claratives languages allow one to describe a query
specifying its target and the conditions it must
satisfv, without saying how to obtain the result.
Procedural languages, instead, use operators to
specify a procedure which tells the system how to
obtain the result starting from data. The exten-
sions to existing query languages proposed in li­
terature are based both on declarative languages
(such as TQuel [29], extension of Quel, and T 0 0 -
SQL [25], extension of OSQL) and on procedural
languages (e.g. the relational algebra [13]). In an
object-oriented perspective it is important to ab-
stract from implementation details, so we think
that declaratives languages are the best choice.
Thus, the language we define is an extension of
the query language of the ORION system [15],
and is based on SQL syntax.

In the following we focus our presentation on
those aspects which are related to object migra-
tion and time In the examples, we refer to the
schema of Figure 1.

Informatica 18 (1994) 467-484 477

4.1 Basic query structure

A query has the following structure:
RETRIEVE < target c lause >
FROM < spec i f i ca t ion clause >
WHERE < qua l i f i c a t i on clause >
AS OF < as-of clause >
The target clause specifies what parts of the se-

lected informatiori must be retrieved, which could
be a set of instances (specifying only an instance
variable), a time sequence, a set of values, or a
sequence of time intervals (points).

The specification clause specifies instance vari-
ables used in the query, linking them with the
correspondent set of object (role) instances.

The qualification clause specifies conditions on
time sequences to select particular information.
In bitemporal databases we have three dimensi-
ons: the data dimension, the valid-time dimension
and the transaction-time dimension. The langu­
age we are going to define has operators suita­
ble for manipulating ali dimensions. In order to
maintain the language as simple as possible, we
chose to have only one clause (qualification cla­
use) to specify constraints both on the value and
the valid-time dimension, whereas other extensi-
ons of SQL (such as TSQL [31]) introduce addi­
tional clauses.

The as-of clause specifies constraints on the
transaction-time dimension. It is used to deter-
mine the values of object properties as they were
recorded sometime in the past and successively re-
vised. In this way we could retrieve information
about previous states of the database.

One important element of an object-oriented
query language is the facility to express equality
between two objects, comparing either their value
(value equality) or their oids (object or identity
equality). Therefore our query language needs to
support both types of equality, which are denoted
as = = and = , respectively.

Because of the nested definitions of objects ari-
sing from the class-composition hierarchy, the T-
ORM query language must easily allow the spe­
cification of predicates on a nested sequence of
attributes. In this respect we adopt the well-
known dot notation to express paths along the
class-composition hierarchy (obtaining what we
call path-expressions).

478 Informatica 18 (1994) 467-484 A. Montanari et al.

4.2 Queries on t ime-varying
propert ies

Time-varying attributes are the main distingui-
shing characteristics of temporal databases. Each
attribute is modeled with a time sequence which
represents ali its history (see 2.1). A query langu-
age must allow the selection of a portion of that
history through the specification of conditions ei-
ther on time, or on attribute values, or both. We
can directly select the first two components of <
value, valid-time, transaction-time > triplets in
time sequences, with the following notations:

e.salary.value

e.salary.vtime
A path expression of the kind e . sa la ry re-

trieves the time sequence associated with an in­
stance for the specified attribute (salary). We
must provide our query language with operators
which allow one to select portions of that history.
To do that we can use in the where clause pre-
dicates with relational operators involving time.
Such operators are those of Allen's interval logic
[2] (that is PRECEDES, MEETS, OVERLAPS,
STARTS, ENDS, INCLUDES, their inverse and
EQUAL), those between time points (i.e. <, =
and >) and those between time points and in­
tervala (i.e. BEFORE, BEGINS, ENDS, IN, AF-
TER and their inverse). For example the follo-
wing query retrieves ali values assumed by the
property salary of the instance of the class EM-
PLOYEE whose name is John, which were valid
before 04/10/1987. We assume that the property
name of class PERSON is not time-varying, so it
is not modeled as a time sequence, but it assumes
only one value.

EX1: "Find John'ssaIary before that of 04/10/198T'

RETRIEVE s.value

FROM (e,Employee)

WHERE e.name = = "John"

AND (04/10/1987 AFTER s.vtime)

A path expression which refers to a set of values
(such as e.salary) can be quantified using either
the existential (EXISTS) or the universal quanti-
fier (FORALL) having the usual meaning. Quan-
tification cannot be made on the variables of the
target clause, which are free. We assume that ali
operators, when applied to a set, distribute on its

elements (in the previous example the operator
AFTER distributes on the elements identified by
s.vtime). Particular elements of a sequence can
be selected with the following operators:

- FIRST(s,e.salary) =$• retrieves the first ele­
ment in the sequence and assigns it to the
variable s

- CURRENT(s,e.salary) =>• retrieves the cur-
rent element in the sequence

- LAST(s,e.salary) = > retrieves the sequence
whose element is the last element in the given
sequence

- <n>-TH(s ,e . sa lary) =>• retrieves the n-th
element in the sequence

EX2: "Find John's current salary"

RETRIEVE c.value

FROM (j,Employee)

WHERE j.name = = "John"

AND CURRENT(c,j.salary)

Our model is based on time intervals, howe-
ver we could also select the endpoints of intervals
using the functions BEGIN and EN D which could
be applied to a unique interval or to a sequence
of intervals, so they return a single time point or
a sequence of time points.

Summarizing, we have defined selection opera­
tors on time sequences, which act at different le-
vels of detail, as shown in Figure 5.

4.3 Queries on the historv of an
object

The other important aspect related to time in
object-oriented databases concerns the history of
an object as a whole, in addition to considering
the history of single attributes as in the previous
section.

In our model, we distinguish between local hi-
stories and global object histories. The local hi-
story regards single classes and roles and refers
to the variations suffered by the set of their in-
stances. The global object history refers to the
previous information viewed from the side of the
object, that is it contains the history of its vari­
ations as member of various classes and instance
of various roles.

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 479

HKTORY

SUBfflSTORY

SINGLEELEMENTS

SINGLE COMPONENTS
TEME VALUE

^.[Sj.ej)) (v„,[sn)en))>

seq = <vil,[sil,eil)),...,(vim,[siin,eim))>

O ^ m S n and Vj Iš, j š m 3k l š k š n suchthat

(vtj'[sij'ey))=(v
k'[s

k'e
k))

nRST(s,seq) = <(v i I,[su,e i l))>

seq.value={vu,...vj
seq.vtime= {[Sil,eu) [s^e^)}
BEGIN(seq) = {sn,...,Sim)

Figure 5: Operators on tirne sequences

4.3.1 Local history

Due to object migration the set of bbjects belon-
ging to a class can change over tirne, and there-
fore some representational primitives are needed
to denote the set of instances of a certain class at
a specific time point. They allow a user to query
the database to know the time interval(s) during
which a given object was an instance of a certain
class, to know a particular attribute value or the
roles played bythe object during such a period of
time, or whatever else. The T-ORM query lan-
guage allows one to refer to instances of a class
(role) in three difFerent ways, depending on the

. considered fragment of the class history:

1. the set of ali past and current class (role)
instances. According to the previously intro

and his manager was Mary"

RETRIEVE s.value

FROM (e,Employee)

WHERE e.name = = "John"

AND EXISTS(s,e.salary):

([01/01/1975,12/31/1975]) INCLUDES s.vtime

AND EXISTS(m,e.manager):

(m.name = = "Mary") AND

((m.vtime INCLUDES s.vtime) OR

(m.vtime OVERLAPS s.vtime) OR

(m.vtime STARTS s.vtime) OR

(m.vtime ENDS s.vtime) OR

(m.vtime EQUAL s.vtime))

3. the current set of class (or role) instances

i , , ,. , , i - i J.-H j (< o b j e c t - v a r i a b l e > , CURRENT(<class / ro le name>))
duced notation, such a set can be identmed
as follows : ~

(<object-variable>, <class/role name>)

EX3: "Find ali employees (novr and in the past)"

RETRIEVE e

FROM (e,Employee)

2. the set of instances belonging to a given class
during a specific time interval. They are re-
trieved by means of appropriate conditions
on the valid time dimension in the where cla-
use:

EX5: "Find ali employees (novr)"

RETRIEVE e •

FROM (e,CURRENT(Employee))

If we denote the set of instances of a class (or
role) C at time t with the function o(C)(t), then
the following constraint must hold:

o € o(C)(t) <=^ t G o .LIFESPAN(C)

and we have:

(o ,CURRENT C) returns o(C) (t) with t =
N0W

EX4: "Find John s salary in 1975 when he was an empioyee (o , C) r e t u m s U ^ r . o o NOW] ° (C) (t)

480 Informatica 18 (1994) 467-484

4.3.2 Migration history

In this paragraph we show how to apply the ope-
rators defined for attribute time sequences also
to the lifespans time sequences. Remember our
representation of object lifespans discussed in pa­
ragraph 3.3. We are interested in answering que-
stions of the following type:

EX6: At which time did Mary become an employee? (role)
EX7: At which time did Mary become an adult? (subclass)
EX8: During which time period was Mary an employee?
EX9: During vrhich time period was Mary an adult?
EX10: VVhen did Mary change class?
EX11: Wbich roles did Mary play at 9/6/1994?
EX12: Which roles did Mary play during 1994?

The answer to those questions can be easily fo-
und by appropriate queries on the various dimen-
sions of the object lifespan with the use of tempo-
ral functions like BEGIN and END. For instance,
in query EX10, we select the starting points of
valid time intervals from the object class-lifespan,
which indicate when a class migration or resuming
occurred:

EX10: RETRIEVE BEGIN(p.CLASSLIFESPAN.vtime)
FROM (p,PERS0N)
WHERE p.name = = "Mary"

In query EX11, we select the role identifiers
from the role-lifespan time sequence:

EX11: RETRIEVE s.value
FROM (p.PERSON)
WHERE p.name = = "Mary"
AND EXISTS(s,p.ROLELIFESPAN):

(9/6/1994 IN s.vtime)

Query EX12 shows an example of using pre-
dicates on object history inside the qualification
clause:

EX12: "Find the salary of the employees who hecame employees
before becoming adults"
RETRIEVE c.value
FROM (e,Employee)
WHERE EXISTS

(s,e.LIFESPAN(Employee)):
(s.vtime PRECEDES
FIRST(e.LIFESPAN(ADULT)).vtime)

AND CURRENT(c,e.salary)

A. Montanari et al.

5 The Data Manipulation
Language

In the DML the operations to create, delete and
modify instances have to be extended to involve
valid-time specifications. Moreover new operators
have to be pr.ovided to manipulate the particular
features of the extended model such that states,
roles and object migration.

5.1 Instance creation

An object is created as an instance of a class.
That object could become instance of other sub-
classes later through the mechanism of object mi­
gration. Values for ali attributes of that class
must be provided by the user, otherwise a null
value is assigned by the system. This operation
returns the oid of the created object, which can
be assigned to an object variable.

If an attribute value is an instance or a set of
instances of a class or'Ajrole, we can specify those
instances directly via their oids (or rids), or indi-
rectly specifying a query. The VALID clause may
be omitted. In this čase the created object is valid
since the time of insertion; an interval whose left
end is constituted by transaction time and whose
right end is constituted by the value +oo is inser-
ted in the object lifespan. If only the FROM part
is specified, the interval [ti, +oo) is inserted in
the object lifespan. Finally if both FROM and TO
parts are specified, the interval [ti, t2) is inserted.
A time-varying attribute value may be associated
with its valid-time. If a validity interval is speci­
fied, it must be contained in the validity interval
of the whole object. If valid-time specification is
omitted, then the attribute value is considered to
be valid since time ti of the valid clause, or since
transaction time if ti is not specified, up to time
t2 of the VALID clause, or +oo. If only the FROM
part is specified, the attribute value is valid to t2
or +oo.

In the following example, a PROJECT object
is created.

EX13: CREATE-OBJECT PROJECT
WITH (project-name : "Pllts6765",

participants : {John,Mary} UNION
RETRIEVE e
FROM (e,EMPLOYEE)
WHERE e.manager.name = = "Smith",

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 481

reports : {})

Roles instantiation is similar to class instantia-
tion, but the user must provide the identifier of
the object to be instantiated.

In the following example, the Employee role is
instantiated for object John with the listed attri-
bute values, and starting from Jan. 1, 1993.

EX14: John-empl :
INSTANTIATE-ROLE (John,EMPLOYEE)
WITH (salary : 1600000,

address : Kvia G. Cesare 57 - ROMA"
manager : %Smith)

VALID FROM 1/1/1993

5.2 Propert ies updat ing

Properties updating is an important issue in tem-
poral databases, because we have the possibility
of modifying present, past and future data wi-
thout losing the old one. Updating is not done
directly on stored data, but it is performed by in-
sertion of new components in the object history
or, more precisely, in their tirne sequences. The-
refore updating an attribute value requires the se-
lection of one or more time sequence components.
The selection is based either on the value com-
ponent, or on the valid-time component, or both.
Finally updating existing values requires the "in-
validation" of the old ones, and that is done by
acting on the transaction-time component.

We could define two different primitives to
update and insert information and impose that
when we try to update a value during a time
period where there is no correspondent time
sequence component, the request will be ignored.
But in that čase, the user should have a precise
knowledge of how data are distributed in time.
Instead, we chose to have a unique primitive to
update and insert information.

The instance to modify is selected via its iden­
tifier or retrieving it with the specification of a
query on its property values. The temporal qua-
lification of properties can be omitted. In this
čase the interval [NOW, +oo) is assumed. If the
TO part is not specified, then -f oo is assumed.

Let us suppose that P l is a time-varying pro-
perty whose value is a time sequence like the fol-
lowing:

< (v i , [VT.i ,VT/i) , [TTji , T T / i)) ,
(v 2 , [VTi2,VT/2), [TT,-2,TT/2)) , . • • >

First of ali we must retrieve ali time sequence
components whose valid-time interval overlaps
[TJI , T/i) and whose transaction-time interval ri-
ghtend point is +oo (i.e. the corresponding value
is currently valid). These components must be
modifled as follows according to five cases.
Let (vi , [VT.i ,VT/i), [TTix ,TT/i)) be such a
component, we may have the cases illustrated in
Figure 6.
We modify the old value for the portion of interval
in the object lifespan which overlaps [T,i ,T/i) ,
for the rest of the interval we insert a new com­
ponent in the time sequence.

Let us follow in detail čase a. The specified
valid-time interval partially overlaps a valid-time
interval in the time sequence. For the portion of
time which overlaps with [VT,i,VT/i) the attri­
bute value must be modified, for the part which
does not overlap with [VT,i,VT/i) a new value is
inserted. We must put:
TT/i = N0W (the time sequence component is no
more valid)
and insert three new components in the time
sequence:

(vi,[VT,i,Tji),[N0W, + 0 0)) ,
(v a l i , [Ti i ,VT/i) , [NOV, + 0 0)) ,
(vali.CVTfi.T/^.CNOU, +CO))

As we can note from the figure, after updating
we could have two or three contiguous intervals
with the same value associated with them. Even if,
we could collapse the two intervals into one in or-
der to have time sequence components with asso­
ciated different values, we chose to maintain those
intervals separated, because they represent porti-
ons of object life which have different histories
behind.

The constructs defined for properties updating
may be further enriched allowing the specification
of operators which calculate the new attribute va­
lues starting from the old ones.

5.3 Object migration

In our model, objects can migrate only along the
class hierarchy which they belong to, so we con-
sider every class as essential. An object can mi­
grate from a class C to a class C which is either a
superclass or a subclass of C with the primitives
MIGRATE [UP/DOWN].

4 8 2 Informatica 18 (1994) 467-484 A. Montanari et al.

h

ru val! T n

' i —I
VTU VT n

v, val, val,
I I I — I

(a)

T i i val, T n
I • 1

H -H
VT r

vali val, val!
I 1 — 1—I , v i , v a l i

T i l val, Tn
I • 1

, v l
VT;l VT f

vali v a l i v i

T i i val i T n
I •—I

H ' I ' I
(b)

rii valj T f l

— I
V T r

'M h val.

(c) (d) (e)

Figure 6: Cases of properties updating

EX15: MIGRATE DOWN (John.PERSON)
TO ADULT
WITH (driving-license : UD56865G9)
VALID FROM 1/1/1993

In this čase a new lifespan for the object identified
by John as an instance of ADULT starts at time
1/1/1993 and its lifespan as a member of the class
PERSONS goes on.
In the čase of migration of an object to a super-
class, we must check if that causes the violation of
domain integritv constraints for some attributes
(see par. 3.3) and delete inconsistent references.

We remember also that in order to maintain
the identitv constraint of objects, object migra­
tion does not change object identifiers. -Finallv in
our model we do not consider a hierarchv between
roles, such as introduced in [32].

6 Conclusions

Object-oriented data models have several promi-
sing features that make them suitable for being
extended with new capabilities. In this paper,
we studied a temporal extension of an existing
object-oriented conceptual model (the ORM mo­
del), focusing our attention on object evolution.
The basic features of the proposed approach to
object migration do not depend on the particular
model we chose, and, in principle, can be exten-
ded to any other object-oriented data model. The
ORM model was chosen for its particular suita-
bility in representing dynamic aspects of object

life. We discussed some alternatives for associa-
ting temporal information to attributes, to class
membership, and to role instantiations. A query
and manipulation language have been defined and
discussed, focusing on the constructs provided to
manage temporal information.

Some remaining open issues concern the defini-
tion of a formal semantics for the T-ORM defini-
tion, query and manipulation languages, and the
generalization of the notion of object evolution
to deal with changing schemas. Further work is
also needed to model temporal aspects in complex
objects, such as variations of object composition
in time.

Acknowledgments

This work has been partially supported by the
P.A.O.L.A. Consortium (Asem Resolutions, IN-
SIEL, and University of Udine) within the pro-
ject "Sistemi Multimediali per la Gestione del Pa-
trimonio" and by the Italian Consiglio Nazionale
delle Ricerche. The authors would like to thank
Nina Edehveiss for her useful suggestions. A pre-
liminary version of this paper appeared in [19].

References

[1] Ahn, L, and R. Snodgrass; A taxonomy of
time in databases. SIGMOD Record, Vol. 14,
1985, 236-246.

[2] Allen J. F.; Maintaining knowledge about
temporal intervals. Comm. ACM, Vol. 26,
No. 11, 1983, 832-843.

OBJECT MIGRATION IN... Informatica 18 (1994) 467-484 483

[3] Bolour, A, and L.J. Dekeyser; Abstracti-
ons in temporal information, Information Sy-
stems. Vol. 8, No. 1, 1983, 41-49.

[4] Brodie, M.L.; On modeling behavioral se-
mantics of databases, Proč. Int. Conf. on
VLDB, 1981, 32-42.

[5] Clifford, J., and A.U. Tansel; On an alge­
bra for historical relational databases: Two
views. ACM SIGMOD 1985, 247-265.

[6] Clifford, J., and A. Croker; Objects in time.
IEEE Data Eng., Vol. 11,-No. 4, 1988, 11-18.

[7] Dayal, U., and G.T.J. Wuu; Extending exi-
sting DBMSs to manage temporal data: an
object-oriented approach. In [29].

[8] Edelweiss, N., J.P.M. de Oliveira, and B.
Pernici; An object-oriented temporal model.
Proč. CAISE 93, Pariš, Springer Verlag, June
1993.

[9] Edelweiss, N., J.P.M. de Oliveira, E. Pe-
ressi, A. Montanari, and B. Pernici; T-ORM:
Temporal aspects in objects and roles. Proč.
ORM-1, International Conference on Object-
Role Modelling, Townsville, Australia, July
1994, 18-27.

[10] El-Sharkawi, M.E., and Y. Kambayashi;
Object migration mechanisms to support
updates in object-oriented databases. Proč.
PARBASE 1990, 378-387.

[11] El-Sharkawi M.E.; Answering queries in tem­
poral object-oriented databases. Proč. Int.
Symposium on Database Systems for Advan­
ced Applications, Tokyo, Japan, April 1991,
21-30.

[12] Fishman, D.H. et al.; Overview of the IRIS
DBMS, Chapter 10 in [16], 219-250.

[13] Gadia, S.K.; A homogeneous relational mo­
del and query languages for temporal data­
bases. ACM TODS, Vol. 13, No. 4, December
1988, 418-448.

[14] Hartmann, T, G. Saake, R. Jungclaus, P.
Hartel, and J. Kusch; Revised version of the
modeling language TROLL (TROLL Version
2.0). Tech. Rep. no. 94-03, University of Bra-
unschweig, April 1994.

[15] Kim, W., et al.; Features of the ORION
object-oriented database system. Chapter 11
in [16], 251-282.

[16] Kim, W., and F.H. Lochovsky (eds.), Object-
Oriented Concepts, Databases and Applicati­
ons, Addison-Wesley, New York, 1989.

[17] Montanari, A., and B. Pernici; Temporal Re-
asoning. Chapter 21 in [31], 534-562.

[18] Papazoglou, M.P.; Roles: a methodology
for representing multifaceted objects. Proč.
DEXA 1991, Springer Verlag, 7-12.

[19] Peressi, E., A. Montanari, and B. Pernici; T-
ORM: evolving objects and roles, Proč. 4th
International Conference on Dynamic Mode­
ling and Information Systems, A. Verbraeck,
H.G. Sol, and P.W.G. Bots (eds.), Tech. Uni-
versity Delft, Noordwijkerhout, NL, Septem­
ber 1994, 101-119.

[20] Pernici, B.; Objects with roles. Proč.
IEEE/ACM Conference on Office Inf. Syst.,
Cambridge, MA, 1990, 205-215.

[21] Pissinou, N., K. Makki, and Y. Yesha; Rese­
arch perspective on time in object databases.
In [29].

[22] Pissinou N., Snodgrass R., Elmasri R.,; Mu-
mick L, Oszu M.T., Pernici B., Segev A.,
Theodoulidis B.; Towards an infrastructure
for temporal databases - A workshop report,
SIGMOD Record, March 1994, 35-52

[23] Richardson, J., and P. Schwartz; Aspects:
Extending objects to support multiple, inde-
pendent roles. Proč. of the ACM SIGMOD
Int. Conf. on MOD, Denver, Colorado, May
1991, 298-307.

[24] Rose, E., and A. Segev; A temporal object-
oriented algebra and data model. Tech. Rep.
LBL-32013, The University of California, In­
formation and Computing Sciences Division,
June 1992.

[25] Rose, E., and A. Segev; TOOSQL - A tem­
poral object-oriented query language. Tech.
Rep. LBL-33855, The University of Califor­
nia, Information and Computing Sciences Di­
vision, March 1993.

484 Informatica 18 (1994) 467-484 A. Montanari et al.

[26] Sciore, E.; Object specialization. ACM
Trans, on Information Systems, Vol. 7, No.
2, April 1989, 103-122.

[27] Segev, A., and A. Shoshani; Logical mode-
ling of temporal data. Proč. of the ACM SI-
GMOD Conference, San Francisco, CA, May
1987, 454-466.

[28] Snodgrass, R.; The Temporal Query Langu-
age TQuel. ACM TODS, Vol. 12, No. 2, June
1987, 247-298.

[29] Snodgrass, R. (ed.); Proceedings of the Inter­
national Workshop on an Infrastructure for
Temporal Databases. Arlington, Texas, June
1993.

[30] Su, J.; Dynamic constraints and object mi-
gration. Proč. of the 16th Int. Conf. on
VLDB, September 1991, 233-242.

[31] Tansel, A.U., J. Clifford, S.K. Gadia, S. Jaj-
odia, A. Segev, and R.T. Snodgrass (eds.);
Temporal Databases: Theory, Design, and
Implementation. The Benjamin/Cummings,
1993.

[32] Wieringa, R., and W. de Jonge; The identi-
fication of objects and roles - Object identi-
fiers revisited. Technical report IR-267, Vrije
Universitv, Amsterdam, December 1991.

[33] Zdonik, S.; Object-oriented type evolution.
In Bancilhon, F., and P. Buneman (eds.), Ad-
vances in Database Programming Languages,
Addison-Wesley, 1990, 277-288.

Informatica 18 (1994) 485-490 485

A Novel Approach to Text Compression

H. U. Khan, A. Mahmood and H. A. Fatmi
Dept. of Electronic and Electrical Engineering
King's College London
The Strand, London WC2R 2LS
U.K.
udee795@bay.cc.kcl.ac.uk

Keywords: data compression, Lempel-Ziv coding, text compression

Edited by: Matjaž Gams
Received: March 4,1994 Revised: November 8, 1994 Accepted: November 17, 1994

A novel algorithm for universal text compression is presented. The proposed algorithm
is based on the concept that text compression may he regarded as a pattern recognition
problem to which several non-analytical techniques, such as Zadeh's fuzzy theories, could
then be applied. The algorithm is compared with the well known Welch algorithm, and
results are presented to demonstrate its superiority.

1 Introduction

Lossless data compression is the process of enco-
ding a body of data into a smaller one which can
be uniquely decoded back to the original data.
Many advantages are obtained by compressing
the data, and many techniques have been deve-
loped for data compression, which are described
in the literature [1, 2]. The two most common
applications of data compression are:

(1) Data communication: A sender can com-
press a data before transmitting it and the rece-
iver can decompress the data after receiving it,
thus effectively increasing the data transmission
rate of the communication channel.

(2) Data storage: Data is compressed before it
is stored and is decompressed when it is retreived,
thus increasing the capacity of the storage device.

Amongst the various techniques developed, the
most widely used ones include Huffman's arithme-
tic technique [3], Lempel and Ziv's (LZ) dictio-
nary technique [4], and Storer's textual substitu-
tion technique [5]. However, we found that the
algorithms are applicable to regions where ana-
lytical techniques completely define the compres­
sion of sequences and that further improvement
can be made by using rule base algorithm [6], ba­
sed on Zadeh's fuzzy conditional statements [7].

Since Lempel and Ziv's (LZ) pioneering work

[4, 8] in universal source coding theory, many at-
tempts have been made to improve upon their
ideas and to apply them to data compression and
other related fields. Along more practical lines,
Welch [9] implemented a modified version of Lem­
pel and Ziv's method [8]. Welch's algorithm works
well for many kinds of source data and is being
used as a file compression method in several ope-
rating systems. However, these techniques have
a theoretical limit in Shannon's theorem, which
states that the extent to which a message can be
compressed and accurately restored is limited by
its entropy [10].

This paper can be regarded as a continuation of
the improvements to the LZW method for textual
data. It is found that the LZW method can be
improved by a novel approach to text compression
as rule based pattern recognition [6, 11].

The rest of the paper is organized as follows: In
section 2, a new algorithm for decoding is presen­
ted. A čase study is given in section 3 followed by
the experimental results in section 4. The paper
in concluded in section 5.

2 The proposed algorithm

The new algorithm is organized around the Welch
(LZW) dictionary method [9]. This dictionary
maps strings of input text into fixed-length co-

mailto:udee795@bay.cc.kcl.ac.uk

486 Informatica 18 (1994) 485-490 H.U. Khan et al.

S -fcl Encoder

Codebook

Det

i

^

i

^

Compressor

r+
IN

converter

A

- * - •

Decomp ressor

Figure 1: Block diagram for compression and decompression stages

des. The LZW dictionary has a prefix property,
i.e., for every string in the dictionary, its prefix
string is also in the dictionary. For example, if a
string OJC composed of a string ui and a character
C and is in the dictionary, then w is also in the
dictionary. The dictionary is initialized to contain
ali distinguished single characters that appeared
in the input text. Each parsed input string is
postfixed by the next input character to form a
new string. The dictionary is then parsed to se-
arch for that string. If a match is found, then the
next input character is added to the string and
the dictionary is searched again. The input cha­
racters are added at the end of the string until a
unique string is obtained, which is then added to
the dictionary. Each such added string is assigned
a unique numeric code. The last added charac­
ter in the previous string becomes the beginning
character for the next string, and the process is
repeated to generate the next string to be added
in the dictionary.

The proposed algorithm operates on the LZW
dictionary to compress the text. The complete
algorithm is given below in procedural form. The
procedure Compress starts decoding from the
first two character codes in the dictionary. If two
characters are followed by the same number of
characters, then it skips the located code and mo-
ves to the next code in the sequence. If two cha­
racters are followed by more than two character
codes, the middle length(Code[index_no])-2 cha­
racters are selected and their Index Number (IN)
is output (using the procedure Output). If three or

more characters are followed by the same number
or more characters, then length(Code[index_no])-
1 characters are selected. If the code selected is
not available in the dictionary, it is split into two
parts, and the algorithm recursively searches for
the code for the split character strings in the dic-
tionary.

The function of Code(index_no) is to return
the Character Code (CC) stored against the
index_no in the dictionary, while the function
index(character_code) returns the index numbers
of the character code from the dictionary.

Various components of the compressor and the
decompressor for the proposed method are shown
in Figure 1.

Procedure Compress
Begin
Input: A text string S
Develop a dictionary on S using LZW algorithm
index_no = 1
While (length (Code (index_no))= 1) Do

index_no= index_no + 1
Output (Code (index_no))
last_output_index:=index_no
index_no = index_no + 1
While (NOT Endof(dictionary)) Do

Begin
If (length (Code(last_output_index)= 2)

and length (Code(index_no))= 2) Then
Begin

index_no = index_no + 1
Output(Code(index_no))

A NOVEL APPROACH TO... Informatica 18 (1994) 485-490 487

End
Else

If length (Code(last_output_index)= 2
and length (Code(index_no)) > 2)

Then Begin
X=Substr(Code(index_no),

length(Code(index_no) DIV 2),
length(Code(index_no)) - 2)

Output (X)
End

Else
If (length(Code(last_output_index)> 3

and length(Code(index_no)) = 2)
Then Output (Code(index_no))

Else
If (length(Code(last_output_index)> 3

and length(Code(index_no))> 3)
Then Begin

X = Substr(Code(index_no),l,
length(Code(index_no))- 1)

Output (X) •
End

last_output_index = index_no
index_no = index_no + 1

End
End

Procedure Output(X :String)
Begin

If index (X) in the dictionary Then
Output _stream = Output_stream +

index (X)
Else

Begin
Y = Substr (X, 1, length(X) DIV 2)
Z = Substr (X, length(X) DIV 2

+ 1, length(X))
Output (X)
Output (Z)

End
End

Procedure Decompress
Begin
Input: Compressed_string S Transform S into S
by replacing INs with respective CCs
output: Original_string S
End

The list of CCs generated by the procedure De­
compress will yield exactly the same string as it
was originally fed. .

3 A čase study

Let us consider the following text string as an
example to demonstrate the working of the pro-
posed algorithm.

"Most of the papers published deal with the
original work from industrial and Government la-
boratories, universities and polytechnics."

The dictionary for the above text is given in
Table 1. The dictionary is developed by using
the LZW encoding method. The symbol A in the
dictionary represents a space.

Once the encoding process is completed, it is
followed by the decoding of the string. Table 2
shows the selection of codes for decoding the text
string by using the proposed algorithm.

The reconstruction of the text starts from the
location Rowl and Columnl (R1C1) in Table 2
and ends at the locations R5C11, for this example.
The comparison of the new algorithm with the
LZW algorithm is given in Table 3.

4 Experimental res uit s

A number of texts with varying lengths were com-
pressed using both the LZW and the new algori-
thms and the results are shown in the Figures 2,3
and 4.

Figure 2 shows the total number of bytes requi-
red by the original texts, the LZW method and
the new algorithm. The new algorithm consumed
the least number of bytes as compared with the
LZW method for ali the text strings. This was
expected, as the encoding bytes in the new me­
thod were less than the LZW method as shown
in Table 3. It is also concluded that the Com­
pression Ratio (CR) will be greater as CR is in-
versely proportional to the decoded numbers as
shown in Figure 3. The comparison of percentage
compression between the LZW algorithm and the
new algorithm is shown in Figure 4. We achieved
a maximum of 68.75% compression as compared
to 50% compression achieved by the LZW algori­
thm.

488 Informatica 18 (1994) 485-490 H.U. Khan et al.

IN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

CC
M
o
s
t
A
f
h
e

P
a
r
u
b
1
i
d
w

g
n
k

IN
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

CC
m
G
v

>
y
C

q
.
Mo
os
st
tA
Ao
of
fA
At
th
he
eA
Ap

IN
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

CC
pa
ap
pe
er
rs
sA
Apu
ub
bi
li
is
sh
hed
dA
Ad
de
ea
al
1A
Aw

IN
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

CC
wi
it
thA
Ath
heA
Aor
ri

ig
gi
in
na
alA
Awo
or
rk
kA
Af
fr
ro
om

IN
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

CC
mA
Ai
ind
du
us
str
ria
alAa
an
nd
dAG
Go
ov
ve
ern
nm
me
en
nt
tAl

IN
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

CC
la
ab
bo
ora
at
to
ori
ie
es

s,
,A
Au
un
ni
iv
ver
rsi
iti
ies
sAa

IN
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

CC
and
dAp
po
ol

iy
yt
te
ec
ch
hn
nic
cs
s.

Table 1: The dictionarv for the example text using LZW algorithm

R/C Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 C l l C12 C13 C14
Rl 29 31 33 35 37 39 41 43 45 47 49 51 53 55
R2 57 59 61 63 4 38 33 67 69 71
R3 78 80 82 19 84 86 15 72 89 91
R4 5 101 103 11 105 107 109 111 113 115
R5 46 89 54 123 125 127 129 131 133

14
93
8

60
95
45

74
97
62

76
99
108

Table 2: Selected codes for decoding the original text

Text Specification LZW Alg. New Alg.
Total characters in the Text String 134 134
Total No. of bits in the Text String 938 938
Largest numeric No. in the dictionarv 114 133
Total Codes appeared for the String 107 65
Bits required 749 520
Compression ratio 1.25 1.80
Percentage compression 20.15% 44.56%

Table 3: Comparison of LZW and New algorithms

A NOVEL APPROACH TO... Informatica 18 (1994) 485-490 489

!

30000 -i

20000 •

10000 •

0 • — = + •
lk

• LZW alg.
DNevv alg.

• n . 1
2k 3k

ll
4k

Text size

• 1
5k

Figure 2: Size of compressed files

Co
m

pr
es

sio
n

ra
tio

4 -j

3 •

2 •

0 •

__

1 1 i\ II JI 11
• LZVValg.
D New alg.

\f\
J" i -i

1 2 3 4 5

Text file

Figure 3: Comparison of compression ratio be-
tween LZW algorithm and New algorithm

Figure 4: Comparison of Percentage compression
between LZW algorithm and New algorithm

5 Conclusions

This paper introduced a novel text compression
method which is better than the LZW method.

The experimental results show that a conside-
rable improvement in the compression ratio is ob-
tained when the LZW method is replaced in the
decoding part by the proposed non-analytical new
algorithm, which removes the redundancv from
the LZW algorithm and improves the compres­
sion ratio.

Furthermore, the design and implementation of
the proposed algorithm is easy to accomplish in
terms of both the hardware and the software.

In addition, simulation results on the new algo­
rithm compare favourably with existing methods
and are found to be extremely promising. The
new algorithm has shown excellent performance
with respect to compression ratio capability of
text of different sizes.

References

[1] D. Gottlieb, S. A. Hagerth, P. G. H. Le-
hot and H. S. Rabinowitz: A classification of
compression methods and thier usefulness for
a large data processing centre, in Proč. Nat.
Comput. Conf., Vol 44, pp. 453-458, 1975.

[2] T. BeU, I. H. Witten and J. G. Cleary: Mode-
ling for Text Compression. Computing Sur-
veys, Vol 21, No 4, pp. 557-591,1989.

490 Informatica 18 (1994) 485-490 H.U. Khan et al.

[3] D. A. Huffman: A Method for the Construc-
tion of Minimum-Redundancy Codes. Proce-
eding of the IRE, Vol 40, No 9, pp. 1098-1101,
1952.

[4] J. Ziv and A. Lempel: A universal algorithm
for sequential data compression. IEEE Trans.
Inform. Theorv, Vol IT-23, No 3, pp. 337-343,
1977.

[5] J. A. Storer and T. G. Szvmanski: Data com­
pression via textual substitution. Jour. ACM,
vol 29, No 4, pp. 928-951, 1982.

[6] H. U. Khan, J. Ahmad, A. Mahmood and
H. A. Fatmi: Text compression as rule based
pattern recognition. IEE Electronics Letters,
Vol 29, No 20, pp. 1752-1753, 1993.

[7] L. A. Zadeh: Outline of a new approach to
the analvsis of a complex svstem and decision
processes. IEEE Trans. SMC, Vol 3, No 1, pp.
28-44, 1973.

[8] J. Ziv and A. Lempel: Compression of indivi-
dual seauences via variable-rate coding. IEEE
Trans. Inform. Theorv, Vol IT-24, No 5, pp.
530-536, 1978.

[9] T. A. Welch:>l technique for high-performan-
ce data compression. IEEE Computer, Vol
17, No 6, pp. 8-19, 1984.

[10] C. E. Shannon: A Mathematical Theorv of
Communications. Bell Svstem Tech. Jour.,
Vol 27, pp. 379-423 and 623-656, 1948.

[11] H. U. Khan and H. A. Fatmi: Text compres­
sion using rule based encoder. IEE Electro­
nics Letters, Vol 30, No 3, pp. 199-200, 1994.

Informatica 18 (1994) 491-500 491

Recovering 3-D Motion and Structure

Tarek M. Sobh
Department of Computer Science, Universitv of Utah
Salt Lake City, UT 84112, U.S.A.
E-mail: sobh@cs.utah.edu

Keywords: computer vision, robotics, motion recoverv, filtering, estimation, image flow

Edited by: Rudi Murn

Received: March 1, 1994 Revised: November 17, 1994 Accepted: November 24, 1994

We discuss the problem of recovering the 3-D motion and structure. An algorithm for
computing the camera motion and the orientation of planar surface is developed. It
solves for the 3-D motion and structure iteratively given two successive image frames.
We improve the solution by solving the ordinary differential equations which describe
the evolution of motion and structure over tirne. The solution is further improved by
exploiting the temporal coherence of 3-D motion. We develop the ordinary differential
equations which describe the evolution of the parameters in terms of the current para-
meters and the measurements. The extended Kalman filter is then used to update the
solution ofthe differential equations. The robustness of the entire process is demonstra-
ted by the experiment with a moving camera which "flies" over a terrain model. This
work also examines the possibilities for errors, mistakes and uncertainties in visual sen-
sing systems. We suggest techniques for recovering these 3-D uncertainties, and present
examples for determining the parametric evolution of a scene under uncertainty.

1 Introduction

The problem of recovering scene structure and the
camera motion relative to the scene has been one
of the key problems in computer vision. Many
techniques have been developed for the estima­
tion of structure and motion parameters (Tsai
and Huang [5], Weng et al. [8] e tc) . A lot of
existing algorithms depend on evaluating the mo­
tion parameters between two successive frames in
a sequence. However, recent research on struc­
ture and motion has been directed towards using
a large number of frames to exploit the history of
parametric evolution for a more accurate estima­
tion and noise reduction (Ullman [6], Grzywacz
and Hildreth [1], Iu and Wohn [2] etc.)

In this paper we describe a method for recove­
ring the 3-D motion and orientation of a planar
surface from an evolving image sequence. The al­
gorithm utilizes the image flow velocities in order
to recover the 3-D parameters. First, we deve­
lop an algorithm which iteratively improves the
solution given two successive image frames. The

solution space is divided into three subspaces -
the translational motion, the rotational motion
and the surface slope. The solution of each sub-
space is updated by using the current solution of
the other two subspaces. The updating process
continues until the motion parameters converge,
or until no significant improvement is achieved.

Second, we further improve the solution pro-
gressively by using a large number of image frames
and the ordinary differential equations which de­
scribe the evolution of motion and structure over
tirne. Our algorithm ušes a weighted average of
the expected parameters and the calculated pa­
rameters using the 2-frame iterative algorithm as
current solution and continues in the same way
till the end of the frame sequence. Thus it keeps
track of the past history of parametric evolution.

The solution is further improved by exploiting
the temporal coherence of 3-D motion. We deve­
lop the ordinary differential equations which de­
scribe the evolution of motion and structure in
terms of the current motion/structure and the

mailto:sobh@cs.utah.edu

492 Informatica 18 (1994) 491-500 T. M. Sobh

measurements (the 2-D motion vectors) in the
image plane. As an initial step we assume that
the 3-D motion is piecewise uniform in tirne. The
extended Kalman filter is then used to update the
solution of the differential equations. The system
was tested on a sequence of images obtained by
the motion of a camera over a planar surface.

We also examine the sources of uncertainty
in visual sensing systems, and present a method
for the recovery of 3-D estimates for motion and
structure of an evolving scene. Our method uti-
lizes the uncertainty in the 2-D estimates for the
image motion to recover the 3-D uncertainty in
the actual world parameters.

2 3-D Modeling
One can model an arbitrary 3-D motion in terms
of stationary-scene/moving-viewer as shown in Fi­
gure 1.

The optical flow at the image plane can be rela-
ted to the 3-D world as indicated by the following
pair of equations originally derived by Longuet-
Higgins and Prazdny [3], for each point (x,y) in
the image plane :

vx = \x\ - ^}+[xyax - (i + x2) QY + yaz}

vy = {y% - ^}+[(i + v2) &x - xytty - ^z)
>

where vx and vy are the image velocity at image
location (x,y), (VX,VY,VZ) and (^lx,^Y,^z)
are the translational and rotational velocity vec­
tors of the observer, and Z is the unknown dis-
tance from the camera to the object.

For planar surfaces, the Z function is simply
pX + qY + Z0, where p and q are the planar sur­
face orientations. The situation becomes, for each
point, two equations in eight unknowns, namely,
the scaled translational velocities VX/Z0,VY/Z0

and Vz/Z0, the rotational velocities Q,x,0,y and
Viz and the orientations p and q. DifFerential me-
thods could be used to solve those equations by
differentiating the flow field and by using appro-
ximate methods to find the flow field derivatives.
The existing methods for computing the derivati­
ves of the flow field usually do not produce accu-

rate results. Our algorithm ušes a discrete me­
thod instead, i.e, the vectors at a number of po-
ints in the plane is determined and the problem
reduces to solving a system of nonlinear equati-
ons, a pair of equations represents the flow at each
point as follows :

vx = (1 - px - qy) (x% -%) +
[xy£lx - (1 + x2) aY + yttz]

vy = (l-px- qy) (t/g- - g -) +
[(1 + y2) ilx - xyaY - x£lz]

It should be noticed that the resulting system
of equations is nonlinear, however, it has some
linear properties. The rotational part, for exam-
ple, is totally linear, also, for any combination
of two spaces among the rotational, translatio­
nal and slope spaces, the system becomes linear.
For the system of equations to be consistent, we
need the flow estimates for at least four points, in
which čase there will be eight equations in eight
unknowns.

3 Two-Frame Algorithm
The algorithm takes as input the estimate of the
flow vectors at a number of points > 4 obtained
from motion between two images. It iterates
updating the solution of each subspace by using
the solution of the other two subspaces. Each
update involves solving a linear system, thereby
it requires to solve three linear systems to com-
plete a single iteration. This process continues
until the solution converges, or until no significant
improvement is made. The algorithm proceeds as
follows :

1. Set p, q = 0;
input the initial estimate for rotation ;
Solve the linear system for translation;

2. Use the translation and rotation from step 1 ;
Solve the linear system for the slope ;

3. Set i=l ;
While (i < Max. Iterations)
and (no convergence) Do

Solve for the rotations using latest
estimates of transkrtions, p and q;

RECOVERING 3-D MOTION... Informatica 18 (1994) 491-500 493

a7 . u

Figure 1: 3-D Formulation for Stationary Scene/Moving Viewer

Solve for the translations using latest
estimates of rotations, p and q;
Solve for p, q using latest estimates
of translations and rotations;

end While :

3.1 Complex i ty Analysis

As we mentioned earlier, one should notice in
the equations relating the flow velocities with the
slope, rotational and translational velocities that
they are "quaši-linear" , if one can say so. The
equations exhibit somelinear propertieš. This su-
ggests that a purely iterative technique for solving
non-linear equations might not be an excellent
choice, since, the variables are linearly related in
some way. To think of a way of "inverting" the
relations might be a good start, although to do
that without a framework based on iterating and
gravitating towards a solution is not a good idea.

This makes one think of applying a method
which converges faster than a purely iterative
scheme like Newton's method. However, the com-
plexity of Newton's method is determined by the
complexity of computing the inverse Jacobian,
which is of an order of N3, or ./V2,81 multiplicati­
ons as the lower bound using Strassen's technique.
In our čase, since we have at least 8 equations in
8 unknowns, the complexity is of order 83 = 512
multiplications at every iteration, and the method
does not make any use of the fact that the set of
equations at hand exhibits some linear propertieš.

The algorithm proposed, on the other hand,
makes very good use of the fact that there are
some linearity in the equations, by inverting the

set of relations for each subspace at every itera­
tion. The complexity at every iteration is of the
order of the complexity of computing the pseudo-
inverse which is of the order of (3 3 + 3 3 + 23)
multiplications at each iteration, where the first
3 comes from solving the system for the rotati­
onal variables, the second 3 is for the translati­
ons, the last 2 is for p and q. This is equal to
62 multiplications at every iteration, which is si-
gnificantb/ less than the 512 multiplications in a
method like Newton's for example. It was noticed
that the algorithm converged to solution in a very
small number of iterations for most experiments
we have conducted so far. The maximum number
of iterations was 7.

Using the latest solution obtained from the two-
frame analysis as the initial condition for the next
two-frame problem in the image sequence would
further decrease the complexity, as the next set
of parameters would, most probably, be close in
values to the current parameters, thus the num­
ber of iterations needed to converge to the new
solution would decrease significantly.

3.2 Observations

- The algorithm is not sensitive to the initial
condition of the orientation parameters. The
plane is simply assumed to be a frontal one at
the beginning. The slope parameters evolves
with iterations.

- The algorithm is sensitive to input noise just
like other existing algorithms, some experi-
ments shows the sensitivity with respect to
the change of viewing angle, table 5 inclu-
des some results of those experiments. Si-

494 Informatica 18 (1994) 491-500 T. M.Sobh

milarly, the algorithm performs better for a
large number of points that are evenly distri-
buted throughout the planar surface, than it
does for clustered, smaller number of image
points.

- It is proven that there exists dual solutions
for such systems. However, if our method
gravitates towards a "fixed point" in the so-
lution space we can find the other explicitly
in terms of the first one from the relations
given by Waxman and Ullman [7].

4 Multi-Frame Algorithm

The ordinary differential equations that describe
the evolution of motion and structure parameters
are used to find the expression for the expected
parameter change in terms of the previous para­
meter estimates. The expected change and the
old estimates are then used to predict the current
motion and structure parameters.

At time instant t, the planar surface equation
is described by

Z = pX + qY + Z0

To compute the change in the structure parameters
during the time interval dt, we differentiate the
above equation to get

dZ__ dX_ dp dY_ dq_ dZ^
~dJ~P~dT+ ~dt+q~d7+ ~dl + ~dT

The time derivatives of (X, Y, Z) in the above
expression are given by the three components of
the vector — (V + SI x R) that represent the re-
lative motion of the object with respect to the
camera. Substituting these components for the
derivatives and the expression pX + qY + Z0 for
Z we can get the exact differentials for the slopes
and Z0 as

dZ0 = Z0 [(SlY + VX)p - (SlX - Vy)q - VZ} dt

dp = \p(SlYp -Slxq) + (fiy + Sizq)\dt

dq = [q(Slyp -Slxq)~ (®>X + Slzp)] dt

Using the above relations, we can compute the
new structure parameters at time t + dt as

p = p + dp , q = q + dq and Ž0 = Z0 + dZ0

Thus the slope parameters evolve at time t+dt
as follows :

P
4

= p
q

Q,Yp-0,xq SI z &Y ,.
-ctz siYp - sixq -six ^

The new translational velocity V at time t + dt
can be found in the absence of accelerations from

V = V + VxSldt

Dividing V by Z0 we get the new expected
scaled translational velocity components at time
t -f dt as follows :

[Vir 1
VY

L Vz J
=

\VX]
VY

L Vz J

r vx i
VY

VZ

where s is expressed as follows :

s = (Jly + Vx)p - {SlX ~ VY) q - Vz

The expected rotational parameters at time i +
dt remain equal to their values at time t since

fi = fi|fix Sldt = SI

and thus

(six,siY,siz) = (six,siY,siz)

Our first multi-frame algorithm ušes a weighted
average of the expected parameters at time t + dt
from the above equations and the calculated para­
meters using the two-frame iterative algorithm as
the solution at time t + dt, and continues in the
same way until the end of the frame sequence.
Thus it keeps track of the past history of para-
metric evolution. We further develop the first
multi-frame algorithm to exploit the temporal co-
herence of 3-D motion. We develop the ordinary

RECOVERING 3-D MOTION... Informatica 18 (1994) 491-500 495

differential equations which describe the evolu-
tion of motion and structure in terms of the cur-
rent motion/structure and the two-dimensional
flow vectors in the image plane. We assume that
the 3-D motion is piecewise uniform in time, i.e,

fi = V = 0. We then use the equations expres-
sing the time derivative of the slope derived above
and the fact that the derivative of the rotational
velocities is zero and develop the following expres-
sions for the scaled translational velocities and the
depth Z0 :

dt = -Vx4 z~0~df^
dVY

dt

= -Vz

= -VY

1 dZ„
Zo dt

i* and

Zo dt VZ pvx - qvy

The extended Kalman filter is then used to
update the solution of the differential equations.
Where the state vector can be written as :

X = [Vx VY Vz nx Sly Slz P q)

and the measurement vector is expressed as :

ij — [UX Uy Sx Sx gy Sy gt ^ J

The behavior of the two-frame algorithm and
the multi-frame algorithm can be conceptualized
as a control system as shown in Figures 2 and 3.

5 Results for the Two-Frame
and Multi—Frame Algorithms

The algorithm was run on a sequence of image
data. The images were those of a planar surface
being approached by a video camera mounted on
a robot arm. The plane consisted of 120 dots.
The sequence simulated the situation where an
airplane approaches a runway for landing. One
may think of the dots as lights to guide the air­
plane during a night landing. The actual rota­
tional and translational velocities between each
two subsequent shots were £lx = —3°, Q,y = 0°,
Clz = - 5 ° , Vx = 0 mm, VY = 10 mm and
Vz = 20 mm. To determine the flow vectors,
the first order moments were used to calculate the
center of mass of each one of the dots in the image

sequence and then they were matched across the
image sequence. Thus, there were 120 points at
which the x and y displacements were available as
the approximation to the flow velocities. In real
image date, more elaborated flow recovery algori­
thm should be used in order to determine the flow
field accurately. Figures 4 and 5 show the image
sequence that was used.

Tables 1 and 2 show the recovered and actual
parameters when the two-frame algorithm is used.
Tables 3 and 4 include the parameters computed
from the multi-frame algorithm. Table 5 includes
the results of varying the view angle for the two-
frame algorithm. It should be noted that some
of the parameters improved significantly when we
used the fUtering mechanism. The translational
velocities in the y and z directions and the plane
orientation in the y direction were recovered more
accurately at the end of the sequence using the se-
cond algorithm. However, error propagation cau-
sed a slight deterioration in the recovered values
of a few parameters at the end of the experiment.

6 Modeling 3-D Uncertainties

In this section we utilize uncertainties in visual
sensing to recover 3-D structure and motion cha-
racteristics of a scene under observation. The
computed uncertainties are used for reconstruc-
ting the evolving scene.

Figure 6 depicts the sequence of steps that are
to be performed in order to recover the full world
uncertainty from 2-D measurements on the image
plane. We concentrate on identifying methods
by which the 2-D uncertainty could be transfor-
med into meaningful 3-D interpretations that the
observer can use reliably in order to recover the
world parameters.

7 Recovering 3-D Uncertainties

We suggest the usage of the classical formulation
for 3-D parameter recovery from 2-D displace-
ment vectors, but using 2-D error distributions as
estimates for motion and/or feature coordinates
in order to compute 3-D uncertainty distributions
for the real world motion vectors and structure in-
stead of singular values for the world parameters.

496 Informatica 18 (1994) 491-500 T. M.Sobh

Image Sequence
Structure / Motion

Two - Frame
Algorithm

Recovered Parameters

Figure 2: Two Frame Algorithm as a Control System.

Image
nce Two - Frame

Algorithm

Initial
Conditions

,r
V

Updating

Mechanism

Solution

Figure 3: Multi-Frame Algorithm as a Control System.

Image 1 Image 2

Image 3 Image 4

Figure 4: The Image Sequence (Image 1 —> Image 4)

Image 5 Image 6

Image 7 Image 8

Figure 5: The Image Sequence (Image 5 —> Image 8)

Parameters

nx
ny
az
vx
Vy

vz
P
q

11 ->- 12

-0.096
-0.162
-2.537
1.691
9.25
15.46
13.14

30.875

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
17.32
12.25

12 -y 13

0.762
-0.042
-2.889
1.25
10.71
15.22
4.7

22.95

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
16.56
13.34

13 -y 14

0.429
0.016
-2.82
1.276
8.22
17.55
9.76
29.99

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
14.36
18.56

14 -y 15

-0.224
0.108
-3.005
1.12
4.8

18.23
9.05

33.84

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
12.12
22.73

Table 1: Recovered Parameters using the 2-Frame Algorithm (Image 1 —• Image 5)

RECOVERING 3-D MOTION... Informatica 18 (1994) 491-500 497

Parameters

*"X

ny
nz
vx
Vy

vz
P
9

15 -y 16

-0.136
0.072
-2.297
0.806
2.963
18.53
17.94
13.57

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
13.67
37.38

16 -y n

-2.9
-3.7
-5.32
2.16
5.54
11.35
22.04
25.04

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
10.23
45.51

17-y 18

-3.04
-0.159
-3.802

0.7
7.167
16.934
15.07
71.06

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
4.42
78.36

Table 2: Recovered Parameters using the 2-Frame Algorithm (Image 6 —> Image 8)

Parameters

nx
ay
s%
vx
Vy
Vz
P
9

n -y 12

-0.1
-0.214
-2.64
1.634
9.933
14.49
11.01
26.5

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
17.32
12.25

12 -> 13

0.29
-0.045
-2.87
1.18

10.23
15.67
10.07
20.87

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
16.56
13.34

13 -y 14

0.358
-0.014
-2.95
1.054
9.89
16.98
11.024
25.88

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
14.36
18.56

14 -y 15

-0.23
0.0198
-3.19
0.765
8.45

18.045
10.67
28.78

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
12.12
22.73

Table 3: Recovered Parameters using the Multi-Frame Algorithm (Image 1 —• Image 5)

Parameters

ilx

ay
ft2

vx
Vy

vz
P
9

15 -y 16

-0.65
0.023
-2.784
0.453
6.56

19.032
14.52
26.57

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
13.67
37.38

16 -y n

-2.83
-0.86
-4.313
0.729
7.14
17.62
20.45
36.47

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
10.23
45.51

/7 -y 18

-2.931
-0.64
-4.157
0.57
8.85
18.94
11.293
75.025

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
4.42
78.36

Table 4: Recovered Parameters using the Multi-Frame Algorithm (Image 6 —• Image 8)

Parameters

nx
«v
n,
K
Vy

vz
P
9

Actual

-3.0
0.0
-5.0
0.0
10.0
20.0
4.42
78.36

38°

-3.01
0.16
-3.78
0.768
7.093
16.518
15.124
70.502

34°

-2.986
0.149
-3.729
0.722
7.023
15.325
16.113
70.547

29°

-2.787
0.165
-3.521
0.812
6.835
14.313
16.725
68.463

25°

-2.411
0.176
-3.176
1.242
6.251
13.826
16.937
66.165

20°

-1.923
0.318
-1.983
2.724
4.872
14.178
19.255
63.361

10°

2.483
0.015
-0.157
3.476
2.489
11.415
17.837
61.163

Table 5: Effect of Varving the View Angle on the Recovered Parameters (Image 7 —• Image 8)

498 Informatica 18 (1994) 491-500 T. M. Sobh

2-D Data

Sensor
Uncertaintv

Full2-D
Uhcertainty

Reflned 2-D
Uncertaintv

Strategv
Uncertainty

Recovered 3-D
Uncertaintv Models

•

3-D Data

Figure 6: Propagation of Uncertainty

seems also to be a very attractive alternative. The
moment generating function M of a linear combi-
nation of random variables, for example X\, X2
can be written as :

MaXi+bx2+c(t) = ect (MXl(at)MX2(bt))

for independent random variables X\, X2.
That is, the problem of solving linear systems on
the form Ax = b, where b is a vector of random
variables, may be reduced to finding closed form
solutions for x in terms of the random parameters
(using any elimination technique) and then mani-
pulating the results and finding different expecta-
tions using moment generating or characteristic
functions.

The solutions we suggest to this problem of
finding the random variable solution of the 3-D
motion and structure parameters utilize the te-
chniques we described in the previous sections.
Using either the two-frame iterative technique or
the multi-frame algorithm, it should be noticed
that the problem reduces to either solving multi-
linear systems or a single one; but in random va­
riables instead of singular values. In that čase,
using elimination and characteristic functions for
computing the required expectations and distri-
butions is straight forward. As an example, the
recovered 3-D translational velocity cumulative
density functions (CDF) for an actual world mo­
tion of a robot gripper in our experiment equal:

As an example to illustrate the idea, let's as-
sume that we have a linear system of equations
as follows :

x + Sy = Z-L

2x + y = z2

The solution of this system is very easily ob-
tained as :

3 1 x = -z2 - -z-i o o

2 1

That is, a linear combination of the right hand
side parameters. If the parameters z\ and z2 were
random variables of known probability distributi-
ons instead of constants, then the problem be-.
comes slightly harder, which is, to find the linear
combination of those random variables as another
random variable. The obvious way of doing this
would be to use convolutions and the formula :

Pxl+x2{y) = ^2Px,,x2(x,y-x)
R

for the sum of two random variables X\, X2 for
any real number y and/or the formula for linear
combinations over the region R, which is for ali x
such that Px-i,x2{x->y~x) > 0- Using the moment
generating function or the characteristic function

RECOVERING 3-D MOTION... Informatica 18 (1994) 491-500 499

.Vx = 0 cm, Vy = 0 cm and Vz = 13 cm
is shown in figure 7. It should be noted that the

recovered distributions represents a fairly accu-
rate estimation of the actual 3-D motion.

8 The Experimental
Uncertainty Recovery System

The design and the experiments for the proposed
uncertainty recovering formulation were perfor-
med on the architecture shown in Figure 8. The
agent under observation is the Lord experimental
gripper and is mounted on a PUMA 560. The
robot and the hand are essentially moved by an
external operator to perform some actions on a
set of objects lying on a table.

The observer sensor is another PUMA 560 on
which a camera is mounted. The low level visual
feature acquisition is performed on the MaxVi-
deo pipelined video processor at frame rate. In
particular, there are two separate paths from the
vision sensor. One path is for the computation of
the hand 3-D position and orientation and this is
done through the MaxVideo. The other path (the
inner loop) is done on a SparcStation, in which the
image processing modules resides, those modules
compute 2-D cues from the scene under observa­
tion. Identification of objects, their location with
respect to the hand and establishing contact, and
correlation procedures are ali performed within
the inner loop. The 2-D to 3-D conversion and
probability computations are performed on ano­
ther SparcStation. Thus future modifications and
enhancements could be coded and executed in a
simple and modular fashion. Enhanced Low-level
modules for segmentation and 2-D understanding
of the image and to accommodate different kinds
of objects in the scene could be coded within the
inner-loop computer module.

9 Conclusions

The recovery methods described here have a va-
riety of applications. It can be useful in vision-
guided applications such as autonomous landing
and navigation. It may be a starting point for
determining global structure - motion analysis of
entire polyhedra, making it suitable for robotics
applications in the "moving blocks world". Pa-

rallel implementations could be designed for such
problems, thus solving for the structure - motion
parameters for each surface separately. In fact,
solving the linear system at each iteration could
also be parallelized. We have also demonstrated
that the uncertainty in 2-D sense data can ac-
tually be utilized for recovering the motion and
structure of a scene under observation robustly.

10 Acknowledgments
The author wishes to extend his thanks to Profes-
sor Kwangyoen Wohn_for initiating the work on
the Two-Frame and Multi-Frame algorithms and
for supplying the preliminary software version for
them.

References
[1] N.M. Grzywacz and E.C. Hildreth, The Incre-

mental Rigidity Scheme for Recovering Struc­
ture from Motion: Position vs. Velocitv Based
Formulations, MIT A.I. Memo No. 845, Octo-
ber 1985.

[2] S-L. Iu and K. Wohn, "Estimation of 3-D Mo­
tion and Structure Based on a Temporally
Oriented Approach with the Method of Re-
gression", IEEE Workshop on Visual Motion,
March 1989, Irvine, CA, 273-281.

[3] H.C. Longuet-Higgins and K.Prazdny, The in-
terpretation of a moving Retinal Image, Proč.
Royal Society of London B, 208, 385-397,
1980.

[4] M. Subbarao and A.M. Waxman, On The
Uniqueness of Image Flow Solutions for Pla-
nar Surfaces in Motion, CAR-TR-113, Cen­
ter for Automation Research, University of
Maryland, April 1985.

[5] R.Y. Tsai and S.T. Huang, "Estimating three-
dimensional motion parameters of a rigid pla-
nar p&tch",IEEE Transactions on Acoustics,
Speech and Signal Processing,' ASSP-29(6),
December 1981.

[6] S. Ullman, Maximizing Rigiditu: The incre-
mental recoverv of 3-D structure from rigid
and rubberv motion, Al Memo 721, MIT Al
lab. 1983.

500 Informatica 18 (1994) 491-500 T. M. Sobh

CDF(Vx)

2.00 0.00 ZO0 4.00 6.00 8 0O 100.00 120.00 140.00 lffl.00

Figure 7: Cumulative Density Functions of the Translational Velocitv

Micro Vax II

Target Position
2 Hz)

Sun 3/260 Sun SparcStation 1

Refined Data

Figure 8: The Architecture of the Svstem

[7] A.M. Waxman and S. Ullman, Surface Struc-
ture and 3-D Motion From Image Flow: A
Kinematic Analysis, CAR-TR-24, Center for
Automation Research, Universitv of Mary-
land, October 1983.

[8] J. Weng, T.S. Huang and N. Ahuja, "3-D
Motion Estimation, Understanding and Pre-
diction from Noisy Image Sequences", IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-9(3), May 1987.

Informatica 18 (1994) 501

Report: PARLE'94 - Parallel Architectures and Languages in
Europe

July 2 - 7 , 1994, Athens, Greece.

Borut Robič

Parallel processing is now well established wi-
thin the high performance computing technology
and constitutes the main thrust towards the de-
velopment of new products and solutions which
pose demand for large scale computation. From
that point of view parallel processing is of stra-
tegic importance not only for the informatics in-
dustry, but also for a wide area of applications.
Porting classical applications to the already exi-
sting parallel machines, developing new applicati­
ons which would be infeasible in the realm of the
uniprocessor, and designing new more powerful
parallel computers has become the "new world"
for the computer scientists, the engineers and the
implementors. It is anticipated that the impact of
parallelism will be not only on the computer in-
dustry, but also on other industrial sectors. The
whole economy will be affected by parallelism in
the near future.

PARLE is the main scientific event on parallel
processing held in Europe. It is an internatio-
nal conference focusing on parallel computer lan­
guages, and architectures. Since its origination
in 1987 as an initiative coming from ESPRIT I
program, it has grown to a major event which
has assumed high international reputation and is
the European forum on parallelism. From 1995
onwards it will continue as EURO-PAR confe­
rence, as a result of merging of PARLE and CON-
PAR/VAPP events.

PARLE'94 was organized in Athens by the
Computer Technology Institute at Patras, Gre­
ece (C.T.I.) as the sixth in a series of similar
events. Authors submitted over 250 papers of
which 84 (from 21 countries) were selected and
presented at the conference. There were 21 ses-
sions running in two tracks: Interconnection Ne-
tworks I and II, Compiling Techniques, Special
Purpose Systems, Communication Protocols, Al-
gorithms for Multiprocessor Networks, Program-
ming Environments, Scientific Computing, Per­
formance Evaluation, Data Distribution, Cache
Systems, Language Issues, Language Implemen-

tation, Applications, System Evaluation, Schedu-
ling, Semantics, Load Balancing, Parallel Algo-
rithms, Miscellanea, and Poster Session. Invi-
ted talks discussed theoretical and practical issues
in structural parallel algorithms (Uzi Vishkin),
evolution and challenges of multithreaded com­
puter architectures (Guang Gao), and parallelism
in relational databases (M. Hoevenaars). Of the
papers, let us mention those dealing with impro-
ved probabitistic routing in generalized hypercu-
bes (A.G.Ferreira, M.D.Grammatikakis), multi-
searching problem for hypercubes (M.J.Attalah,
A.Fabri), hierarchical activation management te-
chniques for fine-grain multithreaded execution
(C.Kim, J.-L. Gaudiot), array processor architec-
ture for matrix computations (S.P.S.Lam), ma-
pping with parallel simulated annealing (B.Robič,
J.Sile), performance of interconnection network
in multithreaded architectures (S.S.Nemaviarkar,
R.Govindarajan, G.R.Gao, V.K.Agarival), paral­
lelism of data (C. V.Papadopoulos), and some new
ideas on the definition of the speedup (W.Ertel).
Tutorials were given by Franco P. Preparata
(Models and Fundamental Techniques of Parallel
Computation), Dough Degroot (Controlling and
Limiting Dynamic and Speculative Parallelism),
L.O.Herzberger (Parallel Computing Architectu­
res), and Peter Kacsuk (Parallel Implementations
of Logic Programs).

The organization of the PARLE'94 conference
was excellent. The proceedings are published in
Lecture Notes in Computer Science, vol. 817
(Springer-Verlag).

502 Informatica 18 (1994)

This is a Call For Papers for a special journal issue of INFORMATICA on the topic:

MIND <> COMPUTER
[i.e. Mind NOT EQUAL Computer]

MOTIVATION:
Recent progress in Al (or, as some people would
say, the lack of progress) brings to mind papers by
Winograd, Drejrfus, etc. that question the possi-
bility of achieving "strong" AL Was the scientific
community correct when rejecting their ideas ye-
ars ago?

In this special issue we want to re-evaluate the
soundness of current Al research positions, espe-
cially the heavily disputed strong-AI paradigm,
and explore new approaches that aim to achieve
true intelligence.

The core of this special issue will be a small
number of invited papers, including papers by Wi-
nograd, Dreyfus, Michie, McDermott, Agre, Te-
cuci, etc. Here, we are soliciting additional papers
on the topic.

TOPICS:
Papers are invited in ali subareas and aspects of
the above topic, especially in:

- Current state, positions, and "real" advance-
ments achieved in the last 5 years (as opposed
to parametric improvements).

— Trends, perspectives and foundations of na-
tural and artificial intelligence.

- Strong Al versus weak Al versus the reality
of most "typical" publications in AL

— New directions in Al.

FORMAT AND REVIEWING PROCESS:
Papers should not exceed 8,000 words (including
figures and tables but excluding references. A full
page figure should be counted as 500 words). Ide-
ally 5,000 words are desirable. If accepted, the
authors will be invited to transform their manu-
scripts into the Informatica LaTeX style.

Each paper will be refereed by at least two ano-
nymous referees outside the author's country and
by an appropriate subset of the program commit-
tee.

TIME TABLE AND CONTACTS:
Papers in 5 hard copies should be received by
May 15, 1995 at one of the following addresses
(no email/fax submissions):

North & S. America - Jim Geller
New Jersey Institute of Technology
CIS Department
323 Dr. King Blvd:
Newark, NJ 07102, USA
geller@vienna.nj i t . e d u

Asia, Australia - Xindong Wu
Department of Software Development, Monash
University,
Melbourne, VIC 3145, Australia
xindong@insect.sd.monash.edu.au

Europe, Africa - Matjaž Gams
Jožef Štefan Institute, Jamova 39,
61000 Ljubljana, Slovenia, Europe
matj az.gams@ij s . s i

E-mail information about the special issue is
available from the above 3 contact editors.

The special issue will be published in late 1995.
Depending on the number and quality of submis­
sions there is a possibility for the special issue to
be reproduced as or extended to a book.

More information about Informatica and the
special issue can be accessed through URL:
f tp : / / f tp . a rnes . s i /magaz ines / in fo rmat i ca .

mailto:geller@vienna.nj
mailto:xindong@insect.sd.monash.edu.au
ftp://ftp.arnes.si/magazines/informatica

Informatica 18 (1994) 503

THE MINISTRY OF SCIENCE AND TECHNOLOGY
OF THE REPUBLIC OF SLOVENIA

Address: Slovenska 50, 61000 Ljubljana, Tel.: +386
61 1311 107, Fax: +386 61 1324 140.
Minister: Prof. Rado Bohinc, Ph.D.
State Secretarv for Int. Coop.: Rado Genorio, Ph.D.
State Secretarv for Sci. and Tech.: Ciril Baškovič
Secretarv General: Franc Hudej, Ph.D.

The Ministrv also includes:
The Standards and Metrologv Institute of the Repu-
blic of Slovenia
Director: Peter Palma
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 314 882.
and
The Industrial Propertv Protection Office of the Re-
public of Slovenia
Director: Bojan Pretnar, Ph. D.
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61
1312 322, Fax: +386 61 318 983.

Scientific Research and Development Potential.
The statistical data for 1993 showed that there were
180 research and development institutions in Slovenia.
Altogether, they emploved 10,400 people, of whom
4,900 were researchers and 3,900 expert or technical
staff.

In the past ten years, the number of researchers has
almost doubled: the number of Ph.D. graduates incre­
ased from 1,100 to 1,565, while the number of M.Se.'s
rosefrom 650 to 1,029. The "Young Researchers" (i.e.
postgraduate students) program has greatly helped to-
wards revitalizing research. The average age of rese­
archers has^been brought down to 40, with one-fifth of
them being vounger than 29.

The table below shows the distribution of resear­
chers aceording to educational level and sectors (in
1993):

Sector Ph.D. M.Sc.
Business enterprises
Government
Private non-profit organizations
Higher education organizations
Total

51
482

10
1022

1,565

196
395

12
426

1,029

Financing Research and Development. Stati­
stical estimates indicate that US$ 185 million (1,4%
of GDP) was spent on research and development in
Slovenia in 1993. More than half of this comes from
public expenditure, mainly the state budget. In the
last three years, R&D expenditure by business organi­
zations has stagnated, a result of the current economic
transition. This transition has led to the financial de-

cline and increased insolvency of firms and companies.
These cannot be replaced by the growing number of
mainly small businesses. The shortfall was addres-
sed by increased public-seetor spending: its share of
GDP nearly doubled from the mid-seventies to 0,86%
in 1993.

Income of R&D organizations spent on R&D aeti-
vities in 1993 (in million US$):

Sector

Business ent.
Government
Private non-p.
Higher edu.
Total

Total

83,9
58,4

1,3
40,9

184,5

Basic
res.
4,7

16,1
0,2

24,2
45,2

App.
res.
32,6
21,5

0,6
8,7

63,4

Exp.
dev.
46,6
20,8
0,5

8
75,9

The policy of the Slovene Government is to inerease
the percentage intended for R&D in its budget.

The Science and Technology Council of the Repu-
blic of Slovenia is preparing the draft of a national
research program (NRP). The government will har-
monize the NRP with its general development policy,
and submit it first to the parliamentary Committee for
Science, Technology and Development and after that
to the parliament. The parliament approves the NRP
each year, thus setting the basis for deciding the level
of public support for R&D.

The Ministry of Science and Technology is mainly
a government institution responsible for controlling
expenditure of the RfcD budget, in compliance with
the NRP and the eriteria provided by the Law on Re­
search Activities. The Ministry finances research or
co- finances development projeets through public bid-
ding, partially finances infrastrueture research insti­
tutions (national institutes), while it directly finances
management and top-level science.

The focal points of R&.D policy in Slovenia are:
- maintaining the high level and quality of research

activities,
- stimulating collaboration between research and

industrial institutions,
- (co)financing and tax assistance for companies

engaged in technical development and other
applied research projeets,

- research training and professional development of
leading experts,

- close involvement in international research and
development projeets,

- establishing and operating facilities for the trans-
fer of technology and experience.

504 Informatica 18 (1994)

JOŽEF ŠTEFAN INSTITUTE

Jožef Štefan (1835-1893) was one of the most pro-
minent physicists ofthe 19th century. Born to Slovene
parents, he obtained his Ph.D. at Vienna University,
uihere he was later Director of the Physics Institute,
Vice-President ofthe Vienna Academy of Sciences and
a member of several scientific institutions in Europe.
Štefan explored many areas in hydrodynamics, optics,
acoustics, electricity, magnetism and the kinetic the-
ory of gases. Among other things, he originated the
law that the total radiation from a black body is pro-
portional to the 4th poiver of its absolute temperature,
hnoum as the Stefan-Boltzmann law.

The Jožef Štefan Institute (JSI) is the leading in-
dependent scientific research in Slovenia, covering a
broad spectrum of fundamental and applied research
in the fields of physics, chemistry and biochemistry,
electronics and information science, nuclear science te-
chnology, energy research and environmental science.

The Jožef Štefan Institute (JSI) is a research orga-
nisation for pure and applied research in the natural
sciences and technology. Both are closely intercon-
nected in research departments composed of different
task teams. Emphasis in basic research is given to the
development and education of young scientists, while
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the deve­
lopment of the national economy and society in gene­
ral.

At present the Institute, with a total of about
700 staff, has 500 researchers, about 250 of whom
are postgraduates, over 200 of whom have doctora-
tes (Ph.D.), and around 150 of whom have permanent
professorships or temporary teaching assignments at
the Universities.

In view of its activities and status, the JSI plays the
role of a national institute, complementing the role of
the universities and bridging the gap between basic
science and applications.

Research at the JSI includes the following major fi­
elds: physics; chemistry; electronics, informatics and
computer sciences; biochemistry; ecology; reactor te-
chnology; applied mathematics. Most ofthe activities
are more or less closely connected to information sci­
ences, in particular computer sciences, artificial intel-
ligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics
and robotics, computer automation and control, pro-
fessional electronics, digital Communications and ne-

tworks, and applied mathematics.

The Institute is located in Ljubljana, the capital of
the independent state of Slovenia (or SCnia). The
capital today is considered a crossroad between East,
West and Mediterranean Europe, offering excellent
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče,
Bern and Munich, ali within a radius of 600 km.

In the last year on the site ofthe Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technologi-
cal development to foster synergies between research
and industry, to promote joint ventures between uni-
versity bodies, research institutes and innovative in-
dustry, to act as an incubator for high-tech initiatives
and to accelerate the development cycle of innovative
products.

At the present time, part of the Institute is being
reorganized into several high-tech units supported by
and connected within the Technology park at the Jožef
Štefan Institute, established as the beginning of a re-
gional Technology park "Ljubljana". The project is
being developed at a particularly historical moment,
characterized by the process of state reorganisation,
privatisation and private initiative. The national Te-
chnology Park will take the form of a shareholding
company and will host an independent venture-capital
institution.

The promoters and operational entities of the pro­
ject are the Republic of Slovenia, Ministry of Science
and Technology and the Jožef Štefan Institute. The
framework of the operation also includes the Univer-
sity of Ljubljana, the National Institute of Chemistry,
the Institute for Electronics and Vacuum Technology
and the Institute for Materials and Construction Re­
search among others. In addition, the project is su­
pported by the Ministry of Economic Relations and
Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Tel.:+386 61 1259 199, Fax.:+386 61 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se.
Public relations: Natalija Polenec

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 18 (1994) 505

CONTENTS OF Informatica,
Volume 18 (1994) pp. 1-510

Articles

Birnbaum, L.: Causality and the Theory of Infor­
mation, Informatica 18 (1994) 299-304.

Crosher, D.T.: The Artificial Evolution of Adap-
tive Processes, Informatica 18 (1994) 377-386.

Debevc, M., R. Svečko and D. Donlagic: Adaptive
Bar Implementation and Ergonomics, Informatica
18 (1994) 357-366.

Fogel, L.J. and D.B. Fogel: A Preliminary Investi-
gation on Extending Evolutionary Programming
to Include Self-Adaptation on Finite State Machi­
nes, Informatica 18 (1994) 387-.

Fomichov, V.A. and Olga S. Fomichova: The The-
oiy of Dynamic Conceptual Mappings and Its Si-
gnificance for Education, Cognitive Science, and
Artificial Intelligence, Informatica 18 (1994) 131-
148.

Gams, M.: Benchmarking Indicates Relevance of
Multiple Knowledge, Informatica 18 (1994) 451-
465.

Hlupic, Vlatka and R.J. Paul: Evaluating the Ma-
nufacturing Simulator "Witness" on an Automa-
ted Manufacturing System, Informatica 18 (1994)
337-345.

Khan, H.U., A. Mahmood, and H.A. Fatmi: A
Novel Approach to Text Compression, Informa­
tica 18 (1994) 485-490.

Kido, T., K. Takagi, and M. Nakanishi: Analysis
and Comparisions of Genetic Algotithm, Šimula-
ted Annealing, TABU Search, and Evolutionary
Combination Algorithm, Informatica 18 (1994)
399-410.

KiefFer, J. and J. Lenarčič: On the Exploitation of
Mechanical Advantage Near Robot Singularities,
Informatica 18 (1994) 315-323.

Kononenko, L: On Bayesian Neural Networks, In­
formatica 18 (1994) 183-195.

Kononenko, I. and S. Zore: Critical Analysis of

Rough Sets Approach to Machine Learning, In­
formatica 18 (1994) 305-313.

Kubat, M. and S. Parsons: Approximating
Knowledge in a Multi-Agent System, Informatica
18 (1994) 115-129.

Mahmood, A., H.U. Khan and H.A. Fatmi: Adap­
tive File AUocation in Distributed Information
Systems, Informatica 18 (1994) 37-46.

Mahmood, A., H.U. Khan and H.A. Fatmi: Data
Reorganization in Distributed Information Sy-
stems, Informatica 18 (1994) 325-336.

Montanari, A., Elisa Peressi, and Barbara Pernici:
Object Migration in Temporal Object-oriented
Databases, Informatica 18 (1994) 467-484.

Nemec, B. and B. Zlajpah: Force Control of an
Industrial Robot with Adaptive Compensation of
the Environment Stiffness, Informatica 18 (1994)
81-91.

Nemec, J. and J. Grad: Graphs and the Third
Normal Form for Relational Database, Informa­
tica 18 (1994)175-182.

Nigro, L. and G. Veneziano: Control Abstracti-
ons in Modula-2: A Čase Study Using Advanced
Backtracking, Informatica 18 (1994) 229-243.

Ostroveršnik, M., Z. Sehic, B. Zupančič and M.
Šega: Concept Representation of the Softvrare
Tool PIDMaster for Systems Modeling and Con-
trollers Tuning, Informatica 18 (1994) 47-53.

Suematsu, H.: Current Status of the EDR Elec­
tronic Dictionary Project, Informatica 18 (1994)
93-96.

Sobh, T.M. and T.K. Alamedin: Compressed
Transmission Mode: An Optimizing Dicision
Tool, Informatica 18 (1994) 347-356.

Sobh, T.M.: Recovering 3-D Motion and Struc-
ture, Informatica 18 (1994) 491-501.

Souček, B.: Neurological Dignoses Based on Evo-
ked Brain Windows and on Holographic Learning,
Informatica 18 (1994) 109-113.

Spuler, D.A. and A.S.M. Sajeev: Compiler Detec-
tion on Function Call Side Effects, Informatica 18
(1994) 219-227.

506 Informatica 18 (1994) CONTENTS OF Informatica, Volume 18 (1994) pp. 1-510

Šile, J.: Scheduling Strategies in High-Level Syn-
thesis, Informatica 18 (1994) 71-79.

Tari, Z. and X. Li: Evolution of Methods in
Object Schema, Informatica 18 (1994) 257-275.

Tomita, M. and T. Kito: Sacrificial Acts in Sin-
gle Round Prisoner's Dilemma, Informatica 18
(1994) 411-416.

Toptsis, A.A.: Parallel Algorithms for the Com-
plete and Restricted Transitive Closure of a Da-
tabase Relation, Informatica 18 (1994) 7-25.

Trappl, R.: Cybernetics and Systems Research
on Their Way to the 21st Century, Informatica
18 (1994) 5-6.

Vaario, J.: From Evolutionary Computation to
Computational Evolution, Informatica 18 (1994)
417-434.

Wohlin, C : Evaluation of Software Quality At-
tributes During Software Design, Informatica 18
(1994) 55-70.

Wu, X.: Lecture Notes on Machine Learning, In­
formatica 18 (1994) 197-218.

Yao, X.: An Introduction to the Special Is-
sue of Evolutionary Computation, Informatica 18
(1994) 375-376.

Yao, X. and P.J. Darwen: An Experimental Study
of N-Person Iterated Prisoner's Dilemma, Infor­
matica 18 (1994) 435-450.

Železnikar, A.P.: Informational Being-in, Infor­
matica 18 (1994) 149-173.

Železnikar, A.P.: Informational Being-of, Infor­
matica 18 (1994) 277-298.

Žnidaršič, Alenka, V.J. Terpstra and H.B. Ver-
bruggen: MFM Based Diagnosis of Technical Sy-
stems, Informatica 18 (1994) 27-36.

Profiles

Hiroaki Kitano, Informatica 18 (1994) 255-256.

Branko Souček, Informatica 18 (1994) 107-108.

Robert Trappl, Informatica 18 (1994) 3-4.

News and Conferences

Gams, M.: Report: IJCAF93—A Critical Re-
view, Chambery, Savoie, Informatica 18 (1994)
97-99.

Robič, B.: Report: PARLE'94—Parallel Archi-
teetures and Languages in Europe, Informatica
18 (1994) 503.

Zaje, B.: Electrotechnical and Computer Confe-
rence ERK '94, Informatica 18 (1994) 247, 367.

Zupančič, J.: 4th International Conference on In­
formation Systems Development—ISD '94, Infor­
matica 18 (1994) 368.

Železnikar, A.P.: 12th European Meeting on
Cybernetics and Systems Research-1994, Vienna,
Informatica 18 (1994) 100-101.

Železnikar, A.P.: International Conference on In-
terdisciplinary Research and the 2nd Orwellian
Symposium, Karlovy Vary, Informatica 18 (1994)
102.

Železnikar, A.P.: : 7th International Conference
on Systems Research, Informatics and Cyberne-
tics, Baden-Baden, Informatica 18 (1994) 102-
103.

8th European Conference on Machine Learning,
Informatica 18 (1994) 248-249.

5th Scandinavian Conference on Al, Informatica
18 (1994) 250.

7th Portuguese Conference on Al, Informatica 18
(1994) 251-252.

19th OAGM and lst SDRV VVorkshop (Visual
Modules), Informatica 18 (1994) 369.

Professional Journals

Železnikar, A.P.: Kybernetes, Informatica 18
(1994) 246.

Železnikar, A.P.: TfjK and TUG News, Informa­
tica 18 (1994) 246,370-371.

Informatica 18 (1994) 507

Professional Societies

Zeleznikar, A.P.: World Organisation of Systems
and Cybernetics, Informatica 18 (1994) 245.

Jožef Štefan Insitute, Informatica 18 (1994) 105,
254, 373, and 504.

The Ministry of Science and Technology of the
Republic of Slovenia, Informatica 18 (1994) 104,
253, 372, and 503.

Information for Contributors, Informatica 18
(1994) 106.

Informatica 18 (1994)

REVIEW REPORT

Basic Instructions
Informatica publishes scientific papers accepted

by at least two referees outside the author's co-
untry. Each author should submit three copies of
the manuscript with good copies of the figures and
photographs to one of the editors from the Edi-
torial Board or to the Contact Person. Editing
and refereeing are distributed. Each editor can
conduct the refereeing process by appointing two

3 new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from
the author's country. The names of the referees
should not be revealed to the authors under any
circumstances. The names of referees will appear
in the Refereeing Board. Each paper bears the
name of the editor who appointed the referees.

It is highly recommended that each referee wri-
tes as many remarks as possible directly
on the manuscript, ranging from typing errors
to global philosophical disagreements. The cho-
sen editor will send the author copies with re­
marks, and if accepted also to the Contact Per­
son with the accompanying completed Review
Reports. The Executive Board will inform the
author that the paper is accepted, meaning that
it will be published in less than one year after re-
ceiving original figures on separate sheets and the
text on an IBM PC DOS floppy disk or through e-
mail - both in ASCII and the Informatica LaTeX
format. Style and examples of papers can be ob-
tained by e-mail from the Contact Person or from
FTP or WWW (see the last page of Informatica).

Date Sent:

Date to be Returned:

Name and Country of Referee:

Signature of Referee:

Name of Editor:

Title:

Authors:

Additional Remarks:

Ali boxes should be filled with numbers 1-10
with 10 as the highest rated.

The final mark (recommendation) consists.of
two orthogonal assessments: scientific quality and
readability. The readability mark is based on the
estimated perception of average reader with fa-
culty education in computer science and informa-
tics. It consists of four subfields, representing if
the article is interesting for large audience (intere-
sting), if its scope and approach is enough gene­
ral (generality), and presentation and language.
Therefore, very specific articles with high scienti­
fic quality should have approximately similar re­
commendation as general articles about scientific
and educational viewpoints related to computer
science and informatics.

D SCIENTIFIC QUALITY
| j Originality

| I Significance

| I Relevance

I 1 Soundness

I I Presentation

• R E A D A B I L I T Y

I I Interesting

| | Generality

| I Presentation

I | Language

• F I N A L R E C O M M E N D A T I O N

| | Highly recommended

I j Accept without changes

| | Accept with minor changes

j | Accept with major changes

I I Author should prepare a major revision

| | Reject

Informatica 17

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with
good copies of the figures and photographs to one of
the editors from the Editorial Board or to the Con-
tact Person. At least two referees outside the author's
country will examine it, and they are invited to make
as many remarks as possible directly on the manu­
script, from typing errors to global philosophical di-
sagreements. The chosen editor will send the author
copies with remarks. If the paper is accepted, the edi­
tor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper
has been accepted, in which čase it will be published
within one year of receipt of the original figures on se-
parate sheets and the text on an IBM PC DOS floppy
disk or by e-mail - both in ASCII and the Informatica
WTj^i. format. Style and examples of papers can be
obtained by e-mail from the Contact Person or from
FTP or WWW (see the last page of Informatica).

Opinions, news, calls for conferences, calls for papers,
etc. should be sent directly to the Contact Person.

QUESTIONNAIRE
J | Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to
Dr. Rudi Murn, Informatica, Institut Jožef Štefan, Ja­
mova 39, 61111 Ljubljana, Slovenia.

Since 1977, Informatica has been a major Slovenian
scientific journal of computing and informatics, inclu-
ding telecommunications, automation and other rela-
ted areas. In its 16th year (two years ago) it became
truly international, although it stili remains connected
to Central Europe. The basic aim of Informatica is to
impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the Euro-
pean computer science and informatics cornmunity -
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Com­
munications between different European structures on
the basis of equal rights and international refereeing.
It publishes scientific papers accepted by at least two
referees outside the author's country. In addition, it
contains information about conferences, opinions, cri-
tical examinations of existing publications and news.
Finally, major practical achievements and innovations
in the computer and information industry are presen-
ted through commercial publications as well as thro-
ugh independent evaluations.

Editing and refereeing are distributed. Each editor
can conduct the refereeing process by appointing two
new referees or referees from the Board of Referees
or Editorial Board. Referees should not be from the
author's country. If new referees are appointed, their
names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, edu­
cational and governmental institutions. Others should
subscribe (see the last page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):
Title and Profession (optional):

E-mail Address (optional):
Home Address and Telephone (optional):

Signature and Date:

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarilv covering the Eu­
ropean computer science and informatics communitv;
scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance Com­
munications between different European structures bn
the basis of equal rights and international refereeing.
It publishes scientific papers accepted by at least two
referees outside the author's country. In addition, it
contains information about conferences, opinions, cri-
tical examinations of existing publications and news.
Finally, major practical achievements and innovations
in the computer and information industry are presen-
ted through commercial publications as well as thro-
ugh independent evaluations.

Editing and refereeing are distributed. Each edi-
tor from the Editorial Board can conduct the referee­
ing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Refe­
rees should not be from the author's country. If new
referees are appointed, their names will appear in the
Refereeing Board. Each paper bears the name of the
editor who appointed the referees. Each editor can
propose new members for the Editorial Board or Bo­
ard of Referees. Editors and referees inactive for a
longer period can be automatically replaced. Chan-
ges in the Editorial Board and Board of Referees are
confirmed by the Executive Editors.

The coordination necessary is made through the
Executive Editors who examine the reviews, sort the
accepted articles and maintain appropriate internati­
onal distribution. The Executive Board is appointed
by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and
Technology.

Each author is guaranteed to receive the reviews of
his article. When accepted, publication in Informatica
is guaranteed in less than one year after the Executive
Editors receive the corrected version of the article.

Executive Editor — Editor in Chief
Anton P. Zeleznikar
Volaričeva 8, Ljubljana, Slovenia
E-mail: anton.p.zeleznikar@ijs.si

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Štefan Institute
Jamova 39, 61000 Ljubljana, Slovenia
Phone: +386 61 1259 199, Fax: +386 61 219 385
E-mail: matjaz.gams@ijs.si

Executive Associate Editor (Technical Editor)
Rudi Murn, Jožef Štefan Institute

Publishing Council: Tomaž Banovec,
Ciril Baškovič, Andrej Jerman-Blažič,
Dagmar Suster, Jernej Virant

Board of Advisors: Ivan Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagic (Bosnia and Herzegovina)
Shuo Bai (China)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Canada)
Janusz Brozyna (France)
Ivan Bruha (Canada)
Luca Console (Italy)
Hubert L. Dreyfus (USA)
Jožo Dujmovic (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Janez Grad (Slovenia)
Noel Heather (UK)
Francis Heylighen (Belgium)
Bogomir Horvat (Slovenia)
Hiroaki Kitano (Japan)
Sylva Kočkova (Czech Republic)
Miroslav Kubat (Austria)
Jean-Pierre Laurent (France)
Jadran Lenarčič (Slovenia)
Magoroh Maruyama (Japan)
Angelo Montanari (Italy)
Peter Mowforth (UK)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Sašo Prešern (Slovenia)
Luc De Raedt (Belgium)
Paranandi Rao (India)
Giacomo Della Riccia (Italy)
Wilhelm Rossak (USA)
Claude Sammut (Australia)
Johannes Schwinn (Germany)
Jifi Šlechta (UK)
Branko Souček (Italy)
Harald Stadlbauer (Austria)
Oliviero Stock (Italy)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Claes Wohlin (Svreden)
Štefan Wrobel (Germany)
Xindong Wu (Australia)

mailto:anton.p.zeleznikar@ijs.si
mailto:matjaz.gams@ijs.si

Volume 18 Number 4 December 1994 ISSN 0350-5596

iformatica
An International Journal of Computing and Informatics

Contents:

An Introduction to the Special Issue on
Evolutionary Computation

The Artificial Evolution of Adaptive Processes

A PreliminaryInvestigation on Extending
Evolutionary Programmirig to Include
Self-Adaptation on Finite State Machines

Analysis and Comparisons of Genetic Algorithm,
Simulated Annealing, TABU Search, and
Evolutioriary Combination Algorithm

Sacrificial Acts in Single Round Prisoner's
Dilemma

From Evolutionary Computation to
Computational Evolution

An Experimental Study of iV-Person Iterated
Prisoner's Dilemma Games

Benchmarking Indicates Relevance of Multiple
Knowledge

Object Migration in Temporal Object-oriented
Databases

A Novel Approach to Text Compression

Recovering 3-D Motion and Structure

X. Yao

D. T. Crosher

L. J: Fogel
D. B. Fogel
P. J. Angeline

T. Kido
K. Takagi
M. Nakanishi

M. Tomita
T. Kido

J. Vaario

X. Yao
P. J. Darwen

M. Gams

A. Montanari
E. Peressi
B. Pernici

H. U. Khan
A. Mahmood
H. A. Fatmi

T. M. Sobh

375

377

387

399

411

417

435

451

467

485

491

Reports and.Announcements 501

L

