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It is hypothesised that the answer to the question ofhow adaptive or learning processes 
can evolve is through an appropriately designed evolutionary search domain, search 
technique, and problem environment. A representation is described that is able to 
represent a generai class of adaptive processes. The hypothesis is explored through 
three experiments with a Hxed evolutionary search algorithm and graded problems. The 
search algorithm is able to find solutions to two of the problems but fails on a slightly 
more difficult problem. The failure is explained by the lack of a priori knowledge, thus 
supporting the hypothesis. The implications for the study of the evolution of learning 
are discussed. 

1 IntroductlOIl onthescoreofthemembers, and the applica-
tion of random changes to randomlv chosen 
members. The general question that this paper contributes 

to is: how do adaptive processes evolve? The 
hvpothesised answer to this question, with the as-
sumptions mentioned below, is that adaptive pro­
cesses will emerge through an evolutionarv search 
if the designer has chosen a priori an appropri-
ate evolutionarv search domain, search technique, 
and an appropriate environmental task requiring 
learning. 

The following assumptions are made about the 
model of evolution: 

- Assuming a fixed population size with each 
generation being marked by the testing and 
assignment of a resultant score to each mem-
ber of the population. 

- Assuming a statistically stationary enviro­
nment in which each member of the popu­
lation is independently tested (The members 
do not interact during their life span). 

- Assuming that at the end of each generation 
a new generation is created from the previ-
ous generation through both selection based 

t-. 

These assumptions are made in the studies of a 
number of researchers who address the evolution 
of learning. Typically additional specific assump­
tions need to be made to achieve success. Miller 
et. al. (Miller et. al. 1989) describe the design of 
neural networks using genetic algorithms, they as-
sume a feedforward neural network and use a ge­
netic algorithm to search for a constraint matrix 
that defines the connections between these neu-
rons. David Chalmers's (Chalmers 1990) studies 
the evolution of the updating function used by 
neural networks, which was followed up by Fon-
tanari and Meir (Fontanari & Meir 1991) evolving 
a learning algorithm for the binary perceptron. 

The search domain is largely determined by the 
representation of possible adaptive algorithms, 
and partly by the evolutionary search algorithm 
which is an evolutionary strategy. An original re­
presentation was iteratively developed such that 
it had enough generality to represent a class of 
adaptive and learning algorithms, while at the 
same time being specific enough that the search 
algorithm would be able to find at least minimal 

mailto:dtc@scrooge.ee.swin.oz.au


378 Informatica 18 (1994) 377-386 D. T. Crosher 

solutions to some problems. This representation 
describes the adaptive mechanism at a more gene­
ral level than considered by Todd and Miller and 
Chalmers, it consists of memory locations connec-
ted via addition and multiplication operations. 

To add support to the hypothesis a.series of 
three experiments was conducted each with a di-
fferent problem, while obtaining two successes 
and a failure. Finally it is shown that the fai-
lure can be trivially overcome by suitably biasing 
the search algorithm. 

The problems are graded in difficulty with re-
spect to the search algorithm. The first is borro-
wed from control theory, the task is to control a 
plant to track a reference signal, the plant being 
an integrator. The second problem is the habitua-
tion and sensitisation task described by Todd and 
Miller (Todd k Miller 1990). The third problem 
is the associative learning task described by Todd 
and Miller (Todd k Miller 1991) for which the 
evolutionary search fails to find a solution even 
after lengthy simulation runs. However by bia­
sing the search algorithm, through an initial solu­
tion, a solution to the third problem was trivially 
found. 

Below the three experiments are presented each 
with a minor discussion, followed by a concluding 
discussion of the implications of the hypothesis, 
its relation to relevant research programs, and su-
ggestions for further lines of study. But firstly the 
search algorithm is described as it is common to 
ali the experiments. 

2 The search algorithm / 
evolutionary strategy 

This section describes the evolutionary search al­
gorithm, this can be broken down into the repre­
sentation of the functionality of each member of 
the population, and the evolutionary model in-
cluding its initialisation, its main loop, and the 
termination. 

2.1 The representation / functionality 

The goal in the design of the representation was 
to be able to represent the functionality of a class 
of adaptive algorithms, and to bias the search so 
that solutions could be found to the planned pro­
blems. 

It was decided to explore a class of adaptive al­
gorithms that could represent solutions to linear 
and non-linear discrete control problems, and so­
lutions to some simple unsupervised learning pro­
blems. The functionality of this class was achie-
ved through networks of memory nodes connected 
via addition and multiplication functions. 

To facilitate the smooth evolution of solutions 
two representational features were decided upon. 
Firstly aparallel executional model was used, and 
secondly at each time step the value of a node was 
updated with the sum of its inputs. 

The choice of the parallel computational repre­
sentation had two advantages over a sequential 
computational representation. 

Firstly in a parallel model the functionality is a 
lot more independent than in a sequential model 
which aids a smooth incremental evolution thro­
ugh random changes. For example the mutation 
of one instruction in a sequential model can effect 
the course of ali other instructions, whereas in a 
parallel model the effect of a random mutation is 
likely to have little effect on the functioning of the 
larger system. 

Secondly it was considered desirable to have 
the evolutionary search freely explore the perfor-
mance of large networks. With a parallel repre­
sentation the time delay can be independent of 
the number of nodes and functions. Whereas with 
a sequential representation time delays can grow 
as the number of steps in its evaluation loop in-
creases, this can decrease performance and bias 
the evolutionary search away from exploring lar­
ger networks. 

The decision to have functions summing into 
the nodes was based on the general desirability 
of linearity within search domains, and also to 
support the smooth addition of functionality to a 
network through the evolutionary search. 

The model settled on is a network of nodes. 
The nodes have a combination of two functions 
summing into them, these functions are the sum 
of constants, and the sum of the product of pairs 
of nodes. At each time step the nodes are upda­
ted, the new value for a node n{ is calculated as 
follows: 

n , ' t+i = Z ^ i "^ A^i nxt nvt 

This model can be represented graphically in 
the same way that a discrete signal processing or 
control algorithm might be, see Figure 1. 
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Figure 1: Graph symbols 
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Figure 2: Example population member 

The interaction of a member of the population 
with its environment was handled by. having spe-
cial nodes for its inputs and outputs. The input 
nodes were clamped to signals from the enviro­
nment, and the output nodes were passed back to 
the environment. 

An example is shown in Figure 2. It consists of 
three nodes, one input, one output, and one nor-
mal node. Two functions are show, there is one 
constant summing into node 2, and the product of 
nodes 2 and 0 sum into node 1. Mathematically 
the network would behave as follows: 

«i t + 1 = n2t n0, 

n2t+1 = 1.234 

Since node 0 is clamped to the input and the ou­
tput is taken from node 1, and noting that node 2 
is constant, the above equations are equivalent to: 

outputt+i = 1.234 X int 

2.2 T h e evolutionary search mode l 

An Evolutionary Strategy (ES) was chosen for the 
simplicity of avoiding a crossover operator. This 
is in contrast to the more commonly used Genetic 
Algorithms (GA) in which the genetic crossover 
operator is empk>yed (Goldberg 1989). The use of 
an ES frees up restrictions that would be present 
with a GA. There is a growing awareness that 

GAs do have limitations (Forrest & Mitchell 1993, 
Forrest & Mitchell 1992), and of the abilities of 
ESs. 

The procedure can be broken down into the ini-
tialisation, a main loop, the termination. 

2.2.1 Initialisation 

The initialisation was simple, consisting of setting 
up a population in which each member had only 
a minimal number of nodes for its communication 
with the environment. Needless to say the initial 
performance is poor! The population size used 
in the experiments was 100 members, this was 
not a critical factor, typically an increase in the 
population size reduced the number of iterations 
to find a solution. 

2.2.2 The main loop 

Testing consists of evaluating the functional ne-
twork of each member of the population in the 
test environment. Three environments are descri-
bed later, at this point it is sufficient to know 
that as a result of the interaction of the members 
networks with the environment they are assigned 
a performance result. So after the testing stage 
each member has a score which is a function of 
how well it performed. 

After ali the members have been tested a riew 
generation is formed by selecting members from 
the previous generation with a probability pro-
portional to their performance, and by mutating 
some of them. 

The way in which the search algorithm muta-
ted the existing members of the population was 
critical to it finding a solution as this is a major 
contributor to the exploratioh bias of the algo­
rithm. Three classes of changes could be made, 
network additions, constant mutations, and ne-
twork deletions. 

The expected number of network additions to 
a member was 33% of the current netwprk size. 
It needed to be scaled by the current network size 
because of the diminishing effect of a function ad­
dition as the network grows large. Each mem­
ber had a limit to the size of its network which 
was 100 nodes and 100 constant and multiplica­
tion functions. If a member had free space then a 
network addition could occur. There were three 
types of network additions, the addition of a con-
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stant summing into a node, the addition of a mul-
tiplication function summing into a node with its 
input determined randomly, and finaHy the addi­
tion of a multiplication function summing into a 
node with one input taken from a node and the 
other from a newly created constant node. 

There was 10% chance of a constant being sca-
led by a random factor between 0.0 and 2.0. 

There was a 33% chance that a constant or mul­
tiplication network function would be removed. 
This helped to clear out junk nodes that made no 
contribution and to free up space for the addition 
of new nodes. 

2.2.3 Termination 

The main loop would cycle and the user was able 
to watch the simulation proceeding, after it had 
found a stable solution the user could stop it and 
examine the result. However as the simulation 
proceeds the network size grows until it reaches 
the limit. Trying to interpret a member was al-
most impossible due to the large number of junk 
nodes and functions which had little or no effect. 
Often it was difficult to identify what was junk. 

To overcome this difficulty and to facilitate an 
analysis the user was allowed to trigger the pro­
gram to stop adding new instructions near the 
end of the experiment. Without the continual 
addition of new instructions and with continuing 
instruction removals ali the junk instructions are 
removed and you are typically left with less than 
10 instructions to scrutinise, and you can be as-
sured that they are ali necessary to maintain per-
formance. 

3 Experiment 1: Evolution of a 
feedback controller 

This is the first of the experiments, the evolutio-
nary search algorithm described above is applied 
to evolve solutions of the following problem. The 
members of the population are controllers which 
have two inputs, a reference which it is required 
to track and the plant output. It also had one 
output which was the input to the plant. See Fi­
gure 3. On each iteration a member's node 0 is 
clamped to the reference input, node 1 is clamped 
to the plant output, and the controller output is 
read from node 2. 

r 

C Controller 
y 

r 

Plant 
C 

Figure 3: Control problem 
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Figure 4:' Evolution of feedback controller 

The reference signal was always the same, the 
equation used was: 

. ,2 X 3.1415 X*N r = 100.0 X s n( r r ^ r r ) v 5000.0 ; 

The plant used is a simple integrator which is 
not an uncommon problem. The update equation 
for the plant output is: 

The score s of a member was: 

1 

\ / s ( r - c ) 2 

3.1 Results 

Figure 4 shows how the search proceeded. It 
shows the population maximum and average plot-
ted against the number of generations. 

A detailed analysis of the resultant evolved ne-
twork of one characteristic and successful member 
(score on 2.505101) from the run is presented be-
low, including a graph of its network in Figure 5, 
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12.640 
input 

Unreliable sensor 
Controller 

output 

Figure 5: Graphical representation of member 0 

and a mathematical simplification of the network 
below. 

The graph can be simplified as follows: 

yt+1 = (12.640+ 7.593) rt 

+ (-20.340 + 0.107) ct) 
+ 0.798 X yt 

= 20.233 xrt- 20.233 X ct + 0.798 X yt 

Now it can be noticed that the factors of rt and 
ct both come to 20.233, this close correlation is 
explained with the following step in which is is 
shown that it is solving the control problem by 
acting as a negative feedback controller. So assu-
ming the two factors are equal allows the rewri-
ting of the equation in the form: 

yt+1 = 20.233 (rt - ct\ + 0.798 X yt 

Negative feedback Filter 

Now the negative feedback can be clearlv seen. 
The two factors are held at the same value beca-
use any drifting apart would degrade the perfor-
mance of the controller, and it would be selected 
against by the evolutionary algorithm. The requi-
rement for coordination in the changing of these 
factors makes it unlikely that the evolutionary al­
gorithm could adjust the gain if required. It has 
become trapped in a local optimum. 

Although it is easy to imagine a configuration 
in which the gain could be in a single parameter, 
the search consistently discovers the above confi­
guration. In any čase there is no selective pressure 

Figure 6: Evolution of sensitisation and habitua-
tion 

to choose this configuration over the other, they 
both solve the problem perfectly. Only if the pro­
blem were changed to require rapid gain changes 
would there be any benefit in choosirig one over 
another. This draws out a weakness in this mo­
del of the evolution of adaptability, with a fixed 
problem there is a definite limit to what is meant 
by adaptability. 

Typically also simple feedback loops also evol-
ved although there was variation between runs. 
These feedback loops were unexpected. In the 
čase above the loop acts to filter the output which 
gave some benefit. 

4 Experiment 2: Evolution of 
sensitisation and habituation 

The next problem to be studied is based on the 
work of Todd and Miller (Todd & Miller 1990). 
They created an environment and an evolutio-
nary ANN in which habituation and sensitisation 
emerge. In an environment in which good and bad 
events do not occur at random but are clumped 
together, and in which there is sensor noise, it is 
found that 'cluster-tracking' is of adaptive value. 
The problem is illustrated in Figure 6. 

Each member has one input and one output. It 
is simulated in an environment for 1000 * 2 tirne 
steps. The input to a member was an unreliable 
sensor of a slowly varving signal. The member re-
ceived an increase in its score if it acted when the 
signal was at a high level, but due to the unrelia­
ble sensor members may mis-interpret the signal 
which could lead to incorrect decisions. 

Based on the results of Todd and Miller, in or-
der to encourage the evolution of a solution, the 
sensor was given a 75% chance of being correct 
and a 25% chance of being incorrect. To allow for 
propagation through the network the input was 
set for two time steps between each update, and 
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81.389 

500 1000 1500 2000 3500 3000 

i Q , 
Figure 7: Evolution of sensitisation and habitua­
tion 

was converted to an analog value of positive or 
negative one. 

The analog output value was converted to a di-
gital value via a threshold function (if it was gre-
ater than one then it indicated an output action). 
If an output was indicated then the score was in-
creased if the true environmental signal was high 
else the score was decreased. 

The environmental signal was slowly changing 
from one state to another every 50 * 2 time steps. 
A member which evolves an ability to smooth the 
signal can extract a cleaner measure of the real 
signal and achieve a better score. 

4.1 R e s u l t s 

Figure 7 shows how the search proceeded, it shows 
the population maximum and average plotted 
against the number of generations. 

An analysis of one characteristic and success-
ful member from the run is presented (score of 
396.00), it network is graphed in Figure 8. 

The graph can be simplified to give: 

Oi+i = 81.389 x it + 0.919 X ot 
> v ' V ^ ' 

Scaled Input Filter 

The same typology of solution was consisten-
tly found, it is a simple filter. This cannot be 
seen to be directly analogous to habituation and 
sensitisation as I have only used one input. 

A more complex filter has not been discovered 
which suggests a possible weakness in the repre-
sentation for this problem. E.g. If a filter function 

Mj) output 

MIU0—Kg 

Figure 8: Graphical representation of member 4 

Unreliable, 
constant meaning 

inO 

inl Controller 
output 

Reliable, 
changing meaning 

Figure 9: Evolution of associative learning 

block was introduced then it would have a grea-
ter chance of finding a topology of interconnected 
filters. 

5 Experiment 3: Evolution of 
associative learning 

The third problem to be considered is based on 
another problem developed by Todd and Miller 
(Todd & Miller 1991). They created an enviro-
nment and an evolutionary ANN that supported 
the emergence of associative learning. The pro­
blem is illustrated in Figure 9. 

There are two inputs. The first (inO) is unre­
liable, with only a 75% chance of being correct, 
but its meaning is always the same , a high or a 
low level had a consistent meaning. 

The other input (inl) is reliable but its mea­
ning would change between members so that they 
could not depend on a consistent interpretation, 
which must be learnt. 

Each population member was tested for 1000 
trials at three time steps per trial. Its inputs were 
set for these three time steps before being upda-
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Figure 10: Evolution of associative learning 

ted. The inputs were converted to analog values 
of positive or negative one and clamped to this 
value. A member had 3 tirne steps to update its 
output with the inputs for a trial set. 

The output was checked after the inputs had 
been applied for three tirne steps. It was conver­
ted to a digital value via a threshold function (if 
it was greater than one then it indicated an ou­
tput action). The member receives an increase in 
its score if it acts when the environmental signal 
is at a high level, and .a decrease if it acts at an 
inappropriate time. 

Thus the member had to interpret its two sen-
sors to determine whether to take an action. If 
it depended only on the unreliable sensor then it 
would be correct 75% of the time but make mi-
stakes 25% of the time. On the other hand if it 
relied on the accurate sensor it may not interpret 
its meaning correctly but has a 50% chance of ma-
king a correct interpretation and thus acting with 
100% accuracy. 

A better solution for a member would be to use 
the unreliable sensors to learn how to interpre­
tation the accurate sensor, this can be done by 
correlating the two sensors and filtering. 

If a member takes the correct action for the 
appropriate input state for each of the, on ave-
rage, 1000/2 rewardable trials then it would ob-
tain an expected score of 500. 

5.1 Results 

Figure 10 shows how the search proceeded, it 
shows the population maximum and the average 

-• Kg) -©=*!-

Figure 11: Graphical representation of member 2 

plotted against the number of generations. 
After letting this run proceed for 200 generati­

ons the simulator was signalled to stop inserting 
new instruction, and the end state after 1274 ge­
nerations is shown below. 

The code of a typical successful member with 
a score of 254.00 is presented below, and it is 
graphed in Figure 11. 

The graph can be simplified to: 

outputt+\ = 6.251 X in0t 

This experiment failed to find a solution using 
associative learning. Longer runs of 10000+ gene­
rations also failed to find a solution. The solution 
it found ušes the unreliable signal which only has 
a 75% accuracy, but at least has a consistent me­
aning. 

5.2 Initialised with a solution 

In order to verify that a solution does exist and 
that it is stable a simulation run was performed in 
which the population was initialised with a known 
solution. The code used to initialise the popula­
tion is shown below, and graphed in Figure 12. 
This member achieved an average score of 500.85. 

Figure 13 shows how the search proceeded, it 
shows the population maximum and average plot­
ted against the number of generations. 

After letting this run proceed for 200 genera­
tions the simulator was signalled to stop inser­
ting new instruction, and the end state after 808 
generations was a slightly different code, a sligh-
tly lower average score. This can be accounted 
for by the random instruction removals and ran-
dom changes to constants which was stili procee-
ding, which would have created some below ave­
rage members. The code is essentially the same 
as the original which at least shows that there was 
a solution. 



384 Informatica 18 (1994) 377-386 D. T. Crosher 

Figure 12: 
members 

Graphical representation of initial 
Figure 14: Graphical representation of member 3 
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Figure 13: Initialised with a known solution 

The code of a typical successful member is pre-
sented below, and it is graphed in Figure 14. 

6 Discussion and Conclusion 

In my investigations of the question of how le­
arning has evolved I aimed to develop a model 
that allowed a general class of learning algori-
thms to emerge. I tried to generalise the work 
of others who had obtained limited success but 
with very narrow search domains (Miller & Todd 
1990, Chalmers 1990). I defined some simple pro-
blems and developed an evolutionary algorithm 
with a search domain of adaptive processes that 
could result in a useful search while at the same 
tirne being relatively general. This was applied 
with success to the search for a solution to a sim­
ple control problem, and to the artificial evolu-
tion of habituation and sensitisation, but without 

success to the problem of the evolution of associa-
tive learning. The failure to obtain an associative 
learning mechanism is explained by the lack of 
a priori knowledge in this experiment compared 
with that of Todd & Miller. 

It is concluded that a learning algorithm will 
evolve if the designer selects an appropriate a pri­
ori evolutionary search domain and search tech-
nique that is appropriate to the problem which 
presumably requires learning. 

Since solutions to problems requiring learning 
tend to be rather specific the evolutionary algo­
rithm must be specifically biased in order to find 
these solutions. In the Krnit the obvious thing 
to do is to simply initialise the system with the 
known answer. In order to solve any specific pro­
blem the adaptive process should be as adapted 
as possible and have as little adaptability as re-
quired. Well adapted adaptive processes give the 
best performance on specific problems. 

One way in which a priori knowledge can be 
put into the search algorithm is to initialise the 
population with an approximate solution. This 
was shown to offer a trivial solution to the third 
failed experiment. 

In the series of experiments presented it is 
shown that a trivial solution to the question of 
how learning mechanisms can evolve, is to start 
with the solution! If this is considered cheating 
then you could initialise it to almost the solution 
so that the solution is easily found. I suggest 
that in getting a learning mechanism to evolve 
one must inevitably do just this. 

If čare is not taken a research program addres-
sing this question can degenerate into examining 
toy problems with ad hoc solutions. 
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If you recognise that learning is something spe­
cific then the answer to the question of how le­
arning evolves is that it depends on the problem 
or the selection pressures, and on the state of the 
evolving system. Thus the question is too general 
to be of value. 

However the question can be sharpened thro-
ugh ammendments and changes to the assumpti-
ons, so that answers may make a useful contri-
bution. Some possible approaches are mentioned 
below. 

6.1 Development of adaptive 
processes to solve problems 

If there are constraints on the problem and/or 
the search technique such that finding a solution 
becomes difficult, then research could contribute 
through the development of an adaptive process 
to solve the problem with the given constraints. 

Multiple layers of adaptation would obviously 
only be used if necessary, so there may be no need 
for an evolutionary algorithm. 

When searching for a solution to a specific 
problem, if the methodology reduces to iteration 
(perhaps due to process, controller, or cost func-
tion complexity) then an evolutionary algorithm 
may be a useful heuristic in helping to solve the 
problem. 

Much of the work ori the evolution of artifi-
cial neural networks (ANN) is justified in similar 
terms by noting that there are many aspects of 
an ANN that need tuning and that this can be 
fruitfully done with genetic algorithms. The desi-
gner will be required to define the problem, cost 
function, search space, the search method, and 
importantly to speculate that the heuristic will 
have value. 

Unfortunately as the number of ANN parame-
ters to be optimised by the genetic algorithm in-
creases the search space will likely grow to such 
an extent that the technique becomes practically 
useless. It was noted by Xin Yao that "Trying to 
develop a universal representation scheme which 
can specify any kind of dynamic behaviours of an 
EANN is clearly impractical, let alone the prohi-
bitive long computation time required to search 
such a learning rule space." (Yao 1993). 

The field of adaptive control has been develo-
ping methods for implementing multi-layer adap­
tive processes to solve particular problems and 

thus has a similarity to an evolutionary algori­
thm tuning a learning algorithm. It is interesting 
to note that it is conventional wisdom in the fi­
eld of adaptive control (Astrom & Wittenmark 
1989) that the controller used should be as simple 
as possible and domain specific information sho­
uld be used to design specific heuristics to achieve 
good performance. 

6.2 The evolution of learning 

If the constraints that have to be placed on the 
evolutionary search in order for learning to evolve 
are mappable to some other real problem or to the 
history of natural evolution then their study may 
have more then just ad hoc value. These constra­
ints may be something internal to the search such 
as its current state, or some aspect of the enviro-
nment which could be seen to lead the search to 
the solution. 

It is argued by Miller and Todd (Todd & Miller 
1990) that "learning mechanisms must be under-
stood in terms of their specific adaptive functi-
ons", my results support this view. 

Many would feel that Humans are proof that 
complex adaptive processes have emerged thro­
ugh evolution, and an explanation is needed. 

Perhaps the human perceptual system has co-
evolved with its learning system to be able to un-
derstand learning in ourselves and others and that 
there may be a reason for the coupling (perhaps 
a need to be understood both personally and so-
cially). 

So perhaps the question needs to be reframed as 
how and why has the perception of a complex ca-
pacity to learning evolve? This would loosen the 
need for a specific and particular learning problem 
and solution which may be just the break needed 
to develop an explanation? The assumption, in 
the experiments presented here, that the members 
of the population are independent would need to 
be dropped. 

There is much literature dealing with these is-
sues of evolution (Monod 1971, Dawkins 1986). 
The view is that evolution proceeds with constra­
ints imposed on it, but that it also creates and 
chooses the particular problem(s) which it solves. 

If this hypothesis were true then an implemen-
tation would only have applicability in so far as 
the constraints can direct the course of evolution, 
and by the lučk that the problems it chooses to 
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solve are similar to a real problem. If the path 
of evolution is determined greatlv by chance then 
re-running it may result in the emergence of a si-
gnificantlv. different form of intelligence compared 
to ours. 

Studying such issues may help us understand 
the environment which shaped the forms of life 
including its adaptability, how heavily our parti-
cular form is dependent on this environment, and 
thus how general our own perceptual perspective 
and intelligence really is. 
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Evolutiona.ry programming was first offered as an alternative, method for generating 
artificial intelligence. Experiments were offered in which finite state machines were 
used to predict tirne series with respect to an arbitrarj payoff'function. Mutations were 
imposed on the evolving machines such that each ofthe possible modes of variation were 
given equal probability. The current study investigates the use of self-adaptive methods 
of evolutionary programming on finite state machines. Each machine incorporates a 
coding for its structure and an additional set of parameters that determine in part how 
it will distribute new trials. Two methods for accomplishing this self-adaptation are 
implemented and tested on two simple prediction problems. The results appear to favor 
the use of such self-adaptive methods. 

1 Introduction 

Evolutionary computation has a long history (Fo­
gel, 1995, Ch. 3). Some ofthe first efforts mode-
led evolution as a genetic process (Fraser, 1957; 
Bremermann, 1962; Holland, 1975). In these si-
mulations, a population of abstracted chromoso-
mes are modified via operations of crossover, in-
version and simple point mutation. An external 
selection criterion (objective function) is used to 
determine which chromosomes to maintain as pa-
rents for successive generations. These procedu-
res have come to be termed genetic algorithms. 
Alternativelv, Rechenberg (1965) and Schwefel 
(1965), and also Fogel (1962, 1964), offered me­
thods for simulating evolution as a phenotvpic 
process, that is, a process emphasizing the be-
havioral link between parents and offspring, ra-
ther than their genetic link. These simulations 
also maintain a population of abstracted organi-
sms (either as individuals or species) but empha-
sis is placed on the use of mutation operations 

that generate a continuous range of behavioral di-
versity yet maintain a strong correlation between 
the behavior ofthe parent and its offspring. These 
methods are known as evolution strategies and 
evolutionary programming, respectivelv. 

This paper focuses on experiments with evoluti-
onary programming. In particular, self-adaptive 
parameters that provide information on the ge-
neration of offspring are incorporated into evol­
ving solutions and are simultaneously subjected 
to mutation and selection. Such operations were 
first offered by researchers in evolution strategies 
and applied to real-valued function optimization 
problems, but can be extended to problems in di-
screte combinatorial optimization. The paper be-
gins with background on evolutionary program­
ming and the use of self-adaptation in evoluti-
onary computation. The results of experiments 
that compare the efficiency of self-adaptive me­
thods on finite state machines for tirne series pre­
diction are described. Finally, potential avenues 
for further investigation are discussed. 
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2 Background on Evolutionary 
Programming 

Evolutionary programming was originally offered 
(Fogel, 1962, 1964; Fogel et al., 1966) as a method 
for generating artificial intelligence (Al). Other 
attempts to generate Al had been directed to-
ward neural networks (e.g., McCulloch and Pitts, 
1943; Rosenblatt, 1958) and heuristic program­
ming (e.g., Simon and Newell, 1958). Each of 
these avenues focused on modeling or emulating 
human intelligence, rather than the process that 
generates intelligent organisms. 

Intelligence can be viewed as the ability to 
adapt behavior to meet goals in a range of en-
vironments (Fogel et al., 1966, p. 2; Fogel, 1995). 
Intelligent behavior requires the composite ability 
to predict the surrounding environment coupled 
with a translation of the predictions into a suita-
ble response in light of a given goal. To provide 
maximum generality, in a series of experiments, 
Fogel (1964; Fogel et al., 1966) described a simu-
lated environment as a sequence of symbols taken 
from a finite alphabet. The problem was defined 
to evolve an algorithm that would operate on the 
sequence of symbols thus far observed and pro-
duce an output symbol that maximizes the bene-
fit to the algorithm in light of the next symbol 
to appear in the environment and a well-defined 
payoff function. Finite state machines provided a 
useful representation for the required behavior. 

A finite state machine (Figure 1) is a transdu-
cer that can be stimulated by a finite alphabet 
of input symbols, can respond in a finite alphabet 
of output symbols, and possesses some finite num-
ber of different internal states. The corresponding 
input-output symbol pairs and next-state transiti-
ons for each input symbol, taken over every state, 
specifies the behavior of any finite state machine, 
given any starting state. For a review of finite 
state machines, see Fogel et al. (1966, pp. 149-
155). 

Evolutionary programming was proposed as 
operating on finite state machines as follows. A 
population of "parent" finite state machines is 
exposed to the environment, that is, the sequence 
of symbols which have been observed up to the 
current time. For each parent machine, as each 
next input symbol is offered to the machine, each 
output symbol is compared to the next input sym-

Figure 1: A three-state finite state machine. The 
input alphabet is {0,1}. The output alphabet is 
{a, b, g}. Input symbols are shown to the left of 
the virgule, output symbols to the right. 

bol. The worth of this prediction is then measured 
with respect to the given payoff function (e.g., all-
none, absolute error, squared error, or any other 
expression of the meaning of the symbols). Af-
ter the last prediction is made, a function of the 
payoff for each symbol (e.g., average payoff per 
symbol) indicates the fitness of the machine. 

Offspring machines are created by randomly 
mutating each parent machine. For convenience, 
each parent is typically made to produce a single 
offspring. There are five possible modes of ran-
dom mutation that naturally result from the de-
scription of the machine: change an output sym-
bol, change a state transition, add a state, delete a 
state, or change the initial state. The deletion of a 
state and the changing of the initial state are only 
allowed when the parent machine has more than 
one state. Mutations are chosen with respect to 
a probability distribution, which is typically uni­
form. The number of mutations per offspring is 
also chosen with respect to a probability distribu­
tion (e.g., Poisson) or may be fixed a priori. These 
offspring are then evaluated over the existing en­
vironment in the same manner as their parents. 
Other mutations, such as majority logic mating, 
were proposed but results with these mutations 
were not described in Fogel et al. (1966). 

Those machines which provide the greatest 
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payoff are retained to become parents of the next 
generation. Typically, half of the total machines 
are saved so that the parent population remains 
the same size, but this is not required nor is ne-
cessary optimal. This process is iterated until it 
is required to make an actual prediction of the 
next symbol (as yet not experienced) in the en-
vironment. The "best" machine is chosen to ge-
nerate this prediction, the new symbol is added 
to the experienced environment, and the process 
is repeated. Fogel originally used "nonregressive" 
evolution. For a machine to be retained it had 
to score in the top half of the population. Sa-
ving lesser adapted machines was discussed as a 
possibility (Fogel et al., 1966, p. 21) but not in-
corporated. 

There is an inherent versatility in such evolu-
tionary programming. The payoff function can 
be arbitrarily complex and possess temporal cpm-
ponents; there is no requirement for the classi-
cal squared error criterion or any other "smooth" 
function. Further, it is not required that the pre­
diction be made with a one-step look ahead. The 
prediction of symbols to appear at an arbitrary 
length of tirne in the future can be made. Multiva-
riate environments can be handled and the overall 
environmental process need not be stationary as 
the simulated evolution will adapt to the changes 
in the transition statistics. 

For example, a nonstationary sequence of sym-
bols was generated by classifying each of the incre-
asing integers as being prime (symbol 1) or non-
prime (symbol 0). Thus the environment consi-
sted of the sequence 01101010001... where each 
symbol depicts the primeness of the positive inte­
gers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , . . . respectivelv. 
The payoff for prediction was all-or-none, that is, 
one point for each correct prediction, zero points 
for each error, modified by subtracting 0.01 mul-
tiplied by the number of states of the machine. 
This penalty for complexity was provided to ma-
intain parsimonious machines in light of the limi-
ted memory of the available computer (an IBM 
7094). 

Figure 2 shows the cumulative percentage of 
correct predictions in the first 200 symbols. After 
the initial fluctuation (due to the small sample 
size), the prediction score increased to 78 percent 
at the 115th symbol and then essentially remained 
constant until the 200th prediction. At this po­

int, the best machine possessed four states. At 
the 201st prediction, the best machine possessed 
three states, and at the 202nd prediction, the best 
machine possessed only one state with both ou-
tput symbols being 0. After 719 symbols, the 
process was halted with the cumulative percen­
tage of correct predictions reaching 81.9 percent. 
The asymptotic worth of this machine would be 
100 percent correct because the prime numbers 
become increasingly infrequent and the machine 
continues to predict "nonprime." 

The goal was then changed to offer a greater 
payoff for predicting a rare event. Correctly pre-
dicting a prime was worth one plus the number 
of nonprimes that preceded it. Similarly, correc- , 
tly predicting a nonprime was worth one plus the 
number of nonprimes which preceded that non­
prime. During the first 150 symbols there were 30 
correct predictions of primes, 37 incorrect predic­
tions (false alarms) and five missed primes. From 
the 151st symbol to the 547th there were 65 cor­
rect predictions of primes and 67 false alarms. 
That is, of the first 35 primes, five were missed; 
of the next 65 primes, none was missed. Fogel et 
al. (1966) indicated that the evolutionary algo-
rithm quickly learned to recognize numbers that 
are divisible by two or three as being nonprime. 
Some recognition that numbers divisible by five 
are nonprime was also evidenced. Fogel (1968) la-
ter remarked that the evolutionary programming 
had successively discovered "cyclic properties wi-
thin the environment... in essence, the equivalent 
of first recognizing that numbers divisible by two 
are not prime, etc. In other words, the program 
was synthesizing a definition of primeness without 
prior knowledge of the nature of primeness or an 
ability to divide." 

More recently, evolutionary programming has 
been applied to diverse combinatorial and ge­
neral function optimization problems. These 
include the traveling salesman problem (Fogel, 
1988, 1993), evolving neural networks (Fogel et 
al., 1990; McDonnell and Waagen, 1994; Angeline 
et al., 1994), system identification (Fogel, 1991), 
automatic control (Sebald and Schlenzig, 1994; 
Saravanan, 1994), pattern recognition (Bhatta-
charjya and Roysam, 1994), and others. In many 
cases, the approaches are very similar to those of 
evolution strategies (see Davidor et al., 1994) in 
that the chosen representation follows from the 
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Figure 2: The cumulative percent correct score when using evolutionary programming to design finite 
state machines to predict the primeness of theincreasing integers (after Fogel et al., 1966). 

task at hand and the primary method of sear-
ching the space of potential solutions relies on the 
use of carefully constructed mutation operations 
that maintain a functional (behavioral) link be-
tween parent and offspring. The approaches often 
differ from those of genetic algorithms (see Da­
viš, 1991) in that no emphasis is placed on the 
use of crossover or any other operator that would 
overtly mimic natural genetic mechanisms, and 
that no effort is made to assess credit to subsec-
tions of a solution (cf. schema theory, Holland, 
1975). Several direct comparisons of evolutionary 
programming and evolution strategies to genetic 
algorithms on benchmark optimization problems 
have indicated statistically significant evidence fa-
voring the use of the former techniques (Fogel 
and Atmar, 1990; Back and Schwefel, 1993; Back, 
1994; Fogel, 1994; Fogel and Stayton, 1994; Net-
tleton and Garigliano, 1994; and others). 

3 Incorporating Self-Adaptive 
Mutation Noise 

The ultimate effectiveness of any evolutionary op­
timization algorithm is determined bythe relati-

onship between the shape of the response surface 
(landscape) being searched and the mutation ope­
rations that are used to generate new trial soluti­
ons. The rate of optimization may be much gre-
ater if the mutative distribution can be tuned to 
follow grooves and valleys on the surface, rather 
than simply spray new trials with equal average 
step sizes in each dimension. The idea for allowing 
an evolutionary algorithm to self-adapt the man-
ner in which it distributes new trials goes back to 
Rechenberg in 1967 (Rechenberg, 1994), but was 
more explicitly detailed in Schwefel (1981). 

For example, consider the problem of finding 
the real-valued n-dimensional vector x that mi-
nimizes F(x). Each trial solution is taken to be 
a pair of vectors (x, a), where x is the vector of 
object variables to be assessed by F(x), and a is a 
vector of standard deviations (often described as 
strategy parameters) corresponding to the step si­
zes of a zero mean multivariate Gaussian random 
variable. Offspring are created from each parent 
by the following rules: 

x'i = Zi + N(0, (Ti) 

a'i = a • exp(r • JV(0,1) + r ' • JV;(0,1)) 
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Figure 3: Contour plots of a response surface ma-
pped onto two variable dimensions. Under inde-
pendent Gaussian perturbations to each compo-
nent of every parent, new trials are distributed 
such that the contours of equal probability are 
aligned with coordinate axes (left picture). This 
will not be optimal in general because the conto­
urs of the response surface are rarely similarly ali­
gned. Schwefel (1981) suggested a mechanism for 
incorporating self-adaptive covariance terms. Un­
der this procedure, new trial can be distributed in 
any orientation (right picture). The evolutionary 
process adapts to the contours of the response su­
rface, distributing trials so as to maximize the 
probability of discovering improved solutions. 

where r and T' are operator-set parameters, 
N(fi,a) is a normally distributed random vari­
able with mean fj, and standard deviation a, and 
Ni(0,1) describes a standard Gaussian resampled 
a new for the ith component of a. Figure 3 indi-
cates the potential for such a method to distribute 
trials in relation to the contours of the adaptive 
landscape. The technique distributes solutions in 
directions that have provided improved solutions 
in the past. Schvvefel (1981) extended this me­
thod to allow for arbitrary correlations between 
perturbations. 

Fogel et al. (1991) independently offered a simi-
lar self-adaptive procedure for evolutionary pro­
gramming in which the standard deviations are 
altered using a Gaussian random variable. Speci-
fically, the method is: 

x; = Xi.+ iV(0,cri) 

a\ = Vi + a(TiN(0,1) 

where a is a scaling parameter. If any value a\ 
becomes nonpositive, it is reset to a small arbi-
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trary value e. Fogel et al. (1992), at the sugge-
stion of Sebald (1991), incorporated an additio-
nal procedure to allow for arbitrary correlations 
between the strategy parameters. Comparisons 
by Saravanan and Fogel (1994) indicate that the 
method of Schwefel (1981) generally outperforms 
the method of Fogel et al. (1991) when limited 
to uncorrelated perturbations of the strategy pa­
rameters. No comparisons have been made be-
tween the methods incorporating complete cova­
riance matrices. 

The idea for self-adapting the distribution of 
new trials also arose independently in genetic 
algorithms and genetic programming. Schaffer 
and Morishima (1987) offered a method for self-
adapting crnssover points, Each binary string en-
coded not only the n-bit solution vector, but an 
additional n-bit binary mask that determined the 
crossover points on the solution vector and was 
itself subject to mutation. Angeline and Pollack 
(1992) added mutation operators to a genetic pro­
gram (Koza, 1992) that protected entire subtrees 
from both crossover and mutation. Angeline and 
Pollack (1994) argued that protected subtrees ra-
ise the representational level of the primitive lan-
guage in a task-specific manner. 

Recently, Angeline and Pollack (1993) provided 
a different form of self-adaptation in evolutionary 
programming as applied to finite state automata 
in which individual links and output symbols co-
uld be randomly "frozen," effectively negating any 
probability for mutation. The current investiga-
tion examines the potential for more gradually 
affecting the probability of mutating links and ou­
tput symbols in finite state machines used for tirne 
series prediction. 

4 Experiments 

The base-line method of evolutionary program­
ming investigated was similar to that of Fogel et 
al. (1966) and refined in Fogel (1991). Each ma-
chine in the population was judged in terms of a 
fitness function which represents the cost and be-
nefit of each possible error or correct prediction. 
Each machine received a tournament score based 
on its fitness relative to q other machines selec-
ted at random from the population (Fogel, 1991); 
in each competitionj if its fitness was equal to or 
greater than its opponent, it received a "win." 
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Parents for the next generation were chosen by 
ranking the population based on the number of 
wins (instead of raw fitness) and selecting those 
individuals scoring in the top half. Each parent 
created a single offspring in accordance to specific 
mutation operations. 

Five modes of mutation were used to create off­
spring: add a state, delete a state, change the ini-
tial state, change an output symbol, and change 
a next-state transition. The mutation operation 
selects a specific mode of mutation for any single 
manipulation of a machine uniformly across mo­
des. The specific component to modify is chosen 
in accordance with a uniform distribution from 
the set of such components in the machine (e.g., 
if an output symbol is to be changed, each output 
symbol has an equal chance of being selected). 
The number of mutations per parent was given 
by a Poisson random variable with a rate of 3.0. 
The maximum number of states for any machine 
was set to 25 and the minimum number of states 
was set to three. Two self-adaptive methods for 
evolving finite state machines were examined: se-
lective self-adaptation and multi-mutational self-
adaptation. 

4.1 Selective Self-Adaptation 

In this method of self-adaptation, a mutability 
parameter was associated with each component 
of a finite state machine. For each mutation, a 
component was selected based on its mutability 
parameters. Specifically, the probability that the 
ith component was selected was given by: 

where P,- is the mutability parameter for the ith 
component, and the summation is taken with the 
index k running over ali components. Separate 
mutability parameters were maintained for each 
state (i.e., probability of deleting the state ), each 
output symbol on a transition based on an input 
symbol, and each next-state transition. For exam-
ple, if the chosen mutation was to delete a state, 
the mutability parameters associated with each 
state of the machine were used to determine the 
relative probability of deleting each state. Simi-
larly, when the chosen mutation indicated chan-
ging an output symbol associated with a tran­
sition in the machine, the particiilar transition 

was chosen using the mutability parameters asso­
ciated with the output symbols of the machine's 
transitions. 

Ali mutability parameters for each machine 
were initially set to a minimum value of 0.001. 
Thus each component of any initial machine was 
equally likely to be selected for mutation at the 
beginning of any trial. Mutability parameters for 
components of states subsequently incorporated 
as a result of an add state mutation were also set 
to the minimum value. The mutability parame­
ters were themselves mutated in a similar fashion 
to Fogel et al. (1991), specifically 

a'i = ^ + aN(0,1) 

where <7,- is the parenfs mutability parameter for 
the ith component, a\ is the offspring's mutability 
parameter for the ith component, and a = 0.01. 
Any mutability parameter that fell below the mi­
nimum value of 0.001 was reset to the minimum; 
no upper limit was imposed. 

4.2 Multi-mutational Self-Adaptation 

In a similar manner as selective self-adaptation, 
multi-mutational self-adaptation associated a mu-
tability parameter with each component of each 
machine. But in contrast, each mutability para­
meter designated the absolute probability of mo-
dification for that particular component. Thus 
the probability for each component to be muta­
ted was independent of the probabilities of other 
components to be mutated, this offering greater 
diversity in the types of offspring machines that 
could be generated from a parent. For each off­
spring, each mutability parameter was compared 
to the outcome of a uniform random variable on 
(0,1) (denoted U(0,1)). If the random number was 
lower than the mutability parameter, the appro-
priate mutation was executed. For example, mu­
tation would delete each state for which the out­
come of the U(0,1) fell below that state's muta-
bility parameter. Similarly, each output symbol 
and next-state transition were mutated when the 
resampled U(0,1) fell below the associated muta-
bility parameter. The creation of an offspring was 
completed after each component of the parent had 
been tested. 

Multi-mutational self-adaptation also modified 
the mutability parameters using the same tech-
nique and standard deviation as with selective 
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self-adaptation. Unlike selective self-adaptation 
in which the chosen standard deviation is of lit-
tle importance because the probabilities of speci-
fic mutations are ali relative to other mutations, 
the standard deviation of the Gaussian noise is 
extremely important under the multi-mutational 
approach. Given too large a variance, the muta-
bility parameters can decrease the stability and 
potential evolvability of the resulting ofFspring. 
For the current study, the minimum value for 
a mutability parameter in multi-mutational self-
adaptation was set to 0.005. Thus no component 
had less than a 1 in 200 chance of being modified 
at any tirne. If adding Gaussian noise to the para­
meter resulted in a value less than this minimum 
it was reset to 0.005. The maximum value for 
the parameter was set to 0.999. Initial values for 
the parameters of machines in the initial popula­
tion and for components added to machines by an 
add state mutation were set to the minimum va­
lue. This ensured that newly added components 
were initially stable and had to evolve increased 
mutability. 

To offset the potential increase in the deletion 
rate of states in evolving machines, the probabi-
lity of adding a state to an ofFspring was increased 
to 0.3. The chance of mutating the initial state 
of a machine in multi-mutational self-adaptation 
remained at 0.2. 

4.3 Design 

The above methods were tested on two simple 
prediction tasks. The first was offered in Fo-
gel et al. (1966). A base string of symbols 
served as an initial observation from an enviro-
nment. The environment was taken to be the 
string (101110011101)*. Fitness was assessed as 
the fraction of correct predictions made over ali 
observed symbols. A new symbolwas introdu-
ced into the environment every five generations 
(i.e., a complete iteration of mutation, compe-
tition, and selection). Ten symbols were provi-
ded as the initial set of observations. The se-
cond environment was taken to be the string 
(101100111000110010)*. For each environment, 
the population size was 100 machines and trials 
were executed over 750 generations. Each experi-
ment consisted of 50 trials with the basic evoluti-
onary program (i.e., ali modes of mutation having 
equal probability, ali specific components having 

equal probability), the selective self-adaptation 
method and the multi-mutational self-adaptation 
method. 

5 Results 

Figure 4 indicates the score of the best machine in 
the population at each generation averaged over 
ali 50 trials with each of the three methods on the 
environment (101110011101)*. The curves de-
monstrate an asymptotic rise toward 100 percent 
correct, as the cyclic pattern in the environment 
is mapped by successively better finite state ma­
chines. But the rate of improvement across the 
three methods appears to favor the self-adaptive 
methods, and more clearly the multi-mutational 
self-adaptation. Figure 5 shows the t-test score 
comparing both self-adaptive methods to the ba­
sic evolutionary programming. Although there 
appears to be significant evidence of an impro­
vement with the self-adaptive methods, caution 
must be used when interpreting these data beca­
use they represent a sequence of dependent trials. 
Figure 6.indicates the score of the best machine in 
the population at each generation averaged over 
ali trials with each method on the environment 
(101100111000110010)*. The results are similar 
to those depicted in Figure 4. Figure 7 indicates 
the relevant t-scores comparing the self-adaptive 
methods with the base-line method for this more 
complex environment. 

6 Discussion 

The practicality of evolutionary optimization al-
gorithms can be significantly increased through 
the incorporation of self-adaptive parameters that 
determine how each parent will distribute future 
trials (Back and Schwefel, 1993). Including such 
parameters frees the human operator from having 
to select mutation distributions (or genetic ope-
rators in genetic algorithms) ad hoc. The majo-
rity of efforts in self-adaptation have pertained to 
real-valued continuous function optimization pro-
blems (Schwefel, 1981; Back and Schwefel, 1981; 
Fogel et al., 1991; Saravanan and Fogel, 1994), 
but they can be extended to discrete combinato-
rial optimization problems such as the evolution 
of finite state machines for tirne series prediction. 
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Figure 4: The fraction correct of the best ma-
chine in the population at each generation avera-
ged over ali 50 trials with each method applied 
to the environment (101110011101)*. (A) No 
self-adaptation. (B) Selective self-adaptation. 
(C) Multi-mutational self-adaptation. Both self-
adaptive methods appear to be at least as effici-
ent as (B) or more efflcient than (C) the evolu-
tionarv program without self-adaptation on the 
chosen environment. 

Self-adaptation on continuous representations 
allows for parents to continue to generate off-
spring in directions on the adaptive landscape (er-
ror surface) that have proved useful in the past. It 
essentiallv serves as a memorv of previous trajec-
tories; those that have worked well recentlv are 
reinforced while those that have not generated 
useful trial solutions are purged from the popu­
lation. But "direction" is difncult to apply to 
discrete representations. Although it might be 
useful in some particular real-valued continuous 
optimization problem to iteratively increase the 
value of a certain parameter (e.g., move toward 
increasingly greater values of x while searching 
for the minimum of f(x)), it is not, by analogy, 
useful to continue changing an output symbol or 
next-state transition if such changes have been of 
value in the past (cf. Lenat, 1983). 

Self-adaptation has proved useful on discrete 
structures (e.g., finite state machines) when a 
possibility for freezing parameters has been in-
cluded (Angeline and Pollack, 1993), prohibiting 

t 
s 

300 400 500 
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Figure 5: Consecutive t-test scores comparing the 
results of each self-adaptive method to the ba-
seline results without any self-adaptation on the 
environment (101110011101)*. (a) Selective self-
adaptation vs. no self-adaptation. (b) Multi-
mutational self-adaptation vs. no self-adaptation. 
Positive scores favor the self-adaptive methods 
while negative scores favor the method without 
self-adaptation. A typical critical score would be 
approximately 1.96 under a level of significance of 
a = 0.05, but the t-scores across generations are 
correlated and thus no definitive statistical con-
clusion can be firmly stated. The results do justify 
an expectation that further analysis will indicate 
statistically significant differences in favor of the 
self-adaptive methods. 
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Figure 6: The fraction correct of the best ma-
chine in the population at each generation avera-
ged over ali 50 trials with each method applied 
to the environment (101110011101)*. (A) No 
self-adaptation. (B) Selective self-adaptation. 
(C) Multi-mutational self-adaptation. Both self-
adaptive methods appear to be at least as effici-
ent as (B) or more efficient than (C) the evolu-
tionary program without self-adaptation on the 
chosen environment. 

mutation to certain components and therebv ma-
intaining informational gains held within the co-
ding structure. Rather than mandating either 
the extreme of completely freezing parameters 
or the extreme of mutating ali parameters with 
equal probability, the self-adaptive methods exa-
mined in the current investigation can transition 
between these extremes. In essence, the methods 
allow for a gradual freezing of useful input-output 
and next-state transitions. 

The efficiency of any evoliitionary optimization 
algorithm is directly dependent on the shape of 
the adaptive landscape being searched and the 
mutation operations that are used to search the 
state space. It is crucial that there be a strong 
functional relationship between each parent and 
its offspring, while simultaneously offering the po-
tential for nearly continuous functional diversity 
(Fogel, 1988; and others). This can often be 
accomplished by the use of zero mean multivariate 
Gaussian mutations on real-valued function opti­
mization problems (Fogel and Atmar,1990; Back 

300 400 500 
Generations 

Figure 7: Consecutive t-test scores comparing the 
results of each self-adaptive method to the base-
line results without any self-adaptation on the en­
vironment (101100111000110010)*. (a) Selective 
self-adaptation vs. no self-adaptation. (b) Multi-
mutational self-adaptation vs. no self-adaptation. 
Positive scores favor the self-adaptive methods 
while negative scores favor the method without 
self-adaptation. See Figure 5 for a discussion of 
the interpretation of these data. 
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and Schwefel, 1993; Fogel and Stayton, 1994; and 
others). Maintaining functional links between 
parents and offspring when using discrete repre-
sentations is more difficult. The proposed self-
adaptive methods may provide a general mecha-
nism for achieving this end. The preliminary 
results appear to indicate improved convergence 
rates when using either self-adaptive method as 
compared to failing to use any such method. Mo-
reover, the multi-mutation mechanism in which 
each parameter is given its own probability of mu-
tation yielded the best results. More careful as-
sessment of the statistical significance of these re­
sults, extensions to more complex environments 
and comparisons between the realized mutation 
variance (i.e., the mean number of imposed mu-
tations per machine) remain for further investiga-
tion. 
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This paper describes a hybrid search scheme for genetic algorithms (GAs). Since GA's 
weakness in local search is well-known, many GA applications combine genetic algori­
thms with a local search scheme. We have discovered that solution quality and stability 
can be improved further by using multiple local search strategies with GAs. In parti-
cular, we have combined GAs with two major local search mechanisms: TABU search 
and simulated annealing (SA). We have tested our approach (GA+SA+TABU) using a 
100-city traveling salesman problem (TSP). The results indicate that solution quality 
and stability are superior than those of the GA, S A, or TABU alone. 

1 Introduction 

GAs are well known for their weakness in local se­
arch. To overcome this, many real applications of 
GAs use domain-specific local search mechanisms 
[8]. This paper examines hybridization of GAs 
and local search mechanisms, and proposes the 
combination of multiple local search algorithms 
and GAs as a general hybrid GA architecture. In 
particular, we use TABU search and Simulated 
Annealing (SA) as the local search mechanisms 
in this paper. As a benchmark, we use a typical 
combinatorial problem — a 100-city TSP. 

While several algorithms for solving combina­
torial optimization problems exist, only a handful 
of studies have been made on general hybrid me-
thods. Malek proposed a hybrid technique for im-
proving solution quality by mixing two or more al­
gorithms and obtained improved results for TSPs 
[4]. Malek's idea was to execute each low level 
algorithm for some specified tirne, and have the 
results evaluated by a high level algorithm which 
then restarts the low level routines in more pro-
mising areas in the solution space. In their work, 
the high level algorithm selects best local Solu­
tions from the local search, and ušes the results 

as starting points for the next iteration. Howe-
ver, because Malek's method ušes only the best 
solution from the previous search, it does not ma-
intain global sampling and is vulnerable to local 
minima. 

A different algorithm, genetic annealing, pro­
posed by Yao [18] ušes GAs as the high level al­
gorithm and SA as the low level one. The results 
generated by SA are subject to crossover and mu-
tation. 

We have extended Malek's model to maintain 
diversity by using a GA as the high level algo­
rithm. We also introduce multiple local search 
mechanisms so that sampling point diversity can 
be maintained even with the different convergence 
characteristics of each local search scheme. 

First, we describe GAs and local search. We po­
int out a weakness of GA and give an explanation 
of the simulated annealing (SA) and tabu search 
(TABU) algorithms as local search algorithms. 
Second, we propose the GA+SA+TABU method 
which combines a GA with SA and TABU. 

Finally, we examine the convergence cha­
racteristics of the GA, SA, TABU, GA+SA, 
GA+TABU, and GA+SA+TABU. Results indi­
cate that solution quality and stability with this 

http://kidoQmath.keio.ac.jp
mailto:takagi@math.keio.ac.jp
mailto:czl@math.keio.ac.jp
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approach are superior than those of the GA, SA, 
TABU, GA+SA, or GA+TABU. 

2 An outline of the Traveling 
Salesman Problem 

The traveling salesman problem (TSP) is a tvpical 
NP-complete problem. It is easy to describe, but 
difficult to solve. A salesman, starting from his 
home city, is to visit each city once and only once 
in a given list and then return home. The pro­
blem is to find the tour that minimizes the total 
distance. Mathematically, given a sequence of ci-
ties c\, C2, • • •, cn and intercity distances d(c{,Cj), 
the permutation TT must be found that minimizes 
the sum of distances. 

£ d(C,r(»), C„(i + 1)) + d{C*{n), CV(1)) 

There are many practical applications of the TSP 
in the real world. Thus finding an effective me-
thod to solve the TSP is very important. In 
this paper, we focus on the čase of symmetric 
TSPs, where the distances satisfy the condition 
d(ci, Cj) = d(cj, a) for 1 < i, j < n. 

The TSP has been approachedvby many rese­
archers. Lawler et al. have summarized the expe-
rimental and theoretical issues around TSPs [1]. 
There are exact, heuristic, probabilistic methods 
to solve TSPs. Exact methods include cutting 
planeš, branch and bound, and dynamic program-
ming. However, because the TSP is NP-complete, 
exact methods are only able to solve small pro-
blems without specialized problem reduction. He­
uristic and probabilistic methods are able to solve 
large problems. Some examples of these methods 
include 2-opt, markov chains, TABU Search, ne-
ural networks, simulated annealing, and genetic 
algorithms. 

A 532-city problem was solved to optimality by 
Padberg and Rinaldi using combination of pro­
blem reduction, cutting planeš, and branch and 
bound [12]. Johnson provided optimal solutions 
for several selected problems from the literature 
using an iterated Lin-Kernighan algorithm [13]. 
Malek reported that TABU search and a version 
of simulated annealing exhibited similar perfor-
mance [4]. Among the most promising GA results 
are those of Muhlenbein where the solution length 
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Figure 1: Tour length for 100-city TSP by GA 

of 27702 for the 532-city problem is close to the 
known optimal length of 27686 [16]. 

3 Genetic Algorithms and 
Local Search 

3.1 Genetic Algorithms 

Although GAs exhibit very fast convergence to an 
approximate solution in a search space, a genetic 
algorithm itself does not include a local search 
mechanism. When a population reaches a state 
where it is dominated by the best chromosome, 
finding better genetic solutions requires mutati-
ons. This would result in a very inefficient search. 

This is clearly seen in Figure 1, which shows 
the tour length at each generation. 

In this paper, we use the TSP to compare the 
effectiveness of each approach. We chose the TSP 
because it has been extensively investigated by va-
rious researchers in the GA community (such as 
[2]), and optimization research groups. We em-
ploy path representation encoding. The fitness of 
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Heuristic Crossover (By Grefenstette [1985]) 

Parentl [ 2 3 6 1 0 4 7 5 ] Parent2 [ 7 0 1 4 5 2 6 3 ] 

Child(1,2) [ 4 7 5 2 6 3 1 0 ] 
t 

Random 

Choosa (5,7) 

Figure 2: Heuristic greedy crossover 

a chromosome is defined as: 

1 
Fitness = — ; -

1 ourlength 

The reproduction strategy ušes a proportional re­
production scheme. In addition, we adopt elitist 
reproduction which always chooses the best chro­
mosome and copied it, without crossover or mu-
tation, to the next generation. We use the greedy 
crossover presented by [11] (Figure 2). This ope­
rator constructs offspring from two parent tours 
as follows: Pick a random city as the starting po-
int for the child's tour. Compare the two edges 
leaving the starting city in the parenfs tours, and 
choose the shorter edge. Continue to extend the 
partial tour by choosing the shorter of the two ed­
ges in the parenfs tours which extend the tour. If 
the shorter parental edge introduces a cycle into 
the partial tour, then extend the tour by a random 
edge. Continue until a complete tour is genera-
ted. We used a crossover probability of 70.0%, 
and mutation probability of 0%. We have.raised 
mutation rate up to 5%, but no significant change 
was observed. 
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Figure 3: 2-opt move 

3.2 Local Search Techniques 

3.2.1 Simulated Annealing (SA) 

SA is an efficient stochastic search inspired by the 
physical annealing analogy [3]. To avoid being 
trapped in local minima, SA moves probablisti-
cally and allows uphill movement with probability 
exp(—SC/T), where SC is the uphill cost and T 
(temperature)is the control parameter. 

Annealing performance varies greatly depen-
ding upon the changing mechanism used [17]. We 
use the same changing mechanism and implemen-
tation as Malek. The main body of the algori-
thm consists of two loops, with one nested wi-
thin the other. The inner loop runs until a quasi-
equilibrium is reached. In this loop, possible mo­
ves are generated using 2-opt exchange (Figure 3) 
and the accept decision is made using a function 
call. Basically, a 2-opt move (swap) exchanges 
two non-adjacent edges. In Figure 3, we delete 
the edges between nodes 1 and 6 and between 4 
and 3. We replace them with edges between no­
des 1 and 3 and between 4 and 6. In path repre-
sentation encoding, the 2-opt swap can then be 
performed simply by reversing the order of ali the 
cities in the tour from node 6 to node 3. 

If the move is accepted, it is applied to the 
current tour to generate the next state. Equi-
librium is reached when large swings in energy 
(tour length) no longer occur. 

The outer loop checks if the stopping condition 
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has been met. Each time the inner loop is comple-
ted, temperature T is updated and the stopping 
criterion is checked. 

The accept function 

if(dc < 0) return(true) 

elseif(exp(-dc/T) <= random(0, 1)) 

return(true) 
else return(false) 

A random number is used to test whether the 
move is accepted. In our implementation of the 
simulated annealing algorithm, we choose the sto­
pping criteria to be a temperature such that the 
probability of accepting an uphill move is very 
close to zero. After a fixed number of iterations we 
assume equilibrium is reached. Finally, to update 
temperature following the equilibrium, we simply 
multiply the current temperature by a constant 
a. These parameters allow the algorithm to be 
tuned for the TSP. 

WHILE(stopping c r i t e r i o n not met) 
WHILE(equilibrium not reached) 

Generate-next-move() 
IF(Accept(Temperature, change-in-cost) 

Update-tourO 
ENDWHILE 
Calculate-new-temperature() 

ENDWHILE 

To implement the simulated annealing algori­
thm, as described earlier, the stopping and equi-
librium criteria, and the update temperature rule 
must be specified. The stopping criterion chosen 
for the algorithm is for the temperature to reach 
a specified value. This stopping temperature is 
chosen such that the probability of accepting an 
uphill move is very close to 0. We make the typical 
assumption that the equilibrium is reached after 
a fixed number of iterations. The update rule is 

N etuTemperature = a * Temperature 

where a is a constant less than one. The con-
sequence of choosing simple constants as parame­
ters is some increase in computation time. It for-
ces the choice of a and the number of iterations 
to be tuned for critical temperature regions. Such 
regions require a slow annealing rates. It is pos-
sible, however, at high and low temperatures to 
anneal at faster rates. 

As inputs, our S A algorithm implemented has 
the initial temperature, the number of iterations 
to simulate equilibrium, and a. These parameters 
allow the algorithm to be tuned for any TSPs. 

3.2.2 TABU Search 

Tabu search is another optimization technique for 
solving permutation problems [14] [15]. In this te-
chnique, we start with an arbitrary permutation 
and make a succession of moves to make this per­
mutation optimal (or as close to the optimum as 
possible). In determining the shortest tour for 
a given set of cities, the tabu search procedure 
starts with a randomly generated tour and makes 
a succession of 2-opt exchanges that reduce the 
cost. At each step, ali possible 2-opt moves are 
examined and the one which gives the best im-
provement in tour cost is chosen. To prevent the 
process from being trapped at a local optimum, 
this algorithm allows moves that increase the tour 
cost (uphill moves). It is more than likely that the 
moves succeeding an uphill move will turn back 
to the local optimum. To avoid cycling, the pro­
cedure maintains a history of recent moves and 
classifies such moves as tabu. This enables the 
search process to escape local optima and explore 
new areas of the solution state space. 

Creating a tabu classification for the moves me-
ans identifying swap attributes which could indi-
cate one of the following: 

the cities involved in the swap, or 
the positions they occupy before/after the 

swap, or 
the direction in which the cities move in the 

swap. 
The tour of ali cities is represented in a one-

dimensional array format, with the array index 
denoting the position of the city in the tour. If the 
city moves from a lower to a higher index during 
a swap, then it is said to move right. Converselv, 
if it moves from a higher index to a lower one, 
then it is said to move left. 

We also need to identify the tabu classifications 
based on the attributes so that we can specify a 
set of moves as tabu. These attributes are dis-
cussed in detail later. Figure 4 shows the tabu 
search strategy superimposed on the hill climbing 
heuristic. 

The algorithm examines ali the swaps of the 
current tour and keeps track of the best-swap-
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value. However, those that are classified as tabu 
are rejected if they do not satisfy the aspiration 
criteria. In other words, we restrict the set of 
available swaps. The tabu status of the move is 
overridden and the move is accepted if the swap-
value satisfies the aspiration level. The best-swap 
among ali the available swaps for the current tour 
is obtained at the exit of the inner loop. In the hill 
climbing method, the best-swap-value is usuallv 
negative indicating a reduction in the current tour 
length. When it becomes positive, the process has 
reached its termination condition. 

In tabu search, the best swap is executed re-
gardless of the sign of the best-swap-value. The 
best swap from the inner loop is accepted even if 
it results in a higher tour length. This helps the 
process climb out of local optima. The outer loop 
keeps track of the best tour and its length. The 
tabu list is also updated by including the current 
move made. The stopping criteria is usually a fi-
xed number of iterations or a fixed coiriputation 
time specified in the input. 

The following are examples of the move attribu-
tes and the tabu restrictions based on these attri-
butes. In our implementation, we select only one 
tabu condition for a specific tabu search process. 

Tabu Conditions 

1. Vector(I<J<POSITION(I)<POSITION(J)) 
this vector is maintained to prevent any fu-
ture swaps from resulting in a tour with cities 
I and J occupying POSITION(I) and posi-
tion(J) respectivelv. 

2. Vector(I, J, POSITION(I), POSITION(J)) 
the same vector to prevent a swap resulting 
in city I occupying POSITION(I) or city j 
occupying POSITION(J). 

i - — 
generala startlng 
tour'S' 
Besl-touKosfceost(s) 

MTIAUZE 
Best-airip-vilue=l 

flECOR0hisswjpis 
theBesl-swap. 

Best-amp-vilus 
= s w i p M ; 

BesH=i,BtisH=j 

Stopping ride bas« 
on lotil number d 
IteraUons or 
total tirno atapsed 

UPDATE ton eoi 

bur-cosMour-cost 
• Bestavvap-valiN 
EiecutoBestawap: 
(BesHBsstj) 

IMPROVES 
SOLUTION 

BesMouKO«! 
scurrenllour-cosl 

Update Best-tour 

3. Vector(I, POSITION(I)) 
to prevent city I from returning to POSI-
TION(I). 

4. CITY I 
to prevent city I from moving LEFT of cur­
rent position. 

Figure 4: TABU Search 

5. Ci ty l 
to prevent city I from moving in any direc-
tion. 
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6. Vector(J, POSITION(J)) 
to prevent city J from returning to POSI-
TION(J). 

7. Ci tyJ 
to prevent city J from moving RIGHT of cur-
rent position. 

8. City J 
to prevent city J from moving in any direc-
tion. 

9. Cities I and J 
to prevent both from moving. 

Conditions 3 through 9 were established assuming 
that for cities I and J, POSITION(I) < POSI-
TION(J). It is obvious that condition 1 is the least 
restrictive and 9 is the most restrictive. Conditi­
ons 3, 4 and 5 are also increasingly restrictive. 
Implementation issues are as follows. 

— Data structufes 
To determine the tabu status of a move and 
efficiently update the tabu list , we need well-
designed data structures. As an example, 
tabu identification and tabu-list update for 
one of the tabu conditions (condition-4) are 
described below. 

We use two lists; Tabu-left and Tabu-list. 
Tabu-left indicates which cities are preven-
ted from moving left of their current position. 
A tabu-list contains a fixed number of cities 
that had been moved to the right in the last 
k iterations (the Tabu-list size k is an input 
parameter). The Tabu-list is updated with a 
new city I which was moved right by incre-
menting the Tabu-list index (ring-index) and 
overwriting with city I at this new index po­
sition. This automatically removes the tabu 
status of the city which was at the position. 
For the index to stay within list range, in-
crement is done using a mod operator: new-
ring-index = (ring-index+l) mod tabu size. 
Similar data structures have been implemen-
ted for other tabu conditions. 

- Aspiration criterion 
We used a simple aspiration criterion. Any 
tabu move is accepted that reduces the cur­
rent tour length below the present best tour 
length. When the move results in a tour 
length lower than the best tour length, it in­
dicates a tour not previously visited and so 

the move can no longer be considered tabu. 
This simple aspiration criterion is: 

TourLength+SwapValue(I, J) < BestTourLength 

— Tabu list size 
This parameter must be tuned experimen-
tally. For highly restrictive tabu conditions, 
the tabu list size must be smaller than those 
for less restrictive conditions. If the tabu list 
size is small, a cycling phenomenon will be 
evident, whereas, if it is large, the process 
might be driven away from the vicinity of 
global optimum. The optimum tabu list size 
will be the one which is long enough to pre­
vent cycling but short enough to explore a 
continuum of solution space. 

3.3 Problems of Local Search 

Many problems may be encountered by local se­
arch routines. Due to the lack of global sampling 
capability, local search methods run the risk of 
being trapped in local minima. In fact, as the 
best solution for the 100-city TSP, SA obtained 
21255 and TABU obtained 21352 under a variety 
of parameters, whereas the best known solution 
is 21247. It is obvious that these methods are 
trapped at local minima. 

There are additional difficulties in parameter 
setting. Optimal parameters must be hand picked 
over a number of trials. 

4 Hybrid GAs 

One way to mitigate this problem is to combine 
GAs with local search (Figure 5). A hybrid algo-
rithm that can combine the strengths of its com-
ponent algorithms is expected to: (1) produce 
better solutions, (2) produce solutions with less 
computing cost, (3) automatically tune parame­
ters, and (4) effectively handle larger problems 
(especially NP problems). 

There are several ways to combine GAs with lo­
cal search. This paper examines the combination 
of SA and TABU with GAs. GA+SA+TABU use 
both SA and TABU for local search and a GA is 
used as the global search manager. 

Although it is possible to use a single local se­
arch mechanism, this runs the risk of being biased 
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Hybrid Algorithm using GA 

High-M»IAIgorlthfn 

Unttr 

Figure 5: Organization of hybrid GA 

Loo«ISolutino(TABU 

Loc*l Solution of SA 

Figure (i: Scope of Local Search 

TS SA 

SA 

SA 

Figure 7: The idea oi' Hybrid GA 

the characteristics of the local search mechanism 
(Figure 6). 

For example, if we use a local search scheme 
with a rather larger local search area, the solu­
tion diversity would be minimized, undermining 
the utility of the GA. On the other hand, a local 
search mechanism with a small search area would 
plače a heavy burden on the GA, because the GA 
requires sampling points close to the global op-
tima. 

By using multiple local search schemes, we 
expect to eliminate this problem. The basic idea 
of our method is to execute each low level algo­
rithm (SA, TABU) for some specified amount of 
tirne, and leave result evaluation to the high le­
vel algorithm (GA) which restarts the low level 
routines in more promising areas in the solution 
space. This process is repeated as many times as 
necessary. 

The overall algorithm for our method is as fol-
lows: 

(1) Set N different initial tours. (2) Run TABU 
Search for Time T% and get Nt local solutions. (3) 
Run SA for Time Ta and get Na local solutions. 
(4) Get the new population with GA. (5) Return 
to 2 unless the stop condition has been met. This 
process is illustrated in Figure 7. In our expe-
riment, N = 100 and JVt = Na = 50. Tt and 
Ta should be selected heuristically. However, fre-
quent solution exchanging among the local search 
routines seems to give good results. We used the 
elitist strategy for the GA, each tirne a new best-
so-far solution has been found, an SA or TABU 
local search is initialized with that solution. 
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This algorithm can be realized with simulated 
annealing and tabu search implemented as su-
broutines. These subroutines could be executed 
sequentially followed by high level routine ana-
lysis. However, one of the most important fea-
tures of this hybrid algorithm is the ease with 
which it may be executed in parallel. Each low 
level algorithm can be executed in parallel with a 
supervising process to synchronize execution and 
analyze results. This opens up the possibility 
of executing several low level algorithms in pa­
rallel, any number of which may be instances of 
SA or TABU with different operation parameters. 
Interprocess communication is minimal and only 
occurs between the high and low level algorithms. 
The algorithm can therefore be sped up linearly 
with the number of processors as long as they do 
not exceed the number of low level algorithms. 

5 Experimental Results 

The TSP experiments were performed on a 
Sun4/75 computer. Our programs were written 
in the C programming language. 

Experiments were conducted using the 100-city 
problem, which has a known optimum solution of 
21247 miles [4]. 100 tours were generated rando-
mly and this set was used as the starting tour set 
by ali algorithms (mean population size=100). 

Table 1 shows the best solution, standard devi-
ation, and computational cost for each method. 

5.1 The Genetic Algorithm 

The best solution found by the GA for the 100-
city problem was 22253 miles. The average solu­
tion value was 23316 with a standard deviation 
514 over 10 trials. The average tirne to find the 
best solution was about 640 seconds (290 genera-
tions). GA performance is sensitive to chromo-
some representation and the crossover operator 
used. We found that heuristic crossover (as de-
scribed earlier) worked better than simple cros­
sover or partial mapped crossover [2]. There has 
been an extensive comparative study of various 
crossover operators for the TSP [19]. 

5.2 Simulated Annealing 

The simulated annealing algorithm has the fol-
lowing input parameters; the number of iterati-

TOUR-COST TABU Search vs Simulated Annealing 
(milu X1000) ° 

200.00 400.00 600.00 

CPU-T1ME(1/l0HCond>) 

Figure 8: The best run by SA and TABU 

Simulated Annealing 

200.00 40000 600.00 

CPU-TIHE(1/UMCondi) 

Figure 9: Effect of cooling schedule of SA 
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Algorithm 
GA 

TABU 
SA(a = 0.63) 
SA(a = 0.90) 

GA+SA+TABU 

Best Cost 
22253 
21352 
21331 
21255 
21247 

Average Cost 
23316 
21433 
21372 
21284 
21247 

Standard Deviation 
514 
68.4 
30.3 
27.5 

0 

Average time(seconds) 
640 (290 generations) 

210 
310 
1340 

420 (5 generations) 

Table 1: Experimental Results 

ons to approximate equilibrium, starting tempe­
rature, and cooling rate a. They allow the algo­
rithm t o b e tuned for specific problems. SA per-
formance is very sensitive to the cooling schedule. 
In Figure 9, we show how cooling schedule affects 
SA. The best solution found by SA(a = 0.63) for 
the 100-city problem was 21331 miles. The ave­
rage solution was 21372 with a standard deviation 
of the solutions over 10 trials of 30.3. Average 
tirne to best solution is about 310. 

The best solution found by SA(a = 0.90) was 
21255 miles. The average solution was 21284 with 
a standard deviation 27.5 over 10 trials. The ave­
rage time to find the best solution was about 1340 
seconds. 

The convergence curve is shown in Figure 8. In 
this čase, we never reached the optimal solution. 

5.3 Tabu search 

The first stage in developing the tabu search al­
gorithm was to implement the hill climbing heu-
ristic (In this čase 2-opt). We then transformed 
this into our tabu search routine using the nine 
different tabu conditions discussed earlier. The 
tabu search process has the following input para-
meters: tabu condition, tabu list size, and total 
number of iterations. The tabu condition and list 
size are interdependent parameters. The algori­
thm is very sensitive to them. A small tabu list 
size with a weak tabu condition results in cycling, 
whereas, a large list with a strong tabu condition 
drives search away from the global optimum. To 
reach a compromise, we conducted experiments 
for each of the nine tabu conditions to find reaso-
nable tabu list sizes. Generally, the list sizes range 
from a quarter to a third of the number of cities 
for condition 4 and 7. A size of about a fifth for 
conditions 5, 8, and 9 gave the best results for the 
problem tested. Conditions 1, 2, 3, and 6 requi-

red tabu list sizes in the vicinity of the problem 
size, i.e., the number of cities. On average, tabu 
conditions 4 and 7 produced better results in less 
time than other conditions. In our experiment, 
the best solution found by TABU for the 100-city 
problem was 21352 miles. The average solution 
was 21433 with a standard deviation 68.4 over 
10 trials. The average time to best solution was 
about 210 seconds. Examining the problem over 
1000 trials, we never reached the optimal solution. 
The convergence curve is shown in Figure 8. 

5.4 G A + S A + T A B U 

The convergence curve is shown for this method 
in Figure 10. The.result clearly shows the impor-
tance in combining multiple local search methods 
with the GA. 

5.5 GA+SA and GA+TABU 

We examined the convergence of GA+SA, 
GA+TABU, and GA+SA+TABU(Figure 11). 
GA+SA finds better solutions than SA. Also. 
GA+TABU finds better solutions than TABU. 
These results show that the GA is useful 
as a high level algorithm which controls low 
lovel algorithms. However, the result of 
GA+SA+TABU produced better results than 
GA+SA or GA+TABU. In our 100-city TSP, 
GA+SA+TABU always found better solutions in 
fewer generations. 

6 Discussion 

For the four search algorithms we investigated, 
our experiments demonstrated the following; 

Simulated Annealing: If the cooling schedule 
is very carefully determined, SA can find near 
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Figure 11: Performance Comparison 

optimal solutions better than GA or TABU. 
Standard deviation of local solutions from 
SA is smaller than that from TABU. The 
problem with SA is in tuning the cooling 
schedule,which is a computationally expen-
sive task. 

TABU Search: TABU can find local solutions 
faster than GA or S A, but the quality of so-
lution is not as good as that of SA. Standard 
deviation of local solutions from TABU is lar-
ger than that from SA. The tabu conditions 
must be selected heuristically since they de-
pend on the problem. 

Genetic Algorithms: GA performance is sen-
sitive to chromosome representation and the 
crossover operator used. Better representa­
tion and crossover and local search combina-
tion methods are needed to improve perfor­
mance. 

Hybrid GA: A GA itself does not have local se­
arch capabilities, but it can be improved by 
combination with a local search algorithm. 
Our hybrid GA has better solution quality 
than the GA or any of the local search algori­
thms investigated. Our experiments showed 
that GA+SA+TABU always found optimal 
solution in the 100-city TSP and is superior 
to SA, TABU, GA+SA, or GA+TABU. We 
found that solution recombination (i.e., cros­
sover) is very useful for finding the optimal 
solution. We also found that using multiple 
local search algorithms is very useful for im-
proving performance. 

7 Conclusions and Future Work 

In this paper, we proposed and examined a hybrid 
GA which ušes more than one local search rou-
tines with a GA. For the local routines, we used 
TABU and SA. Experimental results were presen-
ted for a 100-city TSP. These results demonstrate 
that this approach to combine TABU and SA as 
local searchers for the GA is very promising. It 
seems that a good hybrid method should use at 
least two different local search methods. We do 
not think, however, that this method is best one 
for TSP. Other combinations are possible, such 
as using Lin-Kernighan (LK) algorithm and GAs. 
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As Malek described, hybrid algorithms are very 
well suited for a variety of problems. With the ad-
vent of parallel machines, inherent parallelism in 
hybrid algorithms becomes especially attractive. 
Yet another advantage of proposed approach is its 
ability to tolerate software faults due to multiple 
algorithm implementations. 
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Appendix 
A 532-city TSP 

We challenged our method on a larger problem: a 
532-city TSP. Our 532 city TSP experiments were 
performed on a Sun4 (Sparc-station-10) com-
puter. First we randomly initialized the tour. 
This approach proved computationally expensive. 
Next, we initialized the tour by the nearest nei­
ghbor method. Figures 12 and refinit-neighbour 
show the initial tours generated at random and 
by the nearest neighbour method. The published 
optimal solution for the 532-city problem is 27686 
by Padberg. This corresponds to a tour cost of 
86900 miles in our experiment. Our best result af-
ter 30 generations was 88415. Figure 14 shows the 
tour generated by GA+SA+TABU after 30 gene­
rations, which was reached at 18th generation. In 
this čase, the relative deviation from optimal tour 
length is 0.0174. This result is comparable to the 
result in Muhlenbein [16]. 

Figure 13: Initial tour by the nearest neighbor 
method 

Figure 14: Best tour by GA+SA+TABU (30 ge­
nerations) 

Figure 12: Randomly generated initial tour 

I 
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In this paper, we say an act is sacrificial if it hurts the actor as an individual but 
benefits his species as a whole. We will present two situations in single round prisoner's 
dilemma where such sacrificial acts are so important that species cannot survive without 
them. Those two cases are: Cooperate with Justice (CWJ) and Cooperate with Suicide 
(CWS). The former is an act to punish defectors. The latter is more counter-intuituve; 
an act to hurt himself fornothing. We will show by computer simulation that those two 
strategies survive in population dynamics, vrhilethe simple Cooperate (C) strategies 
cannot survive in the same situations. 

1 Introduction 

The game of Prisoner's Dilemma has been studied 
for many years [1, 2, 3, 5, 6, 7, 8, 9, 10, 11]. It is 
a two player non-zero-sum game, and each player 
has to choose from two actions: Cooperate (C) 
and Defect (D). Its pay-off matrix is shown below. 

C 
D 

C D 
3/3 0/5 
5/0 1/1 

Iterative Prisbner's Dilemma is that a player 
plays Prisoner's Dilemma multiple times in a row 
with the same opponent. Axelrod organized tour­
naments of Iterative Prisoner's Dilemma in 1981 
and 1988 [1, 2, 3]. The most successful strategy 
in the tournaments is known as TIT-FOR-TAT. 
This strategy is to cooperate as long as the oppo­
nent cooprates, and to retaliate by defecting in 
the next round if the opponent defected. This 
retaliation will discourage the opponent from de­
fecting, and higher pay-off can be expected thro-
ughout the rest of the rounds. It is important 

to note that TIT-FOR-TAT is effective because a 
player will play many rounds with the same oppo­
nent. 

2 Single Round Prisoner's 
Dilemma 

In the single round Prisoner's Dilemma, on the 
other hand, the strategy of TIT-FOR-TAT can­
not be used. If you are defected, sorry, that is 
the last ( and first) game with the opponent, and 
there is no opportunity to retaliate. If you stili 
defect in the next round for retaliation as in TIT-
FOR-TAT, you would retaliate a different oppo­
nent, who may be innocent from defecting in the 
previous round. Thus, in the Single Round Pri-
sner's Dilemma, the most beneficial strategy is to 
always defect. As the pay-off matrix indicates, 
you will always get higher pay-off no matter what 
action the opponent will take. 

Let us now consider population dynamics of two 
species: Cooperate (C) and Defect (D). Each in­
dividual of the Cooperate species always coope-

http://mt9sfc.keio.ac.jp
mailto:kido@math.keio.ac.jp
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rates, and each individual of the Defect species 
always defects. We then play a round-robin tour-
nament of Single Round Prisner's Dilemma, and 
the survivability of each individual is proportio-
nal to the total pay-off value he has obtained. We 
also assume that the size of total population is 
constant at each generation. 

More precisely, let S\...Sn be n different species 
(strategies) in the population, where n = 2, S\ = 
C, and 5*2 = D. 
Let P{tk be the size of population of S,- over the 
entire population in the fc-th generation. Thus, 
E? = 1 Pi,k = 1 for ali k. 
Let E(Si,Sj) be a pay-off function which returns 
the pay-off value of 5,- against Sj. 

Now the dynamics can be defined as follows: 

"m,k+\ — 
J2j E{Sm> S j) • Pm,k • Pj,k _ ^1 

Figure 1 is the result of simulation with the ini-
tial population ratio of 0.5 and 0.5 (-Pi.o = A.o = 
0.5). It takes only several generations for C's to 
be beaten by D's and wiped out from the popu­
lation. 

3 Sacrificial Acts: Cooperate 
with Justice 

Suppose that a player has a chance to punish de-
fecters in the Single Round Prisner's Dilemma. 
If a player is defected, he has an option to exer-
cise the "act of justice", by forfeiting ali of the 
defecter's flve (5) points gained by the defective 
action. Uniike TIT-FOR-TAT, the "act of justi­
ce" is expensive; it costs one (1) point to exercise 
the act. 

Let us consider a new species, "cooperate with 
justice" (CWJ). CWJ behaves like C against ali of 
the species including CWJ itself. However, after 
CWJ gets defected by a D, it will execute the "act 
of justice", to make sure that D's defective action 
is ne ver rewarded. 

Notice that the act of justice by a CWJ is sa­
crificial. x CWJ has to pay one point, and due to 
single round mat, it cannot benefit from the oppo-
nenfs penitential behavior (if any) for the rest of 
the game. Thus, in terms of individual pay-off, 
this act does not make sense; a CWJ only hurts 
himself. However, the sacrificial act by an indivi­
dual CWJ can greatly benefit the entire CWJ's, 
because it damages their natural enemies, i.e., De-
fecters. 

The payoff matrix with CWJ instead of C is 
shown below. 

n\nn 

/' 

/ 

i 

Figure 1: C and D, historical diagram 

CWJ 
D 

CWJ D 
3/3 -1/0 
0/-1 1/1 

The result of simulation with the same initial 
population ratio (0.5 and 0.5) is shown in figure 2. 
As we can see in the figure, D's get wiped out by 
the acts of justice, and CWJ's will soon dominate 
the entire population. We can therefore conclude 
that we have shown a clear čase where individual's 
sacrificial acts can help the species as a whole: C's 
without the sacrificial acts get ruined by D's, but 
C's with the sacrificial acts (CWJ's) ruin D's. 

^IT-FOR-TAT, on the other hand, can be considered 
as "selfish" action, because (1) payoff of the particular de­
fective action is greater than a cooperative action, and (2) 
it expects the opponent to refrain from defecting, increa-
sing its total pavoff throughout the rest of the game. 
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Figure 2: CWJ and D, historical diagram 

4 Free Riders: Cooperate 
without Justice 

In this section, we shall consider population of 
three species: Defectors (D), Cooperators with 
Justice (CWJ) and Cooperators without Justice 
(C). The pay-off matrix is shown below. 

C 
CWJ 

D 

C CWJ D 
3/3 3/3 0/5 
3/3 3/3 -1/0 
5/0 0/-1 1/1 

We did an experiment similar to the previous 
sections with 

Si = C,S2 = CWJ,S3 = D,Pi,o = 0.2,P2,o = 0.45, F3,o = 0.35 

The result is shown in figure 3. At the first 20 
generations or so, D's are largely controlled by 
CWJ's acts of justice. Cs.and CWJ's are increa-
sing at the beginning, because decrease of D's be-
nefits both C's and CWJ's. However, only CWJ's 
are paying the priče for controlling D's, and thus, 
C's are "free riders". This makes C's predominant 
over CWJ's, and the population of CWJ's gradu-
ally decreases due to the existence of C's. And 
at the 17th generation, the population of CWJ's 

gets so small that they can no longer control D's. 
D's then revive, increasing the size of their po­
pulation, and eventuallv, D's dominate the entire 
population as in section 2. 

In short, free riders (C) unwilling to pay the 
priče will hurt their best friends (CWJ) and in 
turn they (C) will get ruined by enemies (D). 

This result is consistent with the result of Axe-
lrod's work [1]. In his paper, Axelrod suggested 
the notion of "meta-norm"; that is, one should 
punish not only defectors but also those who do 
not punish defectors. 

In the next section, however, we introduce a 
different notion, "suicide", that can help stabilize 
population of the species. 

10.00 

, / x 
^ ^ 

^ 

"""" 

--.. 

,,**"' \ 

\ \ 

CWJ 

u 

10.00 20.00 

Figure 3: C and CWJ and D, historical diagram 

5 Suicidal Acts: Cooperate 
with Suicide 

In the previous section, we described sacrificial 
acts. That is, reducing points of his own in order 
to reduce significantly more points from enemies 
bf his species. Thus; it is intuitively sound that 
this kind of sacrificial acts can help his species as 
a whole. 
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Figure 4: CWS and CWJ and D, historical dia­
gram 

In this section, we introduce less intuitive acts 
of "suicide". The act of suicide reduces points 
of his own, and does not reduce or increase his 
opponefs point. It simply hurts oneself without 
any return. This seemingly counter-intuitive act 
can help stabilize the population of the species, 
as demonstrated in the following experiment. 

In the experiment, we have D's, CWJ's, and 
CWS's (Cooperate with Suicide) instead of C's in 
the previous experiment. The pay-off matrix is 
shown below. 

cws 
CWJ 

D 

CWS CWJ D 
3/3 3/3 -1/5 
3/3 3/3 -1/0 
5/0 0/-1 1/1 

Only the difference between this matrix and the 
previous matrix is C and CWS. That is, if a CWS 
is defected by a D, rather than do nothing (like C's 
in the previous experiment), he commits suicide 
reducing one point of his own. The opponent will 
keep the 5 points gained by the defective action. 

The result of the experiment with the same 
initial population ratio (Pi,o = 0.2, P2,o = 
0.45, i^o = 0.35) is shown in figure 4. In the 

short term, the suicidal acts by CWS's hurt them-
selves, resulting less rapid growth than in figure 3. 
However, in the long term, the suicidal acts help 
CWJ's survive; CWS's slow growth keeps CWJ's 
from being predominated, and D's (CWS's ene-
mies) can be kept controlled by CWJ's. 

6 General Analysis 
The process at work can be visualized with more 
generality and precision if we shift from the histo­
rical illustration to the phase diagram in figure 5 
[4]. In such a diagram any point of the triangle re-
presents a distribution of the population over the 
three stragegy options. The vertical coordinate 
indicates the proportion of "CWJ", the horizon­
tal coordinate shows the proportion of "C", and 
finally the remaining proportion of "D" is mea-
sured by the horizontal distance from the point 
to the hypotenuse. The population dyanamics is 
effected by the initial population ratios as illustra-
ted in Figure 5. There are two kinds of evolutio-
nary equilibrium (EE). (1) EE is at Vertex D. (2) 
EE is along Edge C and CWJ. Figure 6 shows this 
situation. If we select the initial population ratio 
from the black part of the triangle, D exploits C 
and CWJ. And If we select the initial population 
ratio from the white part of the triangle, D beco-
mes extinct, C and CWJ can survive. In the čase 
of CWS and CWJ and D, the results are shown 
in Figure 7. The black part of the Figure 6 are 
a little larger than that of Figure 7. Figure 8 
shows the difference between Fingre 7 and Figure 
8 where suicide act can be meaningful. 

7 Concluding Remarks 

In this paper, we have presented a situation where 
species with sacrificial acts can sur.vive while those 
without would not. We have also presented a situ­
ation where species with suicide can survive while 
those without would not. 
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Figure 5: C and CWJ and D, phase diagram 
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Figure 7: CWS and CWJ and D, evolutionary 
equilibrium 

Figure 5: C and CWJ and D , phase diagram 
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Figure 6: C and CWJ and D, evolutionary equi-
librium 

Figure 8: The regions that suicide act can be me-
aningful 
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This paper proposes that evolutionary computation be understood more like computa­
tional evolution, i.e., to use the evolutionary process for construction, ratier than for 
optimization. For this purpose simulation of the evolutionary process should include a 
non-linear developmental process from genotype to phenotype. In this developmental 
process the environment has an important role. In order to model the developmental 
process under the influence of the environment, a new modeling language is introdu-
ced. The focus of this language is on the interactions, which are considered to be the 
basic elements for environmental adaptation. The developed modeling method provides 
a complete simulation environment for the construction of organisms. The developed 
system aims to construct intelligence as adaptive behavior based on artificial neural 
networks. 

1 Introduction 

Artificial Intelligence has failed to model intelli­
gence as it appears in natural systems. This is an 
actual problem for applications that should be-
have independently in an unknown and unpredic-
table, environment, e.g., intelligent autonomous 
systems. 

There are two points where natural systems de-
part remarkably from common engineering prin-
ciples. First, information from the old system to 
the new system is transformed in two parts: the 
genetic information and the celi machine needed 
to interpret the former. The genetic information 
does not directly define the final result, but in-
stead describes it in a non-linear way through the 
development process. 

Second, the development process that leads 
from a single celi to a multicellular organism is 
a non-linear process that happens in close inte-
raction with the environment. For the final result 
the environment is as important as the initial de-
scription. The systems that are capable of self-
modification in the dynamic environment will be 
favored in evolution. 

This approach has implications for engineering: 
instead of direct design, the complex systems are 
engineered indirectly. The focus will be on self-
adaptation rather than on the final functionality. 
The design subject may be, in principle, anything, 
but here we will restrict our analysis to autono­
mous systems, and in particular to control unit 
based on simple cellular structures. 

2 Background 

In engineering the usual concept is to separate a 
system from the environment by replacing it with 
some system parameters. This is based on the 
old understanding that biological organisms are 
well bounded systems. However, as engineers -
like biologists - become increasingly aware of the 
embodiment of the system in the environment, 
they should concentrate their efforts on finding a 
mechanism to lower the system bounding conditi-
ons, which will lead toward the design of general 
adaptive systems. 

In the following we review how the understan­
ding of biological systems has been changed to-
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ward more tightly embodied systems, and then, 
following by this, we introduce the concept of 
computational evolution in contrast to evolutio-
nary computation. 

2.1 Environmental Embodiment 

Opinions of how much the environment effects the 
development and evolution of natural systems are 
wide-ranging. According to the neo-Darwinian 
view, the^effect of the environment applies only 
to the natural selection process. 

This opinion is challenged by Piagetian envi­
ronmental adaptation, where the actions of orga-
nisms cause a continuous feedback from the en­
vironment, and behavior is considered to be the 
prime source of evolution. [1, 6]. The next step 
has been proposed by Wesson [13] with arguments 
of direct genetic adaptations to the environmen­
tal changes. Both of these opinions suggest that 
the Darwinian natural selection mechanism is ina-
dequate for creating the biological life now present 
in nature. This is the same conclusion than Stu-
art Kauffman made in [2]. The environment has 
to have a more direct method for affecting the 
direction of evolution than Darwinian survival se­
lection. 

These theories can be compared to software te-
chnology. Current software technologies are ba-
sed on the idea of predetermination, i.e., the pro­
gram does not change after it has been written. 
Recently the Darwian ideas of selectionism have 
been applied by Koza [3] as Genetic Program-
ming. The next step is to extend software accor­
ding to the general theories of self-organizing sy-
stems. 

2.2 Structuralism vs. Functionalism 

The recent experiments in modeling the evolu-
tionary process have once again raised the old 
question of the actual relation between form and 
function. The previous topic was wether "struc­
turalism" (the primacy of form over function) 
or "functionalism" (the primacy of function over 
form) is more valid (see, for example, [8]. Now the 
same question seems to be emerging from evolu-
tionary computation: Do we need to model the 
form in order to create a function, or could we 
concentrate only on the function and forget the 
form in the simulations of evolution? 

Current models of evolutionary computation 
ignore the form and concentrate on the explici-
tly defined functions. This approach leads to a 
powerful "search" mechanism in a known function 
space, ie., optimization, but does not demonstrate 
any of the creativity that is clearly visible in na­
tural systems. For modeling this creativeness, the 
form, and its developmental process, must also be 
included in the models. 

2.3 Computational Evolution 

We would like to make a distinction between the 
research on genetic algorithms, i.e., evolutionary 
computation, and our research. We would like to 
explore purposeless evolution, not optimization in 
a known space. However, purposeless is not me-
aningless. We have a mechanism to create struc-
tures that result in behavior in the environment. 
The explicitly defined fitness function is replaced 
by an implicitly defined behavior capable of re-
production. We call this Computational Evolu­
tion, rather than evolutionary computation. The 
difference between these two approaches can be 
seen in Figure 1. 

The idea is to find the mechanism by which 
the biological systems respond to novel problems. 
This could also be called adaptive behavior. The 
question is does there exist any single mechanism, 
or principle, that gives rise to organisms and their 
"intelligent" behavior. If there exists such a me­
chanism, could it be transferred to artificial sy-
stems to provide the principle for spontaneous in­
telligent behavior. 

It is clear that evolution (phylogenesis) based 
only on a selection mechanism does not provide an 
answer. It must be combined with morphogenesis 
and ontogenesis. How to make a computational 
model for ali these processes is the problem that 
must first be answered. After we have a compu­
tational model for these processes, we can explore 
the effect of each of them in order to create arti­
ficial systems. 

2.4 Focus of this r e sea rch 

The above theoretical arguments should be elabo-
rated with concrete examples. A computational 
model would be very useful to verify what kind 
of environmental effects can be modeled, and how 
these effects can replace genetic predetermination. 
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Evolutionary Computation 
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Figure 1: Comparison between Evolutionary Computation and Computational Evolution. The result 
computational evolution is an unequal distribution of individuals. The creation of new individuals 
will fill the space and exert a pressure on the existing individuals. In evolutionary computation this 
pressure is replaced by the explicitly defined selectiori of the fittest individuals. This explicitness 
destroys the creativity of evolution. 

A computational model is capable of capturing 
the essence of the above arguments, and makes 
it is easy to conduct experiments with different 
initial conditions. 

However, it is not obvious what kind of compu­
tational model is most suitable. First, we have 
to recognize tha t the model should be capable 
of embedding organisms in the environment. Se-
cond, the model should be capable of the local 
interactions between the organisms and the en­
vironment. Third, the model should be capable 
of covering ali the different envirdnmental adap-
tation phases. These include the development of 
an organism (morphogenesis), the plasticity that 
results in behavior (ontogenesis), and a selection 
mechanism with genetic variations (phylogenesis). 
These processes are illustrated in Figure 2. 

We have thus far reported the results of a si­
mulation mechanism as a method to construct in-
telligent behavior in [12, 10]. A mechanism for 
evolutionary design and model building has been 
discussed in [11, 5]. A detailed description of the 
simulation mechanism can be found in [9]. This 
paper is a continuation of the previous work re-
porting the latest results. 

3 Computational Model 

A computational model is based on the concept 
of production rules inspired by Lindenmaver sy-
stems [7]. However, instead of using alinear string 
of letters we describe abstract objects, which have 
their own production rules to execute. 

Unlike L-systems having position ordered para-
meters for letters, we use attributes (a tuple of key 
and value) to describe the parameters of objects. 
Each object can also have sub-objects with their 
own production rules and attr ibutes. This forms 
a hierarchical representation of the objects tha t 
also allow an environment model in the same mo­
del. 

Because of these fundamental changes we prefer 
to call our system Multilevel Interaction Simula­
tion language (MLIS) [9]. 

3.1 Multi level Interaction Simulat ion 
language 

In traditional object-oriented systems the action 
of an object is based on the sent message, i.e., 
the object is passive unless someone sends a mes­
sage for action. This implies tha t the message 
control mechanism must be svnchronized in the 
sense that the sender must know to whom and 
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Figure 2: Possible environmental adaptations: morphogenesis, ontogenesis and phylogenesis. The 
organism starts with genetic information and a basic mechanism to interpret it, and interact with 
the environment (celi) resulting in a phenotype, and further behavior. Through a selection process 
based on the result of the earlier phases, new genetic information with an interpretation machine (celi) 
results in closing the evolutionary loop. 
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Figure 3: The hierarchical organization of objects. 
Each object has its own local visible environment. 
The interactions are executed in parallel and si-
multaneously. 

when to send the messages. 

In the MLIS language each object is actively 
"checking" the environment and, based on the in­
formation in the environment, the objects take 
appropriate actions. The environment visible to 
each object depends on its position in the hierar­
chical organization (see Figure 3). Because each 
object is autonomously executing its own instruc-
tions, the system possesses a strong parallelism. 

The simulation of such a system must focus 
on the interactions (actions that the objects take 
based on the visible environment). Each object 
should possess a set of definitions describing the 

actions to be taken, i.e., a set of production ru­
les. The general form of these rules is f(x + 1) = 
g(f(x),e(x)), where f(x) represents the state of 
the object and e(x) the state of the environment 
at time x. The simulation environment assures 
that ali objects are executing these production ru­
les in an "infinite" loop, i.e., the execution cycles 
that simulate the passage of time. 

In this execution cycle the production rules are 
executed in parallel and simultaneously. This me-
ans that during each execution cycle the data vi­
sible for each production rule do not change until 
ali the production rules are executed. 

Initially, the production rules are given expli-
citly for each object. These initial rules describe 
the basic interactions, and can be compared to 
the simulation of physical phenomena. Another 
set of production rules might be used to modify 
the object itself. These rules can be compared to 
a celi machine that interprets genetic information. 
If these production rules can be handled as data 
by other production rules, the system is capable 
of self-modification. 

3.2 Objects 

An object is parsed from its string representation 
(obj(ATTRI, ATTR 2 , ... , ATTRn)), which descri-
bes the name of the object (obj), and its attribu-
tes in parentheses. 

For example, an object might take the following 
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form. 

obj(ATTRi=value, ATTR2=value, 
. . . , ATTRn=value, 
RULEI=(obj :: cond -* [ obj(...)]), 
RULE2=(obj :: cond -> [ obj(...) j), 

'(RuLEi(this), RuLE2(this)) 
/ / Ezecution of rules 

) 

The above describes the initial state of an 
object with some attributes and two production 
rules. The execution of the production rules is 
defined by an explicit call to the rule with a pa­
rameter to define the object on which the rule 
will be applied. The parameter can be a reserved 
word (this meaning this object, or up meaning 
the upper level object) or the attribute name of a 
list of objects. (A detailed explanation will follow 
in section 3.4). 

If we have a hierarchical representation of 
objects, we have the problem of defining whether 
the production rules are called before applying 
the production rules of sub-objects, or afterwards. 
This is solved in the current implementation by 
explicitly defining 'before' and 'after' execution of 
production rules. The execution order of multile-
vel production rules is shown in Figure 4. 

In the following example (Figure 5) the exe-
cution order of the rules is as follows (|| means 
in parallel): RuLEi, (RULE^ || RULEC), RuLEg, 
RULE 2 . 

3.3 Attr ibutes 

Each object has an attribute list, where each at­
tribute has a name and a value (e.g., a chemical 
compound with its concentration). A general de-
scription of an attribute is 'ATTR=value'. The 
attribute value can have a wide variety of prede-
fined types with dynamic type resolution during 
execution. The predefined types include produc­
tion rules, objects, arithmetic types (integer, dou-
ble, etc), geometrical types (point, segment, po-
lygon, vector, etc), and nested lists of the above. 
Attributes are modified by expression statements. 

3.4 Interaction rules 

Each interaction rule is described as a production 
rule. A production rule describes the conditions 
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and the kind of action that will take plače. Pro­
duction rules are divided into the following types, 
according to the possible actions. 

— Modification of internal state based on the 
internal state (celi machine) 

— Modification of internal state based on the 
external state (celi membrane) 

- Creation of a new object 
- Deletion of an object 

Below we explaine each type briefly. 

3.4.1 Internal-state-based modification 

These modifications, which have access only to 
the internal state of an object, have the following 
form of production rule. 

RuLE=(obj :: cond 
—• obj(ATTR—expr(ATTK)) ), 

'(RuLE(this)) 

This means that the value of this object (in-
dicated by the reserved vvord this) is given to 
the production rule as a value of obj and the at­
tributes are modified according to the expression 
(ATTR=ea;pr(ATTR)). 

3.4.2 External-state-based modification 

Access to the upper level values has the following 
form of production rule. 

RuLE=(obj, mobj :: cond 
—> obj(ATTR=ea;pr(mobj.ATTR))) 

'(RuLE(this, up)) 

The interpretation of the above rule is to call 
it with the value of this object (this) given to 
obj, and the value of the upper level object (in-
dicated by the keyword up) given to mobj. In 
same cases (see examples in Figures 12 and 
tab:reproduction) we need to access not only the 
upper-level object, but also ali the neighbors of 
the upper level object. Although this can be im-
plemented by additional rules, we have a shortcut 
with the keyword up* meaning that the rule is 
called by ali the upper-level given objects in turn, 
as the value to mobj. 

Access to the sub-objects has the following form 
of production rule. 
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Figure 4: The execution of multilevel production rules. First, the 'before' rules are applied in parallel to 
the outmost object. This is repeated for each sub-object in parallel until there are no more sub-objects. 
Then the 'after' rules of the innermost sub-objects are applied and the sub-objects are rewritten into 
the upper level. This is continued until ali 'after' rules are applied at ali levels. 

obj(RuLEi=(obj :: cond —• obj(...)), 
RULE2=(obj :: cond —• obj(. ••)), 
SuBOBJS=[sob/i(RuLEA=(ob/ :: cond - • obj(...)), 

RuLEa=(obj :: cond —• obj(...)), 

'(RuLE^this)), 
'(RuLEB(this))), 

sojf>j2(RuLEc=(obj :: cond obj(...)), 

•], 
'(RuLEc(this))), 

) 

'(RULEi(this)) 
'(RULE2(this)) 

/ / Ezecution of before rules 
// Execution of after rules 

// Ezecution of before rules 

// Ezecution of before rules 
// Ezecution of after rules 

Figure 5: An example of production rules to illustrate the execution order. 
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S U B O B J S = [ sobj(ATTR, . . . ) , . . . ] , 
RuLE=(obj, sobj :: cond 

—> obj(ATTR=expr(sobj.ATTR))) 

'(RuLE(this, SUBOBJS)) 

The interpretation of the above rule is to call 
it with a vame of this object (this) given to obj, 
and each sub-object (in SUBOBJS) as the value 
for sobj. 

Both these mechanisms are illustrated by the 
example shown in Figure 6. The cells in the envi-
ronment has access to the environment attribute 
ENVATTR through the production rule ADAPT. 
The environment object (environment) access of 
the attribute EFFECTATTR of each celi through 
the production rule EFFECT. 

3.4.3 Creation of a new object 

Creation of a new object takes plače when there 
is an extra successor, as follows. 

RuLE=(obj :: cond 
-*• obj(ATTR=ea;pr(ATTR)), 

objnew(ATTK= expr(ATTK)) ) 

This rule has an extra successor, which is reco-
gnized by a difFerent name (i.e., obj = obj results 
in only attribute modifications, but obj ^ objnew 
results in the creation of a new object). The de-
fault behavior is to copy the attribute values of 
the original object. However, the attributes can 
be modified within the same rule. Thus by mo-
difying the attribute values we can achieve the 
following basic celi lineage types: 

— The celi divides into two cells of same type 
(A^A,A) 

— The celi creates a new celi type (A —» A, B) 
— The celi divides into two cells of different 

types (A -* B,C) 

3.4.4 Deletion of an object 

Deletion of an object is simple with the following 
rule. 

RuLE=(obj :: cond —»• ~obj() ) 

When we apply the rule we delete the objects 
where successor is preceded by '"' are deleted as 

a result of applying the rule. An alternative me-
thod would be to follow the principle of rewriting 
systems, i.e., if the object is not rewritten by any 
rule, it will disappear. However, this would have 
required a default rule without any modification, 
and thus it was considered an unnecessary com-
putational requirement. 

3.5 Simulation of Physical Space 

The basic idea that the environment cannot be di-
stinguished from the system requires the modeling 
of physical phenomena to some extent. Curren-
tly, physical phenomena have been implemented 
by production rules similar to the rules controlling 
the self-modifications. This requires a complica-
ted set of production rules to handle the physical 
properties of each object. Some of these proper-
ties, such as intersection in space, can be deter-
mined by built-in functions. 

4 Morphogenesis of Organisms 
The following example illustrates the MLIS langu-
age. With a simple morphogenesis process we can 
create a cellular structure. The celi divisions and 
differentiation are shown. In the final structure, 
some cells act as sensors, some cells as effectors, 
and some cells as neurons. The neuron cells start 
to grow connections that will terminate at other 
neurons, effectors and sensors. The created beha­
vior will control the organisms in the environment 
and, based on this behavior, simple reproduction 
is demonstrated. 

The examples given were executed by a serial 
implementation of the interpreter while the paral-
lel implementation is under construction. 

4.1 Divis ions 

Figure 7 describes how to create a simple morpho­
genesis. The description consists of environment 
object, which contains a list of organisms (ORGA-
NISMS). Each organism (organism) is defined by a 
list of cells (CELLS). Initially, the list consists of 
description of a single celi (celi). In the example 
the celi has a production rule that defines when, 
and in what direction, to divide (DIVISION). Each 
of the divided cells will inherit the same produc­
tion rule. Thus, the rule consists of five alter­
native branches, which are selected based on the 
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environment(ENVATTR, / / Factor effecting the cells 
CELLS = [ ce]i(ADAPTATTR, / / Factor effected by the environment 

EFFECT ATTR, / / Factor effecting the environment 
ADAPT=(ceii, env // Celi <= Env 

:: cond(cell. ADAPTATTR, env.ENV ATTR) 
-* cei](ADAPTATTR=/(ceiJ.ADAPTATTR, env.ENV ATTR)) 

). 
'(ADAPT(this, up)) 

), / / End of celi description 

EFFECT=(env, celi :: cond(env.ENvATTR, ceJl.EFFECTATTR) / / Env <= Cells 
—> env(ENVATTR=/(ENVATTR, ceii.EFFECTATTR)) ), 

' (EFFECT(this , C E L L S ) ) 
) / / End of environment description 

Figure 6: An example of a production rule to illustrate the access of external attributes. The rule 
ADAPT accesses the attribute ENVATTR of the environment object (environment), which is assigned 
to the parameter env by using the keyword up. In contrast the EFFECT rule accesses each celi in 
CELLS (list of objects) that are assigned in turn to the parameter celi. 

current stage of the celi (STAGE). The direction 
of possible divisions is given by a two-dimensional 
array of vectors ( D I R ) . 

Close study of the production rule reveals that 
the first branch divides the initial celi into 'up' 
and 'down' cells. The next branch will divide both 
of these cells into 'left' and 'right' cells. The four 
cells thus far created are capable of creating a 
structure that is symmetrical about the horizon­
tal and vertical axes. The next three branches are 
used to create symmetrical quadrants, which di-
ffer only in the division direction. The first of the 
remaining rules gives a stem celi for the further 
celi lineage. The next branch starts a diagonal di­
vision lineage. The last rule creates a horizontal 
division lineage. 

The celi divisions are shown in Figure 9. The 
development consists of eight celi divisions resul-
ting in a 36-cell structure. The size of the struc­
ture is controlled by the number of diagonal and 
horizontal divisions ( M A X D I V ) . This variable can 
be presented as an array similar to division direc­
tion (DlR.), or as a function of the environment. 
This breaks the symmetry of the organisms as di-
scussed below (4.3 Environmental effect). 

4.2 Differentiation 
During division the cells differentiate based on 
the production rule shown in Figure 8). The first 

branch of the production rule determines that the 
celi will end as an effector (muscle celi). The se-
cond branch will produce a sensor celi. The last 
branch will produce a neuron. The selection of 
the applied branch is based on the simple rule 
that "edge" cells will become effectors, "head" 
cells will become sensors, and "inter" cells will 
become neurons. 

As shown in Figure 9 the celi size changes. This 
indicates that the celi becomes mature (STAGE= 
=mature). In the čase of neural cells a slight ro-
tation is used to distinguish them from immature 
cells (on the computer screen these are shown in 
color). 

4.3 Environmental effect 

The above examples demonstrate hov/ the system 
is capable of morphogenesis of organisms based 
on simple genetic information. Lefs assume that 
some of the control variables of the above produc­
tion rules of celi divisions depend on the enviro­
nment. For example, the value of MAXDIV can 
be defined based on some environmental factors, 
and produce the organism shown in Figure 10. 
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environment(..., // Atiributes of environment 
ORGANISMS=[ / / Environment consists of organisms 

organism(... / / Attributes of organism 
CELLS=[... / / Organism consists of ceils 

ceIi(Pos=<0.0,0.0>, CNT, MAXDIV, 

D I R = [ [ < 0 . 0 , 1 0 . 0 > , <180.0,10.0> ], [<90.0,10.0», <270.0,10.0> ], 
[<60.0,10.0>, <120.0,10.0> ],.[<300.0,10.0>> <240.0,10.0>]], 
RIGHT=1, LEFT=2, UP=3, D0WN=4, 

DlviDE=(celI :: (ceJI.STAGE=stem) / / 'Up' and 'dovrn' stem cells 
-» [ new(STAGE=steml, P O S + = D I R [ 2 ] [ 1 ] , L O C = U P ) , 

ceJJ(STAGE=steml, LOC=DOWN) ] 
:: (celi.STAGE=sternl) / / 'Left' and 'right' stem cells 
-* [ new(STAGE=stem2, P O S + = D I R [ 1 ] [ 1 ] , SIDE=RIGHT) , 

ceii(STAGE=stem2, SIDE=LEFT) ] 
:: (celi.STAGE^stem2) / / Stem celi of quatro-body 
—• [ new(STAGE=stem3, POS+=DIR[1] [S IDE] ) , 

ceJI(STAGE=edge) ] 
:: (celi.STAGE^stem3) / / Diagonal celi lineage 
—» [ new(STAGE=(CNT<MAXDlv?stem3:edge), 

POS+=DIR[LOC][SIDE]) , 

ceii(STAGE=stem4) ] 
:: (celi.STAGE=stem4) / / Horizontal celi lineage 
—• [ new(STAGE=(Cnt<MaxDiv?stem4:head), 

POS+=DIR[1] [SIDE]) , 

ceil(ŠTAGE=inter) ]), / * DIVIDE */ 
'(DiviDE(this)) 

) , . . . ] , . . . ) , . . . ] , . . . 
) / * environment */ 

Figure 7: An example of production rules to generate celi divisions. ( " < angle, length > " is a vector 
value; " . . . ? . . . : . . . " is a conditional statement "if . . . then . . . else . . . " ; "4-=" is an addition to 
the previous value (here as a vector operation).) 

5 Ontogenesis of Organisms the list contains a generic connection from which 
the other connections are initiated. 

The transition from morphogenesis to ontogenesis The generic connection has the production ru-
is not clear. We refer here to the neural activi- l e s needed to model the growth. These rules are 
ties, namelv the growth of the connections and the shown in Figure 11. The first rule ( B U D ) creates 
signal propagation between neurons, as ontogene- the initial connections with the necessary initial 
tic phenomena. Thus far the signal propagation value of the genetic growth force ( G F ) , i.e., the di-
is not modeled to cause any permanent changes rection in which the connection intends to grow. 
in the neural behavior, although this could easily T h e n e x t r u l e ( B R A N C H ) is a branching rule, 

be included in the model. which duplicates the connection by changing the 

direction of the growth force by, in this example, a 

5.1 The growth of a neural network constm? f a c t o / ( B B A N C H A N G L E ) . The condition 
for applying the branchmg rule is also determined 

When the celi structure has been formed, the ne- by a constant factor ( B R A N C H C N T ) . 

uron cells start to grow connections. The growth The growth of the connection is modeled by the 
mechanism is similar to the cellular division me- next production rule ( G R O W T H . It contains three 
chanism. Each celi has a list of parts (CoNNEC- alternative execution branchs. The first branch 
T I O N S ) , which contains the connections. Initially, calculates a new position ( P o s ) by adding the ge-
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cell{... 
DlFFER=(ceii :: (ce7i.STAGE = edge) kk (celi.CNT > celi.MAXDIV) 

->• [ ceI2(STAGE=mature, TYPE=effector, SHAPE * = 1.6) ] 
:: (celi.STAGE = head) kk (celi.CNT > celi.MAXDIV) 
-»• [ ceii(STAGE=mature, TYPE=sensor, SHAPE * = 1.6) ] 
:: (celi.STAGE = inter) kk (cei/.CNT > celi.MAXDIV) 
-> [ ceii(STAGE=mature, TYPE=neuron, R += 15.0) ] 

'(DlFFER(this)) 
) / * celi */ 

Figure 8: An example of a production rule that generates celi differentiations. (See explanation in 
text.) 

Figure 9: An example of the formation of a struc-
ture. Through multiple celi divisions and diffe­
rentiations, the final form is gradually reached. A Figure 10: Variation of organisms by changing the 
celi that no longer divides as is represented by a value of a single control variable. 
large celi or, in the čase of a neural celi, by a slight 
rotation. 
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netic growth vector ( G F ) . The new position is sa-
ved in the list (CONNPATH). The growth force is 
modeled to decrease as a function (/, a sigmoid 
function returning a value of less than one) of time 
( C N T ) . 

The next branch is executed if the connection 
was not able to connect to any neuron by a spe-
cific number of growth steps (WITHDRAW). The 
withdrawal of the connection is implemented by 
repeated 'pop' operations until the list of connec­
tion growth steps (CONNPATH) is empty. When 
the list becomes empty the last branch will delete 
the connection. 

5.1.1 Environmental effect 

The above genetic growth of connections is insuffi-
cient to simulate realistic neural growth. We also 
need a targeting mechanism that includes physical 
and chemical factors. These can be implemented 
by the production rules shown in Figure 12. 

The first rule (ATTRACTION) implements the 
chemical attraction of other cells. In order to 
make this work we need a target label (TARGET) 

for each that connection corresponds to the che­
mical diffusion labels ( D I F F ) of other cells. For 
each of the matching labels we calculate an attrac­
tion force ( A F ) as a function (/, as in Figure 13) 
of distance (| cell.Pos - Pos |) directed toward the 
attraction celi (norm(cell.Pos - Pos)). 

In the above growth production rule ( G R O -
WTH) the new position calculation is modified to 
include the attraction force, and to suppress the 
genetic force in the vicinity of target celi. 

5.1.2 Example of the growth of a neural 
network 

In the following example we use a simplified mo­
del of the organisms. The celi positions are given 
explicitly as are the targeting labels, i.e., what 
neuron will be connected to which sensors and 
effectors. The initial description is given in Fi­
gure 14. These values could be the result of the 
above described morphogenesis process, but due 
to the computational requirements, this has not 
yet been modeled. 

An example of a created network is shown in 
Figure 15. The effecting forces include the simu-
lation of mechanical collisions, and the chemical 
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Figure 14: Each organism has its own local co­
ordinate system. The length and width of an or­
ganism, and the positions of sensors and effectors 
are given relative to this. 
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Figure 15: The neural cells grow connections that 
target other neurons, sensors and effectors. When 
to branch, and the branching angle are deter-
mined by the genetic rules. Three phases are 
shown: initial growth (top), initial withdrawal 
(middle), and after ali unconnected connections 
are withdrawn (bottom). 
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ceii(Pos=<C . . . , . . » , / / Celi as a neuron Capable of grotving connections 
CONNECTIONS=[ 

generic(BRANCHCNT=10, BRANCHANGLE=[30.0 , -30.0], W I T H D R A W = 0 . 1 , 
DiR=[<60.0, 5.0>, <120.0, 5.0», <180.0, 5.0>, 

<240.0, 5.0>, <300.0, 5.0>, <360.0, 5.0»] 
Div=l , CONNPATH=Q, CoNNECT=False, 
BuD=(conn, celi //Start of a neto connection 

:: (conn.Drv<6) 
- • [ new(GF=DlR[Div], Pos=ceii.Pos+GF, C O N N P A T H + = P O S ) 

conn(DlV-H-) ]), 
BRANCH=(conn / / A new connection by branching 

:: ((conn.CNT%conn.BRANCHCNT)=0) 
-»• [ new(GF=rotate(GF, BRANCHANGLE[1])), 

conn(GF=ro*aie(GF, BRANCHANGLE[2]) ]), 
GROWTH=(conn / / Growth of a connection 

:: (Iconn.CoNNECT) kk (|conn.GF|>conn.WlTHDRAW) 
—» [ conn(Pos+=GF, C O N N P A T H + = P O S , G F * = / ( C N T ) ] 
:: (Iconn.CoNNECT) kk (conn.CoNNPATH^O) 
-> [ conn(Pos=/irsi(CoNNPATH), CoNNPATH=resi(CoNNPATH) ] 
:: (Iconn.CoNNECT) kk (conn.CoNNPATH=Q) 
—* [ ~conn() ] 

'(BuD(this, up) , BRANCH(this, up) , GROWTH(this)) 
) / * celi */ 

Figure 11: An example of production rules that produce genetic growth of connections. The first rule 
( B U D s tarts new connections with initial values. The second rule B R A N C H creates new connections 
through a branching operation. The third rule G R O W T H grows, withdraws, or removes the connections 
according to the W I T H D R A W factor. 

ATTRACTlON=(conn, celi // Chemical gradient field 
:: (conn.TARGET==ceii.DlFF) 
-+ [ conn(AF+=/(|ceii.Pos - Pos|)*norm(ceiI.Pos-Pos)) ]), 

GROWTH=(conn . . . Pos + = / ( A F ) * G F + A F . . . ) , 
CoLLlslON=(conn, obj // Mechanical collision 

:: (Iconn.CoNNECT) kk (conn.TARGET^obj.DlFF) kk 
(inter(obj.SHAPE, conn.CoNNPATH)) 

—*• [ conn(GF=rotfaie(GF, -2.0*interAng()), 
Pos=interP()+norm(GF)*\interPQ-first(CoNNPATu)\, 
CONNPATH=^«SA(POS, push(interPQ, restf(CoNNPATH)))) ] 

/ / ... or hitting the target 
:: (Iconn.CoNNECT) kk (conn.TARGET=obj.DiFF) kk 

(inter(obj.SHAPE, conn.CoNNPATH)) kk (obj.TYPE = efF) 
—• [ conn(CoNNECT=connec<(conn, obj), TYPE=axon) ]) 
:: (Iconn.CoNNECT) kk (conn.TARGET=obj.DiFF) kk 

(inter(obj.SHAPE, conn.CoNNPATH)) kk (obj.TYPE = sen) 
—> [ conn(CoNNECT=co7inec<(obj, conn), TYPE=dend) ]) 

. . . , 
'(ATTRACTION(this, u p * ) , COLLISION(this, up*) ) 

Figure 12: Examples to show production rules to model the mechanical ( C O L L I S I O N ) and the chemi-
cal ( A T T R A C T I O N ) effect on growth. Notice that the last production rule also creates a 'svnaptical 
connection' if the grown connection hits the target. This is implemented by making an internal link 
between the connected objects. 
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Figure 13: The attraction field created by the chemical diffusion of a celi located at the middle of 
picture. (The depression of the field close to celi is used to model the slowdown of growth when 
approaching the target celi. A more realistic approach might be to use two gradient fields: one for the 
rough approaching, and one for the final approaching.) 
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gradient field on which the connection is "clim-
bing". 

5.2 Signal propagation in the network 

After the network is created the same modeling 
method is used to propagate signals with in it. 
Signal propagation is governed by the production 
rules shown in Figure 16. 

Signal propagation is divided into three pha-
ses: from celi or axon to dendrite, from dendrite 
to neuron (the generic connection), from neuron 
to axon. These are rules at the sub-object level of 
the celi, and implemented by three separate rules: 
PROPAGATEI, PROPAGATE2, and PROPAGATE3. 
The separation is needed to assure the correct or-
der of signal propagation. 

After signal propagation at the sub-object level 
of the celi we stili need to get the signal to the cel-
lular level objects, namely to the effectors. This is 
implemented with a separate rule (PROPAGATE). 

The example shows signal propagation with no 
learning included. It would be easy to include a 
threshold, connection weights, or other internal 
modifications in the above rules. 

5.2.1 Example of created behavior 

In order to observe the behavior of the above ne-
ural network, it should be placed in an enviro­
nment where sensors generate signals into the ne-
twork, and the created effector activity moves the 
organism according to the received signals. To 
simulate this, the above production rules can be 
extended to model the sensor activity as well as 
the movement of organisms according to the ge-
nerated forces. This is discussed in [11] and here 
only a short summary is given in Figure 17. 

6 Phylogenesis of Organisms 

The organisms behaving in the environment could 
own a behavior that leads to reproduction. As a 
result of reproduction, a new initial description is 
created. In this process some genetic variations 
can take plače. The initial celi with its genetic in-
formation is placed in the environment and closes 
the evolutionary loop. The evolution of organisms 
is thought to be a result of this process. 

Figure 19: Reproduction: An organism (center) 
ejects four seeds into the environment, each of 
which will give rise to a new organism with sligh-
tly different control variables. These new organi­
sms in turn each create two new organisms. 

6.1 Reproduct ion 

The first example describes reproduction that is 
biologically plausible given the structure used in 
section 4 Morphogenesis of Organisms. In Fi­
gure 18, the production rule ( E J E C T 'ejects' an 
initial celi into the environment resulting in the 
growth of a new organism. By identifving some 
control variables as genetic information with mu-
tations, we can create a great variation of shapes 
in the environment. This is seen in Figure 19, 
where MAXDIV is used as mutable genetic infor­
mation. 

The above example reveals the problem of cre-
ating a selection of favorable structures based on 
local interactions. With no behavior included in 
the model, there is little change of creating a se­
lection mechanism. In order to use behavior in 
the selection process, we use the example intro-
duced in section 5 Ontogenesis of Organisms. 

Here we define the genetic code as the positions 
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cell(..., / / Celi capable of propagating signals 
PARTS=[generic(TYPE=neuro, . . . , 

PROPAGATEl=(objJ, obj2 // From celi or axon to dendrite 
:: (obji.TYPE = dend) -+ [ objl( SIGNAL = obj2.SIGNAL ) ]) 

PROPAGATE2=(objJ, obj2 // From dendrite to neuron 
:: (objl.TYPE = neuro) -»• [ obji ( SIGNAL + = obj2.SIGNAL ) ]), 

PROPAGATE3=(objI,,'obj2 // From neuron to axon 
:: (obji .TYPE = axon) -»• [ objJ( SIGNAL = obj2.SIGNAL ) ]), 

. . . , 
' ( . . . , PROPAGATEl(this, Connected()), 

PR0PAGATE2(this, Connected()), 
PROPAGATE3(this, Connected()), . . . ) , 

PROPAGATE=(objJ, obj2 // From axon to effector 
:: (obji. TYPE = eff) -» [ obji (SIGNAL + = objS.SiGNAL) ]) 

' ( . . . , PROPAGATE(this, ConnectedQ), . . . ) ) ] ) 

Figure 16: Example to show signal propagation in the network. The rules PROPAGATEI, PROPAGATE2, 
and PROPAGATE3 are used to propagate the signal from sensor celi to dendrite, from dendrite to 
neuron, and from neuron to axon, respectively. The rule PROPAGATE is used to transfer a signal to 
the effectors. The function Connected() is used to give a list of objectš that are connected to .the 
current object. 

of the explicitly given sensors and effectors. Pro-
duction rules to select organisms for reproduction 
and to introduce genetic variations are shown in 
Figure 20. The selection is based on the intersec­
tion of the physical shapes. When an intersection 
is detected, a new offspring inherits its parents 
genetic information is created. 

6.2 Evolution 

The current implementation does not allow si-
mulation of evolution with a complicated beha-
vior model. However, a simple example is used 
to demonstrate how the behavior can enforce it-
self. Although the example does not include any 
creation of new behavior the previously described 
non-linear development process can provide it. 

In the following example we allow a single or-
ganism to move in the environment, and another 
to follow it. Whenever the following organism re-
aches the target, a new organism is created. In 
this example, only the location of the sensors and 
effectors is varied. Gradually an organism capa­
ble of better following behavior will evolve. This 
is shown in Figure 21. 

7 Conclusion 

In this paper we have discussed computational 
evolution rather than evolutionary computation. 
By computational evolution we mean a model of 
evolution at a detailed level with a goal to better 
understand the evolutionary process itself. The 
evolutionary process is greatly affected by the en­
vironment in a way that is not yet fully under-
stood. 

The usual technique for modeling evolutionary 
systems ignores the developmental phase. It is 
important to encode and transcribe the genetic 
information in a way that can provide a non-
linear developmental process. As has been obser-
ved [13], biological life has not developed through 
small steps only, but has also developed through 
larger jumps. This cannot easily be explained by 
random mutation alone. 

By modeling the non-linear developmental pro­
cess, a single variation in the genetic information 
can create a completely different phenotype. If 
this variation is caused by environmental factors, 
the probability that this will happen at the same 
time in several individuals is great. Thus, the sy-
stem would be capable of generating new species 
for different environmental niches. 

In the last part of this paper we presented a de-
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Figure 17: Sensor activity is modeled based on a simple model. The signal generated by the sensor is 
a function of distance and angle (at top) to the source of stimulus. The simplified chart (left) shows 
how the signal is propagated to effectors, which generate a force vector proportional to the signal. 
This results in tracking behavior (right). 

) 

EJECT=(ceJi :: (celi.TYPE = eject) && / / Rule to eject a seed 
(celi.CNT > celi.REPRODAGE) kk (cei].CNT%ceiJ.EJECTRATE = 0) 

-»• [ seed(lNlTED=False, MAXDIV = random(5, 6, 7), 
Pos + = random(l0.0, 25.0) * 

cell.DlR[random(up, DOWN)][ran<fom(LEFT, RIGHT)]), 
cell() ] 

) / / EJECT 

Figure 18: An example of production rules to implement reproduction. The production rule E J E C T 

creates a seed celi in the environment. This celi is capable of growing new structure similar to the 
original one. 
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orga,nism( // Organism capable of creating offsprings 
S E N P O S I = ( . . . ) , S E N P O S 2 = ( . . . ) , 

E F F P O S ! = ( . . . ) , E F F P O S 2 = ( . . . ) , 

MATE=(orgi, org2 

:: (inter(orgi.SHAPE, org2.SHAPE)) 
—y [ offsprmg(SENPosi=mutate(crossover(oTgi.SE^PoSi, or^-SENPosj)), 

SENPos2=mutate(crossover(orgi.SENPos2, org2-SENRPos)), 
EFFPosi—mutaie(crossover(orgi.EFFPoSi, oigi.EFFPOSI)), 
EFFPoS2=mutate(crossover(orgi.EFFPos2, o rg 2 .EFFPOS 2 ) ) , 
Pos=<rons/o<e(Pos, OFFSETVECTOR), . . . ) ] ) , 

' ( . . . , MATE(this, up*) , . . . ) 

) 

Figure 20: An example of production rules to implement reproduction. The production rule (Mate) 
tests ali other organisms (up*) against the calling organism (this) to determine whether there is an 
intersection in their physical shapes. If they intersect, a new offspring is created. The condition can 
include tests for sex, maturity, etc. There should also be some threshold variable to insure tha t only 
one offspring is created at a time. The crossover function (crossover) can be an average function, and 
the mutation function (mutate) can be a random change of the value, for example, in the range of 
[ -0 .5 ,0 .5]uni ts . • 

scription language tha t provides a computational 
basis for experiments on non-linear developmen-
tal and evolutionary processes. The language is 
based on production rules that simulate the in-
teractions between objects. This means that our 
focus is not on the structure itself, but on the inte-
ractions between objects tha t define a higher level 
object. This is conceptually similar to autopoiesis 
theory [4]. 

The examples given at the end of the paper 
are presented more to demonstrate the simulation 
language and to illustrate the power of the non-
linear construction process. The actual analvsis 
of the creation of new species and, in general, the 
evolvability of the modeled organisms, is left for 
future work. 

The main merit of the presented modeling me-
thod is its capability of covering ali the needed 
detailed phases needed for the simulation of evolu-
tion. This can also be cited as the main critics. 
Too much is included in one model and the mo­
deling of populations is not possible with current 
computer technology. However, the method al-
lows us to focus on the essential: local interaction. 
Thus, it can be used as a powerful tool for mo­
deling self-organization in order to achieve deeper 
understanding of the factors tha t cause evolution. 
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The Iterated Prisoner's Dilemma game has been used extensively in the study of the 
evolution of cooperative behaviours in social and biological systems. There have been 
a lot of experimental studies on evolving strategies for 2-player Iterated Prisoner's Di­
lemma games (2IPD). However, there are many real world problems, especially many 
social and economic ones, which cannot be modelled by the 2IPD. The n-player Itera­
ted Prisoner's Dilemma (NIPD) is a more realistic and general game which can model 
those problems. This paper presents two sets of experiments on evolving strategies for 
the NIPD. The first set of experiments examine the impact of the number of players 
in the NIPD on the evolution of cooperation in the group. Our experiments show that 
cooperation is less likely to emerge in a large group than in a small group. The second 
set of experiments study the generalisation ability ofevolved strategies from the point of 
view ofmachine learning. Our experiments reveal the effect of changing the evolutionary 
environment of evolution on the generalisation ability of evolved strategies.• 

1 Introduction 

The 2-player Iterated Prisoner's Dilemma game 
(2IPD) is a 2 X 2 non-zerosum noncooperative 
game, where "non-zerosum" indicates that the be-
nefits obtained by a player are not necessarily the 
same as the penalties received by another player 
and "noncooperative" indicates that no preplay 
communication is permitted between the plavers 
[1, 2]. It has been widely studied in such diverse 
fields as economics, mathematical game theory, 
political science, and artificial intelligence. 

In the Prisoner's Dilemma, each player has a 
choice of two operations: either cooperate with 
the other player, or defect. Payoff to both players 
is calculated according to Figure 1. In the Itera­
ted Prisoner's Dilemma (IPD), this step is repe­
ated many times, and each player can remember 
previous steps. 

While the 2IPD has been studied extensively 
for more than three decades, there are many real 

Cooperate Defect 

R 

R 

S 

T 

T 

S 

P 

P 

Cooperate 

Defect 

Figure 1: The payoff matrix for the 2-player priso-
ner's dilemma game. The values S,P,R,T must 
satisfy T>R>P>S<mdR>(S + T)/2. 
In 2-player Iterated Prisoner's Dilemma (2IPD), 
the above interaction is repeated many times, and 
both players can remember previous outcomes. 
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world problems, especially many social and econo-
mic ones, which cannot be modelled by the 2IPD. 
Hardin [3] described some examples of such pro­
blems. More examples can be found in Colman's 
book [l](pp.156-159). The «-player Iterated Pri-
soner's Dilemma (NIPD) is a more realistic and 
general game which can model those problems. In 
comparing the NIPD with the 2IPD, Daviš et al. 
[4](pp.520) commented that 

The iV-player čase (NPD) has grea-
ter generality and applicability to real-
life situations. In addition to the pro­
blems of energy conservation, ecology, 
and overpopulation, many other real-life 
problems can be represented by the NPD 
paradigm. 

Colman [l](pp.l42) and Glance and Huberman 
[5, 6] have also indicated that the NIPD is "qua-
litatively different" from the 2IPD and that "... 
certain strategies that work well for individuals 
in the Prisoner's Dilemma fail in large groups." 

The n-player Prisoner's Dilemma game can 
be defined by the following three properties 
[l](pP.159): 

1. each player faces two choices between coope-
ration (C) and defection (D); 

2. the D option is dominant for each player, i.e., 
each is better off choosing D than C no mat-
ter how many of the other players choose C; 

3. the dominant D strategies intersect in a de-
ficient equilibrium. In particular, the out-
come if ali players choose their non-dominant 
C strategies is preferable from every player's 
point of view to the one in which everyone 
chooses D, but no one is motivated to devi-
ate unilaterally from D. 

Figure 2 shows the payoff matrix of the n-player 
game. 

A large number of values satisfy the require-
ments of Figure 2. We choose values so that, if 
nc is the number of cooperators in the ra-player 
game, then the payoff for cooperation is 2nc — 2 
and the payoff for defection is 2nc + 1. Figure 3 
shows an example of the n-player game. 

With this choice, simple algebra reveals that if 
Nc cooperative moves are made out of N moves 

of an n-player game, then the average per-round 
payoff a is given by: 

a = l + ^ ( 2 n - 3 ) (1) 

This lets us measure how common cooperation 
was just by looking at the average per-round 
payoff. 

There has been a lot of research on the evolu-
tion of cooperation in the 2IPD using genetic al-
gorithms and evolutionary programming in recent 
years [7, 8, 9, 10, 11, 12]. Axelrod [7] used ge­
netic algorithms to evolve a population of stra­
tegies where each strategy plays the 2IPD with 
every other strategy in the population. In other 
words, the performance or fitness of a strategy is 
evaluated by playing the 2IPD with every other 
strategy in the population. The environment in 
which a strategy evolves consists of ali the remain-
ing strategies in the population. Since strategies 
in the population are constantly changing as a re-
sult of evolution, a strategy will be evaluated by 
a different environment in every generation. Ali 
the strategies in the population are co-evolving in 
their dynamic environments. Axelrod found that 
such dynamic environments produced strategies 
that performed very well against their population. 
Fogel [11] described similar experiments, but used 
finite state machines to represent strategies and 
evolutionary programming to evolve them. 

However, very few experimental studies have 
been carried out on the NIPD in spite of its im-
portance and its qualitative difference from the 
2IPD. This paper presents two sets of experiments 
carried out on the NIPD. We first describe our 
experiment setup in Section 2. Then we investi-
gate the impact of the number of players in the 
Prisoner's Dilemma game on the evolution of coo­
peration in Section 3. We are mainly interested in 
two questions here: (1) whether cooperation can 
stili emerge from a larger group, and (2) whether 
it is more difficult to evolve cooperation in a larger 
group. The evolution of strategies for the NIPD 
can be regarded as a form of machine learning 
using the evolutionary approach. An important 
issue in machine learning is generalisation. Sec­
tion 4 of this paper discusses the generalisation is­
sue associated with co-evolutionary learning and 
presents some experiments with different evoluti-
onary environments. Finally, Section 5 concludes 
with some remarks and future research directions. 
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Number of cooperators among the remaining n — 1 plavers 

0 1 2 n - 1 

player A 

D 

Co 

Do 

C, 

•Di 

c2 

D2 

. . . Cn_i 

Dn-1 

Figure 2: The payoff matrix of the n-player Prisoner's Dilemma game, where the following conditions 
must be satisfied: (1) A > Ci for 0 < i < n - 1; (2) Di+1 > Di and Ci+1 > d for 0 < i < n - 1; (3) 
d > (Di + C,-_i)/2 for 0 < i < n — 1. The payoff matrix is symmetric for each player. 

Number of cooperators among the remaining n — 1 plavers 

0 1 2 n-1 
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1 
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2 ( n - l ) 

2 ( » - l ) + l 

Figure 3: An example of the N-player game. 

2 Experiment Setup 

2.1 Genotypical Representation of 
Strategies 

We use genetic algorithms to evolve strategies for 
the NIPD. The most important issue here is the 
representation of strategies. We will use two di-
fferent representations, both of which are look-up 
tables that give an action for every possible con-
tingency. 

One way of representing strategies for the NIPD 
is to generalise the representation scheme used by 
Axelrod [7]. In this scheme, each genotype is a 
lookup table that covers every possible history of 
the last few steps. A history in such a game is 
represented as a binary string of In bits, where 
the first / bits represent the player's own previous 
/ actions (most recent to the left, oldest to the 
right), and the other n — 1 groups of / bits repre­
sent the previous actions of the other players. For 
example, during a game of 3IPD with a remem-

bered history of 2 steps, n = 3, / = 2, one player 
might see this history: 

n - 3, / = 2: Example history 11 00 01 

The first l bits, 11, means this player has defected 
(a "1") for both of the previous l = 2 steps. The 
previous steps of the other plavers are then listed 
in order: the 00 means the first of the other pla-
yers cooperated (a "0") on the previous l steps, 
and the last of the other players cooperated (0) 
on the most recent step, and defected (1) on the 
step before, as represented by 01. 

For the NIPD remembering / previous steps, 
there are 2ln possible histories. The lookup table 
genotype therefore contains an action (cooperate 
"0" or defect "1") for each of these possible hi­
stories. So we need at least 2ln bits to represent 
a strategy. At the beginning of each game, there 
are no previous / steps of play from which to look 
up the next action, so each genotype should also 
contain its own extra bits that define the presu-
med pre-game moves. The total genotype length 
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is therefore 2ln+ln bits. We will use this genotype 
for the first set of results below, Figure 5 through 
to Figure 8. 

This Axelrod-style representation scheme, 
however, suffers from two disadvantages. First, it 
does not scale well as the number of plavers incre-
ases. Second, it provides more information than is 
necessary by telling which of the other players co-
operated or defected, when the only information 
needed is how many of the other players coopera-
ted or defected. Such redundant information had 
reduced the efficiency of the evolution greatly in 
our experiments with this representation scheme. 
To improve on this, we use a new representation 
scheme which is more compact and efficient. 

In our new representation scheme, each indivi-
dual is regarded as a set of rules stored in a look-
up table that covers every possible history. As a 
game that runs for, say, 500 rounds would have 
an enormous number of possible histories, and as 
only the most recent steps will have significance 
for the next move, we only consider every possi­
ble history over the most recent Z steps, where l 
is less than 4 steps. This means an individual can 
only remember the / most recent rounds. Such a 
history of l rounds is represented by: 

1. / bits for the player's own previous / moves, 
where a " 1 " indicates defection, a "0" coope-
ration; and 

2. another Hog2 n bits for the number of coope-
rators among the other n — 1 players, where 
n is the number of the players in the game. 
This requires that n is a power of 2. 

For example, if we are looking at 8 players who 
can remember the 3 most recent rounds, then one 
of the players would see the history as: 

History for 8 players, 3 steps: 001 111 110 101 
(12 bits) 

Here, the 001 indicates the player's own acti-
ons: the most recent action (on the left) was a "0", 
indicating cooperation, and the action 3 steps ago 
(on the right), was a " 1 " , i.e., defection. The 111 
gives the number of cooperators among the other 
7 players in the most recent round, i.e., there were 
III2 = 7 cooperators. The 101 gives the number 
of cooperators among the other 7 players 3 steps 
ago, i.e., there were IOI2 = 5 cooperators. The 

most recent events are always on the left, previous 
events on the right. 

In the above example, there are 212 = 2048 
possible histories. So 2048 bits are needed to 
represent ali possible strategies. In the general 
čase of an n-player game with history length Z, 
each history needs / + Hog2 n bits to represent 
and there are 2'+ ' l o g2n such histories. A stra-
tegy is represented by a binary string that gives 
an action for each of those possible histories. In 
the above example, the history 001 111 110 101 
would cause the strategy to do whatever is listed 
in bit 1013, the decimal number for the binary 
001111110101. 

Since there are no previous / rounds at the be-
ginning of a game, we have to specify them with 
another /(1 + log2 n) bits. Hence each strategy 
is finally represented by a binary string of length 
2M-nog2n + / ( 1 + l o g 2 n ) . 

2.2 Genet ic Algor i thm Parameters 

For ali the experiments presented in this paper, 
the population size is 100, the mutation rate is 
0.001, and the crossover rate is 0.6. Rank-based 
selection was used, with the worst performer as-
signed an average of 0.75 offspring, the best 1.25 
offspring. 

2.3 A Typical R u n 

A tyical run with four players with a history 1 
(n = 4, / = 1) is shown in Figure 4. At each 
generation, 1000 games of the 4-player Iterated 
Prisoner's Dilemma are plaved, with each group 
of 4 players selected randomly with replacement. 
Each of these 1000 games lasts for 100 rounds. 
Starting from a random population, defection is 
usually the better strategy, and the average payoff 
plummets initially. As time passes, some coope­
ration becomes more profitable. We will examine 
more results in detail later. 

3 Group Size of the NIPD 
This section discusses the impact of group size, 
i.e., the number of players in the NIPD, on the 
evolution of cooperation and presents some expe-
rimental results. It is well-known that coopera­
tion can be evolved from a population of random 
strategies for the 2IPD. Can cooperation stili be 
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A typical run: 4 plavers, remembering one step 
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Generations 
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Figure 4: This shows the average and best payoff at each generation for a population of 100 individuals. 
Each individual is a strategy. 

3 prisoners, history 2 

Figure 5: For the 3-player prisoner's dilemma with a history of 2, cooperation almost always emerges. 
Only 1 out of 20 runs fail to reach 95% cooperation using Axelrod's representation shceme. 
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Figure 6: For the 4-player prisoner's dilemma with a history of 2, cooperation almost always emerges. 
Only 4 out of 20 runs fail to reach 95% cooperation using Axelrod's representation shceme. 
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Figure 7: For the 5-player prisoner's dilemma with a history of 2, cooperation almost always emerges. 
6 out of 20 runs fail to reach 80% cooperation using Axelrod's representation shceme. 
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evolved from a population of strategies for the 
NIPD where the number of players is greater than 
2? If the answer is yes, does the group size affect 
the evolution of cooperation in the NIPD? 

Using the Axelrod-style genotype described 
above, we carried out a series of experiments with 
the 3IPD, 4IPD, 5IPD, and 6IPD games. In each 
of the following runs, the program stopped when 
more than 5 generations passed with the average 
payoff above the 95% cooperation level. Figure 5 
shows the results of 20 runs of the 3IPD game 
with history length 2: out of 20 runs, there is 
only 1 which fails to reach 95% cooperation. Fi­
gure 6 shows the results of 20 runs of the 4IPD 
game with history length 2: 4 out of 20 runs fail 
to reach the 95% cooperation level, but only 1 of 
those fails to reach 80% cooperation. Figure 7 
shows the results of 20 runs of the 5IPD game 
with history length 2: 6 out of 20 runs do not 
reach the 80% cooperation level. Figure 8 shows 
the results of 20 runs of the 6IPD game with hi-
story length 2: 9 out of 20 runs stay below the 
80% cooperation level. 

Figures 5 through 8 demonstrate that the 
evolution of cooperation becomes less likely as 
group size increases. Nonetheless, cooperation 
stili emerges most of the time. As Axelrod's re-
presentation scheme used in those figures does not 
scale well with the group size, we use the second 
representation scheme described in Section 2 to 
carry out experiments with larger groups. 

We have carried out a series. of experiments 
with the 2IPD, 4IPD, 8IPD, and 16IPD games. 
Figure 9 shows the results of 10 runs of the 2IPD 
game with history length 3. Out of 10 runs, there 
are only 3 which fail to reach 90% cooperation 
and only 1 which goes to almost ali defection. Fi­
gure 10 shows the results of 10 runs of the 4IPD 
game with history length 3, where some of the 
runs reach cooperation but more than half of the 
10 runs fail to evolve cooperation. Figure 11 
shows the results of 10 runs of the 8IPD game 
with history length 2, where none of the runs re­
ach cooperation. Figure 12 shows the population 
bias in the runs in Figure 11, to demonstrate that 
those populations have pretty much converged. 
Figure 13 shows 10 runs of the 16IPD game. 

These results confirm that cooperation can stili 
be evolved in larger groups, but it is more diffi-
cult to evolve cooperation as the group size incre­

ases. Glance and Huberman [5, 6] have arrived 
at a similar conclusion using a model based on 
many particle systems. We first suspected that 
the failure to evolve cooperation in larger groups 
was caused by larger search spaces and insuffici­
ent running time since more players were involved 
in 8IPD and 16IPD games. This is, however, not 
the čase. The search space of the 8IPD game with 
history length 2 is actually smaller than that of 
the 4IPD game with history length 3. To confirm 
that the failure to evolve cooperation is not cau­
sed by insufficient running time, we examined the 
convergence of the 8IPD game. Figure 12 shows 
that at generation 200 the population has mostly 
converged for ali the 10 runs. 

It is worth mentioning that the evolution of co­
operation using simulations does depend on some 
implementation details, such as the genotypical 
representation of strategies and the values used in 
the payoff matrix. So cooperation may be evol­
ved in the 8IPD game if a different representation 
scheme and different payoff values are used. Al-
though we cannot prove it vigorously, we think 
for any representation scheme and payoff values 
there would always be an upper limit on the group 
size over which cooperation cannot be evolved. 
Our experimental finding is rather similar to some 
phenomena in our human society, e.g., coopera­
tion is usually easier to emerge in a small group 
of people than in a larger one. 

4 Co-Evolutionary Learning 
and Generalisation 

The idea of having a computer algorithm learn 
from its own experience and thus create exper-
tise without being exposed to a human teacher 
has been around for a long time. For genetic al-
gorithms, both Hillis [13] and Axelrod [7] have 
attempted co-evolution, where a GA population 
is evaluated by how well it performs against itself 
or another GA population, starting from a ran-
dom population. Expertise is thus bootstrapped 
from nothing, without an expert teacher. This is 
certainly an promising idea, but does it work? So 
far, no-one has investigated if the results of co-
evolutionary learning are robust, that is, whether 
they generalise well? If a strategy is produced by 
a co-evolving population, will that strategy per-
form well against opponents never seen by that 
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Figure 8: For the 6-player prisoner's dilemma with a history of 2, cooperation almost always emerges. 
9 1 out of 20 runs fail to reach 80% cooperation using Axelrod's representation shceme. 
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Figure 9: For 2-pJayer prisoner's dilemma with a history of 3, cooperation emerges most of the tirne. 
Only 3 out of 10 runs fail to reach 90% cooperation, and only 1 run goes to almost ali defection. 
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4 players, history 3 (521 bits) 

0 20 40 60 80 100 120 140 160 180 200 
Generation 

Figure 10: For 10 runs of 4-player prisoner's dilemma with a history of 3, cooperation breaks out some 
of the time. 

8 plavers, history 2 (216 bits) 
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Figure 11: For 10 runs of 8-player prisoner's dilemma with a history of 2, cooperation never emerges. 
The horizontal lines at the top show the 95%, 90%, and 80% levels of cooperation. To demonstrate 
that these runs have converged, figure 12 shows the bias of the populations. 



444 Informatica 18 (1994) 435-450 X. Yao et al. 

Bias 

Bias in populations plaving 8IPD with historv 2 
_i ] 

outs.8pl2 

80 100 120 
Generation 

Figure 12: In 10 runs of 8-player prisoner's dilemma with a history of 2, where cooperation never 
emerges, the bias demonstrates that the populations have converged. Bias is the average proportion 
of the most prominent value in each position. A bias of 0.75 means that, on average, each bit position 
has converged to either 75% "0" or 75% " 1 " . 

population? In order to investigate this issue, we 
need to pick the best strategies produced by the 
co-evolutionary learning system and let them play 
against a set of test strategies which had not been 
seen by the co-evolutionary system. This section 
describes some experiments which test the gene-
ralisation ability of co-evolved strategies for the 
8IPD game with history length 1. 

4.1 Test Strategies 

The unseen test strategies used in our study sho-
uld be of reasonable standard and representative, 
that is, they are neither very poor (or else they 
will be exploited by their evolved opponents) nor 
very good (or else the will exploit their evolved 
opponent). We need unseen strategies that are 
adequate against a large range of opponents, but 
not the best. 

To obtain such strategies, we did a limited enu-
merative search to find the strategies that perfor-
med best against a large mimber of random oppo­
nents. As most random opponents are very stu-
pid, beating many random opponents provides a 
mediocre standard of play against a wide range of 
opponents. We limited this search to manageable 
proportions by fixing certain bits in a strategy's 

genotype that seemed to be sensible, such as al-
ways defecting after every other strategy defects. 
The top few strategies found from such a limited 
enumerative search are listed in Table 1. 

4.2 Learning and Test ing 

We have compared three different methods for im-
plementing the co-evolutionary learning system. 
The three methods differ in the way each indivi-
dual is evaluated, i.e., which opponents are chosen 
to evaluate an individuaPs fitness. The three me­
thods are 

1. Choosing from among the individuals in the 
GA population, i.e., normal co-evolution of a 
single population like Axelrod's implementa-
tion [7]; 

2. Choosing from a pool made of the evolving 
GA population and the best 25 strategies 
from the enumerative search, which remain 
fixed; 

3. Choosing from a pool made of the evolving 
GA population and the best 25 strategies 
from the enumerative search, but the proba-
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Figure 13: For 10 runs of 16-player prisoner's dilemma with a history of 2, cooperation never emerges. 
The horizontal lines at the top show the 95%, 90%, and 80% levels of cooperation. 

Mean 

8.100 

8.093 

8.091 

8.088 

8.088 

8.082 . 

8.077 

8.076 

8.076 

Std Dev 

0.083 

0.083 

0.083 

0.083 

0.083 

0.083 

0.083 

0.083 

0.083 

Decimal 

1026040 
1022965 

1018871 

1032181 

1020921 

1028087 

1023990 

1037305 

1017846 

Binary genotype 

1111 1010 0111 1111 1000 
1111 1001 1011 1111 0101 

1111 1000 1011 1111 0111 

1111 1011 1111 11110101 

1111 1001 0011 1111 1001 

1111 1010 1111 11110111 

m i IOOI m i i i i i ono 
1111 1101 0011 1111 1001 

1111 1000 0111 11110110 

Table 1: Top few strategies from a partial emimerative search for strategies that play well against a 
large number of random opponents. This provides unseen test opponents to test the generalisation of 
strategies produced by co-evolution. The first 4 bits were fixed to " 1 " , as were the eleventh through 
sixteenth bits. Virtually ali of the best 50 strategies started by cooperating. 
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bility of choosing one of the 25 is four times 
higher. 

For each of these, we obtained the best 25 stra­
tegies from the last generation of the GA, and 
tested it against a pool made up of both the seen 
and unseen enumerative search strategies, 50 in 
ali. 

4.3 Experimental Results 

For each of the three evaluation methods, Tables 2 
through 4 show the performance of the best stra­
tegies from the GA's last generation against oppo-
nents from (1) themselves, and (2) a pool made 
up of both the seen and unseen strategies from 
the enumerative search. 

4.4 Discussion 

Table 2 demonstrates that the co-evolution with 
the 8IPD produces strategies that are not very 
cooperative, as also demonstrated in Figure 11 
earlier. Since the 8IPD is a game where it is easy 
to get exploited, co-evolution will first create stra­
tegies that can deal with non-cooperative strate­
gies. The evolved strategies in Table 2 are cauti-
ous with each other and are not exploited by the 
unseen strategies from the enumerative search. 

Adding fixed but not very cooperative strate­
gies to the GA's evaluation procedure has a sur-
prising effect. The evolved strategies in Tables 3 
and 4 can cooperate well with other cooperators 
without being exploited by the strategies from the 
enumerative search, half of which it has never 
seen before. That is, normal co-evolution pro­
duces strategies which don't cooperate well with 
each other, and are not exploited by unseen non-
cooperative strategies. Co-evolution with the ad-
dition of extra non-cooperative strategies gives 
more general strategies that do cooperate well 
with each other, but are stili not exploited by 
unseen non-cooperative strategies. The experi-
mental results also seem to indicate that the evol­
ved strategies learn to cooperate with other coo­
perators better while maintaining their ability in 
dealing with non-cooperative strategies when the 
evolutionary environment contains a higher pro-
portion of extra fixed strategies. 

5 Conclusion 

This paper describes two sets of experiments on 
the NIPD. The first set of experiments on the 
group size of the NIPD demonstrate that coope-
ration can stili be evolved in the n-player IPD 
game where n > 2. However, it is more diffi-
cult to evolve cooperation as the group size in-
creases. There are two research issues here which 
are worth pursuing; one is the upper limit of the 
group size over which cooperation cannot be evol­
ved, the other is the quantitative relation between 
the group size and the time used to evolve coope­
ration. Glance and Huberman [5, 6] have addres-
sed these two issues, but did not give a complete 
answer. 

The second set of experiments in this paper de-
als with an important issue in co-evolutionary le-
arning — the generalisation issue. Although the 
issue is the main theme in machine learning, very 
few people in the evolutionary computation com-
munity seem to be interested in it or address the 
issue explicitly and directly. We have presented 
some experimental results which show the impor-
tance of the environments in which each indivi-
dual is evaluated, and their effects on generalisa­
tion ability. 
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Normal co-evolution, no extra strategies in evaluation. 
GA strategies play against themselves. 

Mean Stdv Stdv of Mean of 
mean opponents 

8pll (35'/, cooperative) against itself 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11100001111011010011 

11000001111011011011 

11100000111111110011 
01100010111111010011 

11100101111111110011 

01100000111111010011 
11100101111111010011 

01100001111111010011 
00100000111111010110 
01100100111111110110 

10100000111111110001 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

240 
285 
335 
258 
180 
000 
171 
241 
165 
706 
274 

3 
3 
3 
3 
4 
3 
4 
4 
3 
3 
3 

978 
985 
052 
202 
160 
090 
125 
027 
122 
523 
083 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

126 
126 
097 
101 
132 
098 
130 
127 
099 
111 
097 

6 
6 
8 
7 
5 
8 
6 
6 
8 
7 
8 

296 
392 
434 
889 
883 
111 
127 
286 
341 
949 
395 

GA strategies play against unseen strategies from enumerative search. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11100001111011010011 

11000001111011011011 

11100000111111110011 

01100010111111010011 
11100101111111110011 

01100000111111010011 
11100101111111010011 
01100001111111010011 

00100000111111010110 

01100100111111110110 
10100000111111110001 

Mean 

5.525 

5.627 
5.605 

5.087 
5.283 

5.477 
5.116 

5.392 
5.385 

5.146 
5.461 

Stdv 

2.330 

2.421 
2.568 

2.064 
2.210 

2.547 

1.877 
2.370 

2.531 

2.271 
2.383 

Stdv of 

mean 

0.074 

0.077 

0.081 

0.065 
0.070 

0.081 
0.059 
0.075 

0.080 

0.072 
0.075 

Nean of 

opponents 

5.340 

5.502 

5.027 

5.419 
4.532 

6.337 
4.473 

5.378 
6.530 

5.237 
4.900 

Table 2: Results of ordinary co-evolution, with no extra strategies during the GA evaluation. The 
GA strategies manage some cooperation among themselves, and hold their own against strategies they 
have not seen before. 
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Co-evolution, with addition of 25 fixed strategies from enumerative search. 
GA strategies play against themselves. 

Mean Stdv Stdv ol Hean of 
mean opponents 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

111110000111J 
1111100001113 

111110000111J 

lllllOOOOlllJ 
1111100011111 

1111100001111 
1111100001111 

liiiiooooin: 
1101100000112 
1111100001111 

liiiiooooin: 

L1110100 
L1110100 

L1110110 

L1111110 
L1110100 

L1111110 
L1110110 
L1110100 

L1110100 

Llllllll 
L1110100 

11 
11 
11 
11 
13 
11 
11 
11 
11 
11 
11 

678 
706 
440 
721 
264 
714 
420 
678 
618 
670 
649 

1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 

715 
553 
603 
581 
521 
584 
669 
705 
781 
688 
697 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

054 
049 
051 
050 
080 
050 
053 
054 
056 
053 
054 

11 
11 
11 
12 
10 
12 
11 
11 
11 
11 
11 

965 
994 
922 
027 
636 
025 
895 
985 
958 
974 
973 

GA strategies play against pool of 25 seen and 25 unseen strategies from enumerative search. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1111100001111 

1111100001111 
1111100001111 

1111100001111 

1111100011111 
1111100001111 

1111100001111 
1111100001111 
1101100000111 
1111100001111 

1111100001111 

L1110100 

L1110100 

L1110110 

L1111110 
L1110100 

L1111110 

L1110110 
L1110100 
L1110100 

Llllllll 
L1110100 

Hean 

5.209 

5.494 

5.152 

5.600 
5.619 

5.336 

4.971 
5.447 
5.591 
5.245 

5.392 

Stdev 

3.212 
3.451 

2.771 

3.561 
2.929 

3.369 

2.541 
3.481 
3.276 
3.200 

3.341 

Stddev 
of mean 

0.102 
0.109 

0.088 

0.113 
0.093 

0.107 

0.080 
0.110 
0.104 

0.101 
0.106 

Hean of 
opponents 

5.634 

5.828 

5.934 

5.907 
4.629 

5.724 

5.741 
5.791 
5.923 
5.673 

5.771 

Table 3: Adding 25 fixed strategies to the evaluation procedure, along with the 100 co-evolving GA 
individuals, causes the GA to produce strategies that can cooperate more with each other, but are 
not exploited by the more non-cooperative strategies from the enumerative search. 
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Co-evolution, with the addition of 25 fixed strategies, which are 4 times as likely to be šelected into 
the group of 8 players for 8IPD. 

GA strategies play against themselves. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11111000011111110010 
11111000011111110011 
10111000011111010010 

11111000011111111110 

11111000011111110111 

11111000011111010110 
10111000011111110011 
11111001011111111111 

11111000011111111111 

11111000011111110010 
11111000011111110010 

Mean 

12.B75 

12.468 
12.400 

12.557 

12.556 

12.490 
12.392 
13.204 

12.551 

12.560 
12.494 

Stdev 

1.737 

1.939 
2.130 

1.864 

1.488 

1.454 
2.087 
2.457 

1.852 

1.904 
1.835 

Stddev 

of mean 
0.055 

0.061 

0.067 
0.059 

0.047 

0.046 

0.066 
0.078 

0.059 

0.060 
0.058 

Hean of 
opponents 

12.740 
12.641 

12.593 

12.709 

12.820 

12.772 
12.568 
10.713 

12.700 

12.718 

12.669 

Best 25 strategies from GA search play against a pool of (1) 25 best from enumerative search, and (2) 
25 unseen strategies from enumerative search. Note there is little diyersity in the GA population. 
GA strategies play against pool of 25 seen and 25 unseen strategies from enumerative search. 

0 11111000011111110010 
1 11111000011111110011 
2 10111000011111010010 

3 11111000011111111110 
4 11111000011111110111 

5 11111000011111010110 
6 10111000011111110011 
7 11111001011111111111 
8 11111000011111111111 
9 11111000011111110010 
10 11111000011111110010 

Hean 

5.209 

5.494 
5.635 
5.600 

5.187 
5.132 
5.375 
5.447 

5.422 
5.245 

5.392 

Stdev 

3.212 
3.451 

3.120 
3.561 

2.835 

2.762 
3.159 
3.481 

3.340 

3.200 
3.341 

Stddev 

of mean 

0.102 
0.109 
0.099 

0.113 
0.090 

0.087 
0.100 
0.110 

0.106 . 
0.101 

0.106 

Hean of 

opponents 

5.634 
5.828 
6.217 

5.907 
5.966 

5.910 
5.753 
5.788 

5.765 
5.673 

5.771 

Table 4: Increasing the impbrtance of the extra 25 fixed strategies causes the co-evolutionary GA to 
produce strategies that are even more cooperative among themselves, but are stili not exploited by 
the unseen strategies of the enumerative search. 
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Over the last 7 years, detailed measurements of available learning systems were per-
formed on two real-life medical domains with the purpose to verify the importance of 
multiple knowledge. The performance of the combined system GINESYS, consisting 
of an artificial intelligence and a statistical method, was analysed with and without 
multiple knowledge and by varying the number of learning examples, the amount of 
artificially added noise, the impurity and the error estimate functions. These mea­
surements and those of other researchers indicate that multiple knowledge can provide 
essential improvements. Measurements also indicate that improvements over "one-level" 
or monostrategy knovrledge representation representations are quite common in real-life 
noisy andincomplete domains. 

1 Introduction 

In easing the bottleneck of knowledge acquisi-
tion in expert svstems (Harmon et al. 1988), 
automatic knowledge construction from examples 
has proven useful in many practical tasks. Quite 
often, examples are described in terms of attribu-
tes and their values and each example belongs to a 
certain class. The task of the svstem is to induce 
concept descriptions from examples. First sv­
stems were designed for exact domains like chess 
end-games and constructed trees (ID3 - Quinlan 
1983) or lists of rules (AQ11 - Michalski & Lar-
son 1983). But in many real-life domains (Gams 
& Karalič 1989), because of noise or incomplete 
description (Manago h Kodratoff 1987) speciali-
sed mechanisms have to be applied. In noisy do­
mains, longer rules (or longer branches in trees) 
perform better on learning examples while trun-
cated rules (pruned tees with shorter branches) 
perform better on unseen examples. On the ba-
sis of this principle, the second group of inductive 
svstems emerged (CART - Breiman et al. 1984; 
AQ15 - Michalski et al. 1986; ASSISTANT - Ko-
nonenko 1985; CN2 - Clark & Niblett 1989; C4 -

Quinlan 1987). Around five years ago the third 
group of systems began emerging (GINESYS -
Gams 1988; 1989; LOGART - Cestnik, Bratko 
1988; new CN2 - Clark & Boswell 1991), based 
on the explicit use of multiple knowledge.1 Each 
of these groups of systems usually achieves better 
performance than previous. Better performance 
of multiple knowledge systems was especially no-
ticeable in classification accuracy, also in better 
comprehensibility (although more difficult to me-
asure) when compared to the other two groups. 
At the same tirne, their efficiency remained simi-
lar to those in the second group. 

With measurements presentedin this paper we 
give additional arguments for successfulness of 
multiple knowledge by explicitly measuring the 
influence of the number of learning examples and 
the influence of noise, as well as the influence of 
the error estimate and impurity functions. Ben­
chmarking was performed on two often used do­
mains - lymphography and primary tumor (Clark 
& Niblett 1989; Michalski et al. 1986; Cestnik & 
Bratko 1988; Gams 1988). 

'By 'multiple knowledge' we refer to multiple models, 
multiple systems or multiple methods. 

mailto:matjaz.gams@ijs.si
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Here we present results of benchmarking over 
a period of 7 years. Testing was performed al-
ways on the same two oncological domains. Al-
together, around 20 systems were benchmarked. 
Our system GINESYS was constructed on the ba-
ses of first benchmarking of around 10 systems in 
1987 from a frustration since statistical systems 
have regularly achieved better accuracy than sin-
gle Al systems. GINESYS is described in Section 
3, benchmarking in Sections 4 and 5. 

2 Multiple Knowledge and 
Multistrategy Learning 

Even first expert systems like MYCIN (Shortliffe 
1976) and most rule-based systems already ena-
bled a certain amount of multiplicity, i.e. redun-
dancy, since rules can be more or less multiple. 
Newer systems like CN2 (Clark & Niblett 1989) 
or C4 (Quinlan 1987) contain similar amount of 
redundancy which is probably one of the reasons 
for their successful behaviour in noisy domains. In 
(Catlett & Jack 1987) it was reported that con­
structing a separate decision tree for each class 
with the same method as when constructing one 
decision tree for ali classes significantly increased 
accuracy. Similar conclusion was derived by Clark 
& Boswell (1991) when constructing several lists 
of rules and by Buntine (1989) when combining 5 
decision trees with different roots. 

In Communications, the positive efFect of using 
redundant bits is known for decades and even sim-
ple ID numbers in banking have additional digits 
in order to improve the robustness of the whole sy-
stem. Theoretical aspects of redundancy in such 
cases are described e.g. in (Shannon & Weaver 
1964). 

In most every-day activities, people use multi­
ple knowledge whenever there is any possibility of 
biasing (Utgoff 1986). For example, when hiring 
a new employee, one checks several reports which 
are basically multiple (e.g. biography, recommen-
dations e tc ) . When bringing an important deci­
sion, humans often discuss possibilities in groups 
of relevant people. A council of physicians is con-
sulted when dealing with difficult or important 
cases. One physician suffices for most of normal 
activities since one is substantially cheaper than 
a group of them. 

It is commonly accepted that cross-checking of 

several knowledge sources is generally better than 
using one source of knowledge alone. Humans 
are intrinsically multiple. They apply multiple 
strategies in every-day activities without paying 
much attention to that phenomenom. Therefore, 
machine and human multistrategy learning have 
natural interrelationship and potential benefits in 
both directions. 

In recent years there were several distinguished 
events related to mutistrategy learning. Among 
them: a book edited by R. Michalski & G. Te-
cuci: Machine Learning, A Multistrategy Appro-
ach, Vol. IV, Morgan Kaufmann (1994), speci-
alised international workshops on multistrategy 
learning organised by George Mason Universitv, 
special issue of Informatica (Tecuci 1993), and 
IJCAI-93 workshop on integration of machine le­
arning and knowledge acquisition (Tecuci, Kedar 
& KodratofF 1993). 

3 GINESYS 

GINESYS (Generic INductive Expert SYstem 
Shell) is one of the oldest systems actively uti-
lising multiple knowledge representations (Gams 
1988). It consists of two systems (i.e. methods), 
one from Al and one from statistics. There were 
sensible reasons for combining methods from di­
fferent fields. First of ali, artificial intelligence 
methods enable construction of knowledge bases 
which are typically very transparent and under-
standable; therefore, it was hoped that a combi-
nation would stili be more understandable than 
statistical knowledge bases. A statistical method 
was chosen on the basis of the hypothesis that 
knowledge representations should be as different 
as possible. 

GINESYS utilises two different strategies on 
the basis of these two svstems: the Al svstem 
constructs and consults lists of rules, and the 
statistical system multiplies probabilities accor-
ding to the distribution of classes corresponding 
to each attribute of the tested example. Both 
single systems already implicitly utilise multiple 
knowledge - the Al part through a couple (typi-
cally 5) of rules attached to the main one which 
are triggered when classifying, and the statistical 
part through combining probabilities relating to 
the value of each attribute of the tested example. 

The Al part of GINESYS is named INESYS 
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d : = (0) ; (*d i s initialised*) 
repeat 

Star := (NP); BestRules := (NP); 
repeat 

for ali Rulej from Star generate ali specialisations 
NetvRulei that do not fulfil the stopping criteria; 
Star := (); 
put into Star at best MAXSTAR the best NeivRulei 
evaluated by user defined impurity function; 
from rules in BestRules and significant NewRule{ choose 
the best MAXBEST rules, evaluated by user defined 
error estimate function, and put them into BestRules 

until Star is empty; 
add BestRules into d; 
L := L - examples, covered by the best evaluated rule from 
BestRules 

until L is empty 

The INESYS algorithm 

(see top of the page). It reimplements many of 
mechanisms of the ID3 and AQ (CN2) family of 
algorithms. It was primarily designed as an at-
tempt to fully simulate the family of ID3 and 
AQ inductive empirical learning systems (Gams 
k Lavrač 1987). Theoretically, it simulates NM 

different algorithms where M is the number of 
modules of the algorithm and N is the number of 
variations of each module (Gams 1989). The ac-
tual number of different variations of GINESYS 
can be estimated to severa! hundreds. 

INESYS constructs rules with a beam search 
over ali possible combinations of attributes. In 
addition, it utilises several search-guiding and 
error-estimate functions such as informativitv, the 
Gini index, Laplacean error estimate and signi-
ficance. Due to elaborate mechanisms for noise 
handling, INESYS typically constructs a small 
number of short rules, i.e. with a small number 
of attributes. For example, on average, 5.1 main 
rules with 1.4 attributes in a rule were construc-
ted in lymphography. In primary tumor, there 
were 11.0 main rules with 2.3 attributes in a rule. 
Therefore, a typical rule had the form: 

if (Ai = Vij)fc(Ak = Vki) then Distributionn 

where 

— (A{ = Vij) is a Boolean test whether attribute 
i has value j , and 

— Distributionn is a class probability distribu-
tion corresponding.to.the cpndition part of 
the rule, i.e. a complex. 

A general description of INESYS is: 

repeat 
construct Rule(s); 
add Rule(s) to d; 
L := L - ExamplesCoveredByRule 

until satisfiable d 

where L is the set of learning examples, d is 
constructed knowledge in the form of trees or lists 
of rules and Rule(s) is one or many branches in 
a tree or one or many rules in the list of rules. 
A procedural description of INESYS is presented 
at the top of the page where d is the constructed 
knowledge in the form of an ofdered list ofordered 
lists of rules, Star and BestRules are ordered lists 
of rules and L is the set of learning examples. NP 
is a rule with an uninstantiated complex and class 
probability distribution of L. 

In INESYS, the main improvement regarding 
existing rule-based systems are rules attached to 
the main rule. The aim of these multiple rules 
is twofold. First, to give the user more rules and 
thus more opportunities to analyse the laws,of the 
domain. Second, to improve classification accu-
racy by cross-checking the matched rule with con-
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firmation rules. This mechanism already enables 
the use of multiple knowledge to a certain degree: 

i f Complexl then Class l 
(Complexll then Class l l 

ComplexlR then Class1R) 
e l se i f Complex2 then Class2 

(Complex2i then Class21 

Complex2R then Class2R) 

Classification in INESYS starts by sequentially 
checking main rules. When the first main rule 
matches a new example, corresponding multiple 
rules that match the new example add their class 
probability distribution according to the formula 
for the union of independent events 

Pi2 = P\ + (1 - Pi) X p2. 

Probabilities are multiplied by error estimates in 
order to calibrate the effect of rules with diffe-
rent credibility, and finally normalised. There are 
two threshold parameters that present a heuristic 
estimate of the goodness of classification by a rule: 
the smallest necessary percentage of the majority 
class (MINACC) and the smallest difference be-
tween the percentage of the majority class and the 
second to majority class (MINDIFF). Each con-
structed rule in GINESYS has to satisfy both con-
ditibns. Parameter MINDIFF additionally affects 
the classification process in the sense that the 
class probability distribution of a combined main 
and confirmation rules must satisfy it. 

The second method in GINESYS is the appro-
ximation of the Bayesian classifier which assumes 
independence of attributes. It is often referred to 
as "naive Bayes"(Good 1950), in this paper also 
"Bayes". Naive Bayes constructs ali possible ru­
les with only one attribute in the complex. The-
refore, the form of these rules is: 

if (A, = Vij) then Distributionn. 

The classification schema is as follows: ali rules, 
that match a new example, are taken in considera-
tion. The probability of each class c is computed 
by the following formula: 

P(c\A) = P.(c) X {P{Ax\c)lPa{A{)) x . . . 

x(P(Av\c)/Pa(Av)) (Eq.l) 

where P(c|A) denotes probability of class c given 
attributes and values A of the tested example, 
Pa(c) denotes the a priori probability of class c, 
P(Ai\c) the probability that attribute A{ has the 
same value as the classified example regarding the 
class c, Pa(Ai) the same as before, but regardless 
of class, and v is the number of attributes. By 
calculating probabilities of ali classes by (Eq.l.), a 
class probability is obtained. Therefore, although 
naive Bayes constructs rules similar to INESYS, 
in the process of classification ali attributes are 
considered in Bayes and on average only around 
two in INESYS. 

Cooperation between the Al and the statistical 
system is relevant only when they propose diffe-
rent classes. In that čase, the goodness of trigge-
red rules in INESYS is estimated by the simple he-
uristics mentioned above. If the goodness of com­
bined rules exceeds the value of a given threshold 
(parameter MINDIFF), classification by INESYS 
is adopted. Otherwise, the classification by naive 
Bayes prevails. In other words: If class proba-
bility distribution of combined rules is estimated 
as unreliable, the statistical method is called as 
a supervisor to decide which class is estimated as 
the most probable. 

The combining schema is based on the follo-
wing reasoning: When multiple rules confirm the 
main ones, classification is very likely to be cor-
rect. If a significant disagreement occurs then the 
list of rules is not credible and the other method 
using difFerent knowledge representation should 
be consulted. It was expected that short rules 
constructed by INESYS will be more successful 
when they have high confidence in their predic-
tion, and the approximation of the Bayesian clas­
sifier to be more successful when dealing with di-
fficult cases where truncated rules capturing the 
main and most important laws of the domain are 
not predicting with great certainty. 

4 Benchmarking 
Since 1987, systematic measurements are being 
performed on two oncological domains, lympho-
graphy and primary tumor. Data were obtained 
from real patients from the Oncological institute 
Ljubljana (Kononenko 1985; Cestnik & Bratko 
1988). Unknown values of attributes were re-
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SYSTEM 

GINESYS* 
GINESYS 
BAYES 
CN2-newl 
GB* 
CN2-newl' 
NEAREST NEIG. 
C4.5-rules 
C4.5-trees-u 
C4.5-trees-p 
CN2-likel 
CN2-likel' 
ID3-like 
CN2-like2 
CN2-like2' 
AQ-likel 
AQ-like2 

LYMPHOGRAPHY 
class.acc. 

70.5 
70.5 
68.6 
68.7 
67.4 
65.6 
72.9 
64.7 
63.1 
66.7 
67.3 
66.1 
61.8 
66.8 
65.0 
60.6 
55.2 

no.rules 

5.1 
5.1 

56.0 

5.1 

4.8 
5.0 

25.0 
10.8 
9.4 
7.0 
7.0 

no.att. 

7 
7 

56 

7 

8 
6 

110 
21 
16 
80 
80 

PRIMARY TUMOR 
class.acc. 

52.2 
52.0 
50.1 
50.3 
47.6 
46.9 
40.4 
38.2 
48.9 
48.8 
48.7 
45.6 
48.7 
45.7 
46.2 
48.8 
32.0 

no.rules 

11.0 
11.0 
37.0 

11.0 

11.4 
10.8 
28.6 
19.3 
19.4 
16.0 
16.0 

no.att. 

25 
1 25 

37 

25 

27 
22 

129 
70 
68 

423 
423 

Table 1: Benchmarking systems on two oncological domains. 

placed by the most common values regarding the 
class. 

4.1 Domain Description 

Basic statistics of the whole set of data are: 

LYMPHOGRAPHY 
18 attributes 
2 - 8 (average 3.3) values per attribute 
9 classes 
150 examples 
distribution: 2 1 12 8 69 53 1 4 0 
ali examples differ even if one attribute is deleted 

PRIMARY TUMOR 
17 attributes 
2 - 3 (average 2.2) values per attribute 
22 classes 
339 examples 
distribution: 84 20 9 14 39 1 14 6 0 2 28 16 7 24 
2 1 10 29 6 2 1 24 
75 examples in the data set have another example 

with the same values of attributes and different 
class; if we delete one attribute, this number is: 
114 111 81 122 84 75 93 79 97 91 77 83 76 77 79 
94 94 

4.2 Benchmarked Systems 

On the benchmark domains, around 20 Al and 
statistical systems were compared over more than 
half of a decade. Ali the systems were given the 
same set of 10 random distributions of data, each 
tirne taking 70% of data for learning and 30% of 
data for testing. Results of relevant systems are 
presented in Table 1. The rov/ in the middle of 
the Table divides multiple and single systems, i.e. 
those that use only one rule or combine many ru-
les during one classification. 

GINESYS* is a version of GINESYS using "ne-
gation" multiple rules, which try to confront the 
main rule if possible. BG* is GINESYS* without 
the statistical method, i.e. INESYS with func-
tions B and G. First nearest neighbour algori-
thm classifies with the class of the nearest nei-
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LYMPHOGRAPHY 
FUNCTIONS 

AB 
GB 
BB 
BG 
BA 

INESYS** 

68.4 
67.4 
66.4 
62.6 
62.4 

GINESYS** 

69.7 
69.9 
70.8 
68.4 
68.4 

PRIMARY TUMOR 
FUNCTIONS 

BA 
BG 
GB 
AB 
BB 

INESYS** 

48.3 
48.1 
47.6 
46.6 
46.4 

GINESYS** 

52.3 
51.8 
52.0 
51.3 
52.5 

Table 2: Accuracv under different impuritv and error estimate functions. 

ghbour where distance is measured by the number 
of attributes with different values. BAYES is an 
approximation of the Bavesian classifier using an 
assumption that attributes are independent. ID3-
like is a version of the ASSISTANT svstem using 
cross-validation pruning. CN2-like systems are di­
fferent modifications of the CN2 algorithm, and 
CN2-new systems are latest versions. C4.5-rules 
constructs rules, C4.5-trees-u unpruned trees, and 
C4.5-trees-p pruned trees. AQ-like systems are 
modifications of the AQ15 systems. 

Classification accuracy (column 1 in each do-
main in Table 1) was measured as an average per-
centage of correct classifications in ten test runs. 
The second column in each domain represents the 
average number of rules in a rule list or branches 
in the tree. The third column is a product of 
the number of rules (branches) times the average 
length of a rule (branch) times the number of in-
ternal disjunctions. 

The relations between systems are similar to 
those observed in other measurements (Clark & 
Niblett 1989; Rendell et al. 1987; Rendell et al. 
1988). Systems of the AQ family usually achieve 
lower classification accuracy than CN2 or ASSIS­
TANT, while ASSISTANT and CN2 achieve simi­
lar classification accuracy. AQ-likel represents an 
estimate of the upper possible classification accu-
racy of the rules, constructed by the AQ-like sy-
stem. BAYES achieved better results than other 
systems except GINESYS. Nearest neighbour al­
gorithm seems to be very domain dependent. GI­
NESVS achieved the best average classification 
accuracy over both domains. 

AQ-like systems construct more complex ru­
les than other systems. However, the third co­

lumn might be misleading for tree constructing 
algorithms like ID3-like because it represents tree 
as a list of separated branches. GINESYS* and 
GINESYS are measured only by the main rules 
and not by the multiple ones. On the other side, 
from the results in Table 1 it follows that systems 
like GINESYS and CN2 construct smaller num­
ber of shorter main rules while AQ-like systems 
construct more complex rules. 

The efficiency of the benchmarked algorithms 
was also analysed. AQ systems are about an or­
der of magnitude slower than ASSISTANT, CN2 
and GINESYS, and these are about an order of 
magnitude slower than BAYES. Results are simi­
lar to other measurements when having in mind 
that our versions of CN2 and GINESYS use a data 
compression mechanism which speeds up the algo­
rithm roughly five times. GINESYS PC, another 
version of GINESYS, runs on IBM PC computers 
and is available as a free scientific software. 

4.3 Varying Impurity and Error 
Estimate Functions 

In order to verify whether improvements in GI­
NESVS were caused by multiple knowledge or 
by domain-dependent parameters, several para-
meters were varied, and functions were the first 
among them. GINESYS ušes two different gro-
ups of functions: informativity functions and er­
ror estimate functions. Informativity functions 
strategically guide search by trying to determine 
the amount of impurity. Error estimate functions 
try to estimate classification error. Four func­
tions were used in ali 16 possible combinations 
in each domain. Classification accuracy of GI-
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LYMPHOGRAPHY 
SYSTEM 

GINESYS 
BAYES 
INESYS 
ASSISTANT 
ASSIST 0 

% OF LEARNING EXAMPLES 
20% 

52,8 
52.8 
39.2 
53.9 
53.2 

30% 

58.2 
59.3 
51.7 
60.5 
60.7 

40% 

63.1 
60.8 
54.1 
57.9 
57.4 

50% 

63.7 
61.2 
62.6 
57.5 
57.8 

60% 

60.1 
58.2 
59.0 
55.2 
55.9 

70% 

70.5 
68.6 
67.4 
62.1 
62.4 

80% 

75.3 
72.1 
74.3 
65.2 
66.8 

Table 3: Accuracy in lymphography at different percentages of learning.data. 

NESYS with (GINESYS**) and without (INE-
SYS**) top-level multiple knowledge was compa-
red. In Table 2 we present only the best three 
combinations of INESYS** in both domains. The 
four functions used were: I - informativity (Quin-
lan 1986); A - % of majority class; G - Gini index 
(Breiman et al. 1984); B - Laplacean error esti­
mate (Niblett k Bratko 1986). The flrst letter 
denotes the impurity function and the second let­
ter the error estimate function. 

Measurements presented in Table 2 indicate 
that Laplacean error estimate is one of the most 
successful functions used for impurity or error 
estimates. Informativity is unexpectedly not pre­
sent in the best three combinations. Default func­
tions for GINESYS systems (GB) were taken in 
advance from the literature (Breiman et al. 1984; 
Niblett k Bratko 1986). 

4.4 Varying Percentage of Learning 
Examples 

Benchmarks in sections 4.2 and 4.3 were perfor-
med on 10 distributions of data each time taking 
70% of data for learning and 30% of data for te-
sting. In Table 3 and 4 we varied the percentage 
of learning data from 20% to 80% and used the 
remaining data for testing. Graphical represen-
tation of data in Table 4 is shown in Figure 1. 
Systems in Figure 1 are denoted as in column 1 
of Table 4. ASSIST 0 is ASSISTANT without 
pruning and INESYS is GINESYS without the 
statistical method. 

Probably the main reason for unproportionally 
low classification accuracy of INESYS with small 
number of learning examples are functions which 

work well only with several ten examples. But 
even then there are some cases when INESYS 
classifies better than BAYES. The combining me-
chanism usually decides well when to choose the 
right method. The performance of INESYS incre-
ases with the number of learning examples, and 
the gain of GINESYS over BAYES also proporti-
onally increases. In lymphography, ASSISTANT 
prunes the tree by approximately 50% and achie-
ves very similar classification accuracy as ASSIST 
0. In primary tumor, the pruned tree constructed 
by ASSISTANT is roughly 4 times smaller than 
the tree of ASSIST 0 which besides constructing 
more complex trees also achieves lower classifica­
tion accuracy. 

The improvement of GINESYS over the best of 
it's two subparts was typically around 1-2% lea-
ding to a conclusion that the combining mecha-
nism performed well when changing the number 
of learning examples. 

4.5 Varying Additional Noise 

Noise was introduced into the lymphography and 
primary tumor domain to attributes and classes 
in the learning and test examples. For example, 
1% of noise means that, on average, each hun-
dred's value of attribute and each hundred's class 
was randomly changed in learning and test data. 
Average results of 10 tests (see section 4.2) are 
presented in Tables 5 and 6, and in Figure 2. 

When the amount of noise increases, the per­
formance of INESYS relatively improves and achi­
eves even better classification accuracy that GI-
NESYS. As expected, in a very noisy situation, a 
small number of short rules performs the best. Si-
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P. TUMOR 
SYSTEM 

GINESYS (G) 
BAYES (B) 
INESYS (I) 
ASSISTANT (A) 
ASSIST 0 (AO) 

% OF LEARNING EXAMPLES 
20% 

41.9 
41.8 
26.9 
39.8 
39.6 

30% 

44.6 
45.2 
35.6 
43.5 
41.6 

40% 

48.1 
47.5 
33.8 
43.5 
39.9 

50% 

49.0 
48.0 
43.5 
45.9 
41.1 

60% 

48.1 
47.2 
41.2 
44.3 
39.6 

70% 

52.0 
50.1 
45.9 
47.9 
41.3 

80% 

52.3 
50.3 
46.7 
49.2 
41.7 

Table 4: As in Table 3, but for the primary tumor domain. 

G 

B 
I 

A 

A0 

20 30 AO 50 60 70 80 % 

Figure 1: Graphical representation of data in Table 4. On the x-axis is the percentage of learning 
data and on the y-axis is classification accuracy. 

30 
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LYMPHOGRAPHY 
SYSTEM 

GINESYS 
BAYES 
INESYS 
ASSISTANT 
ASSIST 0 

% OF ADDITIONAL NOISE • 
0% 

70.5 
68.6 
67.4 
62.1 
62.4 

1% 

65.3 
65.8 
63.4 
60.2 
60.5 

5% 

63.7 
61.7 
59.1 
52.8 
51.8 

10% 

53.1 
51.1 
53.0 
34.1 
41.6 

20% 

43.8 
41.8 
41.4 
33.3 
29.9 

35% 

28.9 
28.0 
30.3 
23.4 
23.5 

50% 

21.1 
20.7 
25.4 
18.4 
17.6 

Table 5: The influence of additional noise - lymphography. 

P. TUMOR 
SYSTEM 

GINESYS (G) 
BAYES (B) 
INESYS (I) 
ASSISTANT (A) 
ASSIST 0 (A0) 

% OF ADDITIONAL NOISE 
0% 

52.0 
50.1 
45.9 
47.9 
41.3 

1% 

50.6 
47.8 
43.5 
44.9 
39.1 

5% 

42.6 
40.3 
36.2 
39.4 
32.4 

10% 

35.2 
33.5 
30.7 
30.5 
25.3 

20% 

23.5 
23.6 
20.0 
16.7 
14.5 

35% 

13.8 
13.9 
16.1 
8.4 
8.7 

Table 6: The influence of additional noise - primary tumor. 

milar effect is noticeable in the lymphography do-
main especially compared to ASSISTANT and is 
probably connected to the fact that ASSISTANT 
constructs a tree of several tens of leaves while 
INESYS constructs from 2 to 5 rules. With a 
growing amount of noise, the gain of GINESYS 
slowly decreases but remains around 2% as long 
as any rule of INESYS can be trusted as the me-
aningful one. 

5 New Measurements 

In further attempts to verify the obtained results 
presented in Section 4, GINESYS and benchmark 
data were around five years ago sent to over 50 
laboratories and declared to be freely available 
for scientific purposes. The obtained answers can 
be clustered into two groups: several laboratories 
benchmarked systems on the proposed two do-
mains, or at least approved the approach. On the 
other hand, there were some researchers who con-
sidered proposed benchmarking of classification 

accuracy as a numerical measurement belonging 
to statistics. In their opinion, artificial intelli-
gence methods should be evaluated mainly at the 
level of ideas. Indeed, measuring only classifica­
tion accuracy does not consider several important 
advantages of artificial intelligence, e.g., the tran-
sparency of the constructed knowledge base or the 
comprehensibility of classifications. However, in 
the last two years we have observed a constant 
shift in a direction which accepts such verificati-
ons as crucial in evaluating quality. 

In 1990 we received the first, and so far only 
report of a system, NAIVE BAYES* (Cestnik 
1992), which achieved better accuracy than GI-
NESYS in both domains (54.1% in primary tumor 
and 70.9% in lymphography). The improvement 
is based on a correction of the weakness of NA­
IVE BAYES which happens whenever there is a 
gap in the data, meaning there is no example with 
the particular value of the attribute. Then, one 
factor in the product becomes 0 and the resul-
ting product (Eq.l) becomes 0. This was already 
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Figure 2: Graphical representation of data in Table 6. On the x-axis is the percentage of additional 
noise and on the y-axis is classification accuracy. 

observed in (Gams k, Drobnič 1988; Gams et al. 
1991) where e was used instead of 0. In NAIVE 
BAYES*, the Laplacean estimate is introduced 
for a correction instead of e. 

The reported improvements enabled additional 
experiments in trying to construct a multiple sy-
stem, achieving even better classification accu-
racy. In the first attempt, NAIVE BAYES* was 
directly embedded into GINESYS, but the obser­
ved classification accuracy was lower than that of 
NAIVE BAYES*. Obviously, a smaller number 
of stronger rules had to be constructed since NA­
IVE BAYES* achieved significantly better clas­
sification accuracy than GB. Several parameters 
in GINESYS deal with rules, such as significance 
(Kalbfleish 1979), modified Laplacean error esti­
mate (Niblett & Bratko 1986) or MINDIFF and 
MINACC. In the second attempt, MINDIFF was 
set to 0.5 instead of the previous 0.3, and MI­
NACC to 0.7. Consequently, GINESYS90 achie­
ved an additional 0.8% increase in primary tumor 
and 1.3% in lymphography over NAIVE BAYES*. 
Later it was found that the values of MINACC 
and MINDIFF belong to the set of optimal com-
binations, as can be observed in Tables 8 and 9. 

The updated versions of NAIVE BAYES and 
GINESYS achieve the best two classification 
accuracies (compare Table 1 and Table 7). The 
percentage of corrections by NAIVE BAYES was 
8% in lymphography and 27% in primary tumor 
in GINESYS and, correspondingly, 25% and 45% 
in GINESYS90. 

New values of parameters MINDIFF and MI­
NACC force GINESYS90 to construct a smaller 
number of longer rules. Also, rules are usually ro-
ughly twice more often corrected by NAIVE BA-
YES* than in GINESYS. To a great extent, this 
is due to the increased average number of classi-
fications performed by the null or uninstantiated 
rule, i.e. the last rule in a rule list. This num­
ber increased from 9.2 to 15.9 in lymphography 
(45 classifications), and from 18.0 to 55.1 in pri-
mary tumor (102 classifications). Understanda-
bly, the last uninstantiated rule is always conside-
red as unreliable in GINESYS and GINESYS90. 
But in the INESYS and INESYS90 algorithm, the 
classification is stili performed by corresponding 
null-rule class distribution which is typically only 
slightly better than the default rule. Therefore, 
it is understandable that on average accuracy of 
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SYSTEM 

INESYS90 
NAIVE BAYES* 
GINESYS90 

LYMPHOGRAPHY 
class.acc. 

63.7 
70.9 
72.2 

no.rules 

3.8 
56.0 
59.6 

no.att. 

7 
56 
63 

PRIMARY TUMOR 
class.acc. 

36.3 
54.1 
54.9 

no.rules 

6.9 
37. 0 
44.3 

no.att. 

19 
37 
56 

Table 7: Accuracy, number of rules, of ali attributes. 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

LYMPHOGRAPHY 
ACC. 

71.0 
72.0 
71.6 
72.0 
72.2 
70.2 
70.7 
70.2 
68.2 

.1 

+ 
<? 
+ 
<? 
<? 
-
-
-
-

.2 .3 

-

.4 

-

.5 

9 
-

-

.6 

<? 

-

.7 

9 
<? 

-

.8 

<? 

+ 
V 
+ 
+ 

+ 

.9 

+ 

+ 
+ • 

+ 

Table 8: Influence of the goodness criterion, GINESYS90, lymphography. 

INESYS90 decreased from 67.4% to 63.7% in lym-
phography and more, from 45.9% to 36.3% in pri-
mary tumor. This should not blur the fact that 
the effective part of INESYS90 which takes part 
in classifications of GINESYS90 actually achieves 
better classification accuracy than INESYS. 

The influence of the MINDIFF and the MI-
NACC parameters on the classification accuracy 
of GINESYS90 was further measured, and it was 
found that there is a wide range of possible com-
binations which enable similar improvements (see 
Tables 8 and 9). 

The x-axis in Tables 8 and 9 corresponds to MI-
NACC and the y-axis corresponds to MINDIFF 
ranging from 0.1 to 0.9. The second column of 
classification accuracies in each Table represents 
accuracy with current MINDIFF and MINACC 
< = MINDIFF. Each mark in Tables 8 and 9 re­
presents one ten-runs measurement as follows (in 
percents): 

— bellow 70.9 in lymphography, bellow 54.1 in pri-
mary tumor 

+ between 70.9 and 71.9, between 54.1 and 54.6 
correspondingly and, 

V over 71.9 (+1) in lymphography and over 54.6 
(+0.5) in primary tumor. 

Top-level or global multiplicity in any version of 
GINESYS can be estimated by the percentage of 
different classifications of both single systems. In 
Table 10, it is presented for GINESYS90 in both 
domains with MINDIFF = 0.3 and 0.5 (MINDIFF 
= MINACC) on training and testing examples. 

Let us measure the internal multiplicity of each 
monostrategy system. INESYS90 constructs a list-
of sublists of rules. However, the order of rules 
is important and the confirmation rules are atta-
ched to the main rules. Therefore, each sublist of 
rules corresponds to a particular subset of train-
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.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

PR] 
ACC. 

54.3 
54.3 
54.3 
54.5 
54.9 
53.5 
53.6 
53.1 
51.9 

.1 
+ 
+ 
+ 
+ 
<? 
-
-
-
-

.2 
[MARY TUMOR 

.3 

-

.4 

-

.5 

9 
-

-

.6 

V 

.7 

9 
-

-

.8 

+ 
+ 
+ 
+ 
+ 

+ 

.9 

+ 

Table 9: As in Table 8, but primary tumor. 

MINDIFF 

0.3 
0.5 

LYMPHOGRAPHY 
train 

28 
26 

test 
26 
29 

PRIMARY TUMOR 
train 

28 
44 

test 
34 
49 

Table 10: Percentage of different classifications, i.e. top-level or global multiplicity in GINESYS90. 

ing data and there seems to be no natural way to 
extract many knowledge bases such that each co-
vers the whole measurement space. On the other 
hand, rules in both NAIVE BAYES and NAIVE 
BAYES* have the form 
if(Ai = Vij) then Distributionn 
and are constructed on the whole training data. 
Therefore, a list of rules with the same attribute 
and ali possible values of that attribute represents 
one knowledge base covering the whole measu­
rement space. The average percentage of diffe­
rent classifications of each such knowledge base 
and the combined knowledge base is presented in 
Table 11. It should be observed that the same 
single knowledge bases are used in NAIVE BA-
YES and NAIVE BAYES*, but they are differen-
tly combined. Whatever the čase, both NAIVE 
BAYES and NAIVE BAYES* can be regarded as 
internally consisting of multiple knowledge bases. 
Furthermore, these knowledge subbases are quite 
independent of each other, although they are con­

structed on the same training data. 
Overall, finding areasonable combination of the 

two knowledge bases, i.e. GINESYS90, took only 
one day of work and resulted in achieving an ave­
rage 1% increase in classification accuracy. The 
amount of efforts needed was evidently small be-
cause only already existing systems had to be mo-
dified. 

6 Discussion 

Multiple knowledge has proven useful in many 
measurements, first in (Brazdil & Torgo 1990; 
Buntine 1989; Catlett & Jack 1987; Cestnik & 
Bratko 1988; Clark k Boswell 1991; Gams 1988; 
1989; Gams, Drobnič & Petkovšek 1991), and fol-
lowed by tens of reports in the last couple of years. 
In our measurements, classification accuracy of 
the combined knowledge base was typically bet-
ter than the accuracy of each single knowledge 
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SYSTEM 

NAIVE BAYES 
NAIVE BAYES* 

LYMPHOGRAPHY 
train 

48 
44 

test 
50 
46 

PRIMARY TUMOR 
train 

72 
65 

test 
70 
66 

Table 11: Percentage of different classifications in BAYES, i.e. internal multiplicity. 

base. However, due to a relatively high standard 
deviation the statistical significance of this im-
provement cannot be proved in 10 tests (Gams 
1989). On the other hand, additional measure-
ments were performed by varying parameters of 
GB (form and number of multiple rules, goodness 
of rules, factor of significance, impurity functions, 
error estimate functions) and domain parameters 
(percentage of training and testing data, percen­
tage of additional noise). In this paper we pre-
sent over 200 measurements each tirne averaging 
10 tests. If we delete measurements with more 
than 20% of additional noise and those with less 
than 70 learning examples, we obtain 167 mea­
surements with only 3 cases where (a version of) 
GINESYS has not achieved the best classification 
accuracy. The improvement was typically around 
1%. 

Therefore, the improvement in 167 measure­
ments (each time averaging over 10 tests) is stati-
stically highly significant. Although more inten-
sive measurements were performed in recent ye-
ars, e.g., (Brazdil et al. 1994), measurements in 
this paper present one of the longer-lasting efforts. 

Besides better classification accuracy, impro-
ved explainability and understandability were 
also reported. Indeed, the informativity of the 
knowledge base with multiple rules seems to be 
much better than without them. Multiple rules 
can be trimmed off and a "usual" knowledge base 
is obtained as a downgraded version. Since a user 
can define the number of multiple rules, the prefe­
rence function and other parameters, it enables a 
thorough extradition of most valuable rules. The 
efnciency of the learning algorithms remains prac-
tically the same when using multiple knowledge. 

In conclusion, more and more indications 
emerge that "single-knowledge" systems in ge­
neral do not achieve the performance of 

"multiple-knowledge" systems. Therefore, multi­
ple knovvledge isbecoming regularly implemented 
in recent systems. The reported gains are usually 
substantial at small additional cost. 

While research on monostrategy methods and 
one-level knowledge representations continues to 
be of great importance to the machine learning 
community, the interest and amount of rese­
arch work in multistrategy learning and multiple 
knowledge representations rapidly increases over 
the last couple of years. Expansion is accompa-
nied by great diversification and new approaches. 

In general, multiple systems enable greater 
competence than monostrategy systems relying 
on one knowledge representation and one com-
puting mechanism. On the other hand, multiple 
systems demand more understanding of capaci-
ties, limitations and cooperation between single 
systems. Due to the constant growth of compu-
ter power, speed and memory requirements have 
to a great extend diminished, thus bringing the 
focus to essential research and engineering que-
stions. 
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The paper presents T-ORM (Temporal Objects with Roles Model), an object-oriented 
data model based on the concepts of class and role. In order to represent the evolution 
of real-world entities, T-ORM allows objects to change state, roles and class in their 
lifetime. In particular, it handles structural and behavioral changes that occurin objects 
when they migrate from a given class to another. First, the paper introduces the basic 
features ofthe T-ORM data model, emphasizing those related to object migration. Then, 
it presents the query and manipulation languages associated with T-ORM, focusing on 
the treatment of the temporal aspects of object evolution. 

1 Introduction 

Since the '70s, relational databases have been 
successfully used in many application domains. 
In the last years, however, many advanced appli­
cation areas have been identified for which the 
data model underlying relational databases is not 
the most appropriate one. A number of applica-
tions in the areas of CAD/CAM, office automa-
tion, knowledge representation, software enginee-
ring indeed require semantically richer data mo-
dels. New constructs are needed to model struc-
tured entities, complex attribute domains, diffe-
rent types of relationships among entities, rela-
tionships among entity types. To support such 
features, object-oriented databases have been de-
veloped, and severa! commercial systems based 
on the object-oriented paradigm are now availa-
ble. In addition, many of these applications must 
čope with problems involving temporal informa-
tion about object evolution. For this reason, con-
ventional snapshot databases, that maintain in-

formation about the current state of the world 
only, need to be replaced by temporal databases 
that record information about past, present and, 
possibly, future states. In order to model the 
evolution of real-world entities, object-oriented 
database must be able to handle both changes 
in object states and changes in object structures 
due to their migration to other classes [30]. As an 
example, they must be able to represent the fact 
that a person becomes an adult (class change), 
that a študent becomes a professor (role change), 
and that a študent moves from a given univer-
sity to another one (state change) in a uniform 
framework. 

During the last fifteen years, several time mo-
dels have been proposed to manage temporal 
knowledge in database systems. Most of them 
extend the relational model with one or more time 
dimensions, e.g. [13, 28]. Temporal extensions 
of object-oriented models have been proposed in 
[6, 7, 8, 29, 31]. Most extensions are only con-
cerned with the representation of state evolution, 
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and neither support the notion of object role, nor 
allow the shift of an object from one class to ano-
ther (they assign a class to an object once and for 
ali). 

In the paper we consider the problem of provi-
ding temporal object-oriented databases with the 
notion of object migration. The importance of 
such a notion has been pointed out by [20, 30]. 
In object-oriented databases objects belong to hi-
erarchically structured classes, and remain stati-
cally linked to their original position in the hi-
erarchy. On the contrary, in many application 
domains it is quite natural to allow objects to 
dynamically change the class(es) they belong to. 
For example, it seems fairly acceptable to allow 
an object belonging to the class PERSON to mi-
grate to the subclass ADULT. Only few papers 
deal with object migration in object-oriented da­
tabases using either behavioral constructs to de-
scribe semantic information [4], or dynamic inte-
grity constraints [30], or considering a restricted 
notion of migration [10, 11]. The issue of object 
migration has not been addressed at ali in the 
context of temporal object-oriented databases. 

The paper describes T-ORM [19], a temporal 
extension of the object-oriented conceptual model 
ORM (Object with Roles Model [20]), that gene-
ralizes the temporal models proposed in [6, 8, 27] 
by adding the notion of object migration. It first 
analyzes in detail the notion of object evolution, 
and consider different types of evolution which 
can be of interest for database applications; then, 
it identifies the basic requirements that a tempo­
ral model of object evolution must satisfy; finally, 
it shows how object evolution may affect state, 
structure and behavior of the evolving object and 
of the objects related to it. Ali the features of the 
T-ORM model are illustrated in terms of query 
and manipulation languages. There is plenty of 
literature on temporal extensions to query lan­
guages [7, 21, 22, 24, 25, 28, 29, 31] and we do 
not deviate from them defining a query language 
which is based on the SQL syntax. Besides the 
usual primitives of structured query languages, it 
is provided with ali temporal relations of Allen's 
interval logic and with some specific constructs 
that allow one to query the history of objects. 

The organization of the paper is as follows. Sec­
tion 2 first illustrates the ORM model and then 
describes the basic features of its temporal exten-

sion T-ORM. Section 3 introduces and discusses 
the notion of object migration, and shows how 
it is dealt with in T-ORM. Section 4 provides a 
detailed presentation of the T-ORM query lan­
guage. Section 5 sketches out the basic featu­
res of T-ORM data manipulation language. The 
concluding remarks provide an assessment of the 
work. 

2 The T-ORM data model 

2.1 Classes a n d ro les 

One of the main problems in real-world mode-
ling is the management of object behavior. Most 
of the efforts in this area have been limited fey 
static schema definitions, supplying objects with 
methods which operate on object states. Recen-
tly, it has been suggested to incorporate rules wi-
thin objects for expressing object behaviors. Besi­
des the necessity of representing changes in state, 
another problem occurs. Many applications have 
the necessity of describing particular entities from 
different perspectives, dealing with multifaceted 
object states, that is, an object can play different 
roles and its behavior depends on the role it plays. 
The term role has been used in various contexts 
with different meanings. As regards our appro-
ach, similar concepts have been developed by Ri-
chardson and Schwarz [23], Su [30], Wieringa [32], 
Sciore [26], and Papazoglou [18]. 

The ORM model has been originally proposed 
as an object-oriented design framework for speci-
fying information systems requirements. Such a 
model allows one to represent object behavior by 
means of the concept of role. A role is a state 
in which an object can be and if the object is in 
that state, we say that it plays that role. Tradi-
tional class-based object-oriented systems model 
the various states which an entity may assume 
using specialization hierarchies and representing 
real-world entities as instances of the most speci­
fic class they belong to. This approach has nume-
rous drawbacks. Consider the following example 
appeared in [32]. 

Assume t h a t passenger i s a 
subclass of person and consider a 
person who migrates t o the 
passenger subclass of person, say 
by enter ing a bus. This bus may 
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carry 4000 passengers in one 
week, but counted dif ferent ly , i t 
may carry 1000 persons in the 
same week. So counting persons 
di f fers from counting passengers. 

The conclusion of this observation can be sta-
ted in terms of identifiers. If PASSENGER would 
be a subclass of PERSON, then each passenger 
identifier would also be a person identifier. Since 
this is not the čase, persons and passengers appa-
rently have difFerent identifiers. We should have 
a difFerent way to represent those instances. We 
must realize that a passenger is not identical to a 
person, but that it is a state of a person, or, more 
properly, it is a role of the class PERSON. So, 
when we count passengers, we really count how 
often persons have been playing the role of passen­
ger. Moreover, using only the mechanism of class 
specialization, when we have an entity which can 
assume difFerent roles independently (for exam-
ple a person may be a študent and an employee), 
we have to define a separate class which is a sub­
class of both EMPLOYEE and ŠTUDENT clas­
ses. Subclasses of this type should be defined for 
every possible combination of roles. 

In ORM, an object assumes a certain role via 
a mechanism of instantiation which is analogous 
to that used to populate classes. We talk about 
role instances in the same way in which we speak 
about class instances. Every time that a role is in-
stantiated, we associate a unique identifier (Role 
Identifier o RID) with the instance which preser-
ves instance identity across changes of its state 
(i.e., changes to attribute values). We assume 
that this identifier is unique across the database. 
Ali instances of roles evolve independently. 

From another point of view, the reason why ro­
les cannot be implemented as subclasses is that 
the classification mechanism does not allow mul-
tiple instantiation. As we said, a person could be-
come a passenger more then once during a week. 
We cannot instantiate the same person as a pas­
senger more than once and also we cannot think 
of representing ali difFerent kinds of passengers 
as difFerent subclasses. On the contrary, the role 
mechanism allows an object to play difFerent ro­
les at difFerent times, to play more than one role 
at the same time, and to have more than one 
instance of the same role at the same time (for 
example, a person who is employed in two difFe­

rent firms). This capability is one of the featu-
res that distinguishes the ORM model from other 
object-oriented models with roles. As an exam-
ple, in the model proposed in [18] an entity can 
play se ver al roles simultaneously, but only a sin-
gle occurrence of each role type is permitted per 
entity. 

At a first glance, one could object that roles 
represent only particular states which an entity 
could assume during its lifetime and, as such, one 
could implement them as a multi-valued time-
stamped attribute "state". In general, this is not 
possible because an object playing a role has a 
particular behavior specific of that role, which is 
specified in the role component of a class descrip-
tion through a set of rules and messages and that 
could not be represented with the traditional way 
of modeling classes. 

A class in the ORM model is defined by a name 
Cn and a set of roles R,-, each one representing a 
difFerent behavior of this object: 

class = (Cn,R0 ,Ri,. . . ,R n ) 
Each role R; is a 5-uple: 

Rj = < Ril,- »P;.Sj ,M4-,Rr,- > 
consisting of a role name Rn,, a set of properties 
P; of that role (abstract description of object cha-
racteristics), a set of abstract states S,- that the 
object can be at while playing this role, a set of 
messages M,- that the object can receive and send 
in this role, and a set of rules Rr;. 

Rules fall into two categories: state transition 
rules and integrity rules. State transition rules 
define which messages an object can receive/send 
in each state and the state changes these messa­
ges cause. Integrity rules specify constraints on 
object evolution. This is another aspect which 
characterizes roles: we can represent object evolu­
tion by means of rules and constraints on those 
rules [9]. 

Every class has a base-role Ro that describes 
the initial characteristics of an instance and the 
global properties concerning its evolution.* These 
properties are inherited by ali the other roles; the 
messages of the base-role are used to add, delete, 
suspend and resume instances of roles; the possi­
ble states in the base-role are pre-defined (active 
and suspended); and the rules define transitions 
between roles and global constraints for the class. 
Each property has a property name and a domain. 
Domains may be simple, composite or complex. 
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Simple domains are predefined domains (such as 
string, integer, real, boolean), classes, or roles; 
composite domains are classes and roles; complex 
domains are defined as aggregates, sets (unorde-
red collections of objects) or sequences (ordered 
collections of homogeneous objects) of other do­
mains (simple or complex). 

Finally, a class can be a subclass of one or more 
classes (multiple inheritance) and inherits ali roles 
specified in the parent class(es). 

2.2 Adding tirne to objects 

Adding the tirne dimension to object-oriented 
systems is required for modeling hov/ the enti-
ties and the relationships the object denote may 
change over time [6]. Often an object is created 
at a given time and is relevant to a system for 
only a limited period of time. Furthermore, du-
ring their existence, objects may change the va-
lues of their attributes, the roles that they play, 
and even the classes they belong to. Temporal 
(object-oriented) databases may differ from each 
other both in the structure of the underlying time 
domain and in the way of associating time infor-
mation to database entities. 

The basic features of time domains have been 
precisely identified in the literature. Referring to 
the classiflcation given in [1], we assume that the 
T-ORM time domain is bidimensional (both va-
lid time and transaction time are supported) and 
linear in both dimensions, the valid time axis is 
unbound in both directions, whereas the transac­
tion time axis is bound in both directions (it spans 
from database creation until the current instant), 
and both axes map to integers. Furthermore, the 
time point is taken as the primitive temporal en-
tity (intervals are defined as a derived concept) 
and the usual metric on integers is defined to me-
asure distances between time points. 

With respect to the association of time with 
data, object attributes can be partitioned in time-
vartjing and constant ones [17], depending on the 
fact that their value may change or not over time. 
The values of time-varying attributes are usually 
time-stamped at specific time points or intervals; 
therefore we do not know their value at a time 
where there is no a specific entry. Common as-
sumptions about their value in such points fall 
into three categories: (i) step-wise constant va­
lues, (ii) discrete values, and (iii) values changing 

according to a given function of time (e.g. unifor­
m i changing values) [17]. In cases (i) and (iii), 
the unknov/n values can be derived from the sto­
red values using a suitable interpolation function. 
In čase (ii), if there is no a specific entry stored 
at a given time, the attribute must be conside-
red undeflned. A further distinction is concerned 
with the choice of the data unit to time stamp. 
Two approaches have been proposed in the lite­
rature: attribute versioning [5], and object versi-
oning [1]. In the first čase, valid and transaction 
times are associated with each time-varying at­
tribute; in the second čase, they are associated 
with the whole object, and so to ali attributes of 
that object. Attribute versioning presents seve-
ral advantages, including the following ones: (i) 
different properties may be associated with time 
at different granularities; (ii) some properties are 
inherently not time-varying, so recording time in-
formation for them is useless; (iii) time-varving 
properties of the same object may change asyn-
chronously over time, so as we have to record ali 
object values when a change occurs, we have to 
duplicate a lot of information (the values which 
did not change). 

Besides associating time information to at­
tributes, object-oriented temporal databases 
(OOTDBs) can temporally characterize the exi-
stence of objects, that is, they can specify when 
and hov/ an object exists in the database. In most 
OOTDBs, the set of time intervals during which 
an object logically exists in the database is called 
its lifespan [6]. This object lifespan spans from the 
object creation (the point in time when the data­
base first records any information about it) till its 
complete termination (i.e., logical deletion). As 
an object can be member of different classes, an 
object lifespan is the union of its lifespans in ali 
classes in which it has participated. An object 
lifespan v/ithin a class coincides with the union of 
the lifespans of its properties as a member of that 
class. In historical object-oriented databases the 
notion of "reincarnation" is also supported, beca-
use a death of an object is not necessarily terminal 
[6]. For example, employees can be hired, fired, 
and subsequently rehired. 

In the T-ORM model, time is associated with 
single attributes, class instances and role instan-
ces. 

With respect to attributes, we assume that 
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their values are step-wise constant. Therefore 
an object attribute identifies a sequence of va­
lues, each one associated with a different time 
interval, which has been called time seauence 
(TS) in the literature [27]. Due to the bidi-
mensionalitv of time, time sequences are con-
stituted by triples < attribute value,valid — 
time interval,transaction — time interval >. 
Each time interval is represented by a pair [s,e), 
where s denotes the starting point of the interval, 
and e its ending point. The interval is closed at 
the left and open at the right. We assume that va-
lid time intervals for a given attribute are totally 
ordered with respect to any given transaction po­
int. Finally, if the attribute value has a complex 
structure, e.g. an aggregate, a set, or a list, we 
assume that valid and transaction times can be as­
sociated with both the whole structure and each 
of its components. As an example, suppose that 
the attribute address is defined as the aggregate 
composed of street and town. Time sequences for 
address represent changes of values of either street 
or tovm, or both. 

With respect to classes and roles, we associate 
a time sequence with each class (role) instance 
to denote the time peridds during which it is ac-
tive. The lifespans of role instances and those of 
the corresponding objects are linked by specific 
constraints. An object after being suspended can 
neither send nor receive messages. Therefore, life­
spans of role instances are always contained in the 
lifespan of the corresponding object. Formally, let 
o be an object instance of a class C, p(C) be a 
function that maps C to the set of roles its in­
stances can play and r{o, R) be a function that 
maps an object o to the set of its role instances of 
the role R. The following constraint must hold: 

VE e p(C) Vr G r(o, R) 

(r.LIFESPAN) C (o.LIFESPAN) 

If 

and 

(r.LIFESPAN) = { [ ^ , e D , - . . , [ « ) } 

(o.LIFESPAN) = { [ s i ^ ! ) , . . . , ^ ™ ) } 

the given constraint states that 
Vi = l,...,n3j G {l , . . . ,m} such that [sj:,e£) C 

[Sj,ej) 

Ali role instances are deleted when the correspon­
ding object is deleted. When an object is suspen­
ded, ali the roles it has instantiated are also su­
spended. Object suspension allows us to repre­
sent what has been called in [6] object killing and 
reincarnation. 

Let us introduce now a simple schema that will 
be used in the rest of the paper as a source of 
exemplification (see Figure 1). We consider four 
classes, namely PROJECT, DOCUMENT, PER-
SON and ADULT, which is a subclass of PER­
SON. Objects belonging to the class PERSON 
can play two different roles (Employee and Štu­
dent), each one characterized by its own proper-
ties. Projects are developed by persons playing 
the role of employee. Each project has associated 
a set of documents written by the employees who 
participate in the project. 

PROJECT PERSON 

• simple propertjr 
- • > • multivalued propertjr 

• is-a hierarchjr 
* time-varyingproperty 

BASE-ROLE 
driving_lioence 

ADULT 

Figure 1: Example of ORM schema 

In the following we present some extensions 
to the ORM model defined in [20] regarding the 
object-oriented data modeling aspects, and then 
we explore them in the temporal context. The 
main concept we examine is object migration. 
This important issue has stili been little resear-
ched on. In fact, while existing OODBMSs may 
capture the notion that an adult is a person, thro-
ugh the mechanism of is-a hierarchies, most of 
them do not support the notion of a given en-
tity being created as a person and then becoming 
an adult, that is an entity "migrating" along the 
class hierarchy it belongs to. 
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2.3 C o m p o s i t e objects 

In object-oriented data models the value of an at­
tribute can itself be an object. In this way, an 
object can refer to another object. In our model 
we adopt the categorization of references propo-
sed in ORION [15]: 

- weak references: they are the standard refe­
rences used in object-oriented systems, and 
are not provided with any special semantics; 

- composite references (called also part-of re-
lationships): they allow one to define compo­
site objects, i.e., objects composed of other 
objects. 

A composite reference can be: 

— exclusive or shared 
In the first čase, the referred object can be 
part of one and only one object; in the se-
cond čase, it can be part of several compo­
site objects. Two interpretations of exclu-
sivity are possible, depending on its tempo-
ral characterization. According to a time-
independent interpretation of exclusivity, an 
object can be part of only one object during 
its existence. According to a time-dependent 
interpretation, an object can be part of only 
one object at each time instant, but it can 
be part of different objects at different in-
stants. In this second čase, exclusivity can 
be expressed by the following constraint: if 
an object o is part of the composite objects 
o' and o", then the period during which it is 
part of o' must have an empty intersection 
with the period during which it is part of o". 

— dependent or independent 
In the first čase, the referred object exists 
(if and) only if the composite object exists, 
while in the second čase, the existence of the 
referred object does not depend on the exi-
stence of the composite object. 

The classification of composite references as 
exclusive or shared, and as dependent or indepen­
dent are orthogonal, and thus identify four diffe­
rent types composite references. 

The mam problems involved in the manage-
ment of composite references concern the relation-
ships between the creation and deletion of compo­
site objects and the creation and deletion of their 

components. As an example, let o' be a composite 
object and o be a component of o'. We could state 
that the deletion of o' causes the deletion of o if 
one of the following two conditions hold: (i) o' has 
a dependent exclusive reference to o; (ii) o' has a 
dependent shared reference to o, but it is the only 
object currently involved in such a relation with 
o. 

In [6], for instance, a rather restrictive notion 
of pari-o/relationship is adopted, based on the as-
sumption that a composite object can exist only 
when its components exist. Such an assump-
tion can be formalized as follows. Let us assume 
that some composite object o' is defined in terms 
of n other objects 0},..,on and that its lifespan 
consists of a set of m disjoint intervals, that is, 
o'.LIFESPAN = {[«i,ei),. . ,[am>em)}. More-
over, let im be the number of disjoint intervals 
belonging to the lifespan of the component object 
i, for each i — l , . . ,n . According to the given 
assumption, the following constraint must always 
be satisfied: 

Vi o'.LIFE S P AN C Oi.LIFESPAN 

which is equivalent to: 

V*,j(l < i < n A 1 < j < m A [SJ, ej] € 

o'.LIFESPAN D 3k(l < k < im A 

[sk,ek) 6 Oi.LIFESPAN) A [sj,ej) C [sk,ek))) 

S.uch a solution has two major drawbacks: (i) a 
composite object cannot be created until ali its 
components have been created; (ii) a composite 
object must be deleted when one of its compo­
nents is deleted. 

An alternative approach consists in making the 
existence of a composite object independent from 
the existence of its components by modeling the 
part-of relationship in terms of roles. This allows 
us to deal with composite objects which dyna-
mically change their components, supporting the 
addition/dropping of components to/from a com­
posite object. 

3 Migration 
In most object-oriented data models proposed in 
the literature an object is created as an instance 
of a class with some attribute values and opera-
tions associated with it, and remains an instance 
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of that class till its deletion from the database. 
This restriction strongly limits the expressiveness 
of those models. In ORM, it has been partially re-
moved by adding the concept of role, that allows 
one to deal with the čase of an object that plays 
the same role more than once by the mechanism of 
multiple role instantiation, preserving the single 
object identity. As an example, an object of the 
class PERSON can simultaneously play the roles 
of Študent and Employee (instantiation) and, la-
ter, can lose the role of Employee (suspension). 
The notion of role, however, does not suffice to 
model the čase of an object that migrates from 
one class to another maintaining its identity (its 
oid). This means that a member of the class PER­
SON cannot migrate to the class ADULT main­
taining its oid. In the literature, these aspects of 
object modeling are classified under the general 
term of instance evolution. 

3.1 Instance evolution 

Instance evolution may assume different forms. In 
particular, it is possible : 

— to let the object migrate to a different class 
(the object becomes an instance of the new 
class); 

— to specialize the object, that is, it migrates 
to a subclass (the object becomes an instance 
of the subclass, but remains a member of the 
original class); 

— to generalize the object, that is, it migrates to 
a superclass (the object becomes an instance 
of the superclass and it is no more a member 
of the original class); 

— to dynamically add new classes to an object, 
so that it can be an instance of more than 
one class at the same tirne; 

— to dynamically delete classes from an object; 

— to specialize or generalize at instance level 
adding/redefining/deleting attributes and 
methods for single objects. 

These evolutions are controlled by specific se-
mantic constraints in order to restrict the set of 
classes where an object can migrate to. For exam-
ple, referring to the schema of Figure 1, a PER­
SON can become an ADULT, but he/she cannot 

become a PROJECT. In [33] those constraints are 
treated as special integrity constraints, which al-
low one to specifv, for each class, its essentiality 
or its exclusivity. A class C is essential if object 
migration is constrained on the inheritance hie-
rarchy rooted at C. An object could be member 
of more than one essential class if the model al-
lows multiple inheritance. A class C is ezclusive 
with respect to a class C if its instances cannot 
migrate to C . 

In T-ORM we only support two forms of object 
migration: object generalization and object spe-
cialization. In such a way, object migration is 
allowed only along a unique class hierarchy. This 
is not an unacceptable restriction if the data mo­
del allows the definition of a common root for ali 
class hierarchies. In that čase, using an appro-
priate combination of generalization and specia-
lization operations, we may allow an object to 
migrate everywhere. In general, hbwever, object 
migration does not make sense when it occurs be-
tween different hierarchies, because it can involve 
a complete change of the nature and the structure 
of an object. For example, it does not make sense 
to allow a person to become a vehicle. One simple 
way to avoid the problem of unrestricted migra-
tions is to define different class hierarchies (e.g. 
one rooted on the class PERSON and one rooted 
on the class VEHICLE) and maintain them sepa-
rated. The usefulness of having a common root 
is advocated in [15]. Accordingly, in the ORION 
system the class hierarchy forms a direct, rooted, 
acyclic graph (a DAG), having the svstem-defined 
class OBJECT as root. That constitutes one of 
the schema invariants defined by the ORION mo­
del in order to maintain schema consistency after 
schema updating. For example, when we add a 
new class to the schema hierarchy without speci-
fying its superclass(es), the new class is added as 
a subclass of the root class OBJECT. It is worth 
noting that, even in the presence of a common 
root, one can stili avoid object migration between 
different hierarchies preventing the migration of 
objects to pass through the root. 

In T-ORM, we asssume to have a number of 
disjoint class hierarchies, that is, T-ORM classes 
form a disconnected forest and not a tree. 
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(1) 

i 

(2) 

C-

(3) (4) 

is-a hierarchy 

-> migration direction 

Figure 2: Different cases of object migration 

3.2 Constraints on object migration 

The inheritance mechanism requires to impose se-
mantic constraints on object migration operators. 
Let us assume that there is an object o which is 
an instance of class C,- and the object migrates 
to class C j . Consider the four cases illustrated in 
Figure 2. 

čase 1) specialization with single inheri­
tance: non-inherited properties defined for 
class C j are added to the object; their values 
are either provided by the user or considered 
to be null; the object starts its life cycle as a 
member of class Cy; 

čase 2) generalization with single inheri­
tance: ali properties that are specific for C,-, 
i.e., not inherited from Cj, are dropped from 
the object; the lifespan of object o as an in­
stance of class C,- is terminated; 

čase 3) generalization with multiple inhe­
ritance: ali properties which are not defined 
for Cj are dropped; these properties include 
ali properties which are specific for C,-, and ali 
specific or inherited Cfc properties not defined 
for Cj through inheritance links; the lifespan 
of o as an instance of class C,- is terminated; 
the lifespans of o as a member of class C* 
and its ancestors are terminated appropria-
tely, depending on possible inheritance links 
between C& and its ancestors and CJ: life­
spans in classes belonging also to Cj ance­
stors are not terminated; 

čase 4) specialization with multiple inheri­
tance: ali properties of class Cj that are in­
herited from a superclass Cm of Cj, where 
Cm is not a superclass of C,-, and ali proper­
ties specific for C j are added to the object; 
their values are either provided by the user 
or considered to be null. The lifespan of o in 
classes C,- and ali its ancestors, excluded C,-
and its ancestors, which are already active, 
are started. 

Consistency of data referring to composite 
objects has also to be examined in view of object 
migration. In fact most object-oriented DBMS 
establish that if an attribute has a class C as do-
main, its values may be ali objects belonging to 
C or to any subclass of C. If an object o instance 
of a class C is used as value of an attribute A 
(with domain C) of an object o', the migration 
of o to a superclass of C violates the domain in-
tegrity constraint of A. In fact object o', after 
the migration of o, will have, as a value of A, an 
object which is neither instance nor member of 
A's domain. We remember that an object is said 
to be an instance of a class C, if C is the most 
specialized class which the object belongs to. An 
object is said to be a member of a class C if it is an 
instance of C or of a subclass of C. A solution pro-
posed in [33] allows temporary inconsistency and 
provides a notification mechanism to determine 
which objects are inconsistent. In these cases, we 
adopt the same constraints defined above for the 
deletion of objects, so that inconsistent references 
must be dropped. 
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3.3 Storing information about object 
life cycle 

During its lifetime an object can change roles and 
migrate along the class hierarchy. 

As mentioned in Sect. 2, different kinds of tem-
poral information can be associated to objects: 

— The object has associated a lifespan for 
each instantiated role and for each class of 
which it is (has been) a member, as di-
scussed in section 2.2. We denote with 
oid.LIFESPAN(classname) the lifespan of 
oid as a member of class classname i.e., the 
set of intervals in which oid is instance of 
the class classname. Similarly, we indicate 
with oid.LIFESPAN(rolename) the history 
of instantiations of role rolename for a given 
object indicated by oid. 

— The class-lifespan stores the history of object 
migration. It is a time sequence represen-
ting the various classes the object is (or 
was) instance of. The value components 
are sets of the class types the object be-
longs to, during the associated valid and 
transaction time intervals. We indicate with 
oid.CLASSLIFESPANthe time sequence re-
presenting migration history for object oid. 

— The role-lifespan is a time sequence which re-
presents the union of the lifespans of the sin-
gle role instances the object has played du­
ring its history. The value components in the 
time sequence are the sets of role identifiers 
of the active instances of roles in the associa­
ted valid and transaction time intervals. We 
indicate with oid.ROLELIFESPANthe role-
lifespan of object oid. 

and class migrations (the example is based on the 
T-ORM schema illustrated in Figure 3 and the 
history of the object is schematically represented 
in Figure 4): 

The object migration mechanism leads us to 
impose some temporal constraints on the object 
lifespan. In particular, if class Cj is an ancestor 
of class C,-, and oid is the identifier of an object 
which has been member both of C,- and Cj, the 
following temporal constraint must hold, accor-
ding to the consistency constraints on migration 
indicated in the previous section: 

oid.LIFESPAN(Ci) C oid.LIFESPAN(Cj) 

Example 
Consider the following example of evolution of 

an object through a series of role instantiations 

Figure 3: Example of T-ORM schema 

— at time t i , the object ol is created as an in­
stance of the class Ci 

— at t2, role R of class Ci is instantiated the 
first time as role instance r l 

— at t3, role R is instantiated the second time 
as role instance r2 

— at t4, ol migrates to class C2 

— at t5, role r l is suspended 

— at 16, role r l is resumed and role S of class 
C2 is instantiated as role instance r3 

— at 17, role r2 is suspended 

— at t8, the object ol is suspended 

— at t9, the object ol is resumed 

— at tlO, role r l is suspended again 

— at t l i , role r2 is resumed 

— at t l2 , role r l is resumed 

Given the class hierarchy shown in Figure 3, 
when the object ol, instance of class CI, is mi-
grated to class C2 at time tA, its life cycle as an 
instance of class Ci continues; in addition, besi-
des starting being an instance of class C2, it starts 
also as an instance of class C3. When the object 
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suspended object 

ol.LIFESPAN(Cl) 

ol.LIPESPAN(C2) 

ol.LIFESPAN(C3) 

rl .LIFESPAN 

r2.LIFESPAN 

r3.LIFESPAN 
ti 

tirne 

ol.CLASSLIFESPAN 

ol.ROLELIFESPAN 

ol.LIFESPAN(R) 

ol.LIFESPAN(S) 
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t5 
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• 

Figure 4: Lifespan dimensions 

is suspended at time t8, ali active roles are also 
suspended; roles which were active at the object 
suspension time are also resumed when the object 
is resumed. 

For the given example, the object lifespan, the 
role-lifespan, and some of the roles and classes 
lifespans graphically represented in Figure 4 are 
shown (for sake of simplicity, only valid times are 
indicated): 

ol.CLASSLIFESPAN = < { c i } , [ t l , t 4 )> , 
<{ci ,C2,C3},[t4,t8)>, <{Cl,C2,C3},[t9,+00)> 

ol.ROLELIFESPAN = < { r l } , [ t2 , t3)> , < { r l , r 2 } , 
[ t3 , tS)> , <{r2} , [ t5 , t6 )> , 
<{r l , r2 , r3} , [ t6 , t7 )> , < { r l , r 3 } , [ t7 , t8)> , 
<{r3} , [ t lO , t l l )> , <{r2 ,r3} , [ t l l , t l 2 ) > , 
<{r l , r2 ,r3 , [tl2,+00)> 

o 1.LIFESPAN(C2) = < [ t 4 , t 8 ) , [t9,+00)> 

ol.LIFESPAN(R) = < < { r l } , [t2,t3) > , 
< { r l , r 2 } , [ t 3 , t 5 ) > , . . . 

rl.LIFESPAN = <[ t2 , tS) , [ t6,t8) , [ t9 , t l0 ) , 
[tl2,+00) > < r l , [ t 6 , t 8 ) > , . . . 

4 Querying T-ORM databases 

The complete definition of a data model requires 
the definition of the corresponding query and data 

manipulation languages. The goal of querying a 
temporal database is the retrieval of stored in-
formation, taking into account the modifications 
performed on it. Since bitemporal databases mo­
del two temporal dimensions, we can distinguish 
two basic types of queries: (i) queries that retrieve 
the sequence of historical values of time-varying 
information (along the valid time axis); (ii) que-
ries that retrieve data as of a past database state 
(along the transaction time axis). 

In this paper, we focus mainly on queries of the 
first type that allow us to: 

— select an attribute value valid at a given in-
stant, e.g. find John's salary on 04/15/1986; 

— select an attribute value valid at a time in-
stant associated with another attribute value 
of the same object, e.g. find John's salary 
when Mary was his manager; 

— select an attribute value valid at a time in-
stant associated with another attribute va­
lue of another object, e.g. find John's salary 
when Mary's salary was $4000; 

— select objects stored in the database during 
a given time interval, e.g. find ali employees 
in year 1992; 
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- select time intervals starting from attribute 
values, e.g. find the time.period during which 
Mary was John's manager. 

General aspects of temporal object-oriented 
data models require special retrieving properties 
in order to deal with the concepts of class hierar-
chy, object identifier, complex domain, complex 
relationship, valid time, transaction time, time 
intervals, part-of relationships. Some authors at-
tempted to provide a new query language which is 
compatible with a relational query language (e.g. 
SQL in the čase of IRIS [12]). Other systems, such 
as ORION, support a new query language which 
is based on the nested-relational model. Moreo-
ver, there are other features which our query lan­
guage must take into account introduced by the 
ORM model, such as the concept of role. Due to 
those new concepts, we define a language which 
has suitable operators for additional attribute do-
mains (e.g. time), for ali kinds of entity composi-
tions and relationships and which allows selecting 
a portion of object histories. 

Query languages for temporal object-oriented 
databases, like query languages for conventional 
databases, are divided in two categories: decla-
rative languages and procedural languages. De-
claratives languages allow one to describe a query 
specifying its target and the conditions it must 
satisfv, without saying how to obtain the result. 
Procedural languages, instead, use operators to 
specify a procedure which tells the system how to 
obtain the result starting from data. The exten-
sions to existing query languages proposed in li­
terature are based both on declarative languages 
(such as TQuel [29], extension of Quel, and T 0 0 -
SQL [25], extension of OSQL) and on procedural 
languages (e.g. the relational algebra [13]). In an 
object-oriented perspective it is important to ab-
stract from implementation details, so we think 
that declaratives languages are the best choice. 
Thus, the language we define is an extension of 
the query language of the ORION system [15], 
and is based on SQL syntax. 

In the following we focus our presentation on 
those aspects which are related to object migra-
tion and time In the examples, we refer to the 
schema of Figure 1. 
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4.1 Basic query structure 

A query has the following structure: 
RETRIEVE < target c lause > 
FROM < spec i f i ca t ion clause > 
WHERE < qua l i f i c a t i on clause > 
AS OF < as-of clause > 
The target clause specifies what parts of the se-

lected informatiori must be retrieved, which could 
be a set of instances (specifying only an instance 
variable), a time sequence, a set of values, or a 
sequence of time intervals (points). 

The specification clause specifies instance vari-
ables used in the query, linking them with the 
correspondent set of object (role) instances. 

The qualification clause specifies conditions on 
time sequences to select particular information. 
In bitemporal databases we have three dimensi-
ons: the data dimension, the valid-time dimension 
and the transaction-time dimension. The langu­
age we are going to define has operators suita­
ble for manipulating ali dimensions. In order to 
maintain the language as simple as possible, we 
chose to have only one clause (qualification cla­
use) to specify constraints both on the value and 
the valid-time dimension, whereas other extensi-
ons of SQL (such as TSQL [31]) introduce addi­
tional clauses. 

The as-of clause specifies constraints on the 
transaction-time dimension. It is used to deter-
mine the values of object properties as they were 
recorded sometime in the past and successively re-
vised. In this way we could retrieve information 
about previous states of the database. 

One important element of an object-oriented 
query language is the facility to express equality 
between two objects, comparing either their value 
(value equality) or their oids (object or identity 
equality). Therefore our query language needs to 
support both types of equality, which are denoted 
as = = and = , respectively. 

Because of the nested definitions of objects ari-
sing from the class-composition hierarchy, the T-
ORM query language must easily allow the spe­
cification of predicates on a nested sequence of 
attributes. In this respect we adopt the well-
known dot notation to express paths along the 
class-composition hierarchy (obtaining what we 
call path-expressions). 
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4.2 Queries on t ime-varying 
propert ies 

Time-varying attributes are the main distingui-
shing characteristics of temporal databases. Each 
attribute is modeled with a time sequence which 
represents ali its history (see 2.1). A query langu-
age must allow the selection of a portion of that 
history through the specification of conditions ei-
ther on time, or on attribute values, or both. We 
can directly select the first two components of < 
value, valid-time, transaction-time > triplets in 
time sequences, with the following notations: 

e.salary.value 

e.salary.vtime 
A path expression of the kind e . sa la ry re-

trieves the time sequence associated with an in­
stance for the specified attribute (salary). We 
must provide our query language with operators 
which allow one to select portions of that history. 
To do that we can use in the where clause pre-
dicates with relational operators involving time. 
Such operators are those of Allen's interval logic 
[2] (that is PRECEDES, MEETS, OVERLAPS, 
STARTS, ENDS, INCLUDES, their inverse and 
EQUAL), those between time points (i.e. <, = 
and >) and those between time points and in­
tervala (i.e. BEFORE, BEGINS, ENDS, IN, AF-
TER and their inverse). For example the follo-
wing query retrieves ali values assumed by the 
property salary of the instance of the class EM-
PLOYEE whose name is John, which were valid 
before 04/10/1987. We assume that the property 
name of class PERSON is not time-varying, so it 
is not modeled as a time sequence, but it assumes 
only one value. 

EX1: "Find John'ssaIary before that of 04/10/198T' 

RETRIEVE s.value 

FROM (e,Employee) 

WHERE e.name = = "John" 

AND (04/10/1987 AFTER s.vtime) 

A path expression which refers to a set of values 
(such as e.salary) can be quantified using either 
the existential (EXISTS) or the universal quanti-
fier (FORALL) having the usual meaning. Quan-
tification cannot be made on the variables of the 
target clause, which are free. We assume that ali 
operators, when applied to a set, distribute on its 

elements (in the previous example the operator 
AFTER distributes on the elements identified by 
s.vtime). Particular elements of a sequence can 
be selected with the following operators: 

- FIRST(s,e.salary) =$• retrieves the first ele­
ment in the sequence and assigns it to the 
variable s 

- CURRENT(s,e.salary) =>• retrieves the cur-
rent element in the sequence 

- LAST(s,e.salary) = > retrieves the sequence 
whose element is the last element in the given 
sequence 

- <n>-TH(s ,e . sa lary) =>• retrieves the n-th 
element in the sequence 

EX2: "Find John's current salary" 

RETRIEVE c.value 

FROM (j,Employee) 

WHERE j.name = = "John" 

AND CURRENT(c,j.salary) 

Our model is based on time intervals, howe-
ver we could also select the endpoints of intervals 
using the functions BEGIN and EN D which could 
be applied to a unique interval or to a sequence 
of intervals, so they return a single time point or 
a sequence of time points. 

Summarizing, we have defined selection opera­
tors on time sequences, which act at different le-
vels of detail, as shown in Figure 5. 

4.3 Queries on the historv of an 
object 

The other important aspect related to time in 
object-oriented databases concerns the history of 
an object as a whole, in addition to considering 
the history of single attributes as in the previous 
section. 

In our model, we distinguish between local hi-
stories and global object histories. The local hi-
story regards single classes and roles and refers 
to the variations suffered by the set of their in-
stances. The global object history refers to the 
previous information viewed from the side of the 
object, that is it contains the history of its vari­
ations as member of various classes and instance 
of various roles. 
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Figure 5: Operators on tirne sequences 

4.3.1 Local history 

Due to object migration the set of bbjects belon-
ging to a class can change over tirne, and there-
fore some representational primitives are needed 
to denote the set of instances of a certain class at 
a specific time point. They allow a user to query 
the database to know the time interval(s) during 
which a given object was an instance of a certain 
class, to know a particular attribute value or the 
roles played bythe object during such a period of 
time, or whatever else. The T-ORM query lan-
guage allows one to refer to instances of a class 
(role) in three difFerent ways, depending on the 

. considered fragment of the class history: 

1. the set of ali past and current class (role) 
instances. According to the previously intro 

and his manager was Mary" 

RETRIEVE s.value 

FROM (e,Employee) 

WHERE e.name = = "John" 

AND EXISTS(s,e.salary): 

([01/01/1975,12/31/1975]) INCLUDES s.vtime 

AND EXISTS(m,e.manager): 

(m.name = = "Mary") AND 

((m.vtime INCLUDES s.vtime) OR 

(m.vtime OVERLAPS s.vtime) OR 

(m.vtime STARTS s.vtime) OR 

(m.vtime ENDS s.vtime) OR 

(m.vtime EQUAL s.vtime)) 

3. the current set of class (or role) instances 

i , , ,. , , i - i J.-H j ( < o b j e c t - v a r i a b l e > , CURRENT(<class / ro le name>)) 
duced notation, such a set can be identmed 
as follows : ~ 

(<object-variable>, <class/role name>) 

EX3: "Find ali employees (novr and in the past)" 

RETRIEVE e 

FROM (e,Employee) 

2. the set of instances belonging to a given class 
during a specific time interval. They are re-
trieved by means of appropriate conditions 
on the valid time dimension in the where cla-
use: 

EX5: "Find ali employees (novr)" 

RETRIEVE e • 

FROM (e,CURRENT(Employee)) 

If we denote the set of instances of a class (or 
role) C at time t with the function o(C)(t), then 
the following constraint must hold: 

o € o(C)( t ) <=^ t G o .LIFESPAN(C) 

and we have: 

(o ,CURRENT C) returns o(C) ( t ) with t = 
N0W 

EX4: "Find John s salary in 1975 when he was an empioyee (o , C) r e t u m s U ^ r . o o NOW] ° (C) ( t ) 
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4.3.2 Migration history 

In this paragraph we show how to apply the ope-
rators defined for attribute time sequences also 
to the lifespans time sequences. Remember our 
representation of object lifespans discussed in pa­
ragraph 3.3. We are interested in answering que-
stions of the following type: 

EX6: At which time did Mary become an employee? (role) 
EX7: At which time did Mary become an adult? (subclass) 
EX8: During which time period was Mary an employee? 
EX9: During vrhich time period was Mary an adult? 
EX10: VVhen did Mary change class? 
EX11: Wbich roles did Mary play at 9/6/1994? 
EX12: Which roles did Mary play during 1994? 

The answer to those questions can be easily fo-
und by appropriate queries on the various dimen-
sions of the object lifespan with the use of tempo-
ral functions like BEGIN and END. For instance, 
in query EX10, we select the starting points of 
valid time intervals from the object class-lifespan, 
which indicate when a class migration or resuming 
occurred: 

EX10: RETRIEVE BEGIN(p.CLASSLIFESPAN.vtime) 
FROM (p,PERS0N) 
WHERE p.name = = "Mary" 

In query EX11, we select the role identifiers 
from the role-lifespan time sequence: 

EX11: RETRIEVE s.value 
FROM (p.PERSON) 
WHERE p.name = = "Mary" 
AND EXISTS(s,p.ROLELIFESPAN): 

(9/6/1994 IN s.vtime) 

Query EX12 shows an example of using pre-
dicates on object history inside the qualification 
clause: 

EX12: "Find the salary of the employees who hecame employees 
before becoming adults" 
RETRIEVE c.value 
FROM (e,Employee) 
WHERE EXISTS 

(s,e.LIFESPAN(Employee)): 
(s.vtime PRECEDES 
FIRST(e.LIFESPAN(ADULT)).vtime) 

AND CURRENT(c,e.salary) 

A. Montanari et al. 

5 The Data Manipulation 
Language 

In the DML the operations to create, delete and 
modify instances have to be extended to involve 
valid-time specifications. Moreover new operators 
have to be pr.ovided to manipulate the particular 
features of the extended model such that states, 
roles and object migration. 

5.1 Instance creation 

An object is created as an instance of a class. 
That object could become instance of other sub-
classes later through the mechanism of object mi­
gration. Values for ali attributes of that class 
must be provided by the user, otherwise a null 
value is assigned by the system. This operation 
returns the oid of the created object, which can 
be assigned to an object variable. 

If an attribute value is an instance or a set of 
instances of a class or'Ajrole, we can specify those 
instances directly via their oids (or rids), or indi-
rectly specifying a query. The VALID clause may 
be omitted. In this čase the created object is valid 
since the time of insertion; an interval whose left 
end is constituted by transaction time and whose 
right end is constituted by the value +oo is inser-
ted in the object lifespan. If only the FROM part 
is specified, the interval [ti, +oo) is inserted in 
the object lifespan. Finally if both FROM and TO 
parts are specified, the interval [ti, t2) is inserted. 
A time-varying attribute value may be associated 
with its valid-time. If a validity interval is speci­
fied, it must be contained in the validity interval 
of the whole object. If valid-time specification is 
omitted, then the attribute value is considered to 
be valid since time ti of the valid clause, or since 
transaction time if ti is not specified, up to time 
t2 of the VALID clause, or +oo. If only the FROM 
part is specified, the attribute value is valid to t2 
or +oo. 

In the following example, a PROJECT object 
is created. 

EX13: CREATE-OBJECT PROJECT 
WITH (project-name : "Pllts6765", 

participants : {John,Mary} UNION 
RETRIEVE e 
FROM (e,EMPLOYEE) 
WHERE e.manager.name = = "Smith", 
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reports : {}) 

Roles instantiation is similar to class instantia-
tion, but the user must provide the identifier of 
the object to be instantiated. 

In the following example, the Employee role is 
instantiated for object John with the listed attri-
bute values, and starting from Jan. 1, 1993. 

EX14: John-empl : 
INSTANTIATE-ROLE (John,EMPLOYEE) 
WITH (salary : 1600000, 

address : Kvia G. Cesare 57 - ROMA" 
manager : %Smith) 

VALID FROM 1/1/1993 

5.2 Propert ies updat ing 

Properties updating is an important issue in tem-
poral databases, because we have the possibility 
of modifying present, past and future data wi-
thout losing the old one. Updating is not done 
directly on stored data, but it is performed by in-
sertion of new components in the object history 
or, more precisely, in their tirne sequences. The-
refore updating an attribute value requires the se-
lection of one or more time sequence components. 
The selection is based either on the value com-
ponent, or on the valid-time component, or both. 
Finally updating existing values requires the "in-
validation" of the old ones, and that is done by 
acting on the transaction-time component. 

We could define two different primitives to 
update and insert information and impose that 
when we try to update a value during a time 
period where there is no correspondent time 
sequence component, the request will be ignored. 
But in that čase, the user should have a precise 
knowledge of how data are distributed in time. 
Instead, we chose to have a unique primitive to 
update and insert information. 

The instance to modify is selected via its iden­
tifier or retrieving it with the specification of a 
query on its property values. The temporal qua-
lification of properties can be omitted. In this 
čase the interval [NOW, +oo) is assumed. If the 
TO part is not specified, then -f oo is assumed. 

Let us suppose that P l is a time-varying pro-
perty whose value is a time sequence like the fol-
lowing: 

< ( v i , [VT.i ,VT/i) , [TTji , T T / i ) ) , 
(v 2 , [VTi2,VT/2), [TT,-2,TT/2) ) , . • • > 

First of ali we must retrieve ali time sequence 
components whose valid-time interval overlaps 
[TJI , T/i) and whose transaction-time interval ri-
ghtend point is +oo (i.e. the corresponding value 
is currently valid). These components must be 
modifled as follows according to five cases. 
Let (vi , [VT.i ,VT/i), [TTix ,TT/i)) be such a 
component, we may have the cases illustrated in 
Figure 6. 
We modify the old value for the portion of interval 
in the object lifespan which overlaps [T,i ,T/i) , 
for the rest of the interval we insert a new com­
ponent in the time sequence. 

Let us follow in detail čase a. The specified 
valid-time interval partially overlaps a valid-time 
interval in the time sequence. For the portion of 
time which overlaps with [VT,i,VT/i) the attri­
bute value must be modified, for the part which 
does not overlap with [VT,i,VT/i) a new value is 
inserted. We must put: 
TT/i = N0W (the time sequence component is no 
more valid) 
and insert three new components in the time 
sequence: 

(vi,[VT,i,Tji),[N0W, + 0 0 ) ) , 
( v a l i , [Ti i ,VT/i ) , [NOV, + 0 0 ) ) , 
(vali.CVTfi.T/^.CNOU, +CO)) 

As we can note from the figure, after updating 
we could have two or three contiguous intervals 
with the same value associated with them. Even if, 
we could collapse the two intervals into one in or-
der to have time sequence components with asso­
ciated different values, we chose to maintain those 
intervals separated, because they represent porti-
ons of object life which have different histories 
behind. 

The constructs defined for properties updating 
may be further enriched allowing the specification 
of operators which calculate the new attribute va­
lues starting from the old ones. 

5.3 Object migration 

In our model, objects can migrate only along the 
class hierarchy which they belong to, so we con-
sider every class as essential. An object can mi­
grate from a class C to a class C which is either a 
superclass or a subclass of C with the primitives 
MIGRATE [UP/DOWN]. 
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Figure 6: Cases of properties updating 

EX15: MIGRATE DOWN (John.PERSON) 
TO ADULT 
WITH (driving-license : UD56865G9) 
VALID FROM 1/1/1993 

In this čase a new lifespan for the object identified 
by John as an instance of ADULT starts at time 
1/1/1993 and its lifespan as a member of the class 
PERSONS goes on. 
In the čase of migration of an object to a super-
class, we must check if that causes the violation of 
domain integritv constraints for some attributes 
(see par. 3.3) and delete inconsistent references. 

We remember also that in order to maintain 
the identitv constraint of objects, object migra­
tion does not change object identifiers. -Finallv in 
our model we do not consider a hierarchv between 
roles, such as introduced in [32]. 

6 Conclusions 

Object-oriented data models have several promi-
sing features that make them suitable for being 
extended with new capabilities. In this paper, 
we studied a temporal extension of an existing 
object-oriented conceptual model (the ORM mo­
del), focusing our attention on object evolution. 
The basic features of the proposed approach to 
object migration do not depend on the particular 
model we chose, and, in principle, can be exten-
ded to any other object-oriented data model. The 
ORM model was chosen for its particular suita-
bility in representing dynamic aspects of object 

life. We discussed some alternatives for associa-
ting temporal information to attributes, to class 
membership, and to role instantiations. A query 
and manipulation language have been defined and 
discussed, focusing on the constructs provided to 
manage temporal information. 

Some remaining open issues concern the defini-
tion of a formal semantics for the T-ORM defini-
tion, query and manipulation languages, and the 
generalization of the notion of object evolution 
to deal with changing schemas. Further work is 
also needed to model temporal aspects in complex 
objects, such as variations of object composition 
in time. 
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A novel algorithm for universal text compression is presented. The proposed algorithm 
is based on the concept that text compression may he regarded as a pattern recognition 
problem to which several non-analytical techniques, such as Zadeh's fuzzy theories, could 
then be applied. The algorithm is compared with the well known Welch algorithm, and 
results are presented to demonstrate its superiority. 

1 Introduction 

Lossless data compression is the process of enco-
ding a body of data into a smaller one which can 
be uniquely decoded back to the original data. 
Many advantages are obtained by compressing 
the data, and many techniques have been deve-
loped for data compression, which are described 
in the literature [1, 2]. The two most common 
applications of data compression are: 

(1) Data communication: A sender can com-
press a data before transmitting it and the rece-
iver can decompress the data after receiving it, 
thus effectively increasing the data transmission 
rate of the communication channel. 

(2) Data storage: Data is compressed before it 
is stored and is decompressed when it is retreived, 
thus increasing the capacity of the storage device. 

Amongst the various techniques developed, the 
most widely used ones include Huffman's arithme-
tic technique [3], Lempel and Ziv's (LZ) dictio-
nary technique [4], and Storer's textual substitu-
tion technique [5]. However, we found that the 
algorithms are applicable to regions where ana-
lytical techniques completely define the compres­
sion of sequences and that further improvement 
can be made by using rule base algorithm [6], ba­
sed on Zadeh's fuzzy conditional statements [7]. 

Since Lempel and Ziv's (LZ) pioneering work 

[4, 8] in universal source coding theory, many at-
tempts have been made to improve upon their 
ideas and to apply them to data compression and 
other related fields. Along more practical lines, 
Welch [9] implemented a modified version of Lem­
pel and Ziv's method [8]. Welch's algorithm works 
well for many kinds of source data and is being 
used as a file compression method in several ope-
rating systems. However, these techniques have 
a theoretical limit in Shannon's theorem, which 
states that the extent to which a message can be 
compressed and accurately restored is limited by 
its entropy [10]. 

This paper can be regarded as a continuation of 
the improvements to the LZW method for textual 
data. It is found that the LZW method can be 
improved by a novel approach to text compression 
as rule based pattern recognition [6, 11]. 

The rest of the paper is organized as follows: In 
section 2, a new algorithm for decoding is presen­
ted. A čase study is given in section 3 followed by 
the experimental results in section 4. The paper 
in concluded in section 5. 

2 The proposed algorithm 

The new algorithm is organized around the Welch 
(LZW) dictionary method [9]. This dictionary 
maps strings of input text into fixed-length co-

mailto:udee795@bay.cc.kcl.ac.uk
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Figure 1: Block diagram for compression and decompression stages 

des. The LZW dictionary has a prefix property, 
i.e., for every string in the dictionary, its prefix 
string is also in the dictionary. For example, if a 
string OJC composed of a string ui and a character 
C and is in the dictionary, then w is also in the 
dictionary. The dictionary is initialized to contain 
ali distinguished single characters that appeared 
in the input text. Each parsed input string is 
postfixed by the next input character to form a 
new string. The dictionary is then parsed to se-
arch for that string. If a match is found, then the 
next input character is added to the string and 
the dictionary is searched again. The input cha­
racters are added at the end of the string until a 
unique string is obtained, which is then added to 
the dictionary. Each such added string is assigned 
a unique numeric code. The last added charac­
ter in the previous string becomes the beginning 
character for the next string, and the process is 
repeated to generate the next string to be added 
in the dictionary. 

The proposed algorithm operates on the LZW 
dictionary to compress the text. The complete 
algorithm is given below in procedural form. The 
procedure Compress starts decoding from the 
first two character codes in the dictionary. If two 
characters are followed by the same number of 
characters, then it skips the located code and mo-
ves to the next code in the sequence. If two cha­
racters are followed by more than two character 
codes, the middle length(Code[index_no])-2 cha­
racters are selected and their Index Number (IN) 
is output (using the procedure Output). If three or 

more characters are followed by the same number 
or more characters, then length(Code[index_no])-
1 characters are selected. If the code selected is 
not available in the dictionary, it is split into two 
parts, and the algorithm recursively searches for 
the code for the split character strings in the dic-
tionary. 

The function of Code(index_no) is to return 
the Character Code (CC) stored against the 
index_no in the dictionary, while the function 
index(character_code) returns the index numbers 
of the character code from the dictionary. 

Various components of the compressor and the 
decompressor for the proposed method are shown 
in Figure 1. 

Procedure Compress 
Begin 
Input: A text string S 
Develop a dictionary on S using LZW algorithm 
index_no = 1 
While (length (Code (index_no))= 1) Do 

index_no= index_no + 1 
Output (Code (index_no)) 
last_output_index:=index_no 
index_no = index_no + 1 
While (NOT Endof(dictionary)) Do 

Begin 
If (length (Code(last_output_index)= 2) 

and length (Code(index_no))= 2) Then 
Begin 

index_no = index_no + 1 
Output(Code(index_no)) 
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End 
Else 

If length (Code(last_output_index)= 2 
and length (Code(index_no)) > 2) 

Then Begin 
X=Substr(Code(index_no), 

length(Code(index_no) DIV 2), 
length(Code(index_no)) - 2) 

Output (X) 
End 

Else 
If (length(Code(last_output_index)> 3 

and length(Code(index_no)) = 2) 
Then Output (Code(index_no)) 

Else 
If (length(Code(last_output_index)> 3 

and length(Code(index_no))> 3) 
Then Begin 

X = Substr(Code(index_no),l, 
length(Code(index_no))- 1) 

Output (X) • 
End 

last_output_index = index_no 
index_no = index_no + 1 

End 
End 

Procedure Output(X :String) 
Begin 

If index (X) in the dictionary Then 
Output _stream = Output_stream + 

index (X) 
Else 

Begin 
Y = Substr (X, 1, length(X) DIV 2) 
Z = Substr (X, length(X) DIV 2 

+ 1, length(X)) 
Output (X) 
Output (Z) 

End 
End 

Procedure Decompress 
Begin 
Input: Compressed_string S Transform S into S 
by replacing INs with respective CCs 
output: Original_string S 
End 

The list of CCs generated by the procedure De­
compress will yield exactly the same string as it 
was originally fed. . 

3 A čase study 

Let us consider the following text string as an 
example to demonstrate the working of the pro-
posed algorithm. 

"Most of the papers published deal with the 
original work from industrial and Government la-
boratories, universities and polytechnics." 

The dictionary for the above text is given in 
Table 1. The dictionary is developed by using 
the LZW encoding method. The symbol A in the 
dictionary represents a space. 

Once the encoding process is completed, it is 
followed by the decoding of the string. Table 2 
shows the selection of codes for decoding the text 
string by using the proposed algorithm. 

The reconstruction of the text starts from the 
location Rowl and Columnl (R1C1) in Table 2 
and ends at the locations R5C11, for this example. 
The comparison of the new algorithm with the 
LZW algorithm is given in Table 3. 

4 Experimental res uit s 

A number of texts with varying lengths were com-
pressed using both the LZW and the new algori-
thms and the results are shown in the Figures 2,3 
and 4. 

Figure 2 shows the total number of bytes requi-
red by the original texts, the LZW method and 
the new algorithm. The new algorithm consumed 
the least number of bytes as compared with the 
LZW method for ali the text strings. This was 
expected, as the encoding bytes in the new me­
thod were less than the LZW method as shown 
in Table 3. It is also concluded that the Com­
pression Ratio (CR) will be greater as CR is in-
versely proportional to the decoded numbers as 
shown in Figure 3. The comparison of percentage 
compression between the LZW algorithm and the 
new algorithm is shown in Figure 4. We achieved 
a maximum of 68.75% compression as compared 
to 50% compression achieved by the LZW algori­
thm. 
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Table 1: The dictionarv for the example text using LZW algorithm 

R/C Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 C l l C12 C13 C14 
Rl 29 31 33 35 37 39 41 43 45 47 49 51 53 55 
R2 57 59 61 63 4 38 33 67 69 71 
R3 78 80 82 19 84 86 15 72 89 91 
R4 5 101 103 11 105 107 109 111 113 115 
R5 46 89 54 123 125 127 129 131 133 
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108 

Table 2: Selected codes for decoding the original text 

Text Specification LZW Alg. New Alg. 
Total characters in the Text String 134 134 
Total No. of bits in the Text String 938 938 
Largest numeric No. in the dictionarv 114 133 
Total Codes appeared for the String 107 65 
Bits required 749 520 
Compression ratio 1.25 1.80 
Percentage compression 20.15% 44.56% 

Table 3: Comparison of LZW and New algorithms 
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Figure 3: Comparison of compression ratio be-
tween LZW algorithm and New algorithm 

Figure 4: Comparison of Percentage compression 
between LZW algorithm and New algorithm 

5 Conclusions 

This paper introduced a novel text compression 
method which is better than the LZW method. 

The experimental results show that a conside-
rable improvement in the compression ratio is ob-
tained when the LZW method is replaced in the 
decoding part by the proposed non-analytical new 
algorithm, which removes the redundancv from 
the LZW algorithm and improves the compres­
sion ratio. 

Furthermore, the design and implementation of 
the proposed algorithm is easy to accomplish in 
terms of both the hardware and the software. 

In addition, simulation results on the new algo­
rithm compare favourably with existing methods 
and are found to be extremely promising. The 
new algorithm has shown excellent performance 
with respect to compression ratio capability of 
text of different sizes. 
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We discuss the problem of recovering the 3-D motion and structure. An algorithm for 
computing the camera motion and the orientation of planar surface is developed. It 
solves for the 3-D motion and structure iteratively given two successive image frames. 
We improve the solution by solving the ordinary differential equations which describe 
the evolution of motion and structure over tirne. The solution is further improved by 
exploiting the temporal coherence of 3-D motion. We develop the ordinary differential 
equations which describe the evolution of the parameters in terms of the current para-
meters and the measurements. The extended Kalman filter is then used to update the 
solution ofthe differential equations. The robustness of the entire process is demonstra-
ted by the experiment with a moving camera which "flies" over a terrain model. This 
work also examines the possibilities for errors, mistakes and uncertainties in visual sen-
sing systems. We suggest techniques for recovering these 3-D uncertainties, and present 
examples for determining the parametric evolution of a scene under uncertainty. 

1 Introduction 

The problem of recovering scene structure and the 
camera motion relative to the scene has been one 
of the key problems in computer vision. Many 
techniques have been developed for the estima­
tion of structure and motion parameters ( Tsai 
and Huang [5], Weng et al. [8] e tc) . A lot of 
existing algorithms depend on evaluating the mo­
tion parameters between two successive frames in 
a sequence. However, recent research on struc­
ture and motion has been directed towards using 
a large number of frames to exploit the history of 
parametric evolution for a more accurate estima­
tion and noise reduction ( Ullman [6], Grzywacz 
and Hildreth [1], Iu and Wohn [2] etc.) 

In this paper we describe a method for recove­
ring the 3-D motion and orientation of a planar 
surface from an evolving image sequence. The al­
gorithm utilizes the image flow velocities in order 
to recover the 3-D parameters. First, we deve­
lop an algorithm which iteratively improves the 
solution given two successive image frames. The 

solution space is divided into three subspaces -
the translational motion, the rotational motion 
and the surface slope. The solution of each sub-
space is updated by using the current solution of 
the other two subspaces. The updating process 
continues until the motion parameters converge, 
or until no significant improvement is achieved. 

Second, we further improve the solution pro-
gressively by using a large number of image frames 
and the ordinary differential equations which de­
scribe the evolution of motion and structure over 
tirne. Our algorithm ušes a weighted average of 
the expected parameters and the calculated pa­
rameters using the 2-frame iterative algorithm as 
current solution and continues in the same way 
till the end of the frame sequence. Thus it keeps 
track of the past history of parametric evolution. 

The solution is further improved by exploiting 
the temporal coherence of 3-D motion. We deve­
lop the ordinary differential equations which de­
scribe the evolution of motion and structure in 
terms of the current motion/structure and the 

mailto:sobh@cs.utah.edu
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measurements (the 2-D motion vectors) in the 
image plane. As an initial step we assume that 
the 3-D motion is piecewise uniform in tirne. The 
extended Kalman filter is then used to update the 
solution of the differential equations. The system 
was tested on a sequence of images obtained by 
the motion of a camera over a planar surface. 

We also examine the sources of uncertainty 
in visual sensing systems, and present a method 
for the recovery of 3-D estimates for motion and 
structure of an evolving scene. Our method uti-
lizes the uncertainty in the 2-D estimates for the 
image motion to recover the 3-D uncertainty in 
the actual world parameters. 

2 3-D Modeling 
One can model an arbitrary 3-D motion in terms 
of stationary-scene/moving-viewer as shown in Fi­
gure 1. 

The optical flow at the image plane can be rela-
ted to the 3-D world as indicated by the following 
pair of equations originally derived by Longuet-
Higgins and Prazdny [3], for each point (x,y) in 
the image plane : 

vx = \x\ - ^}+[xyax - (i + x2) QY + yaz} 

vy = {y% - ^}+[(i + v2) &x - xytty - ^z) 
> 

where vx and vy are the image velocity at image 
location (x,y), (VX,VY,VZ) and (^lx,^Y,^z) 
are the translational and rotational velocity vec­
tors of the observer, and Z is the unknown dis-
tance from the camera to the object. 

For planar surfaces, the Z function is simply 
pX + qY + Z0, where p and q are the planar sur­
face orientations. The situation becomes, for each 
point, two equations in eight unknowns, namely, 
the scaled translational velocities VX/Z0,VY/Z0 

and Vz/Z0, the rotational velocities Q,x,0,y and 
Viz and the orientations p and q. DifFerential me-
thods could be used to solve those equations by 
differentiating the flow field and by using appro-
ximate methods to find the flow field derivatives. 
The existing methods for computing the derivati­
ves of the flow field usually do not produce accu-

rate results. Our algorithm ušes a discrete me­
thod instead, i.e, the vectors at a number of po-
ints in the plane is determined and the problem 
reduces to solving a system of nonlinear equati-
ons, a pair of equations represents the flow at each 
point as follows : 

vx = (1 - px - qy) (x% -%) + 
[xy£lx - (1 + x2) aY + yttz] 

vy = (l-px- qy) (t/g- - g - ) + 
[(1 + y2) ilx - xyaY - x£lz] 

It should be noticed that the resulting system 
of equations is nonlinear, however, it has some 
linear properties. The rotational part, for exam-
ple, is totally linear, also, for any combination 
of two spaces among the rotational, translatio­
nal and slope spaces, the system becomes linear. 
For the system of equations to be consistent, we 
need the flow estimates for at least four points, in 
which čase there will be eight equations in eight 
unknowns. 

3 Two-Frame Algorithm 
The algorithm takes as input the estimate of the 
flow vectors at a number of points > 4 obtained 
from motion between two images. It iterates 
updating the solution of each subspace by using 
the solution of the other two subspaces. Each 
update involves solving a linear system, thereby 
it requires to solve three linear systems to com-
plete a single iteration. This process continues 
until the solution converges, or until no significant 
improvement is made. The algorithm proceeds as 
follows : 

1. Set p, q = 0; 
input the initial estimate for rotation ; 
Solve the linear system for translation; 

2. Use the translation and rotation from step 1 ; 
Solve the linear system for the slope ; 

3. Set i=l ; 
While (i < Max. Iterations) 
and (no convergence) Do 

Solve for the rotations using latest 
estimates of transkrtions, p and q; 
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Figure 1: 3-D Formulation for Stationary Scene/Moving Viewer 

Solve for the translations using latest 
estimates of rotations, p and q; 
Solve for p, q using latest estimates 
of translations and rotations; 

end While : 

3.1 Complex i ty Analysis 

As we mentioned earlier, one should notice in 
the equations relating the flow velocities with the 
slope, rotational and translational velocities that 
they are "quaši-linear" , if one can say so. The 
equations exhibit somelinear propertieš. This su-
ggests that a purely iterative technique for solving 
non-linear equations might not be an excellent 
choice, since, the variables are linearly related in 
some way. To think of a way of "inverting" the 
relations might be a good start, although to do 
that without a framework based on iterating and 
gravitating towards a solution is not a good idea. 

This makes one think of applying a method 
which converges faster than a purely iterative 
scheme like Newton's method. However, the com-
plexity of Newton's method is determined by the 
complexity of computing the inverse Jacobian, 
which is of an order of N3, or ./V2,81 multiplicati­
ons as the lower bound using Strassen's technique. 
In our čase, since we have at least 8 equations in 
8 unknowns, the complexity is of order 83 = 512 
multiplications at every iteration, and the method 
does not make any use of the fact that the set of 
equations at hand exhibits some linear propertieš. 

The algorithm proposed, on the other hand, 
makes very good use of the fact that there are 
some linearity in the equations, by inverting the 

set of relations for each subspace at every itera­
tion. The complexity at every iteration is of the 
order of the complexity of computing the pseudo-
inverse which is of the order of ( 3 3 + 3 3 + 23 ) 
multiplications at each iteration, where the first 
3 comes from solving the system for the rotati­
onal variables, the second 3 is for the translati­
ons, the last 2 is for p and q. This is equal to 
62 multiplications at every iteration, which is si-
gnificantb/ less than the 512 multiplications in a 
method like Newton's for example. It was noticed 
that the algorithm converged to solution in a very 
small number of iterations for most experiments 
we have conducted so far. The maximum number 
of iterations was 7. 

Using the latest solution obtained from the two-
frame analysis as the initial condition for the next 
two-frame problem in the image sequence would 
further decrease the complexity, as the next set 
of parameters would, most probably, be close in 
values to the current parameters, thus the num­
ber of iterations needed to converge to the new 
solution would decrease significantly. 

3.2 Observations 

- The algorithm is not sensitive to the initial 
condition of the orientation parameters. The 
plane is simply assumed to be a frontal one at 
the beginning. The slope parameters evolves 
with iterations. 

- The algorithm is sensitive to input noise just 
like other existing algorithms, some experi-
ments shows the sensitivity with respect to 
the change of viewing angle, table 5 inclu-
des some results of those experiments. Si-
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milarly, the algorithm performs better for a 
large number of points that are evenly distri-
buted throughout the planar surface, than it 
does for clustered, smaller number of image 
points. 

- It is proven that there exists dual solutions 
for such systems. However, if our method 
gravitates towards a "fixed point" in the so-
lution space we can find the other explicitly 
in terms of the first one from the relations 
given by Waxman and Ullman [7]. 

4 Multi-Frame Algorithm 

The ordinary differential equations that describe 
the evolution of motion and structure parameters 
are used to find the expression for the expected 
parameter change in terms of the previous para­
meter estimates. The expected change and the 
old estimates are then used to predict the current 
motion and structure parameters. 

At time instant t, the planar surface equation 
is described by 

Z = pX + qY + Z0 

To compute the change in the structure parameters 
during the time interval dt, we differentiate the 
above equation to get 

dZ__ dX_ dp dY_ dq_ dZ^ 
~dJ~P~dT+ ~dt+q~d7+ ~dl + ~dT 

The time derivatives of (X, Y, Z) in the above 
expression are given by the three components of 
the vector — (V + SI x R) that represent the re-
lative motion of the object with respect to the 
camera. Substituting these components for the 
derivatives and the expression pX + qY + Z0 for 
Z we can get the exact differentials for the slopes 
and Z0 as 

dZ0 = Z0 [(SlY + VX)p - (SlX - Vy)q - VZ} dt 

dp = \p(SlYp -Slxq) + (fiy + Sizq)\dt 

dq = [q(Slyp -Slxq)~ (®>X + Slzp)] dt 

Using the above relations, we can compute the 
new structure parameters at time t + dt as 

p = p + dp , q = q + dq and Ž0 = Z0 + dZ0 

Thus the slope parameters evolve at time t+dt 
as follows : 

P 
4 

= p 
q 

Q,Yp-0,xq SI z &Y ,. 
-ctz siYp - sixq -six ^ 

The new translational velocity V at time t + dt 
can be found in the absence of accelerations from 

V = V + VxSldt 

Dividing V by Z0 we get the new expected 
scaled translational velocity components at time 
t -f dt as follows : 

[ Vir 1 
VY 

L Vz J 
= 

\VX] 
VY 

L Vz J 

r vx i 
VY 

VZ 

where s is expressed as follows : 

s = (Jly + Vx)p - {SlX ~ VY) q - Vz 

The expected rotational parameters at time i + 
dt remain equal to their values at time t since 

fi = fi|fix Sldt = SI 

and thus 

(six,siY,siz) = (six,siY,siz) 

Our first multi-frame algorithm ušes a weighted 
average of the expected parameters at time t + dt 
from the above equations and the calculated para­
meters using the two-frame iterative algorithm as 
the solution at time t + dt, and continues in the 
same way until the end of the frame sequence. 
Thus it keeps track of the past history of para-
metric evolution. We further develop the first 
multi-frame algorithm to exploit the temporal co-
herence of 3-D motion. We develop the ordinary 
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differential equations which describe the evolu-
tion of motion and structure in terms of the cur-
rent motion/structure and the two-dimensional 
flow vectors in the image plane. We assume that 
the 3-D motion is piecewise uniform in time, i.e, 

fi = V = 0. We then use the equations expres-
sing the time derivative of the slope derived above 
and the fact that the derivative of the rotational 
velocities is zero and develop the following expres-
sions for the scaled translational velocities and the 
depth Z0 : 

dt = -Vx4 z~0~df^ 
dVY 

dt 

= -Vz 

= -VY 

1 dZ„ 
Zo dt 

i* and 

Zo dt VZ pvx - qvy 

The extended Kalman filter is then used to 
update the solution of the differential equations. 
Where the state vector can be written as : 

X = [ Vx VY Vz nx Sly Slz P q ) 

and the measurement vector is expressed as : 

ij — [ UX Uy Sx Sx gy Sy gt ^ J 

The behavior of the two-frame algorithm and 
the multi-frame algorithm can be conceptualized 
as a control system as shown in Figures 2 and 3. 

5 Results for the Two-Frame 
and Multi—Frame Algorithms 

The algorithm was run on a sequence of image 
data. The images were those of a planar surface 
being approached by a video camera mounted on 
a robot arm. The plane consisted of 120 dots. 
The sequence simulated the situation where an 
airplane approaches a runway for landing. One 
may think of the dots as lights to guide the air­
plane during a night landing. The actual rota­
tional and translational velocities between each 
two subsequent shots were £lx = —3°, Q,y = 0°, 
Clz = - 5 ° , Vx = 0 mm, VY = 10 mm and 
Vz = 20 mm. To determine the flow vectors, 
the first order moments were used to calculate the 
center of mass of each one of the dots in the image 

sequence and then they were matched across the 
image sequence. Thus, there were 120 points at 
which the x and y displacements were available as 
the approximation to the flow velocities. In real 
image date, more elaborated flow recovery algori­
thm should be used in order to determine the flow 
field accurately. Figures 4 and 5 show the image 
sequence that was used. 

Tables 1 and 2 show the recovered and actual 
parameters when the two-frame algorithm is used. 
Tables 3 and 4 include the parameters computed 
from the multi-frame algorithm. Table 5 includes 
the results of varying the view angle for the two-
frame algorithm. It should be noted that some 
of the parameters improved significantly when we 
used the fUtering mechanism. The translational 
velocities in the y and z directions and the plane 
orientation in the y direction were recovered more 
accurately at the end of the sequence using the se-
cond algorithm. However, error propagation cau-
sed a slight deterioration in the recovered values 
of a few parameters at the end of the experiment. 

6 Modeling 3-D Uncertainties 

In this section we utilize uncertainties in visual 
sensing to recover 3-D structure and motion cha-
racteristics of a scene under observation. The 
computed uncertainties are used for reconstruc-
ting the evolving scene. 

Figure 6 depicts the sequence of steps that are 
to be performed in order to recover the full world 
uncertainty from 2-D measurements on the image 
plane. We concentrate on identifying methods 
by which the 2-D uncertainty could be transfor-
med into meaningful 3-D interpretations that the 
observer can use reliably in order to recover the 
world parameters. 

7 Recovering 3-D Uncertainties 

We suggest the usage of the classical formulation 
for 3-D parameter recovery from 2-D displace-
ment vectors, but using 2-D error distributions as 
estimates for motion and/or feature coordinates 
in order to compute 3-D uncertainty distributions 
for the real world motion vectors and structure in-
stead of singular values for the world parameters. 
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Image Sequence 
Structure / Motion 

Two - Frame 
Algorithm 

Recovered Parameters 

Figure 2: Two Frame Algorithm as a Control System. 

Image 
nce Two - Frame 

Algorithm 

Initial 
Conditions 

,r 
V 

Updating 

Mechanism 

Solution 

Figure 3: Multi-Frame Algorithm as a Control System. 

Image 1 Image 2 

Image 3 Image 4 

Figure 4: The Image Sequence (Image 1 —> Image 4) 

Image 5 Image 6 

Image 7 Image 8 

Figure 5: The Image Sequence (Image 5 —> Image 8) 

Parameters 

nx 
ny 
az 
vx 
Vy 

vz 
P 
q 

11 ->- 12 

-0.096 
-0.162 
-2.537 
1.691 
9.25 
15.46 
13.14 

30.875 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
17.32 
12.25 

12 -y 13 

0.762 
-0.042 
-2.889 
1.25 
10.71 
15.22 
4.7 

22.95 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
16.56 
13.34 

13 -y 14 

0.429 
0.016 
-2.82 
1.276 
8.22 
17.55 
9.76 
29.99 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
14.36 
18.56 

14 -y 15 

-0.224 
0.108 
-3.005 
1.12 
4.8 

18.23 
9.05 

33.84 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
12.12 
22.73 

Table 1: Recovered Parameters using the 2-Frame Algorithm (Image 1 —• Image 5) 
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Parameters 

*"X 

ny 
nz 
vx 
Vy 

vz 
P 
9 

15 -y 16 

-0.136 
0.072 
-2.297 
0.806 
2.963 
18.53 
17.94 
13.57 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
13.67 
37.38 

16 -y n 

-2.9 
-3.7 
-5.32 
2.16 
5.54 
11.35 
22.04 
25.04 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
10.23 
45.51 

17-y 18 

-3.04 
-0.159 
-3.802 

0.7 
7.167 
16.934 
15.07 
71.06 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
4.42 
78.36 

Table 2: Recovered Parameters using the 2-Frame Algorithm (Image 6 —> Image 8) 

Parameters 

nx 
ay 
s% 
vx 
Vy 
Vz 
P 
9 

n -y 12 

-0.1 
-0.214 
-2.64 
1.634 
9.933 
14.49 
11.01 
26.5 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
17.32 
12.25 

12 -> 13 

0.29 
-0.045 
-2.87 
1.18 

10.23 
15.67 
10.07 
20.87 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
16.56 
13.34 

13 -y 14 

0.358 
-0.014 
-2.95 
1.054 
9.89 
16.98 
11.024 
25.88 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
14.36 
18.56 

14 -y 15 

-0.23 
0.0198 
-3.19 
0.765 
8.45 

18.045 
10.67 
28.78 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
12.12 
22.73 

Table 3: Recovered Parameters using the Multi-Frame Algorithm (Image 1 —• Image 5) 

Parameters 

ilx 

ay 
ft2 

vx 
Vy 

vz 
P 
9 

15 -y 16 

-0.65 
0.023 
-2.784 
0.453 
6.56 

19.032 
14.52 
26.57 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
13.67 
37.38 

16 -y n 

-2.83 
-0.86 
-4.313 
0.729 
7.14 
17.62 
20.45 
36.47 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
10.23 
45.51 

/7 -y 18 

-2.931 
-0.64 
-4.157 
0.57 
8.85 
18.94 
11.293 
75.025 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
4.42 
78.36 

Table 4: Recovered Parameters using the Multi-Frame Algorithm (Image 6 —• Image 8) 

Parameters 

nx 
«v 
n, 
K 
Vy 

vz 
P 
9 

Actual 

-3.0 
0.0 
-5.0 
0.0 
10.0 
20.0 
4.42 
78.36 

38° 

-3.01 
0.16 
-3.78 
0.768 
7.093 
16.518 
15.124 
70.502 

34° 

-2.986 
0.149 
-3.729 
0.722 
7.023 
15.325 
16.113 
70.547 

29° 

-2.787 
0.165 
-3.521 
0.812 
6.835 
14.313 
16.725 
68.463 

25° 

-2.411 
0.176 
-3.176 
1.242 
6.251 
13.826 
16.937 
66.165 

20° 

-1.923 
0.318 
-1.983 
2.724 
4.872 
14.178 
19.255 
63.361 

10° 

2.483 
0.015 
-0.157 
3.476 
2.489 
11.415 
17.837 
61.163 

Table 5: Effect of Varving the View Angle on the Recovered Parameters (Image 7 —• Image 8) 
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2-D Data 
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Uhcertainty 
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Recovered 3-D 
Uncertaintv Models 

• 

3-D Data 

Figure 6: Propagation of Uncertainty 

seems also to be a very attractive alternative. The 
moment generating function M of a linear combi-
nation of random variables, for example X\, X2 
can be written as : 

MaXi+bx2+c(t) = ect (MXl(at)MX2(bt)) 

for independent random variables X\, X2. 
That is, the problem of solving linear systems on 
the form Ax = b, where b is a vector of random 
variables, may be reduced to finding closed form 
solutions for x in terms of the random parameters 
(using any elimination technique) and then mani-
pulating the results and finding different expecta-
tions using moment generating or characteristic 
functions. 

The solutions we suggest to this problem of 
finding the random variable solution of the 3-D 
motion and structure parameters utilize the te-
chniques we described in the previous sections. 
Using either the two-frame iterative technique or 
the multi-frame algorithm, it should be noticed 
that the problem reduces to either solving multi-
linear systems or a single one; but in random va­
riables instead of singular values. In that čase, 
using elimination and characteristic functions for 
computing the required expectations and distri-
butions is straight forward. As an example, the 
recovered 3-D translational velocity cumulative 
density functions (CDF) for an actual world mo­
tion of a robot gripper in our experiment equal: 

As an example to illustrate the idea, let's as-
sume that we have a linear system of equations 
as follows : 

x + Sy = Z-L 

2x + y = z2 

The solution of this system is very easily ob-
tained as : 

3 1 x = -z2 - -z-i o o 

2 1 

That is, a linear combination of the right hand 
side parameters. If the parameters z\ and z2 were 
random variables of known probability distributi-
ons instead of constants, then the problem be-. 
comes slightly harder, which is, to find the linear 
combination of those random variables as another 
random variable. The obvious way of doing this 
would be to use convolutions and the formula : 

Pxl+x2{y) = ^2Px,,x2(x,y-x) 
R 

for the sum of two random variables X\, X2 for 
any real number y and/or the formula for linear 
combinations over the region R, which is for ali x 
such that Px-i,x2{x->y~x) > 0- Using the moment 
generating function or the characteristic function 



RECOVERING 3-D MOTION... Informatica 18 (1994) 491-500 499 

.Vx = 0 cm, Vy = 0 cm and Vz = 13 cm 
is shown in figure 7. It should be noted that the 

recovered distributions represents a fairly accu-
rate estimation of the actual 3-D motion. 

8 The Experimental 
Uncertainty Recovery System 

The design and the experiments for the proposed 
uncertainty recovering formulation were perfor-
med on the architecture shown in Figure 8. The 
agent under observation is the Lord experimental 
gripper and is mounted on a PUMA 560. The 
robot and the hand are essentially moved by an 
external operator to perform some actions on a 
set of objects lying on a table. 

The observer sensor is another PUMA 560 on 
which a camera is mounted. The low level visual 
feature acquisition is performed on the MaxVi-
deo pipelined video processor at frame rate. In 
particular, there are two separate paths from the 
vision sensor. One path is for the computation of 
the hand 3-D position and orientation and this is 
done through the MaxVideo. The other path (the 
inner loop) is done on a SparcStation, in which the 
image processing modules resides, those modules 
compute 2-D cues from the scene under observa­
tion. Identification of objects, their location with 
respect to the hand and establishing contact, and 
correlation procedures are ali performed within 
the inner loop. The 2-D to 3-D conversion and 
probability computations are performed on ano­
ther SparcStation. Thus future modifications and 
enhancements could be coded and executed in a 
simple and modular fashion. Enhanced Low-level 
modules for segmentation and 2-D understanding 
of the image and to accommodate different kinds 
of objects in the scene could be coded within the 
inner-loop computer module. 

9 Conclusions 

The recovery methods described here have a va-
riety of applications. It can be useful in vision-
guided applications such as autonomous landing 
and navigation. It may be a starting point for 
determining global structure - motion analysis of 
entire polyhedra, making it suitable for robotics 
applications in the "moving blocks world". Pa-

rallel implementations could be designed for such 
problems, thus solving for the structure - motion 
parameters for each surface separately. In fact, 
solving the linear system at each iteration could 
also be parallelized. We have also demonstrated 
that the uncertainty in 2-D sense data can ac-
tually be utilized for recovering the motion and 
structure of a scene under observation robustly. 
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Report: PARLE'94 - Parallel Architectures and Languages in 
Europe 

July 2 - 7 , 1994, Athens, Greece. 

Borut Robič 

Parallel processing is now well established wi-
thin the high performance computing technology 
and constitutes the main thrust towards the de-
velopment of new products and solutions which 
pose demand for large scale computation. From 
that point of view parallel processing is of stra-
tegic importance not only for the informatics in-
dustry, but also for a wide area of applications. 
Porting classical applications to the already exi-
sting parallel machines, developing new applicati­
ons which would be infeasible in the realm of the 
uniprocessor, and designing new more powerful 
parallel computers has become the "new world" 
for the computer scientists, the engineers and the 
implementors. It is anticipated that the impact of 
parallelism will be not only on the computer in-
dustry, but also on other industrial sectors. The 
whole economy will be affected by parallelism in 
the near future. 

PARLE is the main scientific event on parallel 
processing held in Europe. It is an internatio-
nal conference focusing on parallel computer lan­
guages, and architectures. Since its origination 
in 1987 as an initiative coming from ESPRIT I 
program, it has grown to a major event which 
has assumed high international reputation and is 
the European forum on parallelism. From 1995 
onwards it will continue as EURO-PAR confe­
rence, as a result of merging of PARLE and CON-
PAR/VAPP events. 

PARLE'94 was organized in Athens by the 
Computer Technology Institute at Patras, Gre­
ece (C.T.I.) as the sixth in a series of similar 
events. Authors submitted over 250 papers of 
which 84 (from 21 countries) were selected and 
presented at the conference. There were 21 ses-
sions running in two tracks: Interconnection Ne-
tworks I and II, Compiling Techniques, Special 
Purpose Systems, Communication Protocols, Al-
gorithms for Multiprocessor Networks, Program-
ming Environments, Scientific Computing, Per­
formance Evaluation, Data Distribution, Cache 
Systems, Language Issues, Language Implemen-

tation, Applications, System Evaluation, Schedu-
ling, Semantics, Load Balancing, Parallel Algo-
rithms, Miscellanea, and Poster Session. Invi-
ted talks discussed theoretical and practical issues 
in structural parallel algorithms (Uzi Vishkin), 
evolution and challenges of multithreaded com­
puter architectures (Guang Gao), and parallelism 
in relational databases (M. Hoevenaars). Of the 
papers, let us mention those dealing with impro-
ved probabitistic routing in generalized hypercu-
bes (A.G.Ferreira, M.D.Grammatikakis), multi-
searching problem for hypercubes (M.J.Attalah, 
A.Fabri), hierarchical activation management te-
chniques for fine-grain multithreaded execution 
(C.Kim, J.-L. Gaudiot), array processor architec-
ture for matrix computations (S.P.S.Lam), ma-
pping with parallel simulated annealing (B.Robič, 
J.Sile), performance of interconnection network 
in multithreaded architectures (S.S.Nemaviarkar, 
R.Govindarajan, G.R.Gao, V.K.Agarival), paral­
lelism of data (C. V.Papadopoulos), and some new 
ideas on the definition of the speedup (W.Ertel). 
Tutorials were given by Franco P. Preparata 
(Models and Fundamental Techniques of Parallel 
Computation), Dough Degroot (Controlling and 
Limiting Dynamic and Speculative Parallelism), 
L.O.Herzberger (Parallel Computing Architectu­
res), and Peter Kacsuk (Parallel Implementations 
of Logic Programs). 

The organization of the PARLE'94 conference 
was excellent. The proceedings are published in 
Lecture Notes in Computer Science, vol. 817 
(Springer-Verlag). 
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This is a Call For Papers for a special journal issue of INFORMATICA on the topic: 

MIND <> COMPUTER 
[i.e. Mind NOT EQUAL Computer] 

MOTIVATION: 
Recent progress in Al (or, as some people would 
say, the lack of progress) brings to mind papers by 
Winograd, Drejrfus, etc. that question the possi-
bility of achieving "strong" AL Was the scientific 
community correct when rejecting their ideas ye-
ars ago? 

In this special issue we want to re-evaluate the 
soundness of current Al research positions, espe-
cially the heavily disputed strong-AI paradigm, 
and explore new approaches that aim to achieve 
true intelligence. 

The core of this special issue will be a small 
number of invited papers, including papers by Wi-
nograd, Dreyfus, Michie, McDermott, Agre, Te-
cuci, etc. Here, we are soliciting additional papers 
on the topic. 

TOPICS: 
Papers are invited in ali subareas and aspects of 
the above topic, especially in: 

- Current state, positions, and "real" advance-
ments achieved in the last 5 years (as opposed 
to parametric improvements). 

— Trends, perspectives and foundations of na-
tural and artificial intelligence. 

- Strong Al versus weak Al versus the reality 
of most "typical" publications in AL 

— New directions in Al. 

FORMAT AND REVIEWING PROCESS: 
Papers should not exceed 8,000 words (including 
figures and tables but excluding references. A full 
page figure should be counted as 500 words). Ide-
ally 5,000 words are desirable. If accepted, the 
authors will be invited to transform their manu-
scripts into the Informatica LaTeX style. 

Each paper will be refereed by at least two ano-
nymous referees outside the author's country and 
by an appropriate subset of the program commit-
tee. 

TIME TABLE AND CONTACTS: 
Papers in 5 hard copies should be received by 
May 15, 1995 at one of the following addresses 
(no email/fax submissions): 

North & S. America - Jim Geller 
New Jersey Institute of Technology 
CIS Department 
323 Dr. King Blvd: 
Newark, NJ 07102, USA 
geller@vienna.nj i t . e d u 

Asia, Australia - Xindong Wu 
Department of Software Development, Monash 
University, 
Melbourne, VIC 3145, Australia 
xindong@insect.sd.monash.edu.au 

Europe, Africa - Matjaž Gams 
Jožef Štefan Institute, Jamova 39, 
61000 Ljubljana, Slovenia, Europe 
matj az.gams@ij s . s i 

E-mail information about the special issue is 
available from the above 3 contact editors. 

The special issue will be published in late 1995. 
Depending on the number and quality of submis­
sions there is a possibility for the special issue to 
be reproduced as or extended to a book. 

More information about Informatica and the 
special issue can be accessed through URL: 
f tp : / / f tp . a rnes . s i /magaz ines / in fo rmat i ca . 

mailto:geller@vienna.nj
mailto:xindong@insect.sd.monash.edu.au
ftp://ftp.arnes.si/magazines/informatica
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THE MINISTRY OF SCIENCE AND TECHNOLOGY 
OF THE REPUBLIC OF SLOVENIA 

Address: Slovenska 50, 61000 Ljubljana, Tel.: +386 
61 1311 107, Fax: +386 61 1324 140. 
Minister: Prof. Rado Bohinc, Ph.D. 
State Secretarv for Int. Coop.: Rado Genorio, Ph.D. 
State Secretarv for Sci. and Tech.: Ciril Baškovič 
Secretarv General: Franc Hudej, Ph.D. 

The Ministrv also includes: 
The Standards and Metrologv Institute of the Repu-
blic of Slovenia 
Director: Peter Palma 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 314 882. 
and 
The Industrial Propertv Protection Office of the Re-
public of Slovenia 
Director: Bojan Pretnar, Ph. D. 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 318 983. 

Scientific Research and Development Potential. 
The statistical data for 1993 showed that there were 
180 research and development institutions in Slovenia. 
Altogether, they emploved 10,400 people, of whom 
4,900 were researchers and 3,900 expert or technical 
staff. 

In the past ten years, the number of researchers has 
almost doubled: the number of Ph.D. graduates incre­
ased from 1,100 to 1,565, while the number of M.Se.'s 
rosefrom 650 to 1,029. The "Young Researchers" (i.e. 
postgraduate students) program has greatly helped to-
wards revitalizing research. The average age of rese­
archers has^been brought down to 40, with one-fifth of 
them being vounger than 29. 

The table below shows the distribution of resear­
chers aceording to educational level and sectors (in 
1993): 

Sector Ph.D. M.Sc. 
Business enterprises 
Government 
Private non-profit organizations 
Higher education organizations 
Total 

51 
482 

10 
1022 

1,565 

196 
395 

12 
426 

1,029 

Financing Research and Development. Stati­
stical estimates indicate that US$ 185 million (1,4% 
of GDP) was spent on research and development in 
Slovenia in 1993. More than half of this comes from 
public expenditure, mainly the state budget. In the 
last three years, R&D expenditure by business organi­
zations has stagnated, a result of the current economic 
transition. This transition has led to the financial de-

cline and increased insolvency of firms and companies. 
These cannot be replaced by the growing number of 
mainly small businesses. The shortfall was addres-
sed by increased public-seetor spending: its share of 
GDP nearly doubled from the mid-seventies to 0,86% 
in 1993. 

Income of R&D organizations spent on R&D aeti-
vities in 1993 (in million US$): 

Sector 

Business ent. 
Government 
Private non-p. 
Higher edu. 
Total 

Total 

83,9 
58,4 

1,3 
40,9 

184,5 

Basic 
res. 
4,7 

16,1 
0,2 

24,2 
45,2 

App. 
res. 
32,6 
21,5 

0,6 
8,7 

63,4 

Exp. 
dev. 
46,6 
20,8 
0,5 

8 
75,9 

The policy of the Slovene Government is to inerease 
the percentage intended for R&D in its budget. 

The Science and Technology Council of the Repu-
blic of Slovenia is preparing the draft of a national 
research program (NRP). The government will har-
monize the NRP with its general development policy, 
and submit it first to the parliamentary Committee for 
Science, Technology and Development and after that 
to the parliament. The parliament approves the NRP 
each year, thus setting the basis for deciding the level 
of public support for R&D. 

The Ministry of Science and Technology is mainly 
a government institution responsible for controlling 
expenditure of the RfcD budget, in compliance with 
the NRP and the eriteria provided by the Law on Re­
search Activities. The Ministry finances research or 
co- finances development projeets through public bid-
ding, partially finances infrastrueture research insti­
tutions (national institutes), while it directly finances 
management and top-level science. 

The focal points of R&.D policy in Slovenia are: 
- maintaining the high level and quality of research 

activities, 
- stimulating collaboration between research and 

industrial institutions, 
- (co)financing and tax assistance for companies 

engaged in technical development and other 
applied research projeets, 

- research training and professional development of 
leading experts, 

- close involvement in international research and 
development projeets, 

- establishing and operating facilities for the trans-
fer of technology and experience. 
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JOŽEF ŠTEFAN INSTITUTE 

Jožef Štefan (1835-1893) was one of the most pro-
minent physicists ofthe 19th century. Born to Slovene 
parents, he obtained his Ph.D. at Vienna University, 
uihere he was later Director of the Physics Institute, 
Vice-President ofthe Vienna Academy of Sciences and 
a member of several scientific institutions in Europe. 
Štefan explored many areas in hydrodynamics, optics, 
acoustics, electricity, magnetism and the kinetic the-
ory of gases. Among other things, he originated the 
law that the total radiation from a black body is pro-
portional to the 4th poiver of its absolute temperature, 
hnoum as the Stefan-Boltzmann law. 

The Jožef Štefan Institute (JSI) is the leading in-
dependent scientific research in Slovenia, covering a 
broad spectrum of fundamental and applied research 
in the fields of physics, chemistry and biochemistry, 
electronics and information science, nuclear science te-
chnology, energy research and environmental science. 

The Jožef Štefan Institute (JSI) is a research orga-
nisation for pure and applied research in the natural 
sciences and technology. Both are closely intercon-
nected in research departments composed of different 
task teams. Emphasis in basic research is given to the 
development and education of young scientists, while 
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the deve­
lopment of the national economy and society in gene­
ral. 

At present the Institute, with a total of about 
700 staff, has 500 researchers, about 250 of whom 
are postgraduates, over 200 of whom have doctora-
tes (Ph.D.), and around 150 of whom have permanent 
professorships or temporary teaching assignments at 
the Universities. 

In view of its activities and status, the JSI plays the 
role of a national institute, complementing the role of 
the universities and bridging the gap between basic 
science and applications. 

Research at the JSI includes the following major fi­
elds: physics; chemistry; electronics, informatics and 
computer sciences; biochemistry; ecology; reactor te-
chnology; applied mathematics. Most ofthe activities 
are more or less closely connected to information sci­
ences, in particular computer sciences, artificial intel-
ligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics 
and robotics, computer automation and control, pro-
fessional electronics, digital Communications and ne-

tworks, and applied mathematics. 

The Institute is located in Ljubljana, the capital of 
the independent state of Slovenia (or SCnia). The 
capital today is considered a crossroad between East, 
West and Mediterranean Europe, offering excellent 
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana 
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče, 
Bern and Munich, ali within a radius of 600 km. 

In the last year on the site ofthe Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technologi-
cal development to foster synergies between research 
and industry, to promote joint ventures between uni-
versity bodies, research institutes and innovative in-
dustry, to act as an incubator for high-tech initiatives 
and to accelerate the development cycle of innovative 
products. 

At the present time, part of the Institute is being 
reorganized into several high-tech units supported by 
and connected within the Technology park at the Jožef 
Štefan Institute, established as the beginning of a re-
gional Technology park "Ljubljana". The project is 
being developed at a particularly historical moment, 
characterized by the process of state reorganisation, 
privatisation and private initiative. The national Te-
chnology Park will take the form of a shareholding 
company and will host an independent venture-capital 
institution. 

The promoters and operational entities of the pro­
ject are the Republic of Slovenia, Ministry of Science 
and Technology and the Jožef Štefan Institute. The 
framework of the operation also includes the Univer-
sity of Ljubljana, the National Institute of Chemistry, 
the Institute for Electronics and Vacuum Technology 
and the Institute for Materials and Construction Re­
search among others. In addition, the project is su­
pported by the Ministry of Economic Relations and 
Development, the National Chamber of Economy and 
the City of Ljubljana. 

Jožef Štefan Institute 
Jamova 39, 61000 Ljubljana, Slovenia 
Tel.:+386 61 1259 199, Fax.:+386 61 219 385 
Tlx.:31 296 JOSTIN SI 
WWW: http://www.ijs.si 
E-mail: matjaz.gams@ijs.si 
Contact person for the Park: Iztok Lesjak, M.Se. 
Public relations: Natalija Polenec 

http://www.ijs.si
mailto:matjaz.gams@ijs.si
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