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Jensen-Shannon divergence is one of the powerful information-theoretic measures that can capture 

mutual information between two probability distributions. In this paper, a machine vision algorithm is 

proposed for automatic inspection on dot patterned fabric using Jensen-Shannon divergence based on 

gray level co-occurrence matrix (GLCM). Input defective images are split into several periodic blocks 

based on their periodicities extracted using superposition of distance matching functions and the gray 

levels are quantized from 0-255 to 0-63 to keep the GLCM compact and to reduce the computation time. 

Symmetric Jensen-Shannon divergence metrics are calculated from the GLCMs of each periodic block 

with respect to itself and all other periodic blocks to get a dissimilarity matrix that satisfies true metrics 

conditions. This dissimilarity matrix is subjected to hierarchical clustering to automatically identify 

defective and defect-free blocks. Results from experiments on real fabric images with defects such as 

broken end, hole, thin bar, thick bar, netting multiple and knot show the effectiveness of the proposed 

method for fabric inspection. 

Povzetek: Razvita je metoda, ki na osnovi Jensen-Shannovove divergence omogoča iskanje pokvarjenih 

vzorcev na ponavljajoči se shemi. 

1 Introduction 
Periodically patterned texture images are often found in 

day-to-day life in various applications such as ceramic 

tiles, wallpapers, and textile fabrics. Inspection of these 

products plays a major role with regard to quality control 

of the products in industries. Conventional human-vision 

based inspection are being followed in many of the 

industries. Lack of repeatability and reproducibility of 

inspection results due to fatigue and subjective nature of 

humans and imperfect inspection due to complicated 

design in the texture patterns are common in the 

conventional human-vision based inspection systems. 

Automated machine-vision based inspection can promote 

the production rate of the products by decreasing the 

inspection time compared to the traditional human-vision 

based inspection especially in industries such as textile 

industries. Periodic textures which we come across in our 

life include several natural patterns and made-made / 

artificial patterns. Plenty of patterns are used in textile 

fabric design. These patterns, in turn, include either 

random structures or periodic structures, making the 

fabric appealing to our eyes. Inspection on fabric images 

having periodic texture patterns is more complicated than 

that on plain and twill fabric images due to complexity in 

the design, existence of numerous categories of patterns, 

and similarity between the defect and background [1]. 

For the inspection on periodically patterned fabrics, there 

are methods in literature that depend on training stage 

with numerous defect-free samples for obtaining 

decision-boundaries or thresholds prior to detection of 

defects [1]-[11]. However, unsupervised method of 

identifying defects in a patterned texture image is quite 

challenging [12]-[17]. In this paper, a method of 

inspection on periodically patterned fabrics is proposed 

without any training stage with the help of texture-

periodicity and Jensen-Shannon divergence metric based 

on gray level co-occurrence matrix. The main 

contributions of this research can be summarized as 

follows: 

• There is no training stage with defect-free samples 

for decision boundaries or thresholds unlike other 

methods. 

• Due to the absence of training stage with defect-

free samples, the proposed method does not need 

huge memory space for storage of defect-free 

samples. 

• Identification of defective and defect-free periodic 

units of the fabrics is automatically carried out 

based on cluster analysis without human 

intervention. 

The program for the proposed algorithm is written in 

Matlab-7.0. The organization of this paper is as follows: 

Section-2 presents a brief review on Jensen-Shannon 

divergence, gray level co-occurrence matrix and the 

proposed algorithm for fabric inspection along with 

illustration and results from experiments on various real 

fabric images with defects. Section-3 has the 

conclusions. 
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2 Proposed algorithm for fabric 

inspection 
Jensen-Shannon divergence is one of the effective 

measures for capturing mutual information between two 

probability distributions [12]. In this paper, it is intended 

to employ Jensen-Shannon divergence metric to 

discriminate between defective and defect-free periodic 

blocks as feature extraction (e.g. [18],[19]). Following 

the fact that human vision perception makes use of 

second-order statistics for texture discrimination [20], 

histogram constructed from second-order statistics is 

used to discern between defective and defect-free 

periodic blocks. Since the time of proposal of 14 features 

derived from histogram of second order statistics or gray-

level co-occurrence matrices (GLCM) by Haralick et al. 

[21], several authors have employed GLCM features for 

various texture analysis applications (e.g.[22]-[26]). 

Instead of extracting GLCM features, information from 

every pixel-pair of a periodic block with that of other 

periodic block is used to compute a distance metric using 

Jensen-Shannon divergence. The uniqueness of this 

Jensen-Shannon divergence metric based on GLCM is 

that the distance measure is considered for every pair of 

gray levels between two periodic blocks unlike the 

conventional GLCM features that are computed for the 

entire GLCM. 

2.1 Brief review on Jensen-Shannon 

divergence  

Jensen-Shannon divergence is a symmetrized, smoothed 

version of Kullback-Leibler divergence which is the most 

important divergence measure of information theory 

[18]. Given two classes p(1) and p(2) with a common 

feature vector x, the Kullback-Leibler divergence or the 

relative entropy in terms of ratio of the probability 

distributions of these classes conveys useful information 

concerning the capability of discriminating the two 

classes. This class-separability measure over class 1 is 

given as [27]  

(𝜔1, 𝜔2) = ∫ 𝑝(𝜔1)𝑙𝑜𝑔 (
𝑝(𝜔1)

𝑝(𝜔2)
) 𝑑𝑥

∞

−∞
  (1) 

Similarly, the class-separability measure over class 2 is 

given as 

(𝜔2, 𝜔1) = ∫ 𝑝(𝜔2)𝑙𝑜𝑔 (
𝑝(𝜔2)

𝑝(𝜔1)
) 𝑑𝑥

∞

−∞
  (2) 

Based on the probability distributions p(1) and p(2) 

and their average, a symmetric divergence called Jensen-

Shannon divergence  is given as 

 =

∫ {𝑝(𝜔1) log (
0.5×𝑝(𝜔1)

𝑝(𝜔1)+𝑝(𝜔2)
)+𝑝(𝜔2) log (

0.5×𝑝(𝜔2)

𝑝(𝜔1)+𝑝(𝜔2)
) 𝑑𝑥}

∞

−∞

      (3) 

Since Kullback-Leibler divergence  (𝜔1,𝜔2) or  

(𝜔1,𝜔2) can be interpreted as the inefficiency of 

assuming that the true distribution is p(𝜔2) or p(𝜔1) 

when it is really p(𝜔1) or p(𝜔2), Jensen-Shannon 

divergence can be considered as a minimum inefficiency 

distance. 

2.2 Brief review on Gray Level Co-

occurrence Matrix 

Gray level co-occurrence matrices (GLCM) have been 

employed in extracting texture features for various 

applications for a long time. It is a measure of gray-level 

dependencies in a local neighborhood for a given pixel 

displacement and orientation. In other words, a GLCM is 

a matrix showing the number of times a pixel with gray 

level I occurs at position vector from a pixel with gray 

level j. Mathematically, the GLCM for an imageI(x, y) of 

size (M, N) at a given offset (x, y) is given as 

𝐶x,y = ∑ ∑ {
1, 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 

𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) = 𝑗;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐿−1
𝑗=0

𝐿−1
𝑖=0  (4) 

where, L is the total number of gray values in the image. 

For an-bit image, the value of L is 2n with dynamic 

range of gray values being [0, L-1]. The offset (x, y) 

characterizes the pixel displacement and the orientation 

for the co-occurrence matrix. 

2.3 Description of the algorithm 

There are three major assumptions in the proposed 

algorithm as follows: 

• Test image contains at least two periodic units in 

horizontal direction and two in vertical direction whose 

row and column dimensions are known a priori. 

• Number of defective periodic units is always less 

than the number of defect-free periodic units. 

• Test images are from imaging system oriented 

perpendicular to the surface of the product to be 

inspected. This assumption is due to the fact that in an 

inspection system in industries, the imaging system is 

always oriented perpendicular to the plane of the surface 

of the products such as tiles, wallpapers, and textile 

fabrics. 

An image under inspection may have fractional 

periods also. Hence, the concept of analyzing the 

periodic blocks extracted from all four corners of the test 

image is used for identifying the defects followed by the 

concept of defect fusion proposed in [28]. Four cropped 

images are obtained from the defective test image by 

cropping the input image from all four corners (top-left, 

bottom-left, top-right and bottom-right) to get complete 

number of periodic blocks. If g is an image of size M × N 

with row periodicity Pr (i.e., number of columns in a 

periodic unit) and column periodicity Pc (i.e., number of 

rows in a periodic unit), size of the cropped images is 

Mcrop × Ncrop, where Mcrop and Ncrop are measured from 

top-left, bottom-left, top-right and bottom-right corners 

and are given by the following equations: 

𝑀𝑐𝑟𝑜𝑝 = 𝑓𝑙𝑜𝑜𝑟 (
𝑀

𝑃𝑐
)𝑃𝑐   (5) 

𝑁𝑐𝑟𝑜𝑝 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁

𝑃𝑟
)𝑃𝑟   (6) 

Each cropped image is split into several periodic 

blocks of size Pc x Pr. The periodicities are estimated 

using Superposition of distance matching function 

proposed in [29]. The decision that one has to make now 
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is how many levels are needed to construct a GLCM for 

effective texture analysis. The number of gray levels is 

an important factor in the computation of GLCM. The 

more levels included in the computation, the more 

accurate the extracted textural information, with, of 

course, a subsequent increase in computation costs and 

too less gray levels will result in loss of information due 

to quantization. In general, the effect of false-contouring 

starts predominating in an image if the gray levels are 

quantized below the dynamic range of gray values 0-63 

[30]. In the proposed method, each 8-bit test image 

having a dynamic range of gray values 0-255 is linearly 

quantized to 6-bit image having a dynamic range 0-63 

and rotation-invariant GLCMs (sum of GLCMs over 8 

directions θ € {0, /4, /2, 3/4, , 5/4, 3/2, 7/8}) 

calculated for a unit pixel displacement is utilized. If p(i, 

j) and q(i, j) represent the summed up GLCMs of two 

periodic blocks A and B respectively whose dynamic 

range of gray values is between 0 and L-1 for a unit pixel 

displacement, the Jensen-Shannon divergence can be 

computed as  

Λ𝐴,𝐵 = Λ𝐵,𝐴 =

 ∑ ∑ {𝑝(𝑖, 𝑗) log (
0.5×𝑝(𝑖,𝑗)

𝑝(𝑖,𝑗)+𝑞(𝑖,𝑗)
)+𝑞(𝑖, 𝑗) log (

0.5×𝑞(𝑖,𝑗)

𝑝(𝑖,𝑗)+𝑞(𝑖,𝑗)
)}𝐿−1

𝑗=0
𝐿−1
𝑖=0

      (7) 

The square root of this divergence is a true metric 

obeying the conditions of a true metric in 2D Euclidean 

space [18], viz.,√𝑖,𝑗 0 for all i and j (non-negativity), 

√𝑖,𝑗= 0 for all i = j (self-distance) and √𝑖,𝑗 = √𝑗,𝑖 for 

all i and j (symmetry), and √𝑖,𝑗 ≤ √𝑖,𝑘+ √𝑘,𝑗 for i ≠ j 

≠ k (triangular inequality). Following Eq. (7) based on 

Jensen-Shannon divergence for each periodic block with 

respect to itself and all other periodic blocks, a 

dissimilarity matrix D containing true distance metrics 

can be obtained as below: 

𝐷 =

(

 
 
 

√Λ1,1 √Λ1,2 . . . √Λ1,𝑛−1 √Λ1,𝑛

√Λ2,1 √Λ2,2 ⋯ √Λ2,𝑛−1 √Λ2,𝑛
⋮ ⋮ ⋮ ⋮ ⋮

√Λ𝑛−1,1 √Λ𝑛−1,2 … √Λ𝑛−1,𝑛−1 √Λ𝑛−1,𝑛

√Λ𝑛,1 √Λ𝑛,2 ⋯ √Λ𝑛,𝑛−1 √Λ𝑛,𝑛 )

 
 
 

 (8) 

It should be noted that if a cropped image has n 

number of periodic blocks, then the size of the 

dissimilarity matrix is n x n. Because the divergence 

measure of a periodic block with itself is zero and the 

divergence measure between ith periodic block and jth 

periodic block is same as the divergence measure 

between jth periodic block and ith periodic block, the 

dissimilarity matrix becomes a diagonally symmetric 

matrix with diagonal elements being zero as below: 

𝐷 =

(

 
 
 

0

√Λ2,1 0

⋮ ⋮ ⋮

√Λ𝑛−1,1 √Λ𝑛−1,2 … 0

√Λ𝑛,1 √Λ𝑛,2 ⋯ √Λ𝑛,𝑛−1 0)

 
 
 

 (9) 

It may be noted that because the matrix is similar 

about the diagonal, the upper diagonal elements are not 

filled for the sake of simplicity. This dissimilarity matrix 

is directly given as input to the Ward's cluster algorithm 

[28],[31] to automatically get defective and defect-free 

periodic blocks from each cropped image. Detection of 

defective periodic blocks from each cropped image does 

not give an overview of the total defects in the input 

defective image. Hence, in order to get the overview of 

the total defects in the input image, defect-fusion 

proposed in [28] is used which involves fusion of the 

boundaries of the defective periodic blocks identified 

from each cropped image, morphological filling and 

Canny edge extraction. 

2.4 Illustration of the algorithm 

In order to illustrate the proposed algorithm for fabric 

inspection, let us a defective box-patterned fabric image 

as shown in Fig. 1 (a). Following Eqs. (5) and (6), four 

cropped images containing complete number of periodic 

blocks are obtained as shown in Fig. 1 (b) - (e), from the 

test image with the help of periodicities known a priori.  

Each cropped image is split into several blocks of 

size same as the size of the periodic unit and the gray 

values are quantized from 0-255 to 0-63. Jensen-Shannon 

divergence metrics are calculated for each periodic block 

with respect to itself and all other periodic blocks and a 

dissimilarity matrix is obtained from the GLCMs 

calculated over 8 directions for unit pixel displacement. 

The dissimilarity matrices thus obtained are shown in 

Fig. 2 in gray-scale form by scaling the matrix elements 

linearly in the range 0-255. Dark pixels indicate 

closeness among the periodic blocks and bright pixels 

indicate high dissimilarity. It may be noted from Fig. 2 

that the diagonal elements in the dissimilarity matrix 

clearly indicate that the periodic blocks are of zero 

dissimilarity with themselves and that the dissimilarity 

matrix is symmetric. 

 
Figure 1: (a) Input defective image; (b) Cropped image 

obtained from top-left corner of the input image; (c) 

Cropped image obtained from bottom-left corner of the 

input image; (d) Cropped image obtained from top-right 

corner of the input image; (e) Cropped image obtained 

from bottom-right corner of the input image. 

 
Figure 2: Dissimilarity matrix derived from the Jensen-

Shannon divergence metrics for the cropped image 

obtained from (a) top-left (b) bottom-left (c) top-right 

and (d) bottom-right corners of the test image shown in 

gray-scale. 
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The dendrograms obtained from the dissimilarity 

matrices through Ward's hierarchical clustering are 

shown in Fig. 3 along with the defective periodic blocks 

identified by the clustering for all cropped images. 

Boundaries of the defective periodic blocks thus 

identified from each cropped image are highlighted using 

white pixels and shown in Fig. 4. Boundaries of the 

defective periodic blocks identified from each cropped 

image are shown superimposed on the original image in 

Fig. 5 (a) and separately on a plain background in Fig. 5 

(b). Fig. 5 (c) shows the result of morphological filling 

and Fig. 5 (d) shows the edges of the total defects 

superimposed on the original defective image after 

Canny edge detection. Thus, an overview of the total 

defects on the original image itself can be obtained 

following the concept of fusion, morphological filling 

and edge detection. It may be noted that though the 

number of periodic blocks taken from a defective input 

image is same for all of its cropped images, the number 

of defective periodic blocks identified does not need to 

be same for all cropped images. This is because the 

contribution of defect in each periodic block may differ 

for different cropped images.  Nevertheless, fusion of 

defects from all 4 cropped images helps in getting an 

overview of total defects in the input image. This is 

clearly evident from the example image used for 

illustration of the proposed algorithm. 

2.5 Experiments on real fabric images with 

different types of defects 

Periodically patterned fabric images with defects such as 

broken end, thin bar, thick bar, netting multiple and knot 

are tested to study the performance of the proposed 

algorithm of fabric inspection. Fig. 6 shows the defective 

fabric images and Fig. 7 shows the final result of defect 

identification after fusion, morphological filling and edge 

detection. 

2.6 Performance evaluation and 

comparison with other methods 

Precision, recall and accuracy are the widely used 

performance parameters in several retrieval applications. 

In order to access the performance of the proposed 

method, these performance parameters are evaluated in 

terms of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN), [31], [33], [34], 

[35]. True positive is defined as the number of defective 

periodic blocks identified as defective. True negative is 

defined as the number of defect-free periodic blocks 

 
Figure 3: Dendrogram obtained from cluster analysis of 

the matrix containing Jensen-Shannon divergence 

metrics obtained from the test image by cropping it from 

(a) top-left (b) bottom-left (c) top-right and (d) bottom-

right corners. Defective blocks identified from these 

cropped images are (8, 16, 27, 9, 17, 28, 24, 35, 53, 15, 

34, 52, 22, and 23), (8, 16, 27, 24, 35, 53, 9, 17, 28, 15, 

34, 52, 22, and 23), (28, 46, 17, 9, 8, 27, 45, 15, 16, 1, 

20, 2, 10, and 21) and (28, 46, 17, 9, 8, 27, 45, 15, and 

16).  

 
Figure 4: Defective periodic blocks identified from the 

cluster analysis of dissimilarity matrix derived from the 

Jensen-Shannon divergence metrics of the cropped 

images obtained from (a) top-left (b) bottom-left (c) top-

right and (d) bottom-right corners of the test image with 

their boundaries highlighted using white pixels.  

 
Figure 5: Defective periodic blocks identified from the 

cluster analysis of dissimilarity matrix derived from the 

Jensen-Shannon divergence metrics of the cropped 

images obtained from (a) top-left (b) bottom-left (c) top-

right and (d) bottom-right corners of the test image with 

their boundaries highlighted using white pixels. 

Illustration of defect fusion: (a) Boundaries of the 

defective blocks identified from each cropped image 

shown super-imposed on the original image; (b) 

Boundaries of the defective blocks shown separately on 

plain background; (c) Result of morphological filling; (d) 

Edges identified through Canny edge operator shown 

superimposed on original defective image using white 

pixels.  

 
Figure 6: Sample fabric images with defect - (a) broken 

end, (b) hole, (c) thin bar, (d) thick bar, (e) netting 

multiple, and (f) knot. 
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identified as defect-free. False positive is defined as the 

number of defect-free periodic blocks identified as 

defective. False negative is defined as the number of 

defective periodic blocks identified as defect-free. 

Precision is defined as the number of periodic blocks 

correctly labelled as belonging to the positive class 

divided by the total number of periodic blocks labelled as 

belonging to the positive class and is calculated as 

TP/(TP+FP). Recall is defined as the number of true 

positives divided by the sum of true positives and false 

negatives that are periodic blocks not labelled as 

belonging to the positive class but should have been and 

is calculated as TP/(TP+FN). Accuracy is the measure of 

success rate that takes into account the detection rates of 

defective and defect-free periodic blocks and is 

calculated as (TP+TN)/(TP+TN+FP+FN). These 

performance parameters are averaged for all cropped 

images and given in Table 1. The average precision, 

recall and accuracy for all the defective images (based on 

a total of 1764 number of periodic blocks) are 100%, 

83.6%, and 97.2% respectively. The accuracy of a few 

other methods available in literature for defect detection 

on patterned textures varies from 88% to 99% [36]. 

Relatively less recall rates in the proposed method 

indicate that there are few false negatives identified by 

the proposed method. However, as the proposed method 

yields high precision and accuracy, the proposed method 

can contribute to automatic inspection in industries such 

as fabric industries. In general, the computational time 

complexity of a full GLCM is O(M2N2). As the proposed 

method is based on reduced GLCM from 0-255 to 0-63, 

the time complexity is reduced by one-third. 

3 Conclusion 
In this paper, texture-periodicity and Jensen-Shannon 

divergence metrics have effectively been used for the 

development of the automated inspection on periodically 

patterned fabrics. Absence of training stage with defect-

free test samples for obtaining decision-boundaries or 

thresholds, unsupervised method of identifying defects 

using cluster analysis, and high success rates are the 

novelties of the proposed method. Thus, the proposed 

method can contribute to the development of 

computerized inspection and quality control in industries 

such as fabric industries.  
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