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Abstract. The spin-charge-family theory [1–11,14–22] predicts the existence of the fourth
family to the observed three. The 4 × 4 mass matrices manifest the symmetry SU(2) ×
SU(2) × U(1), determined on the tree level by the nonzero vacuum expectation values
of several scalar fields – the three singlets with the family members quantum numbers
(belonging to U(1)) and the two triplets with the family quantum numbers (belonging
to SU(2) × SU(2)) with the weak and the hyper charge of the standard model higgs field
(± 1

2
,∓ 1

2
, respectively). It is demonstrated, using the massless spinor basis, on several cases

that (why) the symmetry of 4× 4mass matrices remains the same in all loop corrections.

Povzetek. Teorija spinov-nabojev-družin [1–11,14–22] napove obstoj četrte družine k opazženim
trem. Masne matrike 4×4 kažejo simetrijo SU(2)×SU(2)×U(1), ki je na drevesnem nivoju
določena z neničelnimi vakuumskimi pričakovanimi vrednostmi več skalarnih polj — treh
singletov s kvantnimi števili družin (v U(1)) in dveh tripletov s kvantnimi števili družin (v
SU(2)× SU(2)), ki imajo šibki in hipernaboj higgsovega polja standardnega modela, (enak
± 1
2

in ∓ 1
2

). Avtorja pokažeta, da (zakaj) se v bazi brezmasnih spinorjev, v več primerih,
simetrija masnih matrik 4× 4 ohranja v vseh redih.

Keywords: Unifying theories, Beyond the standard model, Origin of families,
Origin of mass matrices of leptons and quarks, Properties of scalar fields, The
fourth family, Origin and properties of gauge bosons, Flavour symmetry, Kaluza-
Klein-like theories
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13.1 Introduction

The spin-charge-family theory [1–11,14–22] predicts before the electroweak break
four - rather than the observed three - coupled massless families of quarks and
leptons.
? E-mail: albino@esfm.ipn.mx
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The 4× 4mass matrices of all the family members demonstrate in this theory
the same symmetry [1,5,4,19,20], determined by the scalar fields: the two triplets —
the gauge fields of the two family groups S̃U(2)×S̃U(2) operating among families
— and the three singlets — the gauge fields of the three charges (Q,Q ′ and Y ′)
distinguishing among family members. All these scalar fields carry the weak and
the hyper charge as does the scalar of the standard model: (±1

2
and ∓1

2
, respec-

tively) [1,4,22].
Although there is no direct observations of the fourth family quarks masses

below 1 TeV, while the fourth family quarks with masses above 1 TeV would
contribute according to the standard model (the standard model Yukawa couplings
of the quarks with the scalar higgs is proportional to mα4

v
, wheremα4 is the fourth

family member (α = u, d) mass and v the vacuum expectation value of the scalar)
to either the quark-gluon fusion production of the scalar field (the higgs) or to the
scalar field decay too much in comparison with the observations, the high energy
physicists do not expect the existence of the fourth family members at all [23,24].

One of the authors (N.S.M.B) discusses in Refs. ([1], Sect. 4.2.) that the standard
model estimation with one higgs scalar might not be the right way to evaluate
whether the fourth family, coupled to the observed three, does exist or not. The
ui-quarks and di-quarks of an ith family, namely, if they couple with the opposite
sign (with respect to the ”±” degree of freedom) to the scalar fields carrying the
family (Ã, i) quantum numbers and have the same masses, do not contribute
to either the quark-gluon fusion production of the scalar fields with the family
quantum numbers or to the decay of these scalars into two photons:

The strong influence of the scalar fields carrying the family members quantum
numbers to the masses of the lower (observed) three families manifests in the huge
differences in the masses of the family members, let say ui and di, i = (1, 2, 3),
and families (i). For the fourth family quarks, which are more and more decoupled
from the observed three families the higher are their masses [20,19], the influence
of the scalar fields carrying the family members quantum numbers on their masses
is expected to be much weaker. Correspondingly the u4 and d4 masses become
closer to each other the higher are their masses and the weaker are their couplings
(the mixing matrix elements) to the lower three families. For u4-quarks and d4-
quarks with the similar masses the observations might consequently not be in
contradiction with the spin-charge-family theory prediction that there exists the
fourth family coupled to the observed three ([26], which is in preparation).

We demonstrate in the main Sect. 13.2 why the symmetry, which the mass
matrices demonstrate on the tree level, keeps the same in all loop corrections.

We present shortly the spin-charge-family theory and its achievements so far in
Sect. 13.4. All the mathematical support appears in appendices.

Let be here stressed what supports the spin-charge-family theory to be the
right next step beyond the standard model. This theory can not only explain - while
starting from the very simple action in d ≥ (13+ 1), Eqs. (13.20) in App. 13.4, with
the massless fermions (with the spin of the two kinds γa and γ̃a , one kind taking
care of the spin and of the charges of the family members (Eq. (13.2)), the second
kind taking care of the families (Eqs. (13.19, 13.35))) coupled only to the gravity
(through the vielbeins and the two kinds of the corresponding spin connections
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fields ωabαfαc and ω̃abαfαc, the gauge fields of Sab and S̃ab (Eqs. (13.20)) - all
the assumptions of the standard model, but also answers several open questions
beyond the standard model. It offers the explanation for [4–6,1,7–11,14–22]:
a. the appearance of all the charges of the left and right handed family members
and for their families and their properties,
b. the appearance of all the corresponding vector and scalar gauge fields and their
properties (explaining the appearance of higgs and Yukawa couplings),
c. the appearance and properties of the dark matter,
d. the appearance of the matter/antimatter asymmetry in the universe.

The theory predicts for the low energy regime:
i. The existence of the fourth family to the observed three.
ii. The existence of twice two triplets and three singlets of scalars, all with the
properties of the higgs with respect to the weak and hyper charges, what explains
the origin of the Yukawa couplings.
iii. There are several other predictions, not directly connected with the topic of
this paper.

The fact that the fourth family quarks have not yet been observed - directly or
indirectly - pushes the fourth family quarks masses to values higher than 1 TeV.

Since the experimental accuracy of the (3× 3 submatrix of the 4× 4) mixing
matrices is not yet high enough [30], it is not possible to calculate the mixing
matrix elements among the fourth family and the observed three. Correspondingly
it is not possible to estimate masses of the fourth family members by fitting
the experimental data to the parameters of mass matrices, determined by the
symmetry predicted by the spin-charge-family [20,19].

But assuming the masses of the fourth family members the matrix elements
can be estimated from the existing 3× 3 subamtrix of the 4× 4matrix.

The more effort and work is put into the spin-charge-family theory, the more
explanations of the observed phenomena and the more predictions for the future
observations follow out of it. Offering the explanation for so many observed phe-
nomena - keeping in mind that all the explanations for the observed phenomena
originate in a simple starting action - qualifies the spin-charge-family theory as the
candidate for the next step beyond the standard model.

The reader is kindly asked to learn more about the spin-charge-family theory
in Refs. [2–4,1,5,6] and the references there in. We shall point out sections in these
references, which might be of particular help, when needed.

13.2 The symmetry of family members mass matrices keeps
unchanged in all orders of loop corrections

It is demonstrated in this main section that the symmetry S̃U(2)× S̃U(2)×U(1) of
the mass term, which manifests in the starting action 13.20 of the spin-charge-family
theory [4,1,5,6], remains unchanged in all orders of loop corrections. The massless
basis will be used for this purpose.

Let us rewrite formally the fermion part of the starting action, Eq. (13.20),
in the way that it manifests, Eq. (13.1), the kinetic and the interaction term in
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d = (3+1) (the first line,m = (0, 1, 2, 3)), the mass term (the second line, s = (7, 8))
and the rest (the third line, t = (5, 6, 9, 10, · · · , 14)).

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (13.1)

where p0s = ps− 1
2
Ss
′s"ωs ′s"s−

1
2
S̃abω̃abs, p0t = pt− 1

2
St
′t"ωt ′t"t−

1
2
S̃abω̃abt

1,
with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers, presented on Table 13.3 of all the 2

7+1
2

−1 = 8 families, presented on Table 13.4.
The first line of Eq. (13.1) determines (in d = (3 + 1)) the kinematics and

dynamics of spinor (fermion) fields, coupled to the vector gauge fields. The gener-
ators τAi of the charge groups are expressible in terms of Sab through the complex
coefficients cAiab (the coefficients cAiab of τAi can be found in Eqs. (13.23, 13.24) 2,

τAi =
∑
a,b

cAiab S
ab , (13.2)

fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (13.3)

They represent the colour (τ3i), the weak (τ1i) and the hyper (Y) charges, as well
as the SU(2)II (τ2i) and U(1)II (τ4) charges, the gauge fields of these last two
groups gain masses interacting with the condensate, Table 13.5. The condensate
leaves massless, besides the colour and gravity gauge fields, the weak and the
hyper charge vector gauge fields. The corresponding vector gauge fields AAim are
expressible with the spin connection fieldsωstm Eq. (13.29)

AAim =
∑
s,t

cAist ω
st
m . (13.4)

The scalar gauge fields of the charges, Eq. (13.30), are expressible with the spin
connections and vielbeins [2].

1 If there are no fermions present, then either ωabc or ω̃abc are expressible by vielbeins
fαa [[2,5], and the references therein]. We assume that there are spinor fields which
determine spin connection fields – ωabc and ω̃abc. In general one would have [6]:
p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα − 1

2
Ss
′s"ωs ′s"α − 1

2
S̃abω̃abα. Since the term

1
2E

{pα, Ef
α
a}− does not influece the symmetry of mass matrices, we do not treat it in this

paper.
2 Before the electroweak break there are the conserved charges ~τ1, ~τ3 and Y := τ4 + τ23 ,

and the non conserved charge Y ′ := −τ4 tan2 ϑ2 + τ23 , where θ2 is the angle of the
break of SU(2)II from SU(2)I×SU(2)II×U(1)II to SU(2)I×U(1)I. After the electroweak
break the conserved charges are ~τ3 and Q := Y + τ13, the non conserved charge is
Q ′ := −Y tan2 ϑ1 + τ13, where θ1 is the electroweak angle.
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The groups SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II determine spin and
charges of fermions, the groups S̃O(3, 1), S̃U(2)I, S̃U(2)II and Ũ(1)II determine
family quantum numbers 3.

The generators of these groups are expressible by ˜Sab

τ̃Ai =
∑
a,b

cAiab S̃
ab , (13.5)

fulfilling again the commutation relations

{τ̃Ai, τ̃Bj}− = iδABfAijkτ̃Ak , (13.6)

while

{τAi, τ̃Bj}− = 0 . (13.7)

The scalar gauge fields of the groups S̃U(2)I, S̃U(2)I and U(1) are presented
in Eq. (13.30), the application of the generators of ~̃τ1, Eq. (13.26), ~̃NL, Eq. (13.25),
which distinguish among families and are the same for all the family members,
are presented in Eq. (13.12). The application of the family members generators
Q, Y, τ4 and Y ′ on the family members of any family is presented on Table 13.1.

R QL,R Y τ4L,R Y ′ Q ′ L Y Y ′ Q ′

uiR
2
3

2
3

1
6

1
2
(1 − 1

3
tan2 θ2) − 2

3
tan2 θ1 uiL

1
6
− 1
6

tan2 θ2 1
2
(1 − 1

3
tan2 θ1)

diR − 1
3
− 1
3

1
6
− 1
2
(1 + 1

3
tan2 θ2) 1

3
tan2 θ1 diL

1
6
− 1
6

tan2 θ2 − 1
2
(1 + tan2 θ1)

νiR 0 0 − 1
2

1
2
(1 + tan2 θ2) 0 νiL − 1

2
1
2

tan2 θ2 1
2
(1 + tan2 θ1)

eR −1 −1 − 1
2

1
2
(−1 + tan2 θ2) tan2 θ1 eL − 1

2
1
2

tan2 θ2 − 1
2
(1 − tan2 θ1)

Table 13.1. The quantum numbersQ, Y, τ4, Y ′, Q ′, Eq. (13.28), of the members of one family
(anyone) [6]. Left and right handed members of any family have the same Q and τ4, the
right handed members have τ13 = 0 and τ23 = 1

2
, while the left handed members have

τ13 = 1
2

and τ23 = 0.

There are in the spin-charge-family theory 2
(1+7)
2

−1 = 8 families, which split in
two groups of four families, due to the break of the symmetry from S̃O(1, 7) into
S̃O(1, 3)×S̃O(4). Each of these two groups manifests S̃U(2)

S̃O(1,3)
×S̃U(2)

S̃O(4)
[6].

These decoupled twice four families are presented in Table 13.4
The lowest of the upper four families, forming neutral clusters with respect

to the electromagnetic and colour charges, is the candidate to forms the dark
matter [18].

We discuss in this paper symmetry properties of the lower four families,
presented in Table 13.4 in the first four lines. We repeat in Table 13.2 the represen-
tation and the family quantum numbers of the left and right handed members of
the lower four families. Since any of the family members (uiL,R, diL,R, νiL,R, eiL,R)

3 S̃U(3) do not contribute to the families at low energies [34].
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behave equivalently with respect to all the operators concerning the family groups
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
, we use a common notation |ψi >.

The interaction, which is responsible for the appearance of masses of fermions,
is presented in in Eq. (13.1) in the second line

Lmass =
1

2

∑
+,−

{ψ†Lγ
0
78

(±) (−
∑
A

τAAA± −
∑
Ãi

τ̃AiAAi± )ψR}+ h.c. ,

τA = (Q,Q ′, Y ′) , τ̃Ai = ( ~̃NL, ~̃τ
1, τ̃4) ,

γ0
78

(±) = γ0 1
2
(γ7 ± i γ8) ,

AA± =
∑
st

cAstω
st
± , ωst± = ωst7 ∓ iωst8 ,

~̃AA± =
∑
ab

cAab ω̃
ab
± , ω̃ab± = ω̃ab7 ∓ i ω̃ab8 . (13.8)

In Eq. (13.8) the ps is left out since at low energies its contribution is negligible,
A determines operators, which distinguish among family members – (Q, Y, τ4),
the values are presented in Table 13.1 – (Ã, i) represent the family operators,
determined in Eqs. (13.25, 13.26, 13.27). The detailed explanation can be found in
Refs. [4,5,1].

Operators τAi are Hermitian, γ0
78

(±) = γ0
78

(∓). In what follows it is as-
sumed that the scalar fields AAis are Hermitian as well and consequently it follows
(AAi± )† = AAi∓ .

While the family operators τ̃1i and ÑiL commute with γ0
78

(±), the family

members operators (Y, Y ′, Q ′) do not, since S78 does not (S78γ0
78

(∓) = −γ0
78

(∓)
S78). However

[ψk†L γ
0
78

(∓) (Q,Q ′, Y ′)A(Q,Q ′,Y ′)
∓ ψlR]

† =

= ψl†R (Q,Q ′, Y ′)A
(Q,Q ′,Y ′)†
± γ0

78

(±) ψkL δk,l =

= ψl†R (QkR, Q
′k
R , Y

′k
R )A

(Q,Q ′,Y ′)
± ψkR δk,l , (13.9)

where (QkR, Q
′k
R , Y

′k
R ) denote the eigenvalues of the corresponding operators on

the spinor state ψkR. This means that we evaluate in both cases quantum numbers
of the right handed partners.

In Table 13.2 four families of spinors belonging to the group with the nonzero
values of ~̃NL and ~̃τ1 are presented in the technique 13.5. These are the lower four
families, presented in Table 13.4. There are indeed the four families of ψiuR and
ψiuL . All the 2

13+1
2

−1 members of the first family are represented in Table 13.3. The

scalar fields γ0
78

(∓) (Q,Q ′, Y ′) A(Q,Q ′,Y ′)
∓ are ”diagonal”; They transform a right

handed member of one family into the left handed member of the same family, or
they transform a left handed member of one family into the right handed member
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of the same family. These terms are different for different family members but the
same for all the families of the same family member.

We shall prove that the symmetry of mass term keep the same in all the orders of loop
corrections in the massless basis.

Since Q = (τ13 + τ23 + τ4) = (S56 + τ4), Y ′ = (−τ4 tan2 θ1 + τ23) and

Q ′ = (−(τ4 + τ23) tan2 θ1 + τ13), we can use as well the operators (γ0
78

(±) τ4A4±,

γ0
78

(±) τ23A23± , γ0
78

(±) τ13A13± ). In either case we denote the contributions of
these terms as −aα0

− aα0 =

= −
1

2
{ψi†L

∑
+,−

(γ0
78

(±) τ4A4±+γ0
78

(±) τ23A23± +γ0
78

(±) τ13A13± )ψjR}δ
ij+h.c.,

(13.10)

where α means that a particular family member ( α = (u, d, ν, e)) is studied. We
could make different superposition of these terms. Our proof does not depend on
this choice, although each family member has a different value for aα0 .

Transitions among families for any family member are caused by (ÑiL and τ̃1i), which
manifest the symmetry S̃UNL(2)× S̃Uτ1(2).

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

ψ1
uc1
R

03

(+i)
12

[+] |
56

[+]
78

(+) || · · · ψ1
uc1
L

−
03

[−i]
12

[+] |
56

[+]
78

[−] || · · · − 1
2

0 − 1
2

0 − 1
2

ψ2
uc1
R

03

[+i]
12

(+) |
56

[+]
78

(+) || . . . ψ2
uc1
L

−
03

(−i)
12

(+) |
56

[+]
78

[−] || · · · − 1
2

0 1
2

0 − 1
2

ψ3
uc1
R

03

(+i)
12

[+] |
56

(+)
78

[+] || · · · ψ3
uc1
L

−
03

[−i]
12

[+] |
56

(+)
78

(−) || · · · 1
2

0 − 1
2

0 − 1
2

ψ4
uc1
R

03

[+i]
12

(+) |
56

(+)
78

[+] || · · · ψ4
uc1
L

−
03

(−i)
12

(+) |
56

(+)
78

(−) || · · · 1
2

0 1
2

0 − 1
2

Table 13.2. Four families of the right handed uc1R and of the left handed uc1L quarks with
spin 1

2
and the colour charge (τ33 = 1/2, τ38 = 1/(2

√
3) (the definition of the operators

is presented in Eqs. (13.23,13.24) are presented (1st and 7th line in Table 13.3). A few
examples how to calculate the application of the operators on the states written as products
of nilpotents and projectors on the vacuum state can be found in Sect. 13.5. The spin and
charges, which distinguish among family members, are not shown in this table, since they
commute with ÑiL, τ̃1i and τ̃4, and are correspondingly the same for all the families.
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons
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03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 13.3. The left handed (Γ(13,1) = −1, Eq. (13.38)) multiplet of spinors — the members of the fundamental representation of theSO(13, 1)

group, manifesting the subgroup SO(7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons — is presented in the

massless basis using the technique presented in App. 13.5. It contains the left handed (Γ(3,1) = −1) weak (SU(2)I ) charged (τ13 = ± 1
2

, Eq. (13.23)),

and SU(2)II chargeless (τ23 = 0, Eq. (13.23)) quarks and leptons and the right handed (Γ(3,1) = 1, Sect. 13.5) weak (SU(2)I ) chargeless and

SU(2)II charged (τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). Quarks distinguish from leptons only

in the SU(3) × U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)], Eq. (13.24))

carrying the ”fermion charge” (τ4 = 1
6

, Eq. (13.24)). The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the left
handed weak (SU(2)I) chargeless and SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I ) charged and SU(2)II
chargeless anti-quarks and anti-leptons. Anti-quarks distinguish from anti-leptons again only in theSU(3)×U(1) part: Anti-quarks are anti-triplets, carrying

the ”fermion charge” (τ4 = − 1
6

). The anti-colourless anti-leptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the

electromagnetic charge isQ = (τ13 +Y). The states of opposite charges (anti-particle states) are reachable from the particle states (besides bySab ) also by
the application of the discrete symmetry operatorCN PN , presented in Refs. [41,42] and in Sect. 13.5. The vacuum state, on which the nilpotents and projectors
operate, is not shown. The reader can find this Weyl representation also in Refs. [5,14,15,4] and in the references therein.

Taking into account Table 13.3 and Eqs. (13.34, 13.43) one easily finds what

do operators γ0
78

(±) do on the left handed and the right handed members of any
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family i = (1, 2, 3, 4).

γ0
78

(−) |ψiuR,νR > = −|ψiuL,νL > ,

γ0
78

(+) |ψiuL,νL > = |ψiuR,νR > ,

γ0
78

(+) |ψidR,eR > = |ψidL,eL > ,

γ0
78

(−) |ψidL,eL > = |ψidR,eR > . (13.11)

We need to know also what do operators (τ̃1± = τ̃11 ± i τ̃12, τ̃13) and (Ñ±L =

Ñ1L ± i Ñ2L, Ñ3L) do when operating on any member (uL,R, νL,R, dL,R, eL,R) of a
particular family ψi, i = (1, 2, 3, 4).

Taking into account, Eqs. (13.32, 13.33, 13.43, 13.45, 13.36, 13.25, 13.26),

Ñ±L = −

03

(̃∓i)
12

(̃±) , τ̃1± = (∓)
56

(̃±)
78

(̃∓) ,

Ñ3L =
1

2
(S̃12 + i S̃03) , τ̃13 =

1

2
(S̃56 − S̃78) ,

ab

(̃−k)
ab

(k) = −i ηaa
ab

[k] ,

ab

(̃k)
ab

(k)= 0 ,

ab

(̃k)
ab

[k] = i
ab

(k) ,

ab

(̃k)
ab

[−k]= 0 ,

ab

(̃k) =
1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab

[̃k] =
1

2
(1+

i

k
γ̃aγ̃b) , (13.12)

one finds

Ñ+
L |ψ1 > = |ψ2 > , Ñ+

L |ψ2 >= 0 ,

Ñ−
L |ψ2 > = |ψ1 > , Ñ−

L |ψ1 >= 0 ,

Ñ+
L |ψ3 > = |ψ4 > , Ñ+

L |ψ4 >= 0 ,

Ñ−
L |ψ4 > = |ψ3 > , Ñ−

L |ψ3 >= 0 ,

τ̃1+ |ψ1 > = |ψ3 > , τ̃1+ |ψ3 >= 0 ,

τ̃1− |ψ3 > = |ψ1 > , τ̃1− |ψ1 >= 0 ,

τ̃1− |ψ4 > = |ψ2 > , τ̃1− |ψ2 >= 0 ,

τ̃1+ |ψ2 > = |ψ4 > , τ̃1+ |ψ4 >= 0 ,

Ñ3L |ψ
1 > = −

1

2
|ψ1 > , Ñ3L |ψ

2 >= +
1

2
|ψ2 > ,

Ñ3L |ψ
3 > = −

1

2
|ψ3 > , Ñ3L |ψ

4 >= +
1

2
|ψ4 > ,

τ̃13 |ψ1 > = −
1

2
|ψ1 > , τ̃13 |ψ2 >= −

1

2
|ψ2 > ,

τ̃13 |ψ3 > = +
1

2
|ψ3 > , τ̃13 |ψ4 >= +

1

2
|ψ4 > . (13.13)

Let the scalars (Ã
NL±
(±) , ÃNL3(±) , Ã

1±
(±), Ã

13
(±)) be the scalar gauge fields of the operators

(Ñ±L , Ñ3L, τ̃1±, τ̃13), respectively. Here Ã(±) = Ã7 ∓ i Ã8 for all the scalar gauge
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fields, while Ã
NL±
(±) = 1

2
(ÃNL1(±) ∓i Ã

NL2
(±) ), respectively, and Ã

1±
(±) =

1
2
(Ã11(±)∓i Ã

1
(±)),

respectively. All these fields can be expressed by ω̃abc, as presented in Eq. (13.30).
We are prepared now to calculate the mass matrix elements for any of the

family members. Let us notice that the operators γ0
78

(∓), as well as the operators
of spin and charges, distinguish between |ψiL > and |ψiR >. Correspondingly all
the diagrams must have an odd number of contribution.

We use the massless basis |ψiL,R >. We shall simplify the calculation by making
a choice of the 1√

2
(|ψiL > +|ψiR >), keeping in mind that we must have an odd

number of contributions
We can calculate the mass matrix for any family member using Eqs. (13.13). Be-

low we present the mass matrix on the tree level, where (ã1, ã2, aα) represent the
vacuum expectation values of 1

2
1√
2
(Ã1̃3(+)+Ã

1̃3
(−)),

1
2
1√
2
(ÃÑL3(+) +ÃÑL3(−) ), 1√

2
(Aα(+)+

Aα(−)), respectively and where toAα(±) the sum of τ4αA4(±), τ
13αA13(±) and τ23αA23(±),

Eq. (13.10), is contributing.

We use the notation < Ã
ÑL± >= 1√

2
(< Ã

ÑL±
(+) > + < Ã

ÑL±
(−) >) and <

Ã
1̃±
>= 1√

2
(< Ã

1̃±
(+) > + < Ã

1̃±
(−) >), since we use the basis 1√

2
(|ψiL > +|ψiR >).

On the tree level is the contribution to the matrix elements < ψ1|..|ψ4 >,
< ψ2|..|ψ3 >,< ψ3|..|ψ2 > and< ψ4|..|ψ1 > equal to zero. One can come, however,
from < ψ1|..|ψ4 > in three steps (not two, due to the left right jumps in each step):

< ψ4|
∑

+,− τ̃
1̃±
Ã
1̃± ∑

k |ψ
k >< ψk|

∑
+,− Ñ

±
L Ã

ÑL± |ψ4 > < ψ4| (ã1 + ã2 +

aα)|ψ4 >, there are all together six such terms, since the diagonal term appears also
at the beginning as (−ã1− ã2+aα) and in the middle as (ã1− ã2+aα), and since

the operators
∑

+,− τ̃
1̃±
Ã
1̃± and

∑
+,− Ñ

±
L Ã

ÑL± appear in the opposite order
as well. Summing all this six terms for each of four matrix elements (< 1|..|4 >,
< 2|..|3 >, < 3|..|2 >, < 4|..|1 >) we find:

< 1|..|4 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 2|..|3 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 3|..|2 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 4|..|1 > = 6aα < Ã1̃� >< ÃÑL� > . (13.14)

These matrix elements are presented in Eq. (13.15).

αM(o) = −ã1−ã2+a
α <ÃÑL�> <Ã1̃�> 6aα<Ã1̃�ÃÑL�>

<ÃÑL�> −ã1+ã2+a
α 6aα<Ã1̃�ÃÑL�> <Ã1̃�>

<Ã1̃�> 6aα<Ã1̃�ÃÑL�>b ã1−ã2+a
α <ÃÑL�>

6aα<Ã1̃�ÃÑL�> <Ã1̃�> <ÃÑL�> ã1+ã2+a
α


(13.15)

One notices that the diagonal terms have on the tree level the symmetry <
ψ1|..|ψ1 > + < ψ4|..|ψ4 >= aα = < ψ2|..|ψ2 > + < ψ3|..|ψ3 > and that in
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the off diagonal elements in next order to zero the contribution of the fields,
which depend on particular family member α = (u, d, ν, e) enter. We also notice
that < ψi|..|ψj >†=< ψj|..|ψi >. In the case that < Ã1̃� >=< Ã1̃� >= e and
< ÃÑL� >=< ÃÑL� >= d, which would mean that all the matrix elements are
real, the mass matrix simplifies to

Mα
(o) =


−ã1 − ã2 + a

α d e 6aαed

d −ã1 + ã2 + a
α 6aαed e

e 6aαed ã1 − ã2 + a
α d

6aαed e d ã1 + ã2 + a
α

 .

(13.16)

13.2.1 Mass matrices beyond the tree level

To make a proof that the symmetry S̃U(2)× S̃U(2) × U(1) of the mass matrix,
presented in Eq. (13.15), is kept in all orders of loop corrections, we need to proof
only that at each order the matrix element, let say, < 1|..|2 > (in Eq. (13.15) this
matrix element is equal to < ÃÑL� >) remains equal to < 3|..|4 > in all orders,
while < 2|..|1 > remains to be equal to < 1|..|2 >†=< 4|..|3 > (=< ÃÑL� >). These
should be done for all the matrix elements appearing in Eq. (13.15.

a. It is not difficult to see that each of the diagonal terms (τ̃1̃3 < Ã1̃3 >,
Ñ3L < Ã

ÑL3 >, τA < AA >, with τA = τ4, τ13, τ23) have the property that the
sum of the contributions x+ xxx+ xxxxx+ ... (in all orders) keeps the symmetry
of the tree level. Let us check for τ̃1̃3 < Ã1̃3 >. One obtains for each of the four
families i = [1, 2, 3, 4] the values [−ã1(1+(−ã1)2+(−ã1)4+. . . ),−ã1(1+(−ã1)2+

(−ã1)4+. . . ), ã1(1+(ã1)2+(ã1)4+. . . ), ã1(1+(ã1)2+(ã1)4+. . . )], which we call
[−ã1, −ã1, ã1, ã1] for the four families i = [1, 2, 3, 4], respectively. Correspondingly
one finds for the same kind of diagrams for Ñ3L < Ã

ÑL3 > the four values [−ã2,
ã2, −ã2, ã2] for the four families i = [1, 2, 3, 4], respectively. While for τAAA we
obtain, when summing over the diagrams x+ xxx+ xxxxx+ ..., the same value aα

for a particular family member α = (u, d, ν, e) all four families. Family members
properties enter in the left/right basis 1√

2
(|ψiL > +|ψiR > into the mass matrix only

through aα.
One reproduces that the sum of < 1|..|1 > + < 4|..|4 >=< 2|..|2 > + < 3|..|3 >

Correspondingly it is not difficult to see that all the matrix elements, not
only diagonal but also off diagonal, keep the symmetry of the mass matrix of
Eq. (13.15) in all orders of corrections, provided that the matrix elements of the
kind αã1 + βã2 + aα — or of the kind in the αã1 + βã2 + aα — appears in
the diagrams in first power only. Here (α,β) are ±1, they are determined by
the eigenvalues of the operators τ̃1̃3 (for ã1) and Ñ3L (for ã2), respectively, on a
particular family, Eq. (13.13).
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b. Let us add to the diagonal terms the loop corrections. Let us evaluate,
using the massless basis |ψi >= 1√

2
(|ψiL > +|ψiR >), the contribution:

< ψi|
∑

−,+,�,�,j

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψj >

< ψj|
∑
−,+

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψj >

< ψj|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψi > . (13.17)

One finds for i = [1, 2, 3, 4] the values [Ã1̃�Ã1̃�(ã1−ã2+aα) +ÃÑL�ÃÑL�(−ã1+
ã2+aα), Ã1̃�Ã1̃�(ã1+ã2+aα) +ÃÑL�ÃÑL�(−ã1−ã2+aα), Ã1̃�Ã1̃�(−ã1−ã2+
aα) +ÃÑL�ÃÑL�(+ã1+ ã2+aα), Ã1̃�Ã1̃�(−ã1+ ã2+aα) +ÃÑL�ÃÑL�(+ã1−
ã2 + aα)], respectively, which again has the symmetry of the tree level state
< 1| . . . |1 > + < 4| . . . |4 >=< 2| . . . |2 > + < 3| . . . |3 >.

One can make three such loops, or any kind of loops in any order of loop
corrections with one (αã1 + βã2 + aα) and the symmetry of tree level state
< 1| . . . |1 > + < 4| . . . |4 >=< 2| . . . |2 > + < 3| . . . |3 > is manifested.

c. Let us look at the loop corrections to the off diagonal terms < 1| . . . |2 >,<
1| . . . |3 >,< 2| . . . |4 >,< 3| . . . |4 >, as well as their complex conjugate values.

Let us evaluate, using the massless basis |ψi >= 1√
2
(|ψiL > +|ψiR >), the

contribution:

< ψ4|
∑

−,+,�,�,j,k

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψj >

< ψj|
∑
−,+

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψk >

< ψk|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψ2 >

+ < ψ4|
∑

−,+,�,�,j

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψ4 >

< ψ4|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψj >

< ψj|
∑

−,+,�,�

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψ2 > . (13.18)

One obtains for this term < 4|...|2 >= < Ã1̃� > {ÃÑL�ÃÑL� + |ÃÑL3|2 +

|Ã1̃3|2 + |τAAA|2}, which is equal to the equivalent loop correction term for the
matrix element < 3|...|1 >.

Checking the loop corrections for the off diagonal elements < 1| . . . |2 >

,< 1| . . . |3 >,< 2| . . . |4 >,< 3| . . . |4 > in all loop corrections one finds that the
symmetry of these off diagonal terms is kept in all orders.
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d. There are still the terms < 1| . . . |4 >,< 2| . . . |3 >,< 3| . . . |2 > and
< 4| . . . |1 > to be checked in loop corrections. Adding loop corrections in the
way we did in c. we find that also these matrix elements keep the symmetry of
Eq. (13.15).

13.3 Conclusions

We demonstrate in this contribution on several cases that the matrix elements of
mass matrices 4 × 4, predicted by the spin-charge-family theory for each family
member α = (u, d, ν, e) to have the symmetry S̃U(2) ˜SO(4)1+3

× S̃U(2) ˜SO(4)"weak"
×

U(1) on the tree level, keeps this symmetry in all loop corrections. The first to
groups concern the family groups, the last one concern the family members group.

The only dependence of the mass matrix on the family member (α = (u, d, ν, e))
quantum numbers is on the tree level through the vacuum expectation values

of the operators γ0
78

(±) QAQ± , γ0
78

(±) Q ′AQ
′

± and γ0
78

(±) τ4A4±, appearing on
a tree level in the diagonal terms of the mass matrix only and are the same for
each of four families — I4×4a

α, I is the unite matrix. In the loop corrections these
operators enter into all the off diagonal matrix elements, causing the difference in
the masses of the family members. The right handed neutrino, which is the regular
member of the four families, Table 13.3, has the nonzero value of the operator
τ4A4± only (while the family part of the mass matrix is on the tree level the same
for all the members).

We demonstrate on several cases, why does the symmetry of the mass matrix,
which shows up on the tree level, remain in the loop corrections in all orders.

Although we are not (yet) able to calculate these matrix elements, the pre-
dicted symmetry will enable to predict masses of the fourth family (to the ob-
served three), since the 3× 3 submatrix of the 4× 4matrix determines 4× 4matrix
uniquely [19,4]. We only must wait for accurate enough data for mixing matrices
of quarks and leptons to predict, using the symmetry of mass matrices predicted
by the spin-charge-family, the masses of the fourth family quarks and leptons.

13.4 APPENDIX: Short presentation of the spin-charge-family
theory

This subsection follows similar sections in Refs. [1,4–7].
The spin-charge-family theory [1–11,14–22] assumes:

A. A simple action (Eq. (13.20)) in an even dimensional space (d = 2n, d > 5), d
is chosen to be (13+ 1). This choice makes that the action manifests in d = (3+ 1)

in the low energy regime all the observed degrees of freedom, explaining all the
assumptions of the standard model, as well as other observed phenomena.

There are two kinds of the Clifford algebra objects, γa’s and γ̃a’s in this theory
with the properties.

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 . (13.19)
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Fermions interact with the vielbeins fαa and the two kinds of the spin-connection
fields -ωabα and ω̃abα - the gauge fields of Sab = i

4
(γa γb − γb γa) and S̃ab =

i
4
(γ̃a γ̃b − γ̃b γ̃a), respectively.

The action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (13.20)

in which p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα,

and
R =

1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c.

4, introduces two kinds of the Clifford algebra objects, γa and γ̃a, {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+. fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote
flat indices, Greek letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) de-
note the corresponding indices in (0, 1, 2, 3), while (s, t, ..) and (σ, τ, ..) denote the
corresponding indices in d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (13.21)

E = det(eaα).
B. The spin-charge-family theory assumes in addition that the manifoldM(13+1)

breaks first into M(7+1) × M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)),
affecting both internal degrees of freedom - the one represented by γa and the one
represented by γ̃a. Since the left handed (with respect toM(7+1)) spinors couple
differently to scalar (with respect toM(7+1)) fields than the right handed ones, the
break can leave massless and mass protected 2((7+1)/2−1) families [34]. The rest of
families get heavy masses 5.
C. There is additional breaking of symmetry: The manifold M(7+1) breaks
further intoM(3+1)×M(4).
D. There is a scalar condensate (Table 13.5) of two right handed neutrinos with
the family quantum numbers of the upper four families, bringing masses of the
scale ∝ 1016 GeV or higher to all the vector and scalar gauge fields, which interact
with the condensate [5].
E. There are the scalar fields with the space index (7, 8) carrying the weak (τ1i)
and the hyper charges (Y = τ23+τ4, τ1i and τ2i are generators of the subgroups of

4 Whenever two indexes are equal the summation over these two is meant.
5 A toy model [34,35] was studied in d = (5 + 1) with the same action as in Eq. (13.20).

The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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232 N.S. Mankoč Borštnik and A. Hernández-Galeana

SO(4), τ4 and τ3i are the generators of U(1)II and SU(3), respectively, which are
subgroups of SO(6)), which with their nonzero vacuum expectation values change
the properties of the vacuum and break the weak charge and the hyper charge.
Interacting with fermions and with the weak and hyper bosons, they bring masses
to heavy bosons and to twice four groups of families. Carrying no electromagnetic
(Q = τ13 + Y) and colour (τ3i) charges and no SO(3, 1) spin, the scalar fields leave
the electromagnetic, colour and gravity fields in d = (3+ 1) massless.

The assumed actionA and the assumpions offer the explanation for the origin
and all the properties o. of the observed fermions:

o.i. of the family members, on Table 13.3 the family members, belonging to
one Weyl (fundamental) representation of massless spinors of the group SO(13, 1)
are presented in the ”technique” [9–11,14–16,12,13] and analyzed with respect to
the subgroups SO(3, 1), SU(2)I, SU(2)II, SU(3), U(1)II), Eqs. (13.22, 13.23, 13.24),
with the generators τAi =

∑
s,t c

Ai
st S

st,
o.ii.of the families analyzed with respect to the subgroups S̃O(3, 1), S̃U(2)I,

S̃U(2)II, Ũ(1)II), with the generators τ̃Ai =
∑
ab c

Ai
ab S̃

st, Eqs. (13.25, 13.26,
13.27), are presented on Table 13.4, all the families are singlets with respect to
S̃U(3),

oo.i. of the observed vector gauge fields of the charges

SU(2)I, SU(2)II, SU(3), U(1)II)

discussed in Refs. ([1,4,2], and the references therein), all the vector gauge fields
are the superposition of theωstm, AAim =

∑
s,t c

Ai
stωstm, Eq. vect

oo.ii. of the Higgs’s scalar and of the Yukawa couplings, explainable with the
scalar fields with the space index (7, 8), there are two groups of two triplets, which
are scalar gauge fields of the charges τ̃Ai, expressible with the superposition of
the ω̃abs,AAim =

∑
a,b c

Ai
abωabs and three singlets, the gauge fields ofQ,Q ′, S ′,

Eqs. (13.28), all with the weak and the hyper charges as assumed by the standard
model for the Higgs’s scalars,

oo.iii. of the scalar fields explaining the origin of the matter-antimatter asym-
metry, Ref. [5],

oo.iv. of the appearance of the dark matter, there are two decoupled groups
of four families, carrying family charges ( ~̃NL, ~̃τ1) and ( ~̃NR, ~̃τ2), Eqs. (13.25, 13.26),
both groups carry also the family members charges (Q,Q ′, Y ′), Eq. (13.28).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab (= i

2
(γaγb − γbγa), {Sab, Scd}− = −i(ηadSbc + ηbcSad − ηacSbd −

ηbdSac)) for the spin

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (13.22)
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for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4),

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (13.23)

for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two groups
are subgroups of SO(6),

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (13.24)

τ4 is the ”fermion charge”, while the hyper charge Y = τ23 + τ4.
The generators of the family quantum numbers are the superposition of

the generators S̃ab (S̃ab = i
4
{γ̃a, γ̃b}−, {S̃ab, S̃cd}− = −i(ηadS̃bc + ηbcS̃ad −

ηacS̃bd − ηbdS̃ac), {S̃ab, Scd}− = 0. One correspondingly finds the generators of
the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (13.25)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (13.26)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1). One finds for the infinitesimal generator τ̃4 of Ũ(1)
originating in S̃O(6) the expression

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) . (13.27)

The operators for the charges Y and Q of the standard model, together with
Q ′ and Y ′, and the corresponding operators of the family charges Ỹ, Ỹ ′, Q̃, Q̃ ′ are
defined as follows:

Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q := τ13 + Y , Q ′ := −Y tan2 ϑ1 + τ13 ,

Ỹ := τ̃4 + τ̃23 , Ỹ ′ := −τ̃4 tan2 ϑ2 + τ̃23 , Q̃ := Ỹ + τ̃13 , Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃13 .

(13.28)
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The families split into two groups of four families, each manifesting the

S̃U(2)× S̃U(2)×U(1),

with the generators of of the infinitesimal transformations ( ~̃NL, ~̃τ1, Q,Q ′, Y ′) and
( ~̃NR, ~̃τ2, Q,Q ′, Y ′), respectively. The generators ofU(1) group (Q,Q ′, Y ′), Eq. 13.28,
distinguish among family members and are the same for both groups of four
families, presented on Table 13.4, taken from Ref. [4].

The vector gauge fields of the charges ~τ1, ~τ2, ~τ3 and τ4 follow from the
requirement

∑
Ai τ

AiAAim =
∑
s,t

1
2
Sstωstm and the requirement that τAi =∑

a,b cAiab S
ab, Eq. (13.2), fulfilling the commutation relations {τAi, τBj}− =

iδABfAijkτAk, Eq. (13.3). Correspondingly we find AAim =
∑
s,t cAist ω

st
m,

Eq. (13.4), with (s, t) either in (5, 6, 7, 8) or in (9, . . . , 14).
The explicit expressions for these vector gauge fields in terms ofωstm are as

follows

~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) ,

AQm = ω56m − (ω9 10m +ω11 12m +ω13 14m) ,

AYm = (ω56m +ω78m) − (ω9 10m +ω11 12m +ω13 14m) ,

~A3m = (ω9 12m −ω10 11m,ω9 11m +ω10 12m,ω9 10m −ω11 12m,

ω9 14m −ω10 13m,ω9 13m +ω10 14m,ω11 14m −ω12 13m,

ω11 13m +ω12 14m,
1√
3
(ω9 10m +ω11 12m − 2ω13 14m)) ,

A4m = (ω9 10m +ω11 12m +ω13 14m) . (13.29)

Allωstm vector gauge fields are real fields. Here the fields contain the coupling
constants which are not necessarily the same for all of them. In the case that the
coupling constants would be the same, than the angles θ22 and θ21 would be equal
to one, which is not the case (at least sin21 ≈ 0.22.)

One obtains in a similar way the scalar gauge fields, which determine mass
matrices of family members. They carry the space index s = (7, 8).

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANLs = (ω̃23s + iω̃01s, ω̃31s + iω̃02s, ω̃12s + ω̃03s) ,

~̃ANRs = (ω̃23s − iω̃01s, ω̃31s − iω̃02s, ω̃12s − iω̃03s) ,

AQs = ω56s − (ω9 10s +ω11 12s +ω13 14s) ,

AYs = (ω56s +ω78s) − (ω9 10s +ω11 12s +ω13 14s)

A4s = −(ω9 10s +ω11 12s +ω13 14s) . (13.30)

All ωsts ′ , ω̃sts ′ , (s, t, s ′) = (5, ·, 14), ω̃i,j,s ′ and i ω̃0,s ′ , (i, j) = (1, 2, 3) scalar
gauge fields are real fields.
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The theory predicts, due to commutation relations of generators of the in-
finitesimal transformations of the family groups, S̃U(2)I ×S̃U(2)I and S̃U(2)II
×S̃U(2)II, the first one with the generators ~̃NL and ~̃τ1, and the second one with
the generators ~̃NR and ~̃τ2, Eqs. (13.25,13.26), two groups of four families.

The theory offers (so far) several predictions:
i. several new scalars, those coupled to the lower group of four families —

two triplets and three singlets, the superposition of (~̃A1s , ~̃ANLs and AQs , AYs , A4s ,
Eq. (13.30) — some of them to be observed at the LHC ([1,5,4],

ii. the fourth family to the observed three to be observed at the LHC ([1,5,4]
and the references therein),

iii. new nuclear force among nucleons built from the quarks of the upper four
families.

The theory offers also the explanation for several phenomena, like it is the
”miraculous” cancellation of thestandard model triangle anomalies [3].

The breaks of the symmetries, manifesting in Eqs. (13.22, 13.25, 13.23, 13.26,
13.24, 13.27), are in the spin-charge-family theory caused by the scalar condensate of
the two right handed neutrinos belonging to one group of four families, Table 13.5,
and by the nonzero vacuum expectation values of the scalar fields carrying the
space index (7, 8) (Refs. [4,1] and the references therein). The space breaks first to
SO(7, 1) ×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×
U(1)II, what explains the connections between the weak and the hyper charges
and the handedness of spinors [3].

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 13.5. This table is taken from [5]. The condensate of the two right handed neutrinos
νR, with the VIIIth family quantum numbers, coupled to spin zero and belonging to a
triplet with respect to the generators τ2i, is presented together with its two partners. The
right handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1,
Ñ3R = 1, Ñ3L = 0, Ỹ = 0, Q̃ = 0. The τ̃31 = 0. The family quantum numbers are presented in
Table 13.4.

The stable of the upper four families is the candidate for the dark matter, the
fourth of the lower four families is predicted to be measured at the LHC.

13.5 APPENDIX: Short presentation of spinor
technique [1,4,10,12,13]

This appendix is a short review (taken from [4]) of the technique [10,40,12,13], initi-
ated and developed in Ref. [10] by one of the authors (N.S.M.B.), while proposing
the spin-charge-family theory [2,4,5,7,8,1,14,15,9–11,16–22]. All the internal degrees
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of freedom of spinors, with family quantum numbers included, are describable
with two kinds of the Clifford algebra objects, besides with γa’s, used in this
theory to describe spins and all the charges of fermions, also with γ̃a’s, used in
this theory to describe families of spinors:

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (13.31)

We assume the “Hermiticity” property for γa’s (and γ̃a’s) γa† = ηaaγa (and
γ̃a† = ηaaγ̃a), in order that γa (and γ̃a) are compatible with (13.31) and formally
unitary, i.e. γa † γa = I (and γ̃a †γ̃a = I). One correspondingly finds that (Sab)† =
ηaaηbbSab (and (S̃ab)† = ηaaηbbS̃ab).

Spinor states are represented as products of nilpotents and projectors, formed
as odd and even objects of γa’s, respectively, chosen to be the eigenstates of a
Cartan subalgebra of the Lorentz groups defined by γa’s

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (13.32)

where k2 = ηaaηbb. We further have [4]

γa
ab

(k): =
1

2
(γaγa +

ηaa

ik
γaγb) = ηaa

ab

[−k] ,

γa
ab

[k]: =
1

2
(γa +

i

k
γaγaγb) =

ab

(−k) ,

γ̃a
ab

(k): = −i
1

2
(γa +

ηaa

ik
γb)γa = −iηaa

ab

[k] ,

γ̃a
ab

[k]: = i
1

2
(1+

i

k
γaγb)γa = −i

ab

(k) ,

(13.33)

where we assume that all the operators apply on the vacuum state |ψ0〉. We define

a vacuum state |ψ0 > so that one finds <
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1.

We recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .

(13.34)

The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (13.35)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .



i
i

“proc17” — 2017/12/11 — 19:44 — page 238 — #252 i
i

i
i

i
i
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One can easily check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigen-
states” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (13.36)

where the vacuum state |ψ0〉 is meant to stay on the right hand sides of projectors

and nilpotents. This means that multiplication of nilpotents
ab

(k) and projectors
ab

[k] by Sab get the same objects back multiplied by the constant 1
2
k, while S̃ab

multiply
ab

(k) by k
2

and
ab

[k] by (−k
2
) (rather than by k

2
). This also means that when

ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the obtained states
are the eigenvectors of Sab.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with nilpotents and
projectors of Eq. (13.32), the technique offers an elegant way to see all the quantum
numbers of states with respect to the two Lorentz groups, as well as transformation
properties of the states under the application of any Clifford algebra object.

Recognizing from Eq.(13.35) that the two Clifford algebra objects (Sab, Scd)
with all indexes different commute (and equivalently for (S̃ab, S̃cd)), we select
the Cartan subalgebra of the algebra of the two groups, which form equivalent
representations with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 . (13.37)

The choice of the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group — the handedness Γ ({Γ, Sab}− = 0)
(as well as Γ̃ ) in any d = 2n

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ̃ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγ̃a), if d = 2n . (13.38)

We understand the product of γa’s in the ascending order with respect to the index
a: γ0γ1 · · ·γd. It follows from the Hermiticity properties of γa for any choice of
the signature ηaa that Γ † = Γ, Γ2 = I.( Equivalent relations are valid for Γ̃ .) We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) (while for d odd it commutes with γa ({γa, Γ }− = 0)).

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd 6. For
d even we simply make a starting state as a product of d/2, let us say, only

6 For d odd the basic states are products of (d − 1)/2 nilpotents and a factor (1± Γ).
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nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eqs.(13.37,
13.35)), applying it on an (unimportant) vacuum state. Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (13.39)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We could make
a choice of the simplest one, taking all phases equal to one. (In order to have the
usual transformation properties for spinors under the rotation of spin and under
CN PN ,some of the states must be multiplied by (−1).)

The above representation demonstrates that for d even all the states of one
irreducible Weyl representation of a definite handedness follow from a starting

state, which is, for example, a product of nilpotents
ab

(kab), by transforming all

possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1.

While Sab, which do not belong to the Cartan subalgebra (Eq. (13.37)), gen-
erate all the states of one representation, S̃ab, which do not belong to the Cartan
subalgebra (Eq. (13.37)), generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (13.37)) of the algebra Sab

and S̃ab: (S03, S12, S56, S78, S9 10, S11 12, S13 14 ), (S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12,
S̃13 14 ), a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan
subalgebra, representing a weak chargeless uR-quark with spin up, hyper charge
(2/3) and colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ0〉 . (13.40)
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This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (13.37)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (13.37)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (13.40) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (13.40) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)= −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) .

(13.41)

One can find both states in Table 13.4, the first uR as uR8 in the eighth line of this
table, the second one as uR7 in the seventh line of this table.

Below some useful relations follow. From Eq.(13.34) one has

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (13.42)

We conclude from the above equation that S̃ab generate the equivalent representa-
tions with respect to Sab and opposite.

We recognize in Eq. (13.43) the demonstration of the nilpotent and the projec-

tor character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively.

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(13.43)

Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) ,

ab
˜[±i]= 1

2
(1± γ̃aγ̃b),

ab
˜[±1]= 1

2
(1± iγ̃aγ̃b).



i
i

“proc17” — 2017/12/11 — 19:44 — page 241 — #255 i
i

i
i

i
i

13 The Symmetry of 4× 4Mass Matrices Predicted by. . . 241

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 .

(13.44)

Below some more useful relations [14] are presented:

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (13.45)

In Table 13.4 [4] the eight families of the first member in Table 13.3 (member
number 1) of the eight-plet of quarks and the 25th member in Table 13.3 of the
eight-plet of leptons are presented as an example. The eight families of the right
handed u1R quark are presented in the left column of Table 13.4 [4]. In the right
column of the same table the equivalent eight-plet of the right handed neutrinos
ν1R are presented. All the other members of any of the eight families of quarks or
leptons follow from any member of a particular family by the application of the
operators N±R,L and τ(2,1)±, Eq. (13.45) on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8), the two groups of four families become massive. The lowest
of the two groups of four families contains the observed three, while the fourth
remains to be measured. The lowest of the upper four families is the candidate for
the dark matter [1].
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3. N.S. Mankoč Borštnik, H.B.F. Nielsen, Fortschrite der Physik, Progress of Physics (2017)
1700046.
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13. N.S. Mankoč Borštnik, H.B.F. Nielsen, J. of Math. Phys. 44 4817 (2003) [hep-th/0303224].
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22. N.S. Mankoč Borštnik, ”The spin-charge-family theory explains why the scalar Higgs
carries the weak charge ± 1

2
and the hyper charge ∓ 1

2
”, Proceedings to the 17th Work-

shop ”What Comes Beyond the Standard Models”, Bled, July 20 - 28, 2014, p.163-182,
[arxiv:1409.7791, arxiv:1212.4055].

23. A. Ali in discussions and in private communication at the Singapore Conference on
New Physics at the Large Hadron Collider, 29 February - 4 March 2016.

24. M. Neubert, in discussions at the Singapore.



i
i

“proc17” — 2017/12/11 — 19:44 — page 243 — #257 i
i

i
i

i
i

13 The Symmetry of 4× 4Mass Matrices Predicted by. . . 243

25. A. Lenz, Advances in High Enery Physics 2013, ID 910275.
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