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Abstract. The spin-charge-family theory [1-11,14-22] predicts the existence of the fourth
family to the observed three. The 4 x 4 mass matrices manifest the symmetry SU(2) x
SU(2) x U(1), determined on the tree level by the nonzero vacuum expectation values
of several scalar fields — the three singlets with the family members quantum numbers
(belonging to U(1)) and the two triplets with the family quantum numbers (belonging
to SU(2) x SU(2)) with the weak and the hyper charge of the standard model higgs field
(3, F 3, respectively). It is demonstrated, using the massless spinor basis, on several cases
that (why) the symmetry of 4 x 4 mass matrices remains the same in all loop corrections.

Povzetek. Teorija spinov-nabojev-druZin [1-11,14-22] napove obstoj Cetrte druZine k opazZenim
trem. Masne matrike 4 x 4 kaZejo simetrijo SU(2) x SU(2) x U(1), ki je na drevesnem nivoju
dolocena z nenicelnimi vakuumskimi pri¢akovanimi vrednostmi vec skalarnih polj — treh
singletov s kvantnimi Stevili druzin (v U(1)) in dveh tripletov s kvantnimi stevili druzin (v
SU(2) x SU(2)), ki imajo $ibki in hipernaboj higgsovega polja standardnega modela, (enak
i% in :F%)- Avtorja pokaZeta, da (zakaj) se v bazi brezmasnih spinorjev, v ve¢ primerih,
simetrija masnih matrik 4 x 4 ohranja v vseh redih.
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13.1 Introduction

The spin-charge-family theory [1-11,14-22] predicts before the electroweak break
four - rather than the observed three - coupled massless families of quarks and
leptons.
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The 4 x 4 mass matrices of all the family members demonstrate in this theory
the same symmetry [1,5,4,19,20], determined by the scalar fields: the two triplets —
the gauge fields of the two family groups SU(2)xSU(2) operating among families
— and the three singlets — the gauge fields of the three charges (Q,Q’ and Y’)
distinguishing among family members. All these scalar fields carry the weak and
the hyper charge as does the scalar of the standard model: (j:% and :F%/ respec-
tively) [1,4,22].

Although there is no direct observations of the fourth family quarks masses
below 1 TeV, while the fourth family quarks with masses above 1 TeV would
contribute according to the standard model (the standard model Yukawa couplings
of the quarks with the scalar higgs is proportional to mT‘{‘x, where m is the fourth
family member (x = u, d) mass and v the vacuum expectation value of the scalar)
to either the quark-gluon fusion production of the scalar field (the higgs) or to the
scalar field decay too much in comparison with the observations, the high energy
physicists do not expect the existence of the fourth family members at all [23,24].

One of the authors (N.S.M.B) discusses in Refs. ([1], Sect. 4.2.) that the standard
model estimation with one higgs scalar might not be the right way to evaluate
whether the fourth family, coupled to the observed three, does exist or not. The
ui-quarks and d;-quarks of an i*" family, namely, if they couple with the opposite
sign (with respect to the 7" degree of freedom) to the scalar fields carrying the
family (A,1) quantum numbers and have the same masses, do not contribute
to either the quark-gluon fusion production of the scalar fields with the family
quantum numbers or to the decay of these scalars into two photons:

The strong influence of the scalar fields carrying the family members quantum
numbers to the masses of the lower (observed) three families manifests in the huge
differences in the masses of the family members, let say u; and d;, 1 = (1,2, 3),
and families (i). For the fourth family quarks, which are more and more decoupled
from the observed three families the higher are their masses [20,19], the influence
of the scalar fields carrying the family members quantum numbers on their masses
is expected to be much weaker. Correspondingly the u4 and d4 masses become
closer to each other the higher are their masses and the weaker are their couplings
(the mixing matrix elements) to the lower three families. For u4-quarks and d4-
quarks with the similar masses the observations might consequently not be in
contradiction with the spin-charge-family theory prediction that there exists the
fourth family coupled to the observed three ([26], which is in preparation).

We demonstrate in the main Sect. 13.2 why the symmetry, which the mass
matrices demonstrate on the tree level, keeps the same in all loop corrections.

We present shortly the spin-charge-family theory and its achievements so far in
Sect. 13.4. All the mathematical support appears in appendices.

Let be here stressed what supports the spin-charge-family theory to be the
right next step beyond the standard model. This theory can not only explain - while
starting from the very simple actionin d > (13 + 1), Egs. (13.20) in App. 13.4, with
the massless fermions (with the spin of the two kinds y® and ¥¢ , one kind taking
care of the spin and of the charges of the family members (Eq. (13.2)), the second
kind taking care of the families (Egs. (13.19, 13.35))) coupled only to the gravity
(through the vielbeins and the two kinds of the corresponding spin connections
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fields Wapaf™e and @qpaf*c, the gauge fields of S° and 54° (Egs. (13.20)) - all
the assumptions of the standard model, but also answers several open questions
beyond the standard model. It offers the explanation for [4-6,1,7-11,14-22]:
a. the appearance of all the charges of the left and right handed family members
and for their families and their properties,
b. the appearance of all the corresponding vector and scalar gauge fields and their
properties (explaining the appearance of higgs and Yukawa couplings),
c. the appearance and properties of the dark matter,
d. the appearance of the matter/antimatter asymmetry in the universe.

The theory predicts for the low energy regime:
i. The existence of the fourth family to the observed three.
ii. The existence of twice two triplets and three singlets of scalars, all with the
properties of the higgs with respect to the weak and hyper charges, what explains
the origin of the Yukawa couplings.
iii. There are several other predictions, not directly connected with the topic of
this paper.

The fact that the fourth family quarks have not yet been observed - directly or
indirectly - pushes the fourth family quarks masses to values higher than 1 TeV.

Since the experimental accuracy of the (3 x 3 submatrix of the 4 x 4) mixing
matrices is not yet high enough [30], it is not possible to calculate the mixing
matrix elements among the fourth family and the observed three. Correspondingly
it is not possible to estimate masses of the fourth family members by fitting
the experimental data to the parameters of mass matrices, determined by the
symmetry predicted by the spin-charge-family [20,19].

But assuming the masses of the fourth family members the matrix elements
can be estimated from the existing 3 x 3 subamtrix of the 4 x 4 matrix.

The more effort and work is put into the spin-charge-family theory, the more
explanations of the observed phenomena and the more predictions for the future
observations follow out of it. Offering the explanation for so many observed phe-
nomena - keeping in mind that all the explanations for the observed phenomena
originate in a simple starting action - qualifies the spin-charge-family theory as the
candidate for the next step beyond the standard model.

The reader is kindly asked to learn more about the spin-charge-family theory
in Refs. [2—4,1,5,6] and the references there in. We shall point out sections in these
references, which might be of particular help, when needed.

13.2 The symmetry of family members mass matrices keeps
unchanged in all orders of loop corrections

It is demonstrated in this main section that the symmetry §f1(2) X §f1(2) x U(1) of
the mass term, which manifests in the starting action 13.20 of the spin-charge-family
theory [4,1,5,6], remains unchanged in all orders of loop corrections. The massless
basis will be used for this purpose.

Let us rewrite formally the fermion part of the starting action, Eq. (13.20),
in the way that it manifests, Eq. (13.1), the kinetic and the interaction term in
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d = (3+1) (the first line, m = (0, 1, 2, 3)), the mass term (the second line, s = (7, 8))
and the rest (the third line, t = (5,6,9,10,--- , 14)).

Ib,y Z gAlTAlAAI).q)
ALl

{)  Iv'pos ¥} +

s=7,8

{ Z Dy por 1}, (13.1)

t=5,6,9,...,14
where pos = ps — 3% % Wy g — 18P D aps, Por = pr— 35 YW — 18P Dape |,
with m € (0,1,2,3), s € (7,8), (s',s") € (5,6,7,8), (a,b) (appearing in $2P)

run within either (0,1,2,3) or (5,6, 7, 8), t runs € (5,...,14), (t/,t") run either
€ (5,6,7,8) or € (9,10,...,14). The spinor function 1 represents all family mem-
bers, presented on Table 13.3 of all the 2“3 ~1 = § families, presented on Table 13.4.

The first line of Eq. (13.1) determines (in d = (3 + 1)) the kinematics and
dynamics of spinor (fermion) fields, coupled to the vector gauge fields. The gener-
ators ™" of the charge groups are expressible in terms of $@° through the complex
coefficients cA o, (the coefficients ¢t 41, of T*1 can be found in Egs. (13.23,13.24) 2,

A= My S0, (13.2)

fulfilling the commutation relations
(T B = (sAB ATk AK (13.3)

They represent the colour (t3%), the weak (t'") and the hyper (Y) charges, as well
as the SU(2)11 (t2Y) and U(1); (T4) charges, the gauge fields of these last two
groups gain masses interacting with the condensate, Table 13.5. The condensate
leaves massless, besides the colour and gravity gauge fields, the weak and the
hyper charge vector gauge fields. The corresponding vector gauge fields A\" are
expressible with the spin connection fields wgim Eq. (13.29)

AN =) Mty (13.4)

The scalar gauge fields of the charges, Eq. (13.30), are expressible with the spin
connections and vielbeins [2].

! If there are no fermions present, then either wapc Or Wavc are expressible by vielbeins
%o [[2,5], and the references therein]. We assume that there are spinor fields which
determine spin connection fields — wqape and wqbc In general one would have [6]:
Poa = f*aPox + ;—E{plx,Ef“a},, Pox = Pa — 785 s Wgrgng — —Sabwab[X Since the term
;—E{pa, Ef*q}_ does not influece the symmetry of mass matrices, we do not treat it in this
paper.

2 Before the electroweak break there are the conserved charges 7, B and Y =1 + %3
and the non conserved charge Y’ := —t*tan® 9, + 1**, where 0, is the angle of the
break of SU(2) 11 from SU(2)1 x SU(2)1rx U(1)11 to SU(2)1 x U(1)1. After the electroweak
break the conserved charges are © and Q = Y + 1'?, the non conserved charge is
Q ==-Y tan® &1 + '3, where 0; is the electroweak angle.
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The groups SO(3,1), SU(3), SU(Z)I, SU(Z) 11 and U(1); determine spin and
charges of fermions, the groups SO(3 1), SU(Z)I, STJ(Z)H and fl(] )11 determine
family quantum numbers 3.

The generators of these groups are expressible by Sab

~AL _ Z CAiab gab , (13.5)

fulfilling again the commutation relations
(FAL D) = AP FATRAK (13.6)
while
(A B =o0. (13.7)

The scalar gauge fields of the groups §tl(2)1, §ﬁ(2)1 and U(1) are presented
in Eq. (13.30), the application of the generators of ©', Eq. (13.26), N, Eq. (13.25),
which distinguish among families and are the same for all the family members,
are presented in Eq. (13.12). The application of the family members generators
Q,Y; ¥ and Y’ on the family members of any family is presented on Table 13.1.

R[Qur| Y[l & Y’ QT 1LY Y’ Q’
uk % % % %(1 — %tani 02) —%tani& ui % —%tani 95 %(1 tan 01)
% —% —% % —% (1+ %tan 02) %tan 0, dt % —%tan 0 %(1 +tan 01)
vi| 0| 0| —3| 3(1+tan’6;) O|vi|—3| I tan?02| 1(1+tan®0,)
er| —1[—1 f% %(71 +tan’ 0,) tan® 01| er f% %tan2 0> %(1 —tan” 01)

Table 13.1. The quantum numbers Q, Y, Y, Q’, Eq. (13.28), of the members of one family
(anyone) [6]. Left and right handed members of any family have the same Q and t*, the
right handed members have 3 =0and 1?3 = %, while the left handed members have
% =land ¥ =0.

= 8 families, which split in
two groups of four families, due to the break of the symmetry from SO(1 7) into
SO(1 3) ><SO( ). Each of these two groups manifests SU(Z)SO 13) ><SU( )so [6]
These decoupled twice four families are presented in Table 13. 4

The lowest of the upper four families, forming neutral clusters with respect
to the electromagnetic and colour charges, is the candidate to forms the dark
matter [18].

We discuss in this paper symmetry properties of the lower four families,
presented in Table 13.4 in the first four lines. We repeat in Table 13.2 the represen-
tation and the family quantum numbers of the left and right handed members of
the lower four families. Since any of the family members (uj g, di ¢, Vi g, € g)

3 ﬁl(?)) do not contribute to the families at low energies [34].
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behave equivalently with respect to all the operators concerning the family groups
S u(2)50 1,3)

The 1r1teraction, which is responsible for the appearance of masses of fermions,
is presented in in Eq. (13.1) in the second line

X SU(Z) (4)» We use a common notation [Pp* >

1 78 . .
Lmass =3 2 _W{v° (£) (=) AL =Y PAN ) +he.,
e A Ai
= (Q»Q/)Y/)) ;fAi:(ﬁLa%]afA)»
0 78 0]
Y () =v 3

A A st st st - st
A :E Cet W4, W x=WwW"7F1W" g,

(v +iv®),

Ai\ :Z Céb (Dabi, (I)abi Za)ab7$ ia)abg. (13.8)

In Eq. (13.8) the p; is left out since at low energies its contribution is negligible,
A determines operators, which distinguish among family members - (Q, Y, %),
the values are presented in Table 13.1 — (A, 1) represent the family operators,
determined in Egs. (13.25, 13.26, 13.27). The detailed explanation can be found in
Refs. [4,5,1].

) 78 78
Operators T ' are Hermitian, y° (+) = y° (). In what follows it is as-

sumed that the scalar fields A2'! are Hermitian as well and consequently it follows
(ARHT = Aéi.
) . 78
While the family operators 11 and N} commute with vy (), the family
78 78
members operators (Y, Y/, Q’) do not, since S8 does not (S78y° (F) = —y° (F)

S78). However

WEY® () 1Q, Q1 YIAR QY bt =

g (Q,Q/,Y/)A(Q’Q Y 0 ( )q’kékl —
Y QK QF, YE) ALY pk s, ) (13.9)

where (Q¥, QrF, YZ<) denote the eigenvalues of the corresponding operators on
the spinor state k. This means that we evaluate in both cases quantum numbers
of the right handed partners.

In Table 13.2 four families of spinors belonging to the group with the nonzero
values of Ni and ©' are presented in the technique 13.5. These are the lower four
families presented in Table 13.4. There are indeed the four families of 1}, , and

.- All the 2727~

! members of the first family are represented in Table 13.3. The

scalar fields v° ( ) (Q,Q,Y) A Q QY are “diagonal”; They transform a right
handed member of one family 1nto the left handed member of the same family, or
they transform a left handed member of one family into the right handed member
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of the same family. These terms are different for different family members but the
same for all the families of the same family member.
We shall prove that the symmetry of mass term keep the same in all the orders of loop
corrections in the massless basis.
Since Q = (t"3 + 12 + 1% = ($°° +1%), Y = (—1* tan? 07 + 123) and
78
Q' = (—(t* + 123) tan? 07 + t'3), we can use as well the operators (Y° (£) t* A%,

78 78
YO () T3 A%, v° (£) '3 Al3). In either case we denote the contributions of
these terms as —a§

_agc:

1 . 78 78 78 S
=50 ) (0 (F) ALY (B) AT 0 () TP AP WY+,
+,—
(13.10)

where « means that a particular family member ( o« = (u, d, v, e)) is studied. We
could make different superposition of these terms. Our proof does not depend on
this choice, although each family member has a different value for a§.

Transitions among families for any family member are caused by (N} and £11), which

manifest the symmetry SUy, (2)x SU (2).

PRI NEN NER
03 12 56 78 03 12 56 78
Y [(F) I E) [l | = I -3 0-3 0—3
R 03 12 56 78 t 03 12 56 78
V2 [ T HE e = (D THE -3 003 0—3
R 03 12 56 78 t 03 12 56 78
S |(F)H (B H Wl | = U (B () -] 3 0-F 0-—3
R 03 12 56 78 t 03 12 56 78
d)ickl [ () () - - witl —(EHHE ] 20 3 01

Table 13.2. Four families of the right handed ug' and of the left handed u¢! quarks with
spin % and the colour charge (33 =172, v*® = 1/(2V/3) (the definition of the operators
is presented in Eqs. (13.23,13.24) are presented (1°* and 7' line in Table 13.3). A few
examples how to calculate the application of the operators on the states written as products
of nilpotents and projectors on the vacuum state can be found in Sect. 13.5. The spin and
charges, which distinguish among family members, are not shown in this table, since they
commute with N{, '* and ¥*, and are correspondingly the same for all the families.
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T v > P T [sT2[[< T3 [<23[[<33] <38 [ -2 Y[ o
(Anti)octet, T(7H>T) — (—1y1, 1(6) = (1) —1
of (anti)quarks and (anti)leptons
tfug! Shda 2SS T e 1 szl 3lssl 4] 3| 3
2|ug! a0 T Y R B 1
c1 03 12 56 78 910 1112 1314 ] ] ] ] ] 1 ]
3lag (FD) (D) = =) 1 Tho -3 2|55 5|33
c1 03' 12 56 78 910 1112 1314 ] ] ] 1 ] ] 1
4)a§ Qe I e [ S A O I = R A =i
_ c1 03_ 12 56 78 910 1112 1314 1 ] 1 1 1 1 1
5laf U (=) R ) = =) -1 Szl ol 2| s lel &%
c1 03 12 56 78 210 1112 13 14 ] ] 1 1 1 1 1
slagt|| —(+0) (D1 () P10 = =) S IR A A A
7wl — Sl e Y A 1 Szl oll 2| s e] ¢ 2
c1 03 12 56 78 210 1112 1314 ] ] 1 1 ] 2
8|u¢ (+0) () TH = () =) =) 1 2ol 2|25l & 3
9lug? IRl e RN A G 1 1 o X Tl 1] 1 2! 2
22 03 910 1112 1314 ] ] ] 2V3 ? 5 3
10| uf [ () T+ I =+ =1 1 —5|| 0 2| 35| ® s
1lag? LA AL A 1 RN Ak i
12| ag? G S WY Y RN A 1
c2 03 12 56 78 910 1112 1314 ] ] 1 ] ] 1 ]
13)ag R S i G R T I 1 SU-2l o |2 25| el &%
c2 03' 12 56 78 910 1112 1314 ] ] ] 1 ] ] 1
1|ag?|| — (+0) (D1 () (P 1=+ =) e IR I A A
15luf?|| — L AN A R 1 T3 = L 2
16[ug? SHE ST A e sl RN < L 2
17| ug3 oA W2 T Y ! sl lz)lol—A18] 3 3
¢3 03 12 56 78 910 1112 1314 ] 1 ] ] 2 2
18| uf [ (=) T+ () I =1 (=] (+) 1 =5l oz ol -5 | % 2 3%
c3 03 12 56 78 910 1112 1314 ] ] 1 ] ] ]
19|a§ (D) (D T 1= () 1 Thol=3o| 5| s|-3-3
c3 03 12 56 78 910 1112 1314 ] ] 1 ] ] ]
20[dg = (D) 1 (D= = () o= o= o o5 | & |3 %
c3 03 12 56 78 910 1112 13 14 ] ] 1 ] 1 ]
21)a¢ U () (= = () -1 T3l -5 || -3
c3 03' 12 56 78 910 1112 1314 ] ] ] 1 1 1
2[af3 || — (+) (D) (D) (B 11— (= (+) il 1 A R v 2 A O
c3 03_ 12 56 78 9210 1112 13 14 1 1 ] 1 1 2
B|uf B R S s s [ e s N ' -1 Sl &K+ ¢ 3
c3 12 5( 78 9210 1112 13 14 ] 1 ] 1 2
24 uy (+l) (=) [ [+ =10 =] [—] (+) -1 21 z 0 0 v sl 3
03 12 7 910 1112 1314
25| VR (D [H T ) () () () 1 % 0 % 0 0 7% ol o
03 12 56 78 210 1112 1314 ] ] ]
26| vi T I (B (H) (4 (+) 1 =3 o |+ ] o o |3 of o
03 12 56 78 210 1112 1314 1 7 ]
27| ep (+1) [+ | (=) =11 (+)  (+) (+) 1 ba 0 S| ©° 0 - 1 1
03 12 56 78 210 1112 13 14 ] ] ]
28| eg [ () | (D) [ (5 (+)  (+) 1= o |2 o o |31
03_ 12 56 78 9210 1112 13 14 1 ] 1 1
29| e U H | () (O (H) () () -1 L= 0 o |=F|[-F[
03_ 12 56 78 910 1112 1314 ] ] 1 1
0|er || (DI (DI (H () () 1 |=F| 3] oo o |=F|—F|
03 9210 1112 1314 ] ] 1 1
31 v — (=i [+ [+ =] I () (+) (+) -1 > > 0 0 0 —>|l—= 0
03 12 56 78 910 1112 1314
2| v (FO) (D L H (5 (0 () 4 =3 T oo o |-I][-3%] o
1 03_ 12 56 10 1112 13 14 1 ] ] ] ] ] 1
3|ag [—1) (4] | [+ (+) L 1 Tl 2|23l 3 3
Sc Torraz a3 1 1 1 1 1 R
3laf GO T TR S el RN v i A
slafl]| — ST EETA T A U A . S I 1 | v | 1 3
- 1 1112 14
slag || — GO & DT WY TR S N R A vt e A
-l 03 12 56 78 210 1112 1314 1 1 ] ] 1 1 1
7|ag (O AT (1) () 1 1] -5is|-2l-%]| %
38 ac—] 7[g33 IE 56 7j§ 910 1112 1314 1 1 IR 1l 1
38|ag (D) I H =TT () () 1 5| o el A
1 03 12 56 78 910 1112 1314 1 ] ] ] 1 1 5
39|ag (D) () BT+ () 1 I A A e e e

Continued on next page
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i B T3 T [sT2[[< T3 [<23[[<33] <38 [ 4 Y[ o
(Anti)octet, T(7>T) — (—1y1, 1(8) — (1) —1
of (anti)quarks and (anti)leptons
’40 ag! ‘ S ST TR H 1 ‘ %H %‘ 0 H %‘ 213‘ %H ls‘ %‘
o2 03 12 56 78 910 1112 1314 ] ] ] ] ] ] ]
a|a¢ [ LR () ) = () - sl 3| 2|75 ¢l 3| 3
2 03 12 56 78 910 1112 1314 B ] ] ] ] ] ]

2lag (FD ()T H () = () S R R e

wlaf2|| — A ES T A - o =3l ¥ |—7im %33

alag2(| — AT DT T EN ] 4 =1 o 2] ¢ el et e 1

Y 03 12 56 78 910 1112 1314 ] ] ] ] ] ] ]
45)ag (FD (0 = () 1 Tl 2]l 2| 555l ¢ 3
Y 03 12 56 78 210 1112 13 14 . ] ] ] ] ] ]
dag?|| — (= () I H =+ =] (+) I AR A v i
o 03 12 56 78 910 1112 1314 B 1 1 T T T B
7|ag (FOH (D) (B IR = (5 1 -2l 2|55 ¢l %3
slag2| S0 Y 1 I R e e e
3 03 12 56 78 910 1112 1314 ] ] ] ] ] ]
w|ag [ () 1) () T B sllol 3o o5 |-%| 3| 3
3 03 12 56 78 910 1112 13 14 B ] ] ] ] ]

50(dy (D) () T [H () I+ (+H) [—] -1 -7 0 > 0 - |- @ 1 3

silafd|l — TR ST R B - Tl o [=L]] o = %33

s2|afd| — GO A RS e e

3 03 12 56 78 910 1112 13 14 ] ] ] ] ] ]
53|ag (FD = () () =) 1 3ol 5 | ¢l ¢ 3
3 03 12 56 78 210 1112 1314 1 B 1 T T 1
54/ df — [ (=) T [H () () [—] 1 51 7 0 0 -5 | sll-s| 3
5 03 12 56 78 910 12 13 14 1 1 1 T T B
55|ap (FD [+ T (B I+ (H) [—] 1 > 5| 0 0 e < <%
3 03 12 56 78 910 1112 1314 1 1 1 T T B
56| ag (S (D 1) (B 1)+ -] o= |l=z] ol o] g5 |-%|-%|3
03 12 56 78 910 1112 1314
57| ey (i) [ L R I =T = T 1 T o[ 3] o 0 ¥ 1o
03 12 56 78 910 1112 1314
58| ep (FD) (D) T (D) T [ T A =30 [T o 0 ¥ 1
03 12 56 78 910 1112 1314
59| v — [l [+ [ (=) [—=] I [—] [—] [—] -1 % 0 7% 0 0 % 0 )
B 03 12 56 78 910 1112 1314 1 ] ]
60| v — (1) (=) | () [=] ]| [] [—] [—] -1 —7 0 |—5 0 0 b 0 0
- 03 12 56 78 910 1112 1314 1 1 B T
61| vg (+1) [+] | (=) (+) |I [—] [—] [—] 1 s ||==7]0 0 0 b b 0
- 03 12 56 78 910 1112 13 14 1 f 1 1
62| vg || — [ (D) [ ()R I [=] (=] (-] 1 | =F[|-F[ o] o o |3 ¥ o
B 03 12 56 78 910 1112 1314 ] ] ] ]
63| eR (+i) [+] | [+] [=] | [—] [—] [—] 1 > b 0 0 0 b > 1
B 03 12 56 78 910 1112 1314 B ] ] ]

64) e [—i) () | (=) (=] (=) =) 1 |=FF]ofo 0 S| | 0
Table 13.3. Thelefthanded (1 (13:7) — 1, Eq. (13.38)) multiplet of spinors — the members of the fundamental representation of the S O (13, 1)
group, manifesting the subgroup SO (7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons — is presented in the
massless basis using the technique presented in App. 13.5. It contains thelefthanded(l"(?"]) = —T1)weak (SU(2))charged (113 = j:%,Eq. (13.23)),

and SU(2) | chargeless (t23 = 0, Eq. (13.23)) quarks and leptons and the right handed (I (3:1) = 1, Sect. 13.5) weak (S U (2) 1) chargeless and
SU(2)yg charged (’t2 3 -+ %) quarks and leptons, both with the spin S 12 up and down (£ %, respectively). Quarks distinguish from leptons only

inthe SU(3) x U (1) part: Quarks are triplets of three colours (¢ ' = (33, v38) = (1, 2‘—\/3), -1, 2]—\/5), (0, 7%)]/&1.(13.24))

carrying the “fermion charge” (T 4 = %, Eq. (13.24)). The colourless leptons carry the “fermion charge” (T 4= _ % ). The same multiplet contains also the left
handed weak (S U (2) 1) chargeless and S U (2) | charged anti-quarks and anti-leptons and the right handed weak (S U (2) 1) chargedand SU (2) 1
chargeless anti-quarks and anti-leptons. Anti-quarks distinguish from anti-leptons again only in the S U (3 ) X U (1) part: Anti-quarks are anti-triplets, carrying

the “fermion charge” (14 = 7%). The anti-colourless anti-leptons carry the “fermion charge” (’r4 = %). Y = (23 4+ 1%)isthe hyper charge, the

electromagnetic chargeis Q = (T 13 4 Y). The states of opposite charges (anti-particle states) are reachable from the particle states (besides by S ¢ ) also by
the application of the discrete symmetry operator C nr P os, presented in Refs. [41,42] and in Sect. 13.5. The vacuum state, on which the nilpotents and projectors
operate, is not shown. The reader can find this Weyl representation also in Refs. [5,14,15,4] and in the references therein.

Taking into account Table 13.3 and Egs. (13.34, 13.43) one easily finds what
78
do operators Y° (£) do on the left handed and the right handed members of any
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family i = (1,2, 3,4).

78

Yo (=) Wiy ve

78
1

Yo () gy

o 78 ,
Y0 (4) Wy,

78

¥ (=) Wby, e,
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> = _|II)LL>VL >
> = Wi, ve >
€Rr > = N)}ibeL >’

> . (13.11)

> = |1I)1&R)5R

We need to know also what do operators (t'* = #'" +1%'2, '3) and (N =
N] £1iN?, N?) do when operating on any member (ur g, Vi g, di g, €L,r) Of a

particular family ¥, i = (1,2,3,4).

Taking into account, Egs. (13.32,

13.33,13.43, 13.45, 13.36, 13.25, 13.26),

03 12 56 78
NE = — (Fi)(3), TE=(F) (D)),
_ 1 ~ ~
N% _ (SIZ +lSO3) ’f13 — E (556 878),
/9\1_3/ ab ab 9\9 ab
(—k) (k) = —in*® [k], (k) (k)= 0,
f‘\éab . ab ab ab
(k) K =1 (k), (k) [=k]= 0,
L naa A
_ _ (~a ~ b _ _ - ~agb
(k)—z(v +ikv), (k] 2(1+kvv), (13.12)
one finds
Nf! > =[p? >, Nf?>=o0,
Ny > =[p' >, Nypp' >=0,
Nfp? > =pp* >, Nfpp* >=0,
NC W > =Rp® >, N’ >=0,
A > =0 >, AT >=0,
A s = >, 2! >=0,
Rt > = >, 2 >=0,
> =t >, Tt >=0,
5 1 i 1
NP > =—5 ' >, Nijp? >=+-1p? >,
1 N 1
NERW? > = =5 >, Ni ! >=+ 1" >,
1 1
! > —Eltb‘ >, &Pt >= —i\tbz >,
1 1
3 > +5 [ A +5 Wt > . (13.13)

iV AN 2 H
Let the scalars (A(i) ,A(iL) ,A(i),A(

i)) be the scalar gauge fields of the operators

(NE, N3, 1%, £13), respectively. Here A1) = A7 F 1A for all the scalar gauge
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N ~ ~ ) <1 ~ =
fields, while /Z\HEL)E =1 (A&L)l Fi AE[L)Z), respectively, and AE) =1 (Agi)¢1 Agi)),
respectively. All these fields can be expressed by @ g, as presented in Eq. (13.30).

We are prepared now to calculate the mass matrix elements for any of the
78
family members. Let us notice that the operators y° (), as well as the operators

of spin and charges, distinguish between [t > and [} >. Correspondingly all
the diagrams must have an odd number of contribution.

We use the massless basis N)L r >. We shall simplify the calculation by making
a choice of the 7 (Wt > +hpk >), keeping in mind that we must have an odd
number of contributions

We can calculate the mass matrix for any family member using Egs. (13.13). Be-
low we present the mass matrix on the tree level, where (d1, d2, ay) represent the
vacuum expectation values of f (A13 +A13 ), ; 7 (ANL3 ANL3) 7 (A"‘+
A ), respectively and where to A%, the sum of T4°‘A4 ) 11 3“Agi) and T23“A%i),
Eq. (13.10), is contributing.

1 N Lg N LE

We use the notation < A o >= (<AL >+ < ;\(7)

> >) and <

1% >= 75 (< A g >+ < A:% >), since we use the basis —= (Ilj)1 > +hpk >).
On the tree level is the contribution to the matrix elements < P p* >
< P23 >, < P3l..p? >and < P?|..hp! > equal to zero. One can come, however,
from < Y'[..p* > in three steps (not two, due to the left right jumps in each step):

<z, tBAB mowr sc vz, IANB s <@ +an +
a®)p? >, there are all together six such terms, since the diagonal term appears also
at the beginning as (—d; — d, + a*) and in the middle as (a7 — @, + a®), and since

the operators ) | %T% AT% and 3 | N%ANL% appear in the opposite order
as well. Summing all this six terms for each of four matrix elements (< 1/..][4 >,
< 2.3 >, < 3]..12 >, < 4]..]1 >) we find:

<1.Jd>=6a <AB>< 5>,
<2l.3>=6a% < A'E > < ANtH -
<3l2>=6a% <A'B > < ANB 5
<41 >=6a% <ATF > < ANE 5 (13.14)
These matrix elements are presented in Eq. (13.15).
29 —
M(O) -
—d;—dz+a® <ANLB- <ATB> 6a*<ATBANIE S
<ANLES —ar+ata®  6a*<ATEANLES <A'B>
<;.}1EH>_ 6a“<A1B?ANLE>b dr—daz+a® <ANLBES
6a*<ATEANLE <ATHS <ANLES d)+dr+a*

(13.15)

One notices that the diagonal terms have on the tree level the symmetry <
P > + < PHL? >= a* = < P2Lp? > + < P3P > and that in
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the off diagonal elements in next order to zero the contribution of the fields,
which depend on particular family member « = (u, d, v, e) enter. We also notice
that < lb L. >T=< PI|..p! >. In the case that < A1E' >=< A8 >— ¢ and

< ANIB Ss—c ANB 5= d, which would mean that all the matrix elements are
real, the mass matrix simplifies to

—ay) — 4y +a% d e 6a%ed
M — d —a; +d; +a” 6a%ed e
(O e 6a*ed a; —dp + a” d
6a%ed e d a; +d +a”

(13.16)

13.2.1 Mass matrices beyond the tree level

To make a proof that the symmetry STl(Z)x §lvl(2) x U(1) of the mass matrix,
presented in Eq. (13.15), is kept in all orders of loop corrections, we need to proof
only that at each order the matrix element, let say, < 1/..]2 > (in Eq. (13.15) this
matrix element is equal to < ANtZ >) remains equal to < 3|..[4 > in all orders,
while < 2[..]T > remains to be equal to < 1]..|2 >t=< 4.3 > (=< ANtE ). These
should be done for all the matrix elements appearing in Eq. (13.15.

a. It is not difficult to see that each of the diagonal terms (713 < AT3 >,
N3 < AN 5 1A < AA > with T = 1%, 1'3,12%) have the property that the
sum of the contributions x 4+ xxx + xxxxx + ... (in all orders) keeps the symmetry
of the tree level. Let us check for ©'> < AT3 >. One obtains for each of the four
families i = [1,2, 3,4] the values [—a' (1+(—a')2+(—a')*+...),—a' (1+(—a')?+
(—a")y*+..0),a 1+ (@) +(@H)*+...),a' (1+(a")?+(a')*+...)l, which we call
[—a!, —a', &', 3] for the four families i = [1, 2, 3,4], respectively. Correspondingly
one finds for the same kind of diagrams for N? < ANt3 > the four values [-a2,
a2, —a?, a%] for the four families i = [1,2, 3,4], respectively. While for T* A* we
obtain, when summing over the diagrams x + xxx 4+ xxxxx + ..., the same value a*
for a particular family member o« = (u, d, v, e) all four families. Family members
properties enter in the left/right basis —= (|ll)]_ > +[pt > into the mass matrix only
through a*.

One reproduces that the sum of < 1[..]1 > + < 4[.]4 >=< 2|..[2 > + < 3|..[3 >

Correspondingly it is not difficult to see that all the matrix elements, not
only diagonal but also off diagonal, keep the symmetry of the mass matrix of
Eq. (13.15) in all orders of corrections, provided that the matrix elements of the
kind «d; + Bd, + a* — or of the kind in the «d; + 33, + a* — appears in
the diagrams in first power only. Here (o, 3) are +1, they are determined by
the eigenvalues of the operators €'3 (for d;) and N3 (for &), respectively, on a
particular family, Eq. (13.13).
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b. Let us add to the diagonal terms the loop corrections. Let us evaluate,
using the massless basis [Pt >= % (Wt > +hpk >), the contribution:

_»+)EE|3EI»]
78 L .
<P YO () NPANS 4 2BAB £ 3 PAAA Y >
—t A
78 _H_ <
<] ¥ @ ’BAME L eBA B > . 1)
—,+,8,8
One finds for i = [1, 2, 3, 4] the values [AT f\ Ba'—a%+a%) +A~N tBANGE (g1 4
a2+a~), ATEATS (g +dz+a ) +ANLBANE (gl g2 +a%), ATPATE(—a'—a?+
a®) +ANLEANGE (441 62+ a%), ATFATE(—a' + 6%+ a*) +ANLBANE (447 —
d% 4+ a%)], respectively, which again has the symmetry of the tree level state

<T...1>+<4...[4>=<2]...2>+<3]...13>.

One can make three such loops, or any kind of loops in any order of loop
corrections with one (axd' + pa? + a*) and the symmetry of tree level state
<1...[1>+<4]...4 >=<2|...|12 >+ < 3|...|3 > is manifested.

c. Let us look at the loop corrections to the off diagonal terms < 1]...]2 >, <
1...13>,<2]...14 >, < 3]...]4 >, as well as their complex conjugate values.

Let us evaluate, using the massless basis (bt >= % (WE > +hpy >), the
contribution:

<vl ) ) RAE  BA By >

73+$E7Eijk

=
78 _H_« e
< Y () NN e BA B >
_v+>EE\E
78 L -
<t Y Y0 (E) NFANS £ 2BAT 4 3 ANt >
—,+,H,8,j A
78 _H_« e
<Y Z 0 (%) [N?ANL%Jrf]%A@]W >
7)+)EVE
, 78 .
<] Y VO (E) MANS pBAT L Y AAA Y > (13.18)
—,+,8,8 A

~ One obtains for this term < 4[...2 >= < ATE 5 (ANtBANGE | AN312 4
|A13|2 4+ |[TA A2 2}, which is equal to the equivalent loop correction term for the
matrix element < 3|...[]1 >

Checking the loop corrections for the off diagonal elements < 1[...|2 >
1...13>,< 2]...14 >, < 3|...|4 > in all loop corrections one finds that the
symmetry of these off diagonal terms is kept in all orders.
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d. There are still the terms < 1|...]4 >,< 2|...|13 >,< 3]...]2 > and
< 4]...]T > to be checked in loop corrections. Adding loop corrections in the
way we did in c. we find that also these matrix elements keep the symmetry of
Eq. (13.15).

13.3 Conclusions

We demonstrate in this contribution on several cases that the matrix elements of
mass matrices 4 x 4, predicted by the spin-charge-family theory for each family
member o = (u, d, v, e) to have the symmetry §1v1(2)5~o(4)]+3 X STJ(Z)S;OW"WCQK“ X
U(T) on the tree level, keeps this symmetry in all loop corrections. The first to
groups concern the family groups, the last one concern the family members group.
The only dependence of the mass matrix on the family member (x = (u, d, v, e))

quantum numbers is on the tree level through the vacuum expectation values

78 78 78

of the operators v (+) QAS, y° (£) Q’Ag and v° (+) t*A%, appearing on
a tree level in the diagonal terms of the mass matrix only and are the same for
each of four families — I44a%, I is the unite matrix. In the loop corrections these
operators enter into all the off diagonal matrix elements, causing the difference in
the masses of the family members. The right handed neutrino, which is the regular
member of the four families, Table 13.3, has the nonzero value of the operator
A% only (while the family part of the mass matrix is on the tree level the same
for all the members).

We demonstrate on several cases, why does the symmetry of the mass matrix,
which shows up on the tree level, remain in the loop corrections in all orders.

Although we are not (yet) able to calculate these matrix elements, the pre-
dicted symmetry will enable to predict masses of the fourth family (to the ob-
served three), since the 3 x 3 submatrix of the 4 x 4 matrix determines 4 x 4 matrix
uniquely [19,4]. We only must wait for accurate enough data for mixing matrices
of quarks and leptons to predict, using the symmetry of mass matrices predicted
by the spin-charge-family, the masses of the fourth family quarks and leptons.

13.4 APPENDIX: Short presentation of the spin-charge-family
theory

This subsection follows similar sections in Refs. [1,4-7].

The spin-charge-family theory [1-11,14-22] assumes:
A. A simple action (Eq. (13.20)) in an even dimensional space (d =2n, d > 5), d
is chosen to be (13 + 1). This choice makes that the action manifestsind = (3 + 1)
in the low energy regime all the observed degrees of freedom, explaining all the
assumptions of the standard model, as well as other observed phenomena.

There are two kinds of the Clifford algebra objects, y*’s and ¥%’s in this theory
with the properties.

{ya>yb}+ = zﬂab ) {T/a)f/b}Jr = Zﬂab y {Ya)f/b}Jr =0. (1319)
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Fermions interact with the vielbeins f*, and the two kinds of the spin-connection

fields - wqb« and @ab« - the gauge fields of S4° = +(y*y® —yPy9) and §¢° =
L(F*9° —¥° ¥9), respectively.
The action
1 -
A = J dix E 3 (Wy*poad) + hec. +
J di E (ak R+ &R), (13.20)

in which Poa = %q Poa + ﬁ{pa»Efoca}f/ Pox =Pax — % Sab Wabo — %gab Dabo,
and

R = - {fxlagRPl (Waba,p — Weaa Wbp)}+ huc,

_ N =

R= 3 {foc[afﬁb] (‘I)abcx,ﬁ — Mcan a)cbﬁ)} + h.c.

%, introduces two kinds of the Clifford algebra objects, y* and ¥¢, {y®,y°}, =
b = [y9,9°},. %, are vielbeins inverted to e®, Latin letters (a, b, ..) denote
flat indices, Greek letters («, 3, ..) are Einstein indices, (m,n,..) and (W, v,..) de-
note the corresponding indices in (0, 1, 2, 3), while (s, t,..) and (0, T,..) denote the
corresponding indices in d > 5:

e fPy=08B, e f%, =3¢, (13.21)

E =det(e%y).

B. The spin-charge-family theory assumes in addition that the manifold M!
breaks first into M(7*+1) x M(®) (which manifests as SO(7,1) xSU(3) xU(1)),
affecting both internal degrees of freedom - the one represented by v and the one
represented by ¥¢. Since the left handed (with respect to M7+ 1)) spinors couple
differently to scalar (with respect to M (7" 1)) fields than the right handed ones, the
break can leave massless and mass protected 2(7+1)/2=1) families [34]. The rest of
families get heavy masses °.

C.  There is additional breaking of symmetry: The manifold M7*") breaks
further into MG3+1) x M%),

D. There is a scalar condensate (Table 13.5) of two right handed neutrinos with
the family quantum numbers of the upper four families, bringing masses of the
scale o 10'® GeV or higher to all the vector and scalar gauge fields, which interact
with the condensate [5].

E. There are the scalar fields with the space index (7, 8) carrying the weak (')
and the hyper charges (Y = 123 +1%, t'* and 12! are generators of the subgroups of

13+1)

* Whenever two indexes are equal the summation over these two is meant.

> A toy model [34,35] was studied in d = (5 + 1) with the same action as in Eq. (13.20).
The break from d = (5+ 1) to d = (3 + 1) x an almost S* was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifold M®*") breaks
into MG+ times an almost S, while 2(3*1/2=1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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SO(4), ™ and 3! are the generators of U(1)11 and SU(3), respectively, which are
subgroups of SO(6)), which with their nonzero vacuum expectation values change
the properties of the vacuum and break the weak charge and the hyper charge.
Interacting with fermions and with the weak and hyper bosons, they bring masses
to heavy bosons and to twice four groups of families. Carrying no electromagnetic
(Q =" +Y) and colour (t*}) charges and no SO(3, 1) spin, the scalar fields leave
the electromagnetic, colour and gravity fields in d = (3 4+ 1) massless.

The assumed action A and the assumpions offer the explanation for the origin
and all the properties o. of the observed fermions:

o.i. of the family members, on Table 13.3 the family members, belonging to
one Weyl (fundamental) representation of massless spinors of the group SO(13,1)
are presented in the “technique” [9-11,14-16,12,13] and analyzed with respect to
the subgroups SO(3,1), SU(2), SU(2)11, SU(3), U(1)11), Egs. (13.22, 13.23, 13.24),
with the generators ™' = Y | ¢ S°F,

o.ii.of the families analyzed with respect to the subgroups SO(3,1), SU(2)y,
SU(2)11, U(1)11), with the generators AT = Y . ¢y, S5t Egs. (13.25, 13.26,
13.27), are presented on Table 13.4, all the families are singlets with respect to
SU(3),

00.i. of the observed vector gauge fields of the charges

s,t

SU(2), SU(2)11, SU(3), U(1)11)

discussed in Refs. ([1,4,2], and the references therein), all the vector gauge fields
are the superposition of the Wgim, AN = >t Mgt Wsem, Eq. vect

oo.ii. of the Higgs’s scalar and of the Yukawa couplings, explainable with the
scalar fields with the space index (7, 8), there are two groups of two triplets, which
are scalar gauge fields of the charges !, expressible with the superposition of
the @ qps, AN = >ab cMab waps and three singlets, the gauge fields of Q, Q’, S/,
Egs. (13.28), all with the weak and the hyper charges as assumed by the standard
model for the Higgs’s scalars,

00.iii. of the scalar fields explaining the origin of the matter-antimatter asym-
metry, Ref. [5],

oo.iv. of the appearance of the dark matter, there are two decoupled groups
of four families, carrying family charges (N, 7l )and (Ng, ’”?2), Egs. (13.25, 13.26),
both groups carry also the family members charges (Q, Q’,Y’), Eq. (13.28).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with sab (: %(Yayb _ 'YbYa), {Sab’ SCd}, — _i(nadsbc + nbcsad _ nacsbd _
ntd4s9¢)) for the spin

o 1

Ni(=Ng):= (5% +iS°7, 831 +iS%2 812 +i503) (13.22)

N
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for the weak charge, SU(2)1, and the second SU(2)1;, these two groups are the
invariant subgroups of SO(4),

=1 .

(558 _ 567) 557 4 368) 556 _ S78) ,

Nl =N =

T = 5878 457, 857 — 58, §%6 1 578), (13.23)

for the colour charge SU(3) and for the “fermion charge” U(1);, these two groups
are subgroups of SO(6),

» 1

TS — 2{5912_8101135911—’_51012) 5910_51112)
8914_81013)8913+S]0 14’511 14_51213)

1

V3

T4 — *%(39104’8” ]2+S1314), (1324)

S]] 13+S12 14 (89]O+S11 127281314)}
) )

7 is the “fermion charge”, while the hyper charge Y = t23 + 1.

The generators of the family quantum numbers are the superposition of
the generators 5 (§e® = I{ye yb}_, {§ab §cd} = _j(nadSbc 4 ybefad
nacSbd _pbdSac) (Sab ged} — 0. One correspondingly finds the generators of
the subgroups of SO(7,1),

w

23 41801 §31 41§02 §12 4 1§03y (13.25)

which determine representations of the two glvi(Z) invariant subgroups of 56(3, 1),
while

(358 4§67 §57 _ 368 §56 4 §78) (13.26)

determine representations of SU(2);x SU(2)1; of SO(4). Both, §E)(3, 1) and SO(4),
are the subgroups of SO(7, 1). One finds for the infinitesimal generator ©* of U(1)
originating in SO(6) the expression

B g0z gy (13.27)

The operators for the charges Y and Q of the standard model, together with
Q’ and Y’, and the corresponding operators of the family charges Y, Y/, Q, Q are
defined as follows:

Yi=1"+12, Y = —t"tan? 9, + 13, Q=13 +Y, Q' :=—Ytan?d + 1" |
V=t 4+, Y= % tan? 9, + 72, Q=Y +%"3, Q' =—Vtan?d; +%"3 .
(13.28)
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The families split into two groups of four families, each manifesting the
SU(2) x SU(2) x U(1),

with the generators of of the infinitesimal transformations (N1, 7,Q,Q’,Y) and
(Ng,%2,Q, Q’,Y’), respectively. The generators of U(1) group (Q, Q’,Y’), Eq. 13.28,
distinguish among family members and are the same for both groups of four
families, presented on Table 13.4, taken from Ref. [4].

The vector gauge fields of the charges T', ©2, T and t* follow from the
requirement A TNARY = X 35" Wi and the requirement that T =

b $9°, Eq. (13.2), fulfilling the commutation relations {t*%, tBi}_ =

léABfAUk A , Eq. (13.3). Correspondingly we find Agl = 3 | cA st WSt
Eq. (13.4), w1th (s,t) either in (5,6,7,8) orin (9,...,14).

The explicit expressions for these vector gauge fields in terms of wm are as
follows

Al = (Ws8m — We7m, W57m + Wesm, Wsem — W78m)

A2 = (Ws8m + We7m, W57m — Wesm, Wsem + W78m)

AR = Wsem — (Wo 10m + W11 12m + W13 14m)

AY = (Wsem + W78m) — (Wo 10m + W11 12m + W13 714m)

A3 = (Wo12m — W10 11my We11m + W10 12m, W Tom — W11 12m,

W9 14m — W1013m)y W9 13m + W10 14m, W11 14m — W1213m,

1
W1113m T W12 14m, \*@ (W9 10m + W1112m —2W1314m)) s
Ag = (Wo1om + W11 12m + W1314m) - (13.29)

All wgm vector gauge fields are real fields. Here the fields contain the coupling
constants which are not necessarily the same for all of them. In the case that the
coupling constants would be the same, than the angles 63 and 62 would be equal
to one, which is not the case (at least sin? ~ 0.22.)

One obtains in a similar way the scalar gauge fields, which determine mass
matrices of family members. They carry the space index s = (7, 8).

1 - ~ - ~ ~
Ay = (D585 — We7sy D575 + Wegs, D565 — D78s)

&

(
(D585 + We7s, D575 — D6ss, Ws6s + D78s)
AL = (@235 + 1015, D315 + 1025, D125 + Do3s)
AR = (@235 — iD015, 315 — 10025y D125 — 1D035)
AR = wses — (Wo 105 + W11 125 + W13 145)
AY = (wses + Wrss) — (Wo 105 + W11 125 + W13 145)
AL = —(wo10s + Wi1125 + W13145) - (13.30)

All wgisr, Dstsr, (S)t)sl) = (5)')]4)/ (I)i,j,s’ and 1"(I)O,s’r (1>]) = (1)2>3) scalar
gauge fields are real fields.
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The theory predicts, due to commutation relations of generators of the in-
finitesimal transformations of the family groups, SU(2); xSU(2); and SU(2)11
xglvl(Z)II, the first one with the generators N{ and ©', and the second one with

the generators N and %2, Egs. (13.25,13.26), two groups of four families.

The theory offers (so far) several predictions:

i. several new scalars, those coupled to the lower group of four families —
two triplets and three singlets, the superposition of (A!, AN, and AQ AY, A%,
Eg. (13.30) — some of them to be observed at the LHC ([1,5,4],

ii. the fourth family to the observed three to be observed at the LHC ([1,5,4]
and the references therein),

iii. new nuclear force among nucleons built from the quarks of the upper four
families.

The theory offers also the explanation for several phenomena, like it is the
“miraculous” cancellation of thestandard model triangle anomalies [3].

The breaks of the symmetries, manifesting in Eqs. (13.22, 13.25, 13.23, 13.26,
13.24, 13.27), are in the spin-charge-family theory caused by the scalar condensate of
the two right handed neutrinos belonging to one group of four families, Table 13.5,
and by the nonzero vacuum expectation values of the scalar fields carrying the
space index (7, 8) (Refs. [4,1] and the references therein). The space breaks first to
SO(7,1) xSU(3) x U(1)11 and then further to SO(3,1) x SU(2); xU (1) xSU(3) x
U(1)11, what explains the connections between the weak and the hyper charges
and the handedness of spinors [3].

state S ST A3 B 17 Y Q B Y Q Ni N3R
(Vi >y v~y o 0 0 1—1 0 00 1T =100 0 1
(VT > e >)hl0o 0 0 0-1—-1—-1[0 1 =100 0 1
eVl >1leYi >0 0 0 —1—-1-2-2(0 1 =100 0 1

Table 13.5. This table is taken from [5]. The condensate of the two right handed neutrinos
vg, with the VIII*" family quantum numbers, coupled to spin zero and belonging to a
triplet with respect to the generators % is presented together with its two partners. The
right handed neutrino has Q = 0 = Y. The triplet carries =214 =1,% =1,
N3 =1,N} =0,Y=0,Q =0. The ! = 0. The family quantum numbers are presented in
Table 13.4.

The stable of the upper four families is the candidate for the dark matter, the
fourth of the lower four families is predicted to be measured at the LHC.

13.5 APPENDIX: Short presentation of spinor
technique [1,4,10,12,13]

This appendix is a short review (taken from [4]) of the technique [10,40,12,13], initi-
ated and developed in Ref. [10] by one of the authors (N.5.M.B.), while proposing
the spin-charge-family theory [2,4,5,7,8,1,14,15,9-11,16-22]. All the internal degrees
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of freedom of spinors, with family quantum numbers included, are describable
with two kinds of the Clifford algebra objects, besides with y“’s, used in this
theory to describe spins and all the charges of fermions, also with ¥%’s, used in
this theory to describe families of spinors:

Oy =, IO =1, {y*,9°h =0. (13.31)

We assume the “Hermiticity” property for y*’s (and ¥%’s) v = n%®y% (and
41 =n29y9), in order that y¢ (and ¥¢) are compatible with (13.31) and formally
unitary, i.e. y¢ Ty = I (and ¢ T§* = I). One correspondingly finds that (S*°)f =
T]aanbbsab (and (gab)’r — T]actnbl‘)gal‘)).

Spinor states are represented as products of nilpotents and projectors, formed
as odd and even objects of y%’s, respectively, chosen to be the eigenstates of a
Cartan subalgebra of the Lorentz groups defined by y%’s

(0= Joe 100 = g byeyy, (1332)
"= Y K Y, 3 kY “y .
where k? =1n%°%. We further have [4]
a al.cb 1 T]aa ClCl a]]:)(
v (k)= 2(vv+kvv) [—kI,
ab b ab
a k a,,a k,
v [kl = 2(v+kvv1/)( ),
oo 2P T M e aa ]
¥ (k)= —1§(v + Yy = Ik,
B ab 1 . ab
7 =150 4 v WO =—i(k),
(13.33)
where we assume that all the operators apply on the vacuum state [\po). We define
abJr ab abTab
a vacuum state [pg > so that one finds < (k) (k) >=1, < [k] [k] >=1.
ab ab ab

We recognize that y¢ transform (k) into [—kI, never to [k], while ¥* transform
ab ab ab
(k) into [k], never to [—k]

ab ab ab ab ab ab ab ab
Yo (=1 =K, y° (k)= —ik [-K], y® KI=(~k), v* ld=—ikn® (k)
_ ab ab . ab ab _ ab ab . ab ab
Ve (k)= —in®® [, v* (k)= —k I, v Id=" i (K, ¥* [k}=—kn“® (k) .
(13.34)

The Clifford algebra objects S®® and S¢° close the algebra of the Lorentz
group
$° = (1/4)(yy® — vy,
S = (/Y =¥, (13.35)

{Sab, SCd}_ = 0,{Sab, SCd}_ = i(ﬂadsbc +nbcsad7nacsbd7nbdsac) ,{gab) SCd}_
= i(nadgbc +nbcgad _nacgbd _nbdgac) .
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ab ab
One can easily check that the nilpotent (k) and the projector [k] are “eigen-

states” of S¢P and §eP

ab 1 ab ab 1 ab
S (k)= ik (k), S k= Ek (kl,
- ab 1 ab _ ab 1 ab
% (k)= 5k (k), 5% [K=—5k [k, (13.36)

where the vacuum state [{po) is meant to stay on the right hand sides of projectors
and nilpotents. This means that multiplication of nilpotents (CLb) and projectors
65 by S9° get the same objects back multiplied by the constant Jk, while §2°
multiply (cLb) by % and ﬁa by (f%) (rather than by %). This also means that when
ﬁcb) and ﬁa act from the left hand side on a vacuum state [\po) the obtained states

are the eigenvectors of S%°.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with nilpotents and
projectors of Eq. (13.32), the technique offers an elegant way to see all the quantum
numbers of states with respect to the two Lorentz groups, as well as transformation
properties of the states under the application of any Clifford algebra object.

Recognizing from Eq.(13.35) that the two Clifford algebra objects (5%?, $¢4)
with all indexes different commute (and equivalently for (5¢°,5¢4)), we select
the Cartan subalgebra of the algebra of the two groups, which form equivalent
representations with respect to one another

§03,812 g5 ... gd=Td jf 4 =2n >4,
§03 812856 ... §d=1d " §f qd=2n>4,. (13.37)

The choice of the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group — the handedness I' ({T; $°}_ = 0)
(aswellas 1) inany d = 2n

rd=@e2 I (vamy), i d=2m,

M= @)@ 2T (va®y), if d=2n. (13.38)

We understand the product of y“’s in the ascending order with respect to the index
a:y%y' ... y4. It follows from the Hermiticity properties of y¢ for any choice of
the signature n¢ that I'" =T, I'? = I.( Equivalent relations are valid for I.) We
also find that for d even the handedness anticommutes with the Clifford algebra
objects vy ({y“, T} = 0) (while for d odd it commutes with y¢ ({y%,T'}_ = 0)).
Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd 6 For
d even we simply make a starting state as a product of d/2, let us say, only

% For d odd the basic states are products of (d — 1)/2 nilpotents and a factor (1 £T).
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ab
nilpotents (k), one for each S%° of the Cartan subalgebra elements (Egs.(13.37,

13.35)), applying it on an (unimportant) vacuum state. Then the generators S®?,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left hand side, generate all the members of one Weyl spinor.

0od 12 35 d—1d-—2
(koa)(k12)(k3s) -+ (ka—1a—2) o >
od 12 35 d—1d—2

[—koall=k12](kss5) - - (ka—1 a—2) bo >
od 12 35 d—1d-2

[—koal(ki2)[—kas] - -+ (ka—1 a—2) o >

od 12 35 d—1d—2
[—koal(k12)(k35) - -+ [ka—1 a—2] Wbo >
od 12 35 d—1d—2

(koa)[=k12][=k35] - -+ (ka—1 a—2) o >
(13.39)

All the states have the same handedness T, since {T; S%®}_ = 0. States, belonging
to one multiplet with respect to the group SO(q, d — q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We could make
a choice of the simplest one, taking all phases equal to one. (In order to have the
usual transformation properties for spinors under the rotation of spin and under
Cnr Pyr,some of the states must be multiplied by (—1).)

The above representation demonstrates that for d even all the states of one

irreducible Weyl representation of a definite handedness follow from a starting
ab
state, which is, for example, a product of nilpotents (kq), by transforming all

ab mn ab mn
possible pairs of (kqp)(Kmn) into [—kqpl[~kmn]. There are Sa™, San gbm gbn,

which do this. The procedure gives 2(4/2=1) states. A Clifford algebra object y¢
being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness.

We shall speak about left handedness when I' = —1 and about right handed-
ness when " = 1.

While $¢°, which do not belong to the Cartan subalgebra (Eq. (13.37)), gen-
erate all the states of one representation, $%°, which do not belong to the Cartan
subalgebra (Eq. (13.37)), generate the states of 24/2-1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (13.37)) of the algebra S4®
and §9b; (03, §12 §56 §78 210 g1112 'g1314) (503 §12 §56 §78 §910 G112
§1314 ), aleft handed (I''>") = —1) eigenstate of all the members of the Cartan
subalgebra, representing a weak chargeless ug-quark with spin up, hyper charge
(2/3) and colour (1/2,1/(2v/3)), for example, can be written as

03 12 56 78 91011121314
HDE) TEHE) ) (5) (5) o) =
1 . . .
57 (= + Iy + )+ )
7+ =y (P =y o) - (13.40)
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This state is an eigenstate of all S*® and $°° which are members of the Cartan
subalgebra (Eq. (13.37)).

The operators $¢°, which do not belong to the Cartan subalgebra (Eq. (13.37)),
generate families from the starting ug quark, transforming the ug quark from
Eq. (13.40) to the ug of another family, keeping all of the properties with respect
to $°° unchanged. In particular, S°' applied on a right handed ug-quark from
Eq. (13.40) generates a state which is again a right handed ug-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2,1/ (2v/3))

- 03 12 56 78 21011121314 i 03 12 56 78 91011121314
ST () ) () (=) (H)=—3 [HIHITHHIH ) (=)
(13.41)

One can find both states in Table 13.4, the first ur as urg in the eighth line of this
table, the second one as ug7 in the seventh line of this table.
Below some useful relations follow. From Eq.(13.34) one has

ab cd i ab cd _ ab cd i abcd
$9€ (k)(k) = =5 [k, S (k) (k)= 5n**n [k,
abcd i ab cd _ abcd i abcd
$% Klk] = 5 (=K)(=k), S [klk]= —5 (k) (k),
ab cd 1 ab cd ~ ab cd i ab cd
S (WK = =5 [=kI(=k), 5% (K)kl=—5n* [kl(k),
ab cd i ab cd N ab cd 1 ab cd
5 [kI(k) = 5n° (=k)=k],  §°¢ [KI(k)= 3n°° (k)[K] . (13.42)

We conclude from the above equation that S9° generate the equivalent representa-
tions with respect to $°* and opposite.

We recognize in Eq. (13.43) the demonstration of the nilpotent and the projec-
ab ab
tor character of the Clifford algebra objects (k) and [k], respectively.

ab ab ab ab ab ab ab ab ab ab
(k)(k) =0, (K)(=k)=m** [k, (=Kk)(k)=n*" [-k], (=k)(=k)=0,
abab ab ab ab ab ab ab ab ab
(kllk] = [k, [kl[—=kl=0, [—klk]=0, [—Kkl[—kl=[—k],
ab ab abab ab ab ab ab ab ab
(KKl =0, [KI(k)=(k), (—K)[kl=(—k), (—k)[=k]=0,
ab ab ab ab ab ab ab ab ab ab
(k) [=kI = (k), [kl(—k)=0, [—kl(k)=0, [—KI(—k)=(—Kk) .
(13.43)
Defining
ab 1 ab 1
(H)=5 (7 F77), ()= 5 G £1°),
a~b ] a~b -]
=50 £7°9"),  Ell= 50 £i7°y").
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one recognizes that

ab ab ab  ab ab ab b ab ab ab
() =0, (=k)(k=—in K, [KK=i(k), (kIK=0.
(13.44)
Below some more useful relations [14] are presented:
03 12 03 12
NE =NL £iNG =— (Fi)(£), NE=NDLiIN2 =(Hi) (L),
; 03 12 y 03 12
N =—(FU(F), NE=(£i)($),
56 78 56 78
TE=(F) BEF), PT=F B,
56 78 56 78
= (F) DEF), TFT=F) PF . (13.45)

In Table 13.4 [4] the eight families of the first member in Table 13.3 (member
number 1) of the eight-plet of quarks and the 25" member in Table 13.3 of the
eight-plet of leptons are presented as an example. The eight families of the right
handed uir quark are presented in the left column of Table 13.4 [4]. In the right
column of the same table the equivalent eight-plet of the right handed neutrinos
vir are presented. All the other members of any of the eight families of quarks or
leptons follow from any member of a particular family by the application of the
operators N Ri,]_ and t(>1*, Eq. (13.45) on this particular member.

The eight-plets separate into two group of four families: One group contains

doublets with respect to Ng and 72, these families are singlets with respect to N
and ©'. Another group of families contains doublets with respect to Ny and 7',
these families are singlets with respect to Ng and 2.

The scalar fields which are the gauge scalars of N g and 72 couple only to the
four families which are doublets with respect to these two groups. The scalar fields

which are the gauge scalars of N; and ©' couple only to the four families which
are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8), the two groups of four families become massive. The lowest
of the two groups of four families contains the observed three, while the fourth
remains to be measured. The lowest of the upper four families is the candidate for
the dark matter [1].
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