
 Informatica 28 (2004) 167–172 167

The Parameters Tuning for Evolutionary Synthesis Algorithm
Gregor Papa and Jurij Šilc
Computer Systems Department
Jožef Stefan Institute
Jamova c. 39
SI-1000 Ljubljana
Slovenia
gregor.papa@ijs.si, jurij.silc@ijs.si, http://csd.ijs.si

Keywords: evolutionary, scheduling, allocation, genetic operators, tuning

Received: January 29, 2003

This paper covers the evaluation and fine-tuning of different values of genetic operator’s parameters in
the process of optimizing the designs of the integrated circuits. We investigated the interdependence of
various values of these parameters in the use over the set of test-bench circuits, as well as their
influence on the quality of the final solution and the convergence speed. Due to the increasing usage of
the evolutionary optimization in the area of the integrated circuit design, there is a need to find a proper
combination of genetic operators parameters’ value to make optimal solutions. Therefore, it is
important to perform this kind of evaluation for each new problem to be solved.

1 Introduction
The area of evolutionary computation is very popular but
there is always a problem of defining a proper value of
parameters of genetic operators. A standard genetic
algorithm uses four different parameters that have to be
defined in advance, before the algorithm is actually used.
These are: the number of generations, the size of the
population, the probability of crossover, and the
probability of mutation [1].
 There are some proposals for setting of these
parameters according to the problem size and according
to the area of the problem. But these proposals are not
always applicable or are not suitable for all problems.
Also, there are no proposals for any additional operators,
used in some optimizations, which improve the
performance of the algorithm.
 To find some dependencies between the parameters
and the problem that has to be solved, we made the
evaluation, similar to that in [7]. We study an
evolutionary approach that automatically generates
circuit designs. We managed to point to some interesting
dependencies between parameters themselves and to
determine what values should be used in our
optimizations when working with evolutionary-oriented
algorithms.

2 ECSA algorithm
The facts presented in the introduction paragraphs

and promising results of different evaluations [4, 9, 10]
took us to the Evolutionary Concurrent Scheduling and
Allocation (ECSA) design approach [8]. This approach
considers scheduling and allocation constraints, allows
short design time and can find globally optimal solutions.

The input description of the integrated circuit (IC) is
transformed into two basic (initial) schedules, obtained
by As-Soon-As-Possible and As-Late-As-Possible
algorithms. Functional units (FUs) used in first case are
those fastest for each operation and in second case those
slowest for each operation. These two schedules present
some kind of boundary solutions, since all other solutions
are executed in-between the time limits defined by these
two schedules. Namely, no other solution can be faster or
slower, considering different combinations of used units.

Each solution has to be properly encoded (into the
chromosome), i.e., each operation’s start time and FU
have to exist in the chromosome. Initial population is
built upon the two initial solutions, which are multiplied
to form the population with so-called boundary solutions.
The optimal solution has to be somewhere in-between
the boundaries, therefore genetic operators (crossover,
mutation, variation) transform those encoded solutions.
With transformations their start times and allocated FUs
are changed. The final solution obtained by genetic
operators is also influenced by simulated annealing
algorithm [6], which improves the solution if it stopped
somewhere near the globally optimal point.

2.1 Encoding
The chromosome string consists of the numbers that

represent the starting time of each operation and the
allocated unit for each operation, where the position in
the string depends on the order of the operations in the
input IC description. This means that the chromosome
consists of pairs of time/space information for each
operation. And the genetic operators can influence both
parts of that information, either together or separately.

168 Informatica 28 (2004) 167–172 Gregor Papa et al.

The selected encoding type is chosen because of its
convenience. When strings have to be further
transformed, checked and analyzed, there is no need for
any additional conversion of their values. In addition, the
used implementation of genetic operators can check the
changed values (their feasibility) instantly, without any
transformation. The correctness of the transformation can
therefore be checked within the function itself.

2.2 Cost function
One of the most important parts of the algorithm is

its cost function. To obtain the cost (Eq. 1) of a certain
circuit, the algorithm has to evaluate the required number
of resources. In contrast to the other multi-objective
functions that give more than one final solution, this one
already includes the decision making part, which chooses
one solution form all the solutions on the Pareto front.

Twcost
nwcost
nwcost

Fwcost

costcostcostcostCost

tt

bbb

rrr

iff

tbr

N

i
f

ii

i

=
=
=

=

+++= ∑
=

222

1

2)(

 (1)

The elements of the function above are calculated as
follows.

The number nfi is the highest number of the i-th
functional unit needed in a separate control step.

The number nr is the highest number of variables
needed in a separate control step. We consider variables
that are needed by the functional unit as input data,
variables that are returned as output data, and variables
that are not used at the moment but will be used in some
of the later control steps or must be available until the
end of the execution of all operations.

The number nb is the highest number of data
transmissions (into or from the functional units) in a
separate moment.

The execution time, T, is the time needed to execute
all the operations of the schedule.

The weights wfi, wr, wb, and wt are the weights of
functional units, registers, buses and time, respectively,
to be considered in the IC quality-evaluation cost
function. The first three weights are proportional to their
silicon area in the IC, while wt reflects our IC speed
constraints.

According to the different approaches of multi-
objective functions [3] and their efficiency we chose the
presented distance function with the variable weight of
separate criteria. With this approach it is possible to
simplify the conditions or to expose some criteria. As
mentioned before, the solution that is closest to the origin
of the search space can be found.

2.3 Genetic operators and parameters
In each iteration, e.g., generation, of the algorithm

there are four genetic operators that transform the
chromosome. They consider data dependencies and the

given library of available FUs. Each time after genetic
operators transform the chromosome, the chromosome is
checked to meet all constraints, considering data
dependencies and unit types.

2.3.1 Selection
Upon the cost function values the worse solutions are

aborted in the selection step and to ensure equally large
population, these solutions are replaced with the best
solutions. This ensures best solutions of the given
generation to be surely involved in the next generation
creation (elitism).

2.3.2 Crossover
In crossover task two approaches are used, each

expressing the dominancy of the characteristics. After
two crossover points are determined, in the first case the
unit information is changed between the two
chromosomes and start times are adapted, and in the
second case the start times are changed and suitable unit
is allocated. So the dominancy is expressed either in FUs
or operations start times.

2.3.3 Mutation
Here, we also have two similar approaches to

transform the chromosome. In both cases the starting
time is changed. Either it is moved to later control steps
with the use of faster FUs or it is moved to earlier control
steps, if data dependencies allow that, with slower units.

2.3.4 Variation
After two operations are selected and when they are

of the same type (e.g., additions), their FUs are switched.
If needed also their start times are updated.

3 Test-bench circuits

3.1 Differential equation
Relatively small circuit of differential equation [11]

has only 11 operations, but 4 different operation types (6
multiplications, 2 additions, 2 subtractions, 1
comparison), see Figure 1. This circuit is useful when
testing libraries with different implementations of the
same operation types.

+

+–

–

× ×

××

×

×

<

1 2

7 10

118

6

5 3 9

4

u

u

y

a

y

5

3

xdx

dx

dx

dx x u

Figure 1: Differential equation

THE PARAMETERS TUNING ... Informatica 28 (2004) 167–172 169

3.2 Elliptic filter
This filter [5] consists of 34 operations, but only two

operation types: 26 additions and 8 multiplications
(Figure 2). The circuit is suitable for comparison due to
its size and operation dependencies, since they form two
independent similar critical paths both influencing the
circuit delay.

+

+

+ +

+++

+

+

+ +

+ +

++

+ +

++

+ +

+

+

+

+

+

×

×

× ×

××

×

×

1 2

7

8

6

10

5

3

9

4

a ec

g h

b d f

11 12

13 14 15

16 17

18 19 20 21

22 23 24 25

26 27 28 29

30 31 32

33 34

Figure 2: Fifth-order elliptic filter

+

+ +

+

+

+

+

++

+

×

×

×

×

×

×

×

×

×

×

× -

-

-

-

-

-

-

-

14

18

6

11

23

2726

2

5

12

15

17

10

22

3

h

al

g

cc

e

i

o

p q

r s b

b

b

d

n

m

f

j

f f

ff

f

28 29

8

20

24

1

13

4

9

21

25

7

16

19

d

k

Figure 3: Bandpass filter

3.3 Bandpass filter
One of the implementations of the bandpass filter [5]

is the circuit used for our evaluation. It consists of 29
operations; 11 multiplications, 10 additions and 8
subtractions (Figure 3). Due to data dependencies almost
all operations influence the circuit delay.

3.4 Least mean square filter
This filter for signal adaptation (noise reduction) is

based upon least mean square method [2]. It consists of
47 operations; 24 multiplications and 23 additions
(Figure 4). This test-bench circuit is useful due to its size
and unique data dependencies.

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+ +

+

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

× ×

15

19

7

23

6

26

11

3

k k

a

a

a

a

a

a

a

a

a

a

aa

q

q

gg

x

x

o

o

e e

v

v

m

m

c c

s

s

i i

u

u

l

l

b b

r

r

hh

w

w

n

n

d

t

t

jj

y y

pp

f f

27

31

40

44

36

32

28

24

20

16

84

12

1

35

41

45

37

33

29

25

21

17

95

13

2

39

43

10

30

18

38

14

34

22

42

47

46

d

Figure 4: Least mean square filter

4 Evaluation
Considering 18750 different schedules of each

circuit and different combinations of parameters, we
statistically compared the results according to their cost
function (Eq. 1). For each of described four test-bench
circuits we made a set of 3125 different combinations of
parameters (generations, populations, crossover,
mutation and variation). We repeated the optimization
process with each combination five times to reduce the
influence of statistical error and to get the average fitness
of solutions obtained by each combination of parameters.

The solutions with fitnesses of top 20% of all
fitnesses for a certain circuit were defined as high quality
solutions and solutions with bottom 20% of fitnesses
were defined as low quality solutions

To ensure most solutions being time-constrained
(executed in shortest possible time) the weight wt was set
to extremely high value.

170 Informatica 28 (2004) 167–172 Gregor Papa et al.

a)

0%

5%

10%

15%

20%

25%

30%

20 30 40 50 60

high

low

number of
generations

% of solutions

solution
quality

b)

0%
10%
20%
30%
40%
50%
60%
70%
80%

30 40 50 60 70

high

low

population
size

% of solutions

solution
quality

c)

0%
5%

10%
15%
20%
25%
30%
35%
40%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

5%

10%

15%

20%

25%

30%

35%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 5: Differential equation

a)

0%

5%

10%

15%

20%

25%

30%

35%

60 70 80 90 100

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

30%

80 90 100 110 120

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

10%

20%

30%

40%

50%

60%

70%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 6: Fifth-order elliptic filter

THE PARAMETERS TUNING ... Informatica 28 (2004) 167–172 171

a)

0%

5%

10%

15%

20%

25%

30%

60 70 80 90 100

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

30%

35%

80 90 100 110 120

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 7: Bandpass filter

a)

0%

10%

20%

30%

40%

50%

60%

100 110 120 130 140

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

130 140 150 160 170

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

30%

35%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

60%

70%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

5%

10%

15%

20%

25%

30%

35%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 8: Least mean square filter

172 Informatica 28 (2004) 167–172 Gregor Papa et al.

As presented in Figures 5, 6, 7, and 8, solutions with
high quality are mostly obtained by the following values
of parameters: probability of crossover is 0.7, probability
of mutation is 0.04, and probability of variation is 0.03.
Besides, considering the circuits sizes the number of
generations and population size should be set to 3 times
and 4 times of a circuit size, respectively.

The values of parameters in this combination are
named as optimal values. These optimal values are
determined upon the percentage of solutions with certain
parameters among high quality solutions. The parameter
value, to be considered as optimal, should have at least
25% share among high quality solutions, while it should
have less than 10% share among low quality solutions.
Of course, there are some minor deviations but in general
we can define some average values of genetic operator’s
parameters when working with high-level IC design.

5 Conclusion
As presented there is a lot of work to fine-tune the

proper values of the genetic operators. To achieve
compatible results in optimization of the used circuits it
is appropriate to use the values obtained by our
investigation.

Generally, the quality of solution is always
influenced by parameters and the problem itself.
Therefore, it is important to perform this kind of
evaluation each time we are in search of the optimal
values of the genetic operators for some new problem to
be solved.

References
[1] T. Bäck, Evolutionary Algorithms in Theory and
Practice: evolution strategies, evolutionary programming,
genetic algorithms, Oxford University Press, 1996.
[2] J. Benesty, P. Duhamel, A Fast Exact Least Suare
Adaptive Algorithm, IEEE Transactions on Signal
Processing 40, 1992, pp. 2904-2920.
[3] C. A. Coello Coello, A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization
Techniques, Knowledge and Information Systems 1,
1999, pp. 269-308.
[4] B. Filipič, J. Štrancar, Tuning EPR spectral
parameters with a genetic algorithm. Applied soft
computing 1, 2001, pp. 83-90.
[5] G. W. Grewal, T. C. Wilson, An Enhanced Genetic
Algorithm for Solving the High-Level Synthesis
Problems of Scheduling, Allocation, and Binding, Intl.
Journal of Computational Intelligence and Applications,
1, 2001, pp. 91-110.
[6] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi,
Optimization by simulated annealing, Science 220, 1983,
pp. 671–680.
[7] F. G. Lobo, The parameter-less genetic algorithm:
Rational and automated parameter selection for
simplified genetic algorithm operation, Ph.D. thesis,
University of Lisbon, Portugal, 2000.
[8] G. Papa, Concurrent operation scheduling and unit
allocation with an evolutionary technique in the process

of integrated-circuit design, Ph.D. thesis, Faculty of
Electrical Engineering, University of Ljubljana,
Slovenia, 2002.
[9] G. Papa, B. Koroušić-Seljak, B. Benedičič, T. Kmecl,
Universal Motor Efficiency Improvement using
Evolutionary Optimization, IEEE Transactions on
Industrial Electronics 50, 2003, pp. 602-611.
[10] G. Papa, J. Šilc, Automatic Large-Scale Integrated
Circuit Synthesis Using Allocation-Based Scheduling
Algorithm, Microprocessors and Microsystems 26, 2002,
pp. 139-147.
[11] P. G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A
Multiparadigm Approach to Automatic Data Path
Synthesis, Proc. 23rd ACM/IEEE Design Automation
Conference, Las Vegas, USA, June 1986, pp. 263-270.

