
Volume 40 Number 1 March 2016

Special Issue:
Engineering and Applications

of Software Agents

Guest Editors:
Amelia Bădică
Zoran Budimac

1977

Editorial Boards
Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Contact Associate Editors
Europe, Africa: Matjaz Gams
N. and S. America: Shahram Rahimi
Asia, Australia: Ling Feng
Overview papers: Maria Ganzha

Editorial Board
Juan Carlos Augusto (Argentina)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Zhihua Cui (China)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Ling Feng (China)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Sumit Goyal (India)
Marjan Gušev (Macedonia)
N. Jaisankar (India)
Dariusz Jacek Jakóbczak (Poland)
Dimitris Kanellopoulos (Greece)
Samee Ullah Khan (USA)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Shiguo Lian (China)
Suzana Loskovska (Macedonia)
Ramon L. de Mantaras (Spain)
Natividad Martínez Madrid (Germany)
Sando Martinčić-Ipišić (Croatia)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadia Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Wiesław Pawłowski (Poland)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Shahram Rahimi (USA)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)
Yudong Zhang (China)
Rushan Ziatdinov (Russia & Turkey)

 Informatica 40 (2016) 1–1 1

Editors' Introduction to the Special Issue on

‟Engineering and Applications of Software Agents”

The aim of this Special Issue is to introduce to the readers

a selection of papers from the 3rd Workshop on

Applications of Software Agents – WASA 2013 in the area

of agent-based modelling and simulation. WASA’2013

was held in Sinaia, Romania, during October 11-13, 2013.

The WASA 2013 workshop was organized within the

framework of the 17th International Conference on System

Theory, Control and Computing –ICSTCC’2013. The aim

of the WASA series of workshops is to contribute to the

advancement of technologies and applications of software

agents' by bridging the gap between the theory and

practice of software agents.

15 papers were accepted for presentation at

WASA’2013. Among them, 4 papers were selected, after

further extension and additional review, for inclusion in

this Special Issue on “Engineering and Applications of

Software Agents”.

The article “AgentPlanner – agent-based timetabling

system” by Rafal Tkaczyk, Maria Ganzha, and Marcin

Paprzycki is in the area of applications of software agents.

The authors propose an agent-based timetabling system

called AgentPlanner. The system was evaluated using real

data set of a department at the University of Gdansk. The

results were quite encouraging, i.e. AgentPlanner

outperformed the state-of-the-art timetabling software

based on the genetic algorithms and it was capable of

satisfactorily solving the problem of schedule adjustment.

The article “Jason Interpreter, Enterprise Edition” by

Dejan Mitrović, Mirjana Ivanović, Rafael H. Bordini, and

Costin Bădică is in the area of engineering of software

agents. This paper presents a framework that integrates

Jason – an interpreter that provides a Java implementation

of the AgentSpeak programming language with the

Enterprise edition of the Java platform. The contribution

of the paper is bridging the gap between the agent

technology and modern enterprise solutions for distributed

software development.

The article “Expressing GMoDS Models into Object-

Oriented Models Using the Event-B Language” by Marius

Brezovan, Liana Stanescu and Eugen Ganea is in the area

of engineering of software agents. This paper proposes a

generic framework for expressing the Goal Model for

Dynamic Systems (GMoDS) goal-based agent-oriented

methodology for the specification of multi-agent systems,

using Event-B. The mapping was achieved by adding

object-oriented modelling support to Event B using the

modularization plug-in of the Rodin framework.

The article “HTML5-based mobile agents for Web-

of-Things” by Jari-Pekka Voutilainen, Anna-Liisa

Mattila, Kari Systä, and Tommi Mikkonen is in the area

of applications of software agents. This paper proposes a

solution based on mobile agents for operating and

managing Internet-connected systems composed of

gadgets, sensors and actuators. The solution is supported

by two proof-of-concept experiments related to agents for

embedded devices interconnected in the Web-of-Things

and to the management of agents in the Cloud.

We would like to thank all the reviewers for their

restless reviewing effort and valuable feedback and all the

authors who submitted their contributions to

WASA’2013, as well as to this Special Issue.

Amelia Bădică,

Zoran Budimac

2 Informatica 40 (2016) 1–1 A. Bădică et al.

Informatica 40 (2016) 3–17 3

AgentPlanner – Agent-based Timetabling System

Rafał Tkaczyk
Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland
IT Systems Department of the Vemco Co. Ltd., Sopot, Poland
E-mail: rafal.tkaczyk88@gmail.com

Maria Ganzha
Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland
Institute of Informatics, University of Gdańsk, Gdańsk, Poland
E-mail: maria.ganzha@ibspan.waw.pl

Marcin Paprzycki
Systems Research Institute of the Polish Academy of Sciences
Warsaw Management Academy, Warsaw, Poland
E-mail: marcin.paprzycki@ibspan.waw.pl

Keywords: software agent, multi-agent system, timetabling, negotiations, agent-based timetabling system

Received: July 24, 2015

The aim of the paper is to describe the AgentPlanner, an agent-based timetabling system. After its ini-
tial implementation (described in [1]), based on results of experiments, we have modified the design (to
eliminate discovered shortcomings). Here, we describe the improved AgentPlanner and compare its per-
formance with the state-of-the-art, Free Timetabling Software (FET).

Povzetek: Opisan je AgentPlanner, agentni sistem za urnike.

1 Introduction

Creating a timetable is a challenging problem. On the one
hand, timetables are widely used in multiple application
areas. On the other, timetabling is an NP-hard problem. As
a result, many methods that solve this problem have been
proposed (see, section 5).

Recently, we have developed an agent-based timetabling
system and reported preliminary experimental results con-
cerning its performance (in, [1]). After the publication,
we have been contacted by the developers of the FET pro-
gram [2]. Discussions that ensued, combined with our own
assessment of the shortcomings of the initial version of the
AgentPlanner, resulted in improvements in its design. Fur-
thermore, we have made changes in the experimental setup,
to make the comparison more fair. Therefore, in the current
contribution, we present a completely new set of experi-
mental results.

We proceed as follows. In the next section we summa-
rize the state-of-the-art in timetabling. Next, we outline the
reasons that shaped the specific design of our AgentPlanner
system. We, then, describe details of its implementation. In
the penultimate section, we present the results of performed
experiments. Finally, we discuss issues related to flexibil-
ity of the AgentPlanner design and possible future research
directions / improvements.

2 Timetabling – related work

Timetabling is a common problem, which is applied in
many domains (e.g. business, industry, science, private ap-
plications, etc.). Therefore, many scientists have consid-
ered it, and many solution methods have been proposed.
Below, we summarize few most common and effective
methods for solving the timetabling problem. Let us note,
that our work concerns scheduling courses in a “college,”
and this provides the context for what follows. Further-
more, due to the lack of space, details of described methods
are omitted. Interested readers should consult references.

2.1 Heuristic methods

2.1.1 Genetic algorithms (GA)

Typical approach, used when applying genetic algorithms
to solve the timetabling problem, is as follows. A gene is
regarded as an activity, and it is associated with a group of
students and their teacher. The gene is obtained as a result
of the assignment of an activity to the teacher (who leads
the activity) and to a group of students (who participate in
the activity). A chromosome (schedule) consists of genes
(activities). The idea of scheduling is to allocate activities
in a plan (genes in the chromosome), i.e. the problem to
be solved is treated as a problem of assignment of entities
within available slots. Chromosomes prepared in this way
are evaluated against constrains and standard techniques

4 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

for evolving improving solutions are applied. More spe-
cific description can be found in [5].

2.1.2 Artificial Immune Systems (AIS)

Artificial Immune Systems (AIS) are based on the
metaphor of the natural immune system, and work by “fo-
cusing” on anomaly detection [15]. The main idea of AIS
is to operate on a population of antibodies (feasible timeta-
bles) and using proper method (immune algorithm (IA), or
a hybrid, e.g. combining IA with GA) to find and replace an
“anomalous entity” (bad timetable) with a better solution.
In [16], application of IAS to the university timetabling
has been described. Authors presented three kinds of al-
gorithms using AIS: clonal selection algorithm, immune
network algorithm and a negative selection algorithm.

2.1.3 Graph coloring

To solve the timetabling problem, edge and vertex color-
ing can be applied. (i) Vertex coloring. In this approach,
all activities are vertices. Edges indicate pairs of vertices
(activities) that cannot be scheduled at the same time (e.g.
when the same teacher leads them). The core of the method
is to perform legal coloring of the graph representing con-
flicts, where colors indicate time slots. (ii) Edge coloring.
Here, a very simple example of a possible approach is a bi-
partite graph coloring, where the first set are vertices that
present teachers and the second set presents activities. The
idea is to color this graph and (similarly as in the case of
vertex coloring) colors indicate time slots [3].

2.1.4 Simplex method

An example of using this method in scheduling we can find
in [4]. The constraints are transformed into a system of
linear equations. There are 3 main steps of solving the
problem: (i) Generate acceptable (non-negative) solution
baseline (initial). (ii) Check the optimality of the obtained
solution. (iii) If it is not optimal, generate a new basic fea-
sible solution that is not worse than the one previously ob-
tained, and check if the obtained solution is optimal. If it is
optimal, the process is completed (because better solution
cannot be found). In other words, the last obtained solution
is considered optimal.

2.1.5 Tabu Search

The basic paradigm of this heuristic method (examples of
which we can be seen in [17]) is to use the search history
(distribution of activities in the timetable) to guide the local
search approaches to overcome the problem of solver being
stuck in local optimum (repeating suboptimal results). It is
possible to combine this method with other algorithms, e.g.
with graph coloring.

Regardless of how successful are these methods, all of
them have a major disadvantage. Namely, it is practically

impossible to change an already existing schedule. Ob-
serve that, when scheduling courses at a university (which
is our application area) it is necessary not only to generate
a “high quality schedule” (where quality is judged against
one or more criteria, see below), but also to provide mech-
anisms that would allow to shift an individual class, add a
new one into an existing schedule, (ex)change rooms, etc.
Since the above described methods treat the schedule from
a “holistic” perspective, re-scheduling a single class, e.g.
for a teacher that got sick during the semester, is a rela-
tively complex task. Simply said, this is not what these
methods were created for. Obviously, such changes can be
accomplished manually, or by using additional (separate)
software, but this means that multiple approaches have to
be combined. One, to generate the “initial” schedule, and
one to manage it during the course of the semester. More-
over, the larger the input data set (and the more links be-
tween items in this set) the more complex is the problem.
As a result, the algorithms that can solve the timetabling
problem need more computational power and take more
time to complete. Note that, due to the holistic approach,
in each “step,” these algorithms treat the complete problem
at once.

Interestingly, it can be stipulated that software agents can
handle both the schedule preparation and its management,
as they are characterized by autonomy, reactiveness, and
ability to communicate / negotiate (see, [6, 12], for discus-
sion of application of agents in timetabling).

Furthermore, as will be shown, agents allow to “divide”
the problem into smaller subproblems that are solved in
each step; thus reducing its overall complexity. There-
fore, we have developed a prototype of an agent-based
timetabling system (AgentPlanner), which uses agent ne-
gotiations to create and maintain (modify) the schedule.
In what follows, we describe the AgentPlanner and dis-
cuss results of its experimental evaluation, when applied
to scheduling university courses.

2.2 Agent based methods

Before proceeding with description of the AgentPlanner,
let us summarize the state-of-the-art in using agents in
timetabling. We found a few agent based systems (some
of them are described in [12]) that are used for planning in
logistics, production, defense and insurance sectors, e.g.
a scheduling system for taxi companies ([13]) or hospi-
tals ([14]). Obviously, some of them could be reorganized
for school timetabling, but it would be difficult because
they are designed to solve a specific problem. However,
there are also agent-based systems, designed specially for
timetabling.

Authors of [9] use a divide-and-conquer approach, com-
bined with software agent technology. Timetabling Agents
generate initial solutions, where each agent is responsible
for the solution of a specific subproblem. Every agent uses
a different heuristic. It is a big advantage, because this ap-
proach can apply proper heuristic (appropriate to the spe-

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 5

cific problem). Moreover there is a Mediator Agent, guard-
ing that all plans are arranged, while satisfying predefined
criteria and constraints. Test data is divided into three cat-
egories: small, medium and large, and the large dataset(s)
are actually big enough to be considered realistic (match-
ing the actual situation at a university). Unfortunately, it is
not described how complex are the links between the items.
For example, in our test data, students can belong to mul-
tiple different groups (obligatory, elective, language group,
etc.), thus avoiding a collisions of students’ activities is im-
portant (but relatively difficult).

Paper [10] describes a similar approach as [9], but there
are three types of guarding agents. The first is making sure
that the generated sample solutions comply with the main
requirements (no collision for trainers, only one class in
one room, etc.). The second type agents is guarding “hard”
constrains. The third type of agents guards the “soft” con-
straints (good to have, but not necessary). The number
of second and third type of agents depends on the spe-
cific course timetabling problem. System can work in two
modes: (i) where second and third type of agents evaluate
proposals of the first type, and (ii) where second and third
type of agents try to improve proposals put forward by the
first agent. Unfortunately, in the paper the test data is not
well described; just the grid of 5 days and 9 time units are
specified, that gives much more space where the solution
can be found than in our research (5 days x 6 time units).
According to the author “the results are promising” but it
is not possible to verify them because there are no actual
results in the paper.

Author of [11], is firstly looking for any matching so-
lution and then optimizes it. In the proposed approach, a
larger number of agents types (than in the above described
papers) is proposed. Almost every element in the plan has
an agent representing it: CourseAgent, TeacherAgent, Stu-
dentAgent, RoomAgent. A potential disadvantage of this
approach is that the more data is to be passed around, and
the larger the number of agents in the system, the larger
is the number of messages that are to be exchanged. This
causes two possible problems: (i) an increased chance of
a bottleneck, and (ii) problem of synchronization of com-
munication and actions of the system. In the paper, author
showed results when 40 agents were used. However, this is
rather a small problem, and does not show any conclusive
results concerning scalability of the proposed approach.

Overall, papers [9, 10, 11] describe very interesting ap-
proaches to application of agents to timetabling, but their
are not well tested. Number of “elements” in the test data
is not large and not complex enough to mimick real-world
situations. Furthermore, during the our research we stum-
bled upon many papers of this kind; interesting approaches
tested on non-realistic data sets, so we will omit them here.

There exist approaches similar to the AgentPlanner. Ne-
gotiation involving teachers’ time preferences have been
used in [19]. Here, authors use four classes of agents:
(1) Teacher Agents, (2) Classroom Agents, (3) History
Agent, and (4) two Interface Agents. The role of the In-

terface Agents is to initialize other agents based on the user
setup. The core of the algorithm is negotiations between
Teacher Agents who send propositions (prepared on the
basis of Teacher preferences) to proper Classroom Agents.
They consider the proposals, with help of the History Agent
that contains information about all timetables and allows
detection of collisions. The size of the dataset is impres-
sive (but there is no description of its complexity) and re-
sults are very encouraging. Unfortunately it is not possible
to compare effectively these results with our approach (de-
scribed below) because authors adopted a different evalu-
ation criteria. They focus on number of sent and analysed
messages, which guarantee the speed of the system. Teach-
ers’ time preferences are used in scheduling but authors did
not check if they have been actually fulfilled (to what ex-
tent).

Similar approach to result evaluation present authors
of [20]. In their work, every weekday is a different plat-
form, where Course Agents are run. They negotiate with
each other (via a SignboardAgent – a coordinator that helps
find a free time slot). Primary results found in the paper are
that using a distributed architecture is better than a central-
ized one, because of reduction of run time.

Finally, work reported in [21] shows that many agent
based systems do not deal with re-scheduling of an exist-
ing schedule (e.g. system presented in [20]). To deal with
the problem, authors use the Probability Collective theory.
Their experimental results are promising, but they cannot
be naturally compared with our approach as they (again)
have different criteria of evaluation (e.g. time of running
having various sets of data or evolution of the probability
collective).

Summarizing, results of our research into the state-of-
the-art in timetabling have revealed three groups of results.
First, large number of “global” approaches to finding the
optimal schedule. Here, their main disadvantage is a diffi-
culty to modifying the schedule in response to the changes
that occur during its realization. This latter feature is par-
ticularly important when dealing with real-world schedule
that has to run during a semester at a university / school /
college. Second group involves agent-based solutions that
were not properly tested, or tested on data sets that were
“not complex enough” to represent real-world situations.
Finally, agent-based approaches that were somewhat simi-
lar to our approach, but in their design and experiment fo-
cused on different aspects of timetabling than what was our
main goal.

3 AgentPlanner – preliminary
considerations

The most important attribute of our approach is take into
account teachers’ time preferences. In this context, we
have started our work by analysing the real needs of fac-
ulty members of the Mathematics, Physics and Informatics
Department of the University of Gdańsk.

6 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

The results of completed analysis allowed us to spec-
ify the requirements for the development of our agent-
based course scheduling system (the AgentPlanner). First,
the AgentPlanner has to deal with both scenarios: (1) to
develop a timetable of academic courses in accordance
with specified restrictions (creation of a new timetable),
and (2) to manage it; i.e. be capable of making re-
quested changes / modifications in the existing class sched-
ule (timetable maintenance). It is important to note that
the selected application area: scheduling of courses at a
university, has guided formulation of functional and non-
functional requirements for the developed system. Univer-
sity course scheduling means that, in addition to creation of
an initial course schedule for a given semester, the Agent-
Planner has to be able to deal, among others, with: change
of location(s) of selected laboratory groups / lectures, sick-
ness of a teacher (i.e. rescheduling missed classes for a
later date), adding new activities (e.g. an unscheduled ex-
amination caused by multiple students failing the first at-
tempt), etc.

After analysing the actual scheduling process that takes
place at the University of Gdańsk, it was decided that only
the Planner (human system administrator) will be able to
run the AgentPlanner to create the timetable. In addition,
the Planner is going to be the only person who will be au-
thorized to make schedule changes in the database (in par-
ticular, during the timetable maintenance phase).

In the AgentPlanner we have introduced some restric-
tions on the implemented functions. In this way we were
able to focus on core functionality and complete experi-
mental evaluation of our approach. In this way, after the
initial course schedule is created, both the Planner and the
teacher can send two types of requests: (a) to insert a new
activity (group exercises, laboratory, lecture), requiring re-
organization of the plan, and (b) to change location of, al-
ready scheduled, activity(ies). Observe that both types of
requests may impact other teachers. Hence, the proposed
rescheduling (resulting from the work of the AgentPlanner)
has to be negotiated with those teachers that are affected by
the changes. In the current version of the AgentPlanner, to
complete a change of the existing timetable, all affected
teachers have to agree. Here, for the time being, we do not
take into account the fact that the teacher may be forced to
accept a change (e.g. by the Dean), and assume benevo-
lence of teachers.

Analysis of the actual course scheduling process lead to
the following extra requirements for any system similar to
the AgentPlanner. (1) Scheduling should be completed in
a reasonable time. (2) Used algorithms must be designed
so that the system can be used on computers with limited
power (i.e. personal computers). (3) The timetabling sys-
tem should be easy to install (use well-known and well-
documented software). (4) Ease of use (simplicity of the in-
terface) is very important. (5) Timetable requires visualiza-
tion both in the printed form, as well as in a form that can be
sent to the website (to be displayed). Therefore, the system
should have various data converters; from the database rep-

resentation of the schedule, to the appropriate file formats.
(6) The scheduling system should be reliable and resilient
to possible errors. (7) For obvious reasons, data security
is extremely important. Finally, (8) the timetabling sys-
tem should be portable between various operating systems.
This context let us stress, again, that the aim of our current
work was not to develop a full-blown system. Therefore,
the above “extra requirements” have been mostly omitted.
For similar reasons, we have not considered the require-
ments involved in implementing the AgentPlanner on mo-
bile devices (which may be a very useful – or ever required
– functionality for an actual system).

Based on conversations with actual faculty members of
the University of Gdańsk, we have formulated the initial
“scheduling goals” for the AgentPlanner. As a result, the
system aims at: (i) minimizing the number of days of teach-
ing, and (2) locating activities as close as possible to each
other (i.e. no big gaps between activities, resulting from
some classes taking place in the morning and the remain-
ing ones in the evening). However, it is also possible to
control this process by incorporating teachers’ preferences
(for both: teaching days, and selected time-slots). Specifi-
cally, the teacher can rank her preferences concerning days
of the week by assigning natural numbers from the inter-
val [0, 4], where 0 is considered to be “unacceptable” and
4 represents “the best option”. Similar approach applies to
ranking time-slots (each of them can be ranked individu-
ally; in this way we can capture preferences such as: I like
to teach in the morning vs. I hate to wake up early). In this
case, the interval depends on the number of time units per
day (we consider [0, 5]). It has to be noted that, in the cur-
rent design, there is no restriction on the number of teach-
ing activities during a single day. Therefore it is possible
for a teacher to have classes “all day long” (e.g. 5 courses at
a given day; and no classes for the rest of the week). While
seemingly unreasonable, this does reflect the actual pref-
erences of faculty members. It is worth to mention that, in
Polish universities, single lesson last 45 minutes while time
unit usually consists of two lessons, i.e. 90 minutes.

It is very important to adopt some constraints that pre-
vent input data that makes it impossible to create a plan, or
that causes a negative, unreliable results of the evaluation
function. Here, we have identified key steps of proper rep-
resentation of time preferences (we have also utilized them
when preparing the test data).

(1) All default (undefined by teacher) time units in the
schedule are set to the highest possible rank (e.g. 5 for a
day consisting of 6 time intervals).

(2) Teacher should consider, which time units are “the
best option” for her/him and leave them without changing
rank. Minimum number of highest ranked time units de-
pends on the number of the teacher’s activities.

(3) Next step is to set ranks less than the highest but
higher than 0, represented as natural numbers from the
interval [1,HIGHEST_RANK− 1], where 1 means that
her/his presence is possible but inconvenient. Proceeding
in this way teacher can affect allocation of his/her activ-

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 7

ities. As a result there is higher probability to achieve a
plan that is better than when one does not make such pre-
cise specifications.

(4) Teacher should carefully consider, which time units
are “unacceptable” for him/her and rank them as 0. How-
ever, it is obvious that the more zeros, the more difficult
the problem becomes. Therefore, the teacher should use it
only if presence is really impossible at that time.

As far as the representation of interests of students is
concerned, the prototype takes into account (what we be-
lieve to be) the key aspects of a plan: minimization of col-
lisions of courses, number of days of instruction, and gaps
during the day. However, we have to admit that the current
version of the AgentPlanner has been implemented with
primary focus on teacher satisfaction.

Finally, in the current version of the AgentPlanner sys-
tem, the timetable is created for a single department, lo-
cated in a single building.

3.1 AgentPlanner as an agent-based system

Recall that the AgentPlanner has been conceptualized as an
agent system. On the basis of the requirements analysis, we
have envisioned it as depicted in Figure 1.

Figure 1: AgentPlanner use case diagram.

Here, we recognize the two main functions of the sys-
tem, the Creation of a new timetable, and Timetable man-
agement, as well as a number of additional functions
needed to complete the two main ones. The current design
of the system has only two “external” actors: the Planner
and the teacher. In the future, one may need to include in
the design also the student actor, but this would lead to a
system that is out of scope of our current work. Analysing
functional and non-functional requirements of the Agent-
Planner system, we have came to the conclusion that it
should consist of the following agents:

– BootAgent, with the only task to create and start other
agents that are required in the AgentPlanner system.

– DatabaseAgent, responsible for connection the sys-
tem with database. All agents have access to data via
the DatabaseAgent. This agent was found to be re-
quired to streamline and organize access to the data
stored in the database.

– RoomsAgent represents rooms in the scheduling pro-
cess. It downloads (from the database), filter and store
data about rooms in the system (e.g. type of every
room, seating capacity, etc.).

– TeacherAgent acts on behalf of a teacher (both during
creation and management of the timetable). It stores:
(i) information about the teacher (including personal
data that has to be protected), (ii) list of activities
(courses / groups) taught by the teacher, (iii) list of
rooms (meeting the requirements of each group and
course, e.g. laboratory group has to be scheduled in a
laboratory); obtained from the RoomsAgent), (iv) re-
sults of the location evaluation function (described in
Subsection 4.1), and (v) teacher’s current timetable.

– ScheduleAgent is the central agent of the negotia-
tion algorithm. It “knows” teachers involved in cur-
rent negotiations (TeacherAgents that represent them).
It also has access (read and write) to the timetable
database (via the DatabaseAgent). Note that, all data
concerning the currently considered timetable, is (af-
ter each change) saved in the database. This allows
the ScheduleAgent to effectively issue verdicts, which
room should be assigned to which requesting teacher
(as it knows which rooms are already occupied and
which are still available). Note that we are aware
of the fact that, in a very large scheduling problem,
the ScheduleAgent may become a bottleneck. How-
ever, solving this problem is out of scope of the cur-
rent contribution. This is especially the case since the
time to calculate the schedule for the (realistic) size of
data used in our experiments was acceptable (it took
about 1 minute to complete the scheduling task; after
all agents were started and provided with their input
data).

The negotiation process is between ScheduleAgent (a
judge) and TeacherAgents (representing teachers) but not
between TeacherAgents. Obviously, it is centralized model,
where it is possible to run into a bottleneck (caused
by limited processing capability of the ScheduleAgent;
see, above). However, observe that very complex, time-
consuming, negotiations take place only once – during
early phases of creation of the initial schedule. This is “ac-
ceptable” as the time-pressure is, usually, not too-serious.
At the same time, adaptations to the existing schedule,
which take place during the semester do not take long time,
as they involve only small number of agents (representing
teachers affected by the required change(s)).

8 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

It is easy to note that the DatabaseAgent and the Room-
sAgent did not have to be implemented as full-fledged
agents. For instance, they could have been designed as
FIPA-style services [23]. However, we have decided (for
the simplicity and uniformity of implementation) to use
agents “across the board”. Acknowledging that this deci-
sion may seem somewhat controversial, we believe that our
choice of an implementation method (i) has merit, and (ii)
does not influence the experimental results supporting our
approach (quality of the obtained solution).

4 Implementation of the
AgentPlanner

Based on the above considerations, we have decided that
the AgentPlanner should be implemented as a client-server-
type system, where all operations concerning generation
and maintenance of the timetable are going to be executed
as an agent-based server application, while the client com-
ponent will be responsible only for sending requests and
reviewing / accessing results. It is important to keep in
mind that access to the database is allowed only on the
server side of the application, so every request of the client,
or any other agent in system, has to be handled by the
DatabaseAgent. This decision was based on the fact that,
our software of choice (the JADE agent platform), does not
provide a robust GUI for user interfaces. Therefore, follow-
ing advice found in [8] we have decided to clearly separate
the agent and non-agent functionality. Furthermore, in the
current version of the prototype, the client application is
simplified to a “line interface,” while the server applica-
tion has only functionalities needed for the two timetabling
operations (schedule creation and maintenance). All data
needed for the tests was inserted manually to the database
via SQL scripts, or other scripts written for this purpose.

4.1 Evaluation algorithm
The core of the timetabling mechanism is the evaluation
algorithm. Here, the TeacherAgent(s) evaluate the loca-
tions (room information received from the RoomsAgent)
that best match the need of the teachers. The evaluation
algorithm must takes into account: priority of course and
lecture, links of students with other groups, teacher prefer-
ences, and the current state of the timetable. Overall, ev-
ery activity has an assigned priority, which describes how
important it is for the teacher (e.g. a lecture may have
higher scheduling priority than a laboratory). Furthermore,
some courses are “more important” than others, e.g. a core
course may have a higher rank than an elective (all students
have to take the core course, while they may sometimes be
“forced” to take a different elective – to avoid course colli-
sion(s)). Moreover, courses related to the major (e.g. in our
case, CS courses) have higher rank than non-major ones
(e.g. psychology courses). Separately, when considering
the current timetable, priority is given to activities that can

be assigned in the time-vicinity of the already scheduled
ones. In this way, the total number of gaps in the schedule
of the teacher (and possibly students) can be minimized.
The evaluation algorithm works as follows (1). The current

Data: S = priority_of_course * 10 + links_number
if day_priority or time_slot_priority is equal 0 then

do not add room from this time slot to the list
else

S := S * day_priority * time_slot_priority;
if there are other lessons in this day then

S:= S+5
end
if there are other lessons around time_slot then

S:= S+5
end

end
Result: S

Algorithm 1: Evaluation Algorithm.

version of the evaluation algorithm is quite different from
the one reported in [1]. The initial value is the sum of the
activity priority (multiplied by 10, because in this way, in
the experiments, we have received better results) and the
number of all groups, to which students from this activity
belong. This should be understood as follows: the more
links / dependencies between data elements, the harder it
is to put the activity in the plan, because the algorithm has
to avoid collisions between connected groups. Therefore,
the most complex situations should be resolved in the first
place. The next step is to consider the most important fac-
tor, the teacher’s time preferences, i.e. rank of day and time
unit. If one of them is equal 0, that means that the teacher
cannot lead activity at that time, and function does not add
this location to the list. The last element is the evaluation of
the “vicinity”. It is important to reduce the “time gaps” in
the plan. Therefore, to place an activity between two others
is the highest ranked situation.

4.2 Timetable planning algorithm
Let us now consider creation of a new timetable. Re-
call, that the approach is based on a single “judge” (the
ScheduleAgent), having access to the current timetable
(which initially is empty). The ScheduleAgent negotiates
the timetable with the TeacherAgent(s), using information
obtained from the RoomsAgent. Negotiations are divided
into rounds (since in each round at least one activity is
places in the schedule, their number is not larger than the
total number of all “activities” – courses / exercise groups /
laboratories – of all teachers). Due to the lack of space,
we omit the pseudo-code (it is about 4 pages long and
can be found in [22]). The general idea of actions that
are performed in a single round is depicted in figure 2.
Each round begins with the start signal (message) from the
ScheduleAgent to the TeacherAgent(s) (that still have activ-
ities to allocate). During a single round, every TeacherA-
gent considers an activity from the list of all teacher’s activ-

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 9

Figure 2: General schema of single round (sending propos-
als).

ities (initially sorted according to the priority of the activity
type) and selects the “most important one”. If activities list
is empty then the TeacherAgent sends to the ScheduleAgent
a message that it resigns from further negotiations. If not,
the next step is to prepare a list of rooms acceptable for the
considered activity and sort them according to the results
of the evaluation algorithm (1). The TeacherAgent selects
the most desirable location and sends the proposal to the
ScheduleAgent. The proposal consists of: (i) symbol of
the activity, (ii) number of the week day, (iii) number of
the time slot, (iv) result of the evaluation algorithm. When
all TeacherAgents send their proposals, the ScheduleAgent
considers them and accepts the best (placing these activi-
ties into the current timetable), while rejecting others. Note
that, in the current version, we omit the case when one (or
more) TeacherAgent(s) do not send their proposals. While,
in general, this is an important issue for the design of agent-
based distributed systems, handling such anomaly is out of
scope of our current work. The decision to accept a re-
quest depends on two factor: (1) is the requested location
already occupied by another activity, and (2) does a given
request involve course collisions. Obviously, it is possible
that multiple TeacherAgents may ask for the same location.
In this case, the ScheduleAgent selects the one that delivers
the best value of the evaluation algorithm. It is also possi-
ble that proposals from multiple TeacherAgents “have the
same value”. In this case, the ScheduleAgent draws a win-
ner (randomly). Next, the ScheduleAgent sends messages
to the TeacherAgents, about rejected proposals. Then, the
TeacherAgents select the next best location from the list,
and create proposals for the ScheduleAgent. If all of its

proposals are rejected, then TeacherAgent resigns from the
given round of negotiations. The result of this decision is
recorded in the database for the information of the Planner.
The round ends when every TeacherAgent gets a place for
its activity, or when some unscheduled requests cannot be
satisfied. Note that, in a single round, the total number of
evaluated requests is equal to the number of teachers with
unscheduled activities and thus is relatively small and sys-
tematically decreasing (when at least some teachers have
their schedules complete).

Observe that this approach is based on the assumption
that all teachers have the same chances. This is because, in
a single round, every TeacherAgent can reserve one perma-
nent place for one of its activities. For example, if a pro-
fessor has two seminar lectures, while an assistant has two
exercise groups, then in the first round each one of them
will “book” a room for one of their activities (regardless
of their position in the academic hierarchy). However, it is
not clear if such democratic approach would be sustainable
in the real-life university course scheduling. If this was
not the case, then the structure of academic dependencies
(who, in a given moment, is more important than others)
could be represented, as weights, in the evaluation func-
tion. However, exploring this possibility is out of scope of
our interests.

Before the beginning of the next round, the Sched-
uleAgent receives messages from the TeacherAgents with
resignations from the given round of negotiation. In re-
sponse to these messages, it suspends the main thread of
negotiations, and runs the timetable reorganization algo-
rithm (see subsection 4.3) to deploy the rejected activities
into the current schedule.

It could happen that the reorganization (adding new ac-
tivity) is impossible, then the activity is added to list of
rejected activities, for inspection by the human Planner. In
this case, the Planner has to figure out how to improve the
input data, e.g. to change the time preferences of teacher
(e.g. by contacting her/him directly). After the schedule is
reorganized and, previously rejected proposals are added,
the ScheduleAgent returns to the main thread and starts the
next round of negotiations. Thus, the timetabling algorithm
continues from reception of the next group of proposals
from those TeacherAgents that still have unscheduled ac-
tivities. The sequence diagram of the timetable planning
process is represented in figure 3. After an extended anal-
ysis of results reported in [1], we have made an important
modification to this algorithm, aimed at eliminating colli-
sions among student activities. Originally, during the ne-
gotiations, student collisions were checked against groups
that were already inserted into the timetable, but not against
the remaining groups that were involved in the given nego-
tiation step. To deal with the collisions, we have decided to
sort all proposals according to the results of the evaluation
algorithm (see, section 4.1) and insert activities iteratively
beginning from the top of the list. However, before insert-
ing an activity into the plan, we now check for possible
collisions between student activities and if there are any,

10 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

Figure 3: Timetable planning algorithm sequence diagram.

we reject such proposal. This approach slows the progress
of timetabling, but thanks to it we can generate timetable
with no collisions between student activities.

4.3 Timetable reorganization algorithm

The timetable reorganization algorithm is used in two sit-
uations. First, when in a single round, all proposals of the
TeacherAgent (concerning a given activity) were rejected
by the ScheduleAgent. Then, the ScheduleAgent, has to
find a place for such activity in the current timetable. Sec-
ond, during the timetable maintenance phase, when the re-
quested changes require schedule reorganization.

The list of activities that require adding, via the timetable
reorganization algorithm, is based on messages received
from the TeacherAgents and stored (by the ScheduleAgent)
in the rejected activity list (and ordered according to their
priority). The ScheduleAgent considers these messages one
by one.

When the TeacherAgent T1 wants to take location that is
occupied by the TeacherAgent T2, then the ScheduleAgent
sends to the T2 a message with a proposal of release this lo-
cation. Then, the TeacherAgent T2 requests a new place for
its activity. If it succeeds, the TeacherAgent T2 accepts the
proposal and the TeacherAgent T1 can book the requested
room for its activity. If not, the TeacherAgent T1 has to find
another place. Here, it is assumed that all TeacherAgents
are cooperating and all have a chance to put all activities in
the timetable, even in a “conflict situation”. Furthermore, a

simple mechanism that prevents this phase from reaching a
deadlock (when all agents depend on others releasing their
rooms, “in a loop”) is applied by the ScheduleAgent. In
the pessimistic situation (very difficult input dataset), ac-
tivity may find no place. In that case, the algorithm can-
not deal with it and the Planner (human being) is informed
about the situation, and has to change the dataset (e.g. by
convincing a teacher to change preferences) or to put the
activity manually into the schedule.

On the other hand, when making changes in the exist-
ing plan (during the semester) owner of the TeacherAgent
T2 would receive a request to accept the proposed change.
Obviously, in this case, success of the schedule adjustment
depends in large part on the benevolence of the involved
instructors. However, let us recall that, for the time being,
we assume such benevolence.

4.4 Technologies used in the implementation
The following technologies were used to implement the
AgentPlanner:

– Agent platform: JADE (version 4.3.0) [7]

– MySQL database 5.1.69 [24]

– NetBeans 7.0.1 [25]

5 System testing and analysis of
results

5.1 Test data
The test data used in our experiments was prepared on
the basis of the actual organizational structure and room
base of the Mathematics, Physics and Informatics Depart-
ment of the University of Gdańsk (UG MFI). To evalu-
ate the efficiency of the proposed method, the results ob-
tained by the AgentPlanner were compared with these pro-
duced by the Free Timetabling Software (FET, version:
5.19.1) [2], which uses the GA. Each software solved the
same timetabling problem.

The problem involved 5 days (Monday-Friday), each
consisting of 6 time slots, and the building with 21 rooms,
which results in a “grid” that contains 630 locations. There
were 301 activity groups (62 courses, comprising total of
734 students). While it may seem that there is “a lot of
space” to allocate activities, constraints imposed by the
teachers and the student grouping limited this space consid-
erably. Specifically, time preferences of 78 teachers were
the main limiting factor, without it, both algorithms would
find a solution without any problem (for the grid: 5 days
x 6 time units x 21 rooms). Moreover, the problem is
more difficult, because connections between students and
groups are very complex, primarily due to the possibility
of choosing elective courses. For example, a single stu-
dent can have a few core courses (consisting of lectures for

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 11

all students and exercises/laboratories for student groups)
and (s)he has to choose a few elective courses (like facul-
tatives, language(s), seminars, etc.). The most difficult sit-
uation involved an activity that consisted of 120 students,
who belonged to 107 other activities. In this situation, the
timetabling algorithms have to allocate these 107 activities
in the schedule without collisions (for both teachers and
students) and additionally take into account teachers time
preferences.

Let us now stress that the input data and the setup of
the FET system, reported in [1], was based on the actual
settings used in the UG MFI department. Interestingly, the
obtained results were not very impressive. However, after
the publication, a co-author of the FET system contacted
us and shared insights and advice how to setup the FET
system better. Let us now make a few comments about the
specific issues in experimental setup of the AgentPlanner
and the FET.

First, it is important to explain, why we could not set
100% of constraints in the FET. In general, during prepa-
ration of the data for both systems (FET and AgentPlan-
ner) we tried make them most similar. We have set up
subjects, activities (with tags), subactivities, rooms (re-
call that we solve the problem for one department and one
building only), teachers, students (assigned to activities).
The AgentPlanner has been already designed to resolve the
most important (hard) constraints like elimination of colli-
sions, minimization number of days of instruction and gaps
during the days. The only light constraint, we took into ac-
count, were time preferences, because they are the core of
the AgentPlanner algorithms. The AgentPlanner takes into
account teacher’s time preferences by using ranks. In the
FET we have similar option but we can only set the time
units when teacher cannot lead any activity, and we have
used this option. However, in the FET it is impossible to
make a more specific ranking of teacher preferences.

It is worth mentioning that there is significant difference
between the AgentPlanner and the FET rank function. In
the AgentPlanner we can describe the time preference of
teacher using sets of natural numbers: (1) [0, d] where d is
maximum number of days, and describe the best option for
the teacher, while 0 means that the teacher absolutely can-
not have an activity in that day; (2) [0, t] where t is maxi-
mum number of time units during the day, and describe the
best option for the teacher, and 0 means that teacher abso-
lutely cannot have an activity in that time. In the FET, we
can set the rank for only the time units, when the teacher
cannot have an activity. Actually it is possible to describe
the percentage value number that describes the time unit,
but it is only one and we can use it to describe any time.

The next important issue is preparation of the student test
data. In the AgentPlanner, we can describe students group
as activity and link with it any single student that belongs
to it. Due to this setup, it is very easy to detect the collision
of an activity, which we try to insert into the schedule. It is
possible to use similar solution in the FET. We are able to
create 3 types of groups: years, groups, subgroups. In [1]

we understood it literally, so set of students was divided
into years (IT, Math), groups (as a lectures of subjects) and
subgroups (as a parts of lectures from groups). This ap-
proach prevented linking students individually with groups
and reduced the potential for effective detection of colli-
sions. As a result, we have decided to prepare 2 types of
groups, similar to the AgentPlanner: first contains activities
of subjects, while in the second the students that are linked
directly to these activities. As a result, the FET achieved
much better results and effectively eliminated collisions be-
tween student activities. We plan to suggest this approach
to the Planner at the Mathematics, Physics and Informatics
Department of the University of Gdańsk.

5.2 Comparison metrics
Note that the AgentPlanner is being designed with focus
on the “human factor” (convenience of teachers and stu-
dents). In this way it differs from most approaches reported
in work summarized in Section 2.1. Therefore, we have
constructed a teacher and a student satisfaction functions
that estimate satisfaction of this criterion. The teacher sat-
isfaction is represented by the following formula:

ST =
s ∗ 100
a ∗ n ∗m

(1)

where: a is the number of activities of a teacher in a given
semester, n is highest rank assigned to any day, m is the
highest rank assigned to any time slot. Furthermore, s is
the sum of evaluations of all time units of all activities of
teacher, obtained by using formula 2.

s =

n−1∑
i=0

m−1∑
j=0

D[i] ∗ T [i][j] (2)

Here, D[i] represents the evaluation of each day of the
schedule, while T [i][j] (formula 3) represents evaluation
of each of time slots assigned in the schedule of that day.

T [i][j] =

{
< 0,m > teacher’s evaluation of time unit
0 when teacher has no activity

(3)

In other words, in the numerator we represent the actual
time slots assigned by the planing software, while in the
denominator we represent the best potential schedule. In
this way we introduce a measure that allows us to capture
satisfaction of the teacher represented as a percent of the
schedule that would be an ideal one.

The student satisfaction is assessed as follows. We start
from 100% satisfaction and subtract: (1) 10% for one col-
lision between the desired activities, (2) 10% for two col-
lisions, (3) 20% for more than two collisions, (4) 10% for
one extra gap between activities (we allow for one gap dur-
ing a day), (5) 10% for two extra gaps, (6) 20% for more
than two extra gaps, (7) 10% for one additional day (the
situation when there is more days than necessary), (8) 10%
for more than one additional day. Assessment of student

12 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

satisfaction was conceptualized in this way, as it is impos-
sible (at least in the current version of the AgentPlanner) to
include in the process (and aggregate in some way) individ-
ual preferences of each student. While somewhat artificial,
we believe that this function gives a reasonable way of as-
sessing student satisfaction. Obviously, values 10%, 20%
etc. are arbitrary ones, but they allow us to quantitatively
capture the quality of schedule (seen from the student per-
spective).

5.3 Analysis timetable creation
Because the FET uses genetic algorithms, every generated
schedule is different. Therefore, to get a reliable results of
the test, we decided to run it 100 times and, in what fol-
lows, we report the best results for both teachers and stu-
dents. In other words, each time we present two outcomes
obtained by FET. This has to be done in this way because
(in all reported cases) the best schedule for teachers is not
the best one for students. In the case of the AgentPlanner,
there is only one result (for the given set of test data). This
is different than in the case of the results reported in [1],
since we have resigned from the random factor used there.
In Figure 4 and Figure 5, we depict the schedule satisfac-

tion results, for all 78 teachers, originating from the Agent-
Planner and two results for the FET (the best result for the
teachers and for the students). We can see that the teachers
achieved higher satisfaction in the case of the AgentPlan-
ner results. We compared the results with the average, the
best, and the worst result of all test runs of the FET. The
more specific conclusions follow. In Table 1 we can see

Runs Average Max. Min.
AgentPlanner 98.03% 100.00% 66.67%
FET (all) 93.16% 100.00% 30.00%
FET (the best) 94.71% 100.00% 66.67%
FET (the worst) 91.73% 100.00% 50.00%
FET 93.95% 100.00% 55.00%

Table 1: Comparison of teachers satisfaction function re-
sults.

in a row: (1) results for all teachers for the AgentPlanner,
(2) the average result for the FET from all runs, (3) results
of the best FET run for the teachers, (4) results of the worst
FET run for the teachers, (5) results of the best FET run
for the students. The columns describe: (1) “Average” the
number of all results of all test runs, (2) “Max.” the best
result of all test runs, (3) “Min.” the worst result of all test
runs. We can see that the AgentPlanner achieves better re-
sult than the best one obtained by the FET. Note that every
case has 100% of maximum satisfaction, because (in the
test data) there were teachers who did not define their time
preferences, so they were “happy” with what they got.
When we compare Figure 6 with Figure 7 and Figure 8 we
can see that in the AgentPlanner the set of satisfied teachers
was 14.1% higher than the same set obtained using the FET

(for the best result) and 17.95% higher than in the case of
the best result (obtained by the FET) for the students.

Next, in the figures 9 and 10, we represent student satis-
faction.

The diagram in Figure 10 shows the average student
schedule satisfaction for the best result for the teachers.
Here, the the largest group of students belongs to the in-
terval (70%, 80%] for the AgentPlanner (27.11% of all stu-
dents), and (30%, 40%] for the FET (31.88% of all stu-
dents). Observe also that, in the case of the AgentPlan-
ner, 9.95% of students belong to the interval (90%, 100%],
while in the case of the FET none student was satisfied to
this extent.

In the diagram in Figure 9 we can see the average student
schedule satisfaction, considering the best FET run for stu-
dents. Here, the largest group of students belongs to the
interval (70%, 80%] for the both systems (27.11% for the
AgentPlanner and 27.80% for the FET). Observe also that,
in this case the FET (only) 0.14% of students belong to
the interval (90%, 100%]. In Table 2 we can see in subse-

Runs Average Max. Min.
AgentPlanner 73.27% 100.00% 40.00%
FET (all) 59.37% 100.00% 40.00%
FET (the best) 66.28% 100.00% 40.00%
FET (the worst) 52.21% 90.00% 40.00%
FET 60.41% 100.00% 40.00%

Table 2: Comparison of students satisfaction function re-
sults.

quent rows: (1) results of all students for the AgentPlanner,
(2) average result of the FET for all runs, (3) results of the
FET run that was the best for the students, (4) results of
the worst run for the students, (5) results of the best run for
the teachers. We can see that the AgentPlanner achieved
6.99% better result than the best case of the FET. More-
over, the difference between the best and the worst FET
result is 7.16%.

In the Table 3 we depict number of gaps in students’
timetables. Specifically, we depict the percentage of stu-
dents who have: (1) no gaps in their schedule (the perfect
situation), (2) 1 gap, (3) 2 gaps, and (4) more than 2 gaps.
We present results obtained by the AgentPlanner and (as
previously) two versions of the FET results (best from the
point of students and teachers). In the case of the Agent-

Gaps AgentPlanner FET (the best) FET
0 41.28% 33.79% 18.26%
1 28.34% 26.02% 27.79%
2 17.57% 14.17% 20.71%

> 2 12.81% 26.02% 33.24%

Table 3: Average number of gaps of students.

Planner, the biggest set of students (41.28%) has no gaps,

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 13

Figure 4: Satisfaction evaluations of all teachers (the best result for teachers).

Figure 5: Satisfaction evaluations of all teachers (the best result for students).

14 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

Figure 6: AgentPlanner: sets of satisfaction evaluations of
teachers.

Figure 7: FET: sets of satisfaction evaluations of teachers
(the best result for teachers).

Figure 8: FET: sets of satisfaction evaluations of teachers
(the best result for students).

Figure 9: Average satisfaction evaluations of students (the
best result for students).

Figure 10: Average satisfaction evaluations of students (the
best result for teachers).

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 15

while in the case of the “best FET” only 33.79% students
reach this result, and only 18.26% for the best result for the
teachers. It is very important to notice that in the case of the
AgentPlanner, the number of students who have more than
2 gaps is only 12.81%, while for FET it is equal 26.02%
(for the students’ best result) and 33.24% (for the teachers’
best result).

Table 4 captures the number of additional days (from the
students’ point of view). Note that multiple days of in-
struction are not desired (actual students of University of
Gdańsk prefer to have minimal number of days of instruc-
tion as most of them are already full-time employees). Ad-
ditional day is a result of a timetable “unfavorable” for the
student. For example, if someone has just 4 activities dur-
ing a week, the best result for her/him is a plan with all
activities scheduled within a single day. But very often it is
a very hard (or even impossible) task to have such schedule,
because of complex data dependencies. Then, the Agent-
Planner must split student’s activities into more days, e.g.
two (i.e. one additional day) or three (i.e. two additional
days). We again consider two versions of FET results, best
for the students and for the teachers.

Days AgentPlanner FET (the best) FET
1 10.22% 0.14% 0.00%
2 26.02% 20.98% 6.27%

> 2 63.76% 78.88% 93.73%

Table 4: Average number of additional days of students.

Taking into account this criterion, the AgentPlanner is
quite “student friendly”. Specifically, 10.21% of students
have schedule with just one additional day of instruction,
while the same time, in the FET, practically all students
have more than one additional day. The situation is partic-
ularly “bad” in the case of FET-generated schedule which
is the best for the teachers. Here, more than 93% of stu-
dents have schedule with more than two additional days.
Because of very complex dataset, none of the student ob-
tained the most favorable timetable.

Let us note that the situation can be even more complex
in situations, which are very natural at most universities.
Consider, for instance, elective courses, which can be cho-
sen by students from various specialties, years, and even
different majors. The AgentPlanner approaches this situa-
tion in a flexible way. Since the timetable is stored in the
database, there is possibility of an easy (and fast) way of
checking course collisions for each student (using SQL re-
quests). Furthermore, in our approach, we can introduce
the notion of collision threshold (it is an option in the pro-
totype application, which we have explored to a certain ex-
tent, but which is out of scope of current contribution). In
other words, we can specify what percentage of collisions
is acceptable. Specifically, when the tolerance threshold is
exceeded, a proposal to take a given slot could be reject
by the ScheduleAgent. This notion could be very useful,
particularly in the case of very complicated and difficult to

schedule timetables (e.g. involving multiple departments).
Finally, it is worthy noting that we have further checked

robustness of both approaches. To make the problem more
complicated we have reduced the schedule grid by one time
unit (5 days x 5 time units x 21 rooms), which results in a
grid that contains only 525 locations. In this case, both sys-
tems produced initial schedule when they did not consider
teachers time preferences. When they were considered, the
FET could not find any solution. The AgentPlanner could,
but the delivered timetable contained collisions in student
courses. The reason is that the links within the data set were
too complex and it was not possible to create an “optimal”
solution (where optimal would mean that at least there were
no such collisions).

5.4 Testing modification of an existing plan

To test the AgentPlanner’s ability to modify an existing
timetable, we have experimented with insertion of an extra
teacher, who is leading three activities (a single lecture, for
60 students, and two laboratories, with 30 students in each
one). Note that the timetable reorganization using the FET
would involve creation of a completely new schedule. Ob-
viously, this would be “impossible” in the real–world – as
it, most likely, would destroy the whole schedule (special
techniques would have to be used to minimize the propaga-
tion of changes). Henceforth, the FET was omitted in this
experiment.

In general, the AgentPlanner worked well. Specifically,
the timetable reorganization, caused by the insertion of a
new activity, marginally affected the average satisfaction of
all teachers. The average satisfaction after the reorganiza-
tion was 97.72% (compared to the original 98.03%; the dif-
ference of 0.31%). The average students satisfaction, after
the reorganization, was 73.27% (there was no change). It
is worthy to mention that no additional collisions between
the activities were generated.

6 Flexibility of the AgentPlanner

The big advantage of the AgentPlanner is the possibility
of its easy modification to use in other cases of planning,
e.g. business meeting, booking of meeting rooms in com-
pany, etc. The most laborious aspect would be creation of a
new database that would describe the new “reality” that the
timetabling is to work with (however, its overall structure
will be quite similar). Furthermore, it is very likely that the
evaluation algorithm would have to be adjusted (to match
the nature of the problem). After such modifications, it can
be postulated that “IndividualAgents” (instead of Teacher-
Agents) would negotiate locations in the timetable. Note
that, due to the nature of the design of the AgentPlanner,
use of a different database would involve only modifica-
tions in a single agent, the DatabaseAgent that provides
the interface to the database. Let us also stress that the cur-
rent (agent-based) design and implementation of the sys-

16 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

tem, which is highly modular, allows relatively easy modi-
fications (e.g. modifications mentioned in this section).

7 Concluding remarks

The aim of this paper was to discuss development and ex-
perimental evaluation of an agent-based timetabling sys-
tem (AgentPlanner). The proposed system was based
on assumptions originating from the actual academic set-
tings (class scheduling at a department at the University
of Gdańsk). The results are quite encouraging. First, the
AgentPlanner outperformed the state-of-the-art timetabling
software based on the genetic algorithms. Second, it is ca-
pable of satisfactorily solving the problem of schedule ad-
justment. Finally, it is worthy to note that even though our
application area was precisely defined, we believe that our
systems may be successfully applied to other timetabling
problems. To achieve this status, a several actions must be
done.

First of all, it is necessary to design and implement: (1)
GUI for the administrator (the Planner), to make her/him
able to manage the system (i.e. to input the data, to cre-
ate/change a timetable, etc.), (2) to design and implement
the GUI for for teachers (to allow them to input the data,
i.e. the time preferences and, possibly, other data to be
specified in the future); moreover, teachers should have ac-
cess to: (i) the proposed timetable, (ii) function related to
a request to change the timetable, and (iii) communication
with the system, e.g. to request change of the place of the
activity, (3) GUI for students as a module that providing
the visualisation of timetable, (4) optional, but very help-
ful, would be a mobile module for the teachers. The latter
one could facilitate the process of Timetabling reorganisa-
tion (see Section 4.3).

Second, very important issues that are needed to improve
the functionality of the system are: (1) introduction of fur-
ther “scheduling goals” (see Section 3), i.e. constraints for
both teachers and students, (2) possibility of adding more
departments and buildings (considering the location and
time for change a place).

The last but not least, ways of improving the Agent-
Planner’s core algorithms should be explored. At the mo-
ment, the most pressing problems are as follows. (1) To
eliminate or reduce the bottleneck in the Timetable plan-
ning algorithm 4.2 in order to make it faster. (2) Consider
ways of extending / modifying / improving the algorithm
involved in asking the TeacherAgents to release the place
in the Timetabling reorganisation algorithm (see Subsec-
tion 4.3). At the moment, the TeacherAgent T1 is asking
the TeacherAgent T2 to release the location. Next, the T2
searches for a new one and accepts the proposal (to release
the current location) or rejects it. This takes place in a sin-
gle iteration and completes the process. However, it is easy
to envision that if T2 would not be able to find a new place,
it could ask T3 for an analogous operation. Obviously, this
process could be repeated (with proper care taken to avoid

an infinite loom of requests). This improvement would cre-
ate more possibilities for adjusting the timetable.

References
[1] Rafał Tkaczyk, Maria Ganzha, Marcin Paprzycki

(2013) AgentPlanner – agent-based timetabling sys-
tem – preliminary design and evaluation, 2013 17th
International Conference on System Theory, Con-
trol and Computings, Emil Petre, Marius Brezovan,
Sinaia, Romania, pp. 795–800.

[2] Liviu Lalescu, Volker Dirr, FET Free Timetabling
Software, http://www.lalescu.ro/liviu/
fet/.

[3] Timothy A. Redl, On Using Graph Coloring to Create
University Timetables with Essential and Preferential
Conditions, http://cms.uhd.edu/faculty/
redlt/iccis09proc.pdf.

[4] Karl Nachtigall, Jens Opitz (2007) A Modulo Net-
work Simplex Method for Solving Periodic Timetable
Optimisation Problems, Operations Research Pro-
ceedings, pp. 461–466.

[5] Paweł Myszkowski, Maciej Norberciak (2003) Evo-
lutionary algorithms for timetable problems, Annales
UMCS Informatica AI 1, pp. 115–125.

[6] Marcin Paprzycki (2003) Agenci programowi
jako metodologia tworzenia oprogramowania,
http://www.e-informatyka.pl/wiki/
Agenci_programowi_jako_metodologia_
tworzenia_oprogramowania.

[7] Fabio Bellifemine, Giovanni Caire, Giovanni Ri-
massa, Agostino Poggi, Tiziana Trucco, Elisabetta
Cortese, Filippo Quarta, Giosue Vitaglione, Nicolas
Lhuillier, Jereme Picault, Java Agent Development
Framework, http://jade.tilab.com/.

[8] Maciej Gawinecki, Minor Gordon, Pawel Kacz-
marek, Marcin Paprzycki (2005) The Problem of
Agent-Client Communication on the Internet, Scal-
able Computing Practice and Experience, 6(1), pp.
111–123

[9] Joe Henry Obit, Dario Landa-Silva, Djamila Ouel-
hadj, Teong Khan Vun, Rayner Alfred (2011) Design-
ing a Multi-agent Approach System for Distributed
Course Timetabling, Proceedings of the 2011 IEEE
Hybrid Intelligent Systems Conference (IEEE-HIS),
IEEE Press, Melacca Malaysia, pp. 103–108.

http://www.dcs.kcl.ac.uk/staff/mml/
publications/assets/aamas06.pdf.

[10] Yan Yang, Raman Paranjape, Luigi Benedicenti
(2006) An Agent Based General Solution Model For

AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 17

the Course Timetabling Problem, AAMAS ’06 Pro-
ceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, ACM
New York, New York, USA, pp. 1430–1432 .

[11] Curak Ivan (2008) Negotiatian–based multi-
agent system for timetabling, Annals of DAAAM
& Proceedings, DAAAM International Vienna,
http://www.freepatentsonline.com/
article/Annals-DAAAM-Proceedings/
225316139.html.

[12] Roxana A. Belecheanu, Steve Munroe, Michael Luck,
Terry Payne, Tim Miller, Peter McBurney, Michal Pe-
choucek (2006) Commercial Applications of Agents:
Lessons, Experiences and Challenges, AAMAS ’06
Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, ACM
New York, NY, USA, pp. 1549–1555.

[13] Andrey Glaschenko, Anton Ivaschenko, George
Rzevski, Petr Skobelev (2009) Multi–Agent Real
Time Scheduling System for Taxi Companies, The
Eighth International Conference On Autonomous
Agents And Multiagent Systems, Budapest, Hungary,
http://www.ifaamas.org/Proceedings/
aamas09/pdf/03_Industrial_Track/13_
70_it.pdf.

[14] Anja Zöller, Lars Braubach, Alexander Pokahr, Franz
Rothlauf, Torsten O. Paulussen, Winfried Lamers-
dorf, Armin Heinzl (2006) Evaluation of a Multi–
Agent System for Hospital Patient Scheduling, Inter-
national Transactions on Systems Science and Appli-
cations, SpringerOpen, pp. 375–380.

[15] Carlos A. Coello Coello, Daniel Cort’s Rivera and
Nareli Cruz Cort’s (2003) Use of an Artificial Im-
mune System for Job Shop Scheduling, Second In-
ternational Conference on Artificial Immune Systems
(ICARIS’2003), Springer-Verlag, pp. 1–10.

[16] Muhammad Rozi Malim, Ahamad Tajudin Khader,
Adli Mustafa (2006) Artificial Immune Algorithms
for University Timetabling, 6th International Con-
ference on the Practice and Theory of Automated
Timetabling, Czech Republic.

[17] A. R. Mushi (2006) Tabu search heuristic for uni-
versity course timetabling problem , African Journal
of Science and Technology (AJST) Science and Engi-
neering Series Vol. 7, No. 1, pp. 34–40.

[18] Houssem Eddine Nouri, Olfa Belkahla Driss
(2013) Tabu search heuristic for university course
timetabling problem , African Journal of Science and
Technology (AJST) Science and Engineering Series
Vol. 7, No. 1, pp. 34–40.

[19] Houssem Eddine Nouri, Olfa Belkahla Driss (2013)
Distributed model for university course timetabling

problem, International Conference on Computer Ap-
plications Technology (ICCAT), Tunisia.

[20] Yan Yang, Raman Paranjape, Luigi Benedicenti,
Nancy Reed (2005) A mobile agent system for uni-
versity course timetabling, Indian International Con-
ference on Artificial Intelligence (IICAI-05) Pune, In-
dia.

[21] Brian Autry, Kevin Squire (2008) University course
timetabling with Probability Collectives, The 7th In-
ternational Conference on the Practice and Theory of
Automated Timetabling, Canada.

[22] Rafał Tkaczyk (2013) AgentPlanner – agentowy sys-
tem zarzładzania planem zajeć, University of Gdańsk,
Gdańsk, Poland, pp. 33–36.

[23] Foundation for Intelligent Physical Agents, FIPA Ser-
vices Technical Committee, http://www.fipa.
org/activities/services.html.

[24] Oracle Corporation, MySql Website, http://
downloads.mysql.com.

[25] Oracle Corporation, NetBeans Website, https://
netbeans.org/downloads/7.0.1.

18 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

Informatica 40 (2016) 19–27 19

Jason Interpreter, Enterprise Edition

Dejan Mitrović and Mirjana Ivanović
Department of Mathematics and Informatics, Faculty of Sciences
University of Novi Sad, Novi Sad, Serbia
E-mail: {dejan, mira}@dmi.uns.ac.rs

Rafael H. Bordini
Postgraduate Programme in Computer Science – School of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
E-mail: r.bordini@pucrs.br

Costin Bădică
Computer and Information Technology Department
Faculty of Automatics, Computers and Electronics, University of Craiova, Romania
E-mail: cbadica@software.ucv.ro

Keywords: intelligent agents, Java EE, Jason, AgentSpeak

Received: July 24, 2015

The Enterprise edition of the Java platform has been endorsed by both small and large enterprises, as it
enables the development of large-scale, reliable, and secure software solutions. In the world of agent de-
velopment, on the other hand, AgentSpeak, and its practical interpreter Jason, represent one of the most
popular tools for writing complex, reasoning agents. This paper presents a framework that integrates the
two approaches to distributed software development, and supports a seamless deployment of Jason agents
in enterprise environments. The proposed framework offers many technical advantages, including auto-
mated agent load-balancing and fault-tolerance. The end-goal of this research, however, is to try and bridge
the gap between the agent technology and modern enterprise applications.

Povzetek: Predstavljena je izpopolnjena platforma za agente v Jasonu z namenom izdelave agentnih ap-
likacij.

1 Introduction

Java platform, Enterprise Edition (Java EE), is designed
to support the development of scalable, secure, and reli-
able software products [11]. It is built around the idea of
code reuse, and incorporates many libraries, frameworks,
and technical solutions. As such, Java EE is often utilized
as the main software development platform by small and
large enterprises.

When it comes to agent development, most existing mul-
tiagent frameworks are written using the Standard Edition
of Java (Java SE) [6]. On the other hand, as discussed in
[14, 24], the use of Java EE can significantly reduce the ef-
fort needed to develop efficient multiagent frameworks. In
addition, it can simplify the process of integrating agents
into enterprise applications.

Extensible Java EE-based Agent Framework (XJAF)
[16, 14, 24] is a multiagent framework built on top of Java
EE. It utilizes technical solutions of Java EE in order to
support scalable and reliable multiagent systems. More
concretely, XJAF runs on top of computer clusters in or-
der to provide high-availability of deployed applications,
which is concerned with scalability and uninterrupted de-
livery of services, i.e. regardless of software or hardware

failures [25].
Although the Java programming language is well-suited

for many scenarios, the process of writing complex, rea-
soning agents often requires a special, agent-oriented pro-
graming language (AOPL) [6]. An AOPL provides pro-
gramming constructs that enable developers to apply and
use advanced multiagent concepts in practice. One of the
most popular AOPLs is AgentSpeak, which directly sup-
ports the popular Belief-Desire-Intention agent architecture
[21, 19]. To a great degree, the language owes its popular-
ity to the Jason interpreter [4, 5]. Jason is a practical and
efficient Java-based interpreter for an extended version of
AgentSpeak, with a highly-customizable architecture.

This paper presents our most recent research efforts
aimed at extending Jason with the support for enterprise
environments. The new edition of Jason, named Jason In-
terpreter, Enterprise Edition (Jason EE), is integrated into
XJAF, and uses its agent-oriented abstractions of Java EE
technologies. This integration results in several advan-
tages. First and foremost, being enterprise components
themselves, Jason EE agents can interact with other parts of
regular enterprise applications in a straightforward fashion.
For example, a Jason EE agent can easily interact with web
services or expose its capabilities in form of a web service,

20 Informatica 40 (2016) 19–27 D. Mitrović et al.

manage data in a remote (relational or NoSQL) database,
etc. This integration could, therefore, help bridging the gap
between agent technology and business, enterprise applica-
tions.

On the technical side, Jason EE provides agent load-
balancing, thread pooling, and fault-tolerance. Load-
balancing is concerned with automatic distribution of
agents across the computer cluster [15]. It spreads the
computational load, and enables Jason EE to run large
number of agents. Thread pooling stems from the use of
XJAF as the underlying multiagent framework. In XJAF,
there is no thread-to-agent mapping [16]. An agent is as-
signed a thread whenever it needs to perform some process-
ing. In the worst-case scenario, when all agents need to
run simultaneously, there will be as many threads as there
are agents, but the underlying enterprise application server
tries to reduce resource consumption otherwise. As a re-
sult, XJAF and Jason EE can run many more agents on
a single machine than a Java Virtual Machine (JVM) can
support threads.

Finally, fault-tolerance is concerned with state replica-
tion and error recovery. It handles not only agents, but other
Jason (EE) components as well, including Execution con-
trol and Environment [5]. Whenever a state of an object
changes, it is replicated to a predefined number of nodes.
In case the host node fails, the object is transparently re-
stored on one of the remaining nodes and all calls to it are
redirected there.

Along with these advantages comes one disadvantage.
Since Java EE is more complicated than Java SE, the
process of developing Jason EE applications is inherently
more complicated, when compared to the process of devel-
oping standard Jason applications.

The idea of executing Jason agents in Java EE environ-
ments was originally presented in [13]. While it only dealt
with mapping agents to Enterprise JavaBeans, this paper
proposes Jason EE as a fully-featured redesign of Jason,
suitable for enterprise environments.

The rest of the paper is organized as follows. Section 2
provides more details about AgentSpeak and Jason, as well
as XJAF and Enterprise JavaBeans. Detailed insight into
the Jason EE architecture and its components is given in
Section 3. Section 4 presents a case-study that demon-
strates one important technical advantage of Jason EE: state
replication and failover. Related work is presented in Sec-
tion 5, while the final conclusions and future research di-
rections are given in Section 6.

2 Technology overview

In order to fully understand the architecture of Jason EE,
some basic understanding of its underlying technologies is
needed. This section describes AgentSpeak and Jason, as
well as Enterprise JavaBeans, one of the core Java EE tech-
nologies, and XJAF, a multiagent framework which pro-
vides the necessary infrastructure for Jason agents.

2.1 AgentSpeak and Jason

The syntax of AgentSpeak is strongly inspired by Prolog.
Its main data type is the term, which can be a constant (an
atom, a number, or a string), a variable, a structure, or a list
[7, 5]. However, AgentSpeak also includes a variety of new
syntactical (and semantical) elements, in order to simplify
the development of goal-oriented reasoning agents.

AgentSpeak agents are defined in terms of their be-
liefs, goals, and plans [4, 5]. The agent’s belief base
consists of predicates and rules. For example, the pred-
icate ball(8,32) might represent a belief of a foot-
ball playing agent that the ball is at position (8,32).
The rule canKick :- me(X,Y) & ball(A,B) &
dist(X,Y,A,B) < 1 might indicate that the agent can
kick the ball if the distance between itself and the ball is
less than some predefined value.

More information about a belief can be provided us-
ing annotations. Annotation is a user-defined or a built-
in structure attached to the predicate. For example,
ball(8,32)[source(percept)] indicates that the
agent’s belief about the ball’s current position stems from
the perceptual information (i.e. the agent has directly ob-
served the ball).

AgentSpeak supports two types of negations: strong
negation, and negation as failure [5]. The first type, de-
noted by ~, indicates that the agent explicitly believes
something no to be true. In the second type, a belief pre-
ceded by the not operator is true if it cannot be deduced
from the agent’s belief base.

The language supports two types of goals: achievement
and test [4, 5]. Achievement goals are expressed as logical
formulae describing the state of affairs the agent would like
to reach. Test goals, on the other hand, are typically used to
query the belief base, and determine if certain beliefs exist.

Beliefs and goals together describe the agent’s mental
state. Changes in the mental state, i.e. additions or re-
movals of beliefs and goals, trigger the execution of plans.
A plan definition consists of a triggering event, a context,
and the plan body [5]. Whenever the agent’s mental state
changes, all plans with the corresponding triggering event
are marked as relevant. The context of each relevant plan is
then evaluated in order to determine if the plan is applica-
ble. The context is a logical expression which describes be-
liefs, e.g. about the environment, that the agent must hold,
and is especially useful in dynamic environments. The fi-
nal element of a plan, its body, is defined as a sequence of
simple logical expressions, internal or environment actions,
test or achievement goals, as well as mental notes, which
add new beliefs to the belief base [5].

Jason interpreter operates in reasoning cycles, where
each cycle consists of ten steps [5]. First, the agent per-
ceives its environment, processes a single message received
from another agent, filtering out “socially unacceptable”
messages along the way, and updates its belief base accord-
ingly. The remaining six steps represent the core of agent’s
reasoning and acting:

Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 21

– A single event is selected to be processed;

– A set of relevant plans, i.e. plans corresponding to that
event, is selected;

– Of those, a set of applicable plans (or, options) is de-
termined;

– Committing to an applicable plan, creating an inten-
tion;

– Selecting an intention from a stack of pending inten-
tions; and

– Executing one step of the selected intention.

Users can modify the interpreter’s behavior in many of
these steps. For example, the applicable plan will be se-
lected (for the agent to commit to executing it) based on
its order in the source file (similarly as in Prolog). This
behavior can be changed by modifying the corresponding
selection function.

The work presented in this paper deals with a differ-
ent aspect of modifying Jason. The goal is to enable
AgentSpeak/Jason agents to operate in enterprise applica-
tions, by providing customized multiagent infrastructure,
agent architecture, execution control, and environment, as
discussed in Section 3.

2.2 Enterprise JavaBeans
Enterprise JavaBeans (EJBs, or simply, beans) represent
one of the core Java EE technologies. They are server-side
components that encompass the business logic of an appli-
cation. An EJB is described as a managed component, as
its life-cycle, concurrent access, transactional integrity, etc.
is controlled by an enterprise application server.

There exist two main categories of EJBs: message-
driven and session. Message-driven beans act as mes-
sage receivers in the context of the Java Message Ser-
vice (JMS)1, an additional Java EE technology for asyn-
chronous communication. Session beans are further classi-
fied as singleton, stateless, and stateful.

As its name suggests, there is only a single instance of
a singleton session bean per Java Virtual Machine (JVM).
Stateless session beans do not preserve conversational state
with the client, and are best-suited for operations that can
be performed in a single method call. Stateful sessions
beans, on the other hand, are used when the client requires
an ongoing, more complex conversation.

From the point of view of runtime efficiency, the best
performance is achieved with stateless beans. When a
client request is received, the enterprise application server
can freely construct a new stateless bean on any cluster
node. Once the request is handled, the instance is de-
stroyed. Alternatively, instead of constructing and destroy-
ing stateless bean instances with each request, the server

1http://docs.oracle.com/javaee/6/tutorial/doc/
bncdq.html, retrieved on October 15, 2014.

can be configured to recycle them from a pool. In any case,
the advantage of using stateless beans is that it becomes rel-
atively easy to implement load-balancing techniques in or-
der to efficiently handle large numbers concurrent requests.

Although load-balancing of client requests that target
stateful beans is also applicable, here, the more important
focus is on state replication and failover. The server main-
tains multiple copies of a stateful bean across the cluster.
In case of a node failure, client requests are transparently
redirected to an instance residing in one of the remain-
ing nodes. This functionality enables the development of
highly-available systems, i.e. systems resilient to software
and hardware failures.

As discussed next, session EJBs, mainly stateless and
stateful, can be used to represent agents in enterprise ap-
plications. Stateless beans have a more restricted appli-
cability, and are well-suited for “one-off” agents – agents
that perform one task, and then terminate. More com-
plex behaviors, like those exhibited by Jason agents, can
be achieved by mapping agents to stateful beans.

2.3 XJAF

XJAF is an enterprise-scale multiagent framework [16, 24,
14]. One of the goals behind the development of XJAF was
to show how Java EE technologies can be utilized to easily
provide many functional requirements of multiagent plat-
forms. By integrating enterprise technologies and agents,
XJAF could assist in bridging the gap between the two ap-
proaches to distributed software development.

It is designed as an customizable architecture, in the
sense that its core components, called managers, are rec-
ognized and used solely by their interfaces, while the im-
plementation details can change. Each manager is in charge
of handling a distinct part of the overall architecture. Over
time, several managers have been in use, but the latest ver-
sion [16] includes three: agent, message, and connection
manager.

The agent manager acts as an agent directory and con-
trols the agents’ life-cycles. It represents each agent as an
EJB component, and passes it to the underlying enterprise
application server. The server is then in charge of manag-
ing the concurrent access, maintaining the state integrity of
agents, fault-tolerance, etc. Internally, the agent directory
is managed using the Java Naming and Directory Interface
(JNDI)2.

The message manager is in charge of transporting and
delivering messages. By default, messages are processed
asynchronously. Several utility functions, such as blocking
the receiving of a message, are provided as well, in order
to simplify the agent development. For most of its func-
tionality, the message manager relies on the Java Message
Service technology described earlier.

The latest version of XJAF, available at the XJAF home-

2http://docs.oracle.com/javase/tutorial/jndi/,
retrieved on October 15, 2014.

22 Informatica 40 (2016) 19–27 D. Mitrović et al.

page3, is focused on clustered computing and exploiting its
many benefits [16]. It operates in symmetric clusters, where
each node is connected to and aware of every other node.
A single node is recognized as the master, while the others
are called slaves. The only difference between the master
and a slave is that the master can be used to remotely con-
trol the cluster: start or stop slaves, deploy applications,
etc.

Finally, the connection manager is in charge of connect-
ing physically distributed XJAF clusters in a single com-
putational framework. Basically, it creates another virtual
cluster formed of master nodes. As all parts of the XJAF,
the connection manager relies on another Java EE technol-
ogy for its functioning, JGroups4.

In the context of this paper, XJAF acts as an underly-
ing infrastructure for Jason EE agents. The details of inte-
grating Jason and XJAF/Java EE concepts are described in
details in the next section.

3 Jason EE

Jason is designed as a highly-customizable system. Users
can modify not only the selection functions mentioned
earlier, but also some of the interpreter’s core compo-
nents. The most important customizable components in-
clude Agent architecture, Execution control, and Environ-
ment [5]. Agent architecture represents the agent’s “physi-
cal body” [5]. It enables the agent to perceive its environ-
ment and act upon it, and also to send and receive mes-
sages. The main function of Execution control is to syn-
chronize the reasoning cycles of individual agents, while
the Environment component serves as the basis for simu-
lating real-world or artificial environments.

Another important concept in Jason is the infrastructure
[5]. Infrastructure refers to a multiagent platform that ac-
tually hosts the agents, carries out the transmission and de-
livery of messages, etc. By default, two infrastructures are
provided: Centralised and JADE. Figure 1 depicts main
components of Jason and shows how the Centralised in-
frastructure binds them together5.

Jason EE provides new versions of Jason’s core compo-
nents, and integrates them with an XJAF-based infrastruc-
ture, as described in the rest of this section.

3.1 Jason EE components

Unfortunately, Jason EE and Jason are not (yet) fully com-
patible, due to various technical and “philosophical” differ-
ences between Java EE and Java SE. For example, Java EE
components should never directly create and use threads,

3https://github.com/gcvt/siebog, retrieved on October
15, 2014.

4http://www.jgroups.org/, retrieved on October 15, 2014.
5All class diagrams in this paper have been generated from the source

code of Jason 1.4.1 using ObjectAid UML Explorer for Eclipse: http:
//www.objectaid.com/, retrieved on September 19, 2014.

Figure 1: An overview of the main Jason components and
the Centralised infrastructure that binds them together. The
tight coupling and interdependencies of components might
provide some difficulties in understanding the interpreter at
first.

since these cannot be managed by the enterprise applica-
tion server. In addition, the distributed nature of Java EE
applications and the use of computer clusters pose addi-
tional requirements (e.g. component serialization).

With these differences in mind, the work of developing
Jason EE consisted of three main tasks:

– Providing a new set of base classes for Agent archi-
tecture, Execution control, and Environment;

– Introducing a new set of components that support
these base classes; and

– Integrating the developed architecture with XJAF,
which acts as the underlying infrastructure.

The main components of Jason EE and their distribution
are shown in Figure 2. The first noticeable difference from
the (standard) Jason approach is in the way user-defined
objects are loaded. By default, Jason relies on the Java Re-
flection API for user object construction. In case of Jason
EE, however, this approach would not work. The enterprise
application server views each user application as a distinct
module, and loads it through a separate class-loader. This
means that Jason EE components do not have direct access
to classes defined in user applications. In order to resolve
this issue, Jason EE introduces a new Remote Object Fac-
tory interface. The interface defines a set of methods that
will be called whenever a user-defined object is to be cre-
ated. Each user application needs to realize this interface
in the form of a stateless session bean.

Agent architecture, Execution control and Environments
are all deployed in the enterprise application server, and
executed on top of a computer cluster. Since XJAF is used
as the underlying infrastructure, the same approach of map-
ping agents to EJBs is used in Jason EE. This means that Ja-
son EE agents exhibit the two important features described
previously: automatic load-balancing, and state replication
and failover.

Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 23

Figure 2: Organization and distribution of components in
Jason EE-based applications.

3.2 Custom agent architectures
In Jason, users provide custom implementations of the
Agent architecture by inheriting the base AgArch class
(Figure 1). Some of its more important modifiable meth-
ods include:

– perceive: Perceives the environment, and returns
the list of percepts;

– act: Performs the given action. The action does not
have to be completed in the same method call, and the
feedback (i.e. success or failure information) can be
provided in one of the future reasoning cycles.

– checkMail, sendMsg and broadcast: Used for
inter-agent communication.

– sleep and wake: Suspend and resume the agent’s
execution.

Jason EE provides a slightly different, intermediary class
for the Agent architecture, in order to accommodate for
the enterprise setting. The new class, JasonEEAgArch,
modifies parts of the base AgArch class that are in charge
of interaction with other components. For example, Exe-
cution control is an EJB in Jason EE, and the process of
constructing and using EJBs is slightly different than con-
structing and using regular objects.

In order to connect the new Agent architecture class with
the XJAF-based infrastructure, an additional component is
provided. As shown Figure 2, JasonEEAgArch is em-
bedded within an XJAF agent. The agent controls the ar-
chitecture’s life-cycle and also acts as a layer between the
architecture and the remaining parts of the system. For ex-
ample, it translates XJAF’s FIPA ACL message format into
Jason’s KQML, but also controls the architecture’s reason-
ing cycles, either directly in asynchronous, or indirectly in
synchronous execution mode, as described later.

Jason EE agents are represented as EJB components,
and are created through JNDI lookups. During the lookup
phase, the enterprise application server will choose a node
in the cluster to host the agent instance. From then on, the

agent will have an affinity to that node, meaning that all
invocations will be executed on it. However, whenever the
agent’s internal state changes, it will be copied to a pre-
defined number of other nodes in the cluster. In case the
current host fails, the agent will be restored on one of the
remaining nodes, and continue its execution there.

Unfortunately, the base AgArch class in Jason, which is
also used in Jason EE, is not fully serializable. This means
that the agent’s internal state, including, for example, the
transition system, cannot be fully replicated across cluster
nodes. If the agent’s host fails, the agent will be transpar-
ently restored on one of the remaining nodes, but some of
its parts will need to be re-initialized. The support for full
state replication would require changes in the Jason inter-
preter itself. More details on this issue are given in Section
4.

3.3 Execution control

Jason supports two execution modes [5]: asynchronous and
synchronous. In asynchronous mode, the agent executes its
reasoning cycles continuously, regardless of the behavior of
other agents. In synchronous mode, the agent can continue
to the next reasoning cycle only after all other agents have
completed the current reasoning cycles as well.

The execution control component is used in synchronous
mode only. It maintains the list of active agents, and in-
structs them when to advance to the next reasoning cycle.
This happens either when all agents complete the current
reasoning cycle, or after a specified amount of time has
passed (e.g. in case an agent has died unexpectedly). Users
can provide their own, custom execution modes by inherit-
ing the appropriate base class.

Having one central component that manages the execu-
tion of other components might not seem as a good design
approach for distributed systems, such as Jason EE. How-
ever, the Execution control component can be thought of
as a synchronization barrier. Barriers represent efficient
synchronization approach when distributed or parallel pro-
cesses need to operate in global computational steps [22].
In synchronous execution mode, Jason (EE) agent reaches
the barrier after completing one reasoning cycle, and then
waits until other agents have reached the barrier too.

The sequence diagram shown in Figure 3 outlines the
execution of agent’s reasoning cycles in Jason EE. Once
the agent is created, it registers itself with the Execution
control component. Subsequently, it will receive a signal
to advance to the next reasoning cycle. When finished, the
agents reports back to the Execution control. Once the con-
dition is met (i.e. all agents have reported back, or the time-
out has expired), the process is repeated.

The main technical difficulty in developing this Execu-
tion control for Jason EE is to properly design it for for
clustered environments. That is, there should be a single
instance of the component for the entire cluster, it should
be easily accessible from any node, and should preferably
exhibit state replication and failover. The singleton session

24 Informatica 40 (2016) 19–27 D. Mitrović et al.

Figure 3: Synchronous execution of an agent managed by
the Execution control.

EJB cannot be used, as there exists a single instance of this
object per JVM.

The solution used in Jason EE is to create a single state-
ful EJB component and store it in a global, cluster-wide In-
finispan cache [12] included in the WildFly enterprise ap-
plication server6. As shown earlier in Figure 2, this Ex-
ecution controls runs, figuratively speaking, on top of the
entire cluster, supporting the aforementioned features.

End-users are offered an additional class, named
UserExecutionControl, for customiza-
tion. The Jason’s standard class for this purpose,
ExecutionControl (Figure 1), cannot be used in
Jason EE, for two main reasons. First, the class is not
serializable, and thus cannot be used in the state replication
process. Secondly, the class creates and manages its
own threads. Java EE applications are managed by the
enterprise application server. The server needs the full
control over the application’s resources in order to secure
scalability and high-availability. If an application creates
its own threads, the server looses this control and the
whole concept is undermined7. For these reasons, Jason
EE provides the new base class, i.e. one that satisfies
all the requirements and recommendations for Java EE
applications.

3.4 Environment

The Environment component in Jason provides a model of
a real-world or artificial environment [5]. It is strongly re-
lated to the Agent architecture, in the sense that the archi-
tecture can delegate perception and action execution to the
Environment component. In addition, the Environment can
exhibit “individualized perception” [5], and provide only a
subset of percepts to an agent. This can be useful, for ex-
ample, in evaluating how the agent performs under varying
degrees of available information.

6http://wildfly.org, retrieved on October 15, 2014.
7The Java EE 7 specification defines so-called managed executor ser-

vices which should be used by applications that need to spawn their own
threads.

Figure 4: Diagram of the core classes in Jason
EE. The connection to standard Jason is available
through JasonEEAgArch, ExecutionControl and
Environment, which are sub-types of, respectively, Ja-
son’s AgArch, ExecutionControlInfraTier, and
EnvironmentInfraTier (not shown here for clarity).

Users provide custom environments by redefining meth-
ods of the base Environment class (Figure 1). All of
its methods are dedicated to perception management (re-
trieval, removal, etc.), as well as action execution. For ex-
ample:

– getPercepts: Returns the list of percepts for the
given agent. The list will include only new percepts,
i.e. percepts that have been obtained since the previ-
ous invocation.

– scheduleExecution: Performs an asynchronous
execution of the provided action in the environment.
The agent will be notified of the result later on, once
the execution is completed, either successfully or un-
successfully.

From the technical side, the Jason EE Environment is re-
alized in a similar way as the Execution control component:
in the form of a cluster-wide stateful EJB, with an addi-
tional UserEnvironment class for user customizations.
The final class diagram of Jason EE is shown in Figure 4.
Each deployed Jason EE application includes a single En-
vironment instance, which is given a cluster-wide unique
identifier and kept in a global cache. All agents of that par-
ticular application use the identifier in order to interact with
the Environment. The same is true for Execution control.

The connection with XJAF is made through the
JasonEEAgent component. Being a special XJAF
agent, this component relies on the agent manager for cre-
ating and destroying other (Jason) agents, and on the mes-
sage manager for sending and receiving messages.

The effectiveness of the proposed Jason EE architecture
is demonstrated using two case-studies, described in details
in the following section.

Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 25

4 A case study
The case study presented in this section demonstrates state
replication and failover in practice. Its purpose is to out-
line one of the technical advatages brought by Jason EE.
The benefits of using AgentSpeak and Jason for complex
agent development are presented in e.g. [23]. For XJAF
agent load-balancing in computer clusters, see [16]. The
full source of this case study is available at the XJAF home-
page8.

The case-study includes two highly-available agents.
Each agent has a single belief: a list of strictly monotoni-
cally increasing numbers. The agent periodically prepends
a number n = h+1 to the list, where h is the current head.
Listing 1 shows the AgentSpeak source code of the agent.

Listing 1: AgentSpeak source code of the highly-available
agent used in the case study.

numbers([0]). // inital belief
!addNextNum. // initial goal

+!addNextNum : true <-
?numbers([OldHead | Tail]);
NewHead = OldHead + 1;
NewList = [NewHead, OldHead | Tail];
-+numbers(NewList);
printList(NewList);
!!addNextNum.

The case-study also includes a user-defined Agent archi-
tecture and a user-defined Execution control. The architec-
ture is capable of executing the printList action shown
in Listing 1, while the user-defined Execution control sim-
ply outputs the current reasoning cycle. These components
were developed primarily in order to show how the state
replication and failover work with other Jason EE compo-
nents as well (and not just agents).

A cluster with two virtual nodes, a master and a slave,
was setup, and the load-balancer was configured to put both
agents and the Execution control component on the slave
node. The project was then executed, yielding in the fol-
lowing possible output (filtered for clarity):

Cycle 0 on node slave@192.168.213.129
...
agent0 on slave@192.168.213.129: [1,0]
agent1 on slave@192.168.213.129: [1,0]
Cycle 7 on node slave@192.168.213.129
...
agent0 on slave@192.168.213.129: [2,1,0]
agent1 on slave@192.168.213.129: [2,1,0]
Cycle 15 on node slave@192.168.213.129
...

The slave node was then forcibly terminated. In re-
sponse, all components from the slave have been automati-
cally restored on the master node, and continued to operate
as follows:

8https://github.com/gcvt/siebog, retrieved on October
15, 2014.

Cycle 63 on node master:xjaf-master
...
agent0 on master:xjaf-master: [1,0]
agent1 on master:xjaf-master: [1,0]
Cycle 68 on node master:xjaf-master
...

Here, it can be seen that both the agents and the Exe-
cution control have successfully continued their execution
on the remaining node, confirming that the state replication
and failover in Jason EE works as expected.

However, while the Execution control’s internal state
was successfully restored, the belief base of each agent has
been reset. As noted earlier, some of the important Jason
components, such as the Agent architecture and its transi-
tion system are not serializable. Since these are used in
Jason EE as well, the agent’s internal state cannot be fully
replicated. Currently, Jason EE detects this issue and emits
a warning, but the full support for the agent state replication
requires changes in the Jason implementation.

5 Related work
In general, there are two main approaches for writing soft-
ware agents. The first one is to use an existing program-
ming language, such as Java. For example, in JADE the
process of writing agents consists of inheriting the proper
base classes [1]. More recently, source code annotations
have been proposed as a convenient approach for develop-
ing BDI agents [18]. Extensions to the Java programming
language have been proposed as well [26]. Main advan-
tages of these approaches are a flatter learning curve and
the availability of existing programming libraries and tools.
The main disadvantage is that the agent source code is
“cluttered” with object-oriented programming constructs.

The second approach is to use dedicated, agent-oriented
programming languages. These languages offer program-
ming abstractions that enable straightforward implementa-
tions of advanced multiagent concepts, and hide the overall
complexity of writing intelligent agents. As a result, agent
developers can focus on solving the problem in question,
rather than dealing with class inheritance and method over-
riding.

Over time, a plethora of agent-oriented programming
languages has been developed [6, 3]. Among the most re-
cent is ASTRA9, which combines AgentSpeak and Teleo-
Reactive functions [9, 17]. Among the well-established
languages, besides AgentSpeak, the two notable examples
are Goal-Oriented Agent Language (GOAL)[10], and A
Practical Agent Programming Language (2APL) [8].

In addition to achievement, GOAL adds support for
maintenance goals [10]. An agent uses maintenance goals
to refrain itself from acting, and to keep the current state
of affairs. Agents generally follow the blind commitment

9http://www.astralanguage.com/, retrieved on October 15,
2014.

26 Informatica 40 (2016) 19–27 D. Mitrović et al.

strategy [10, 20]: an active goal will not be dropped until it
is fully completed. Actions are mostly user-provided, and
are guarded by preconditions and postconditions. Action
execution strategy is determined by action rules. An ac-
tion rule defines a mental state that has to hold before the
corresponding action can be considered as a candidate for
execution.

2APL combines declarative and imperative program-
ming styles [8]. It offers several important agent-oriented
programming concepts, including beliefs, goals, events, ac-
tions, and plans. Belief and goals are declarative constructs
that describe the agent’s mental state. Events carry infor-
mation about some change in the environment, and can
trigger the plan execution. Actions describe agent’s capa-
bilities, and are divided into six categories, including belief
updates, goal updates, and abstract actions which act as
procedure calls. Finally, a plan consists of a sequence of
actions, with the addition of conditional statements, loops,
and non-interleaving operators for building atomic plans.

Each of these languages represents a powerful tool for
developing intelligent agents. One of the main reasons
AgentSpeak was selected for the work presented in this
paper is its practical interpreter Jason. As shown, Jason
is highly customizable and portable, allowing AgentSpeak
agents to be executed on different multiagent platforms and
environments. It is worth noting that Jason is not the only
interpreter for AgentSpeak. For example, AF-AgentSpeak
is an implementation of the language for the versatile Agent
Factory framework10.

In addition to Jason EE, two Jason infrastructures are
available. The Centralised infrastructure is a lightweight
and an efficient (performance-wise) solution, but designed
for single-machine deployments only. The JADE infras-
tructure uses JADE as the underlying multiagent platform.
Therefore, it provides all the features available in JADE, in-
cluding distributed execution and platform fault-tolerance
[1]. Jason EE implementation is to a certain degree based
on these solutions. Its main advantages include state repli-
cation and failover demonstrated in Section 4, which is
more advanced than the one offered by JADE, and auto-
mated agent clustering and load-balancing shown in [16].

6 Conclusions and future work
Jason EE represents an enterprise-scale agent development
framework. It combines Java EE, one of the most widely-
used software development platform, with AgentSpeak and
Jason, a popular agent-oriented programming language and
its interpreter, designed for writing complex, reasoning
agents.

As discussed throughout the paper, Jason EE brings sev-
eral important benefits over standard Jason, as well as
other similar solutions. On the technical side, the under-
lying enterprise application server manages the applica-

10http://www.agentfactory.com/, retrieved on October 15,
2014.

tion resources, and provides advanced programming fea-
tures, such as agent load-balancing, scalability, and fault-
tolerance. This enables agent developers to focus on solv-
ing the problem at hand, without having to bother with
technical difficulties. The end-goal of the presented re-
search, however, is to enable seamless integration of in-
telligent agents in modern enterprise applications, and to
bridge the gap between the two approaches to distributed
software development.

For the future, several research and development direc-
tions of Jason EE are planned. First of all, as discussed in
Section 3, changes in the Jason implementation itself are
required. These would allow not only the complete state
replication and failover of agents, but also the full portabil-
ity of Jason and Jason EE applications. In the longer run,
the remaining two components of the JaCaMo project will
be re-designed for enterprise environments: the CArtAgO
artifacts modeling framework, and the Moise framework
for virtual multiagent organizations [2].

Acknowledgement

This work was partially supported by the Ministry of Edu-
cation, Science and Technological Development of the Re-
public of Serbia, through project no. OI174023: “Intel-
ligent techniques and their integration into wide-spectrum
decision support.”

References

[1] F. Bellifemine, G. Caire, and D. Greenwood. Devel-
oping Multi-Agent Systems with JADE. John Wiley &
Sons, 2007.

[2] O. Boissier, R. H. Bordini, J. F. Hubner, A. Ricci,
and A. Santi. Multi-agent oriented programming
with JaCaMo. Science of Computer Programming,
78(6):747–761, 2013.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-
Seghrouchni, J. J. Gomez-Sanz, J. Leite, G. M. P.
O’Hare, A. Pokahr, and A. Ricci. A survey of pro-
gramming languages and platforms for multi-agent
systems. Informatica (Slovenia), 30(1):33–44, 2006.

[4] R. H. Bordini and J. F. Hubner. BDI agent program-
ming in AgentSpeak using Jason. In F. Toni and
P. Torroni, editors, Computational Logic in Multi-
Agent Systems, volume 3900 of Lecture Notes in
Computer Science, pages 143–164. Springer Berlin
Heidelberg, 2006.

[5] R. H. Bordini, J. F. Hubner, and M. Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using
Jason. Wiley Series in Agent Technology. John Wi-
ley & Sons Ltd, 2007.

Jason Interpreter, Enterprise Edition Informatica 40 (2016) 19–27 27

[6] C. Bădică, Z. Budimac, H.-D. Burkhard, and
M. Ivanović. Software agents: Languages, tools, plat-
forms. Computer Science and Information Systems,
8(2):255–298, 2011.

[7] W. F. Clocksin and C. S. Mellish. Programming in
Prolog: using the ISO standard. Springer, 5 edition,
2003.

[8] M. Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent Sys-
tems, 16(3):214–248, 2008.

[9] A. Dhaon and R. Collier. Multiple inheritance in
AgentSpeak(L)-style programming languages. In
Proceedings of the 4th International Workshop on
Programming based on Actors, Agents and Decen-
tralized Control. 2014.

[10] K. V. Hindriks. Programming rational agents in
GOAL. In A. El Fallah Seghrouchni, J. Dix,
M. Dastani, and R. H. Bordini, editors, Multi-Agent
Programming: Languages, Tools and Applications,
pages 119–157. Springer US, 2009.

[11] Java EE at a glance. http://www.oracle.com/
technetwork/java/javaee/overview/
index.html. Retrieved on October 15, 2014.

[12] F. Marchioni and M. Surtani. Infinispan data grid
platform. Packt Publishing Ltd., 2012.

[13] D. Mitrović, M. Ivanović, and C. Bădică. Jason agents
in Java EE environments. In E. Petre and M. Brezo-
van, editors, 3rd Workshop on Applications of Soft-
ware Agents (WASA 2013), held within 17th Inter-
national Conference on System Theory, Control and
Computing (ICSTCC 2013), pages 768–771, Sinaia,
Romania, October 2013.

[14] D. Mitrović, M. Ivanović, Z. Budimac, and M. Vi-
daković. Supporting heterogeneous agent mobility
with ALAS. Computer Science and Information Sys-
tems, 9(3):1203–1229, 2012.

[15] D. Mitrović, M. Ivanović, and Z. Geler. Agent-based
distributed computing for dynamic networks. Infor-
mation Technology and Control, 43(1):88–97, 2014.

[16] D. Mitrović, M. Ivanović, M. Vidaković, and Z. Budi-
mac. Extensible Java EE-based agent framework in
clustered environments. In J. Mueller, M. Weyrich,
and A. L. C. Bazzan, editors, 12th German Con-
ference on Multiagent System Technologies, volume
8732 of Lecture Notes in Computer Science, pages
202–215. Springer International Publishing, 2014.

[17] N. J. Nilsson. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research,
1:139–158, 1994.

[18] A. Pokahr, L. Braubach, C. Haubeck, and J. Ladi-
ges. Programming BDI agents with pure Java. In
J. P. Müller, M. Weyrich, and A. L. C. Bazzan, ed-
itors, Multiagent System Technologies, volume 8732
of Lecture Notes in Computer Science, pages 216–
233. Springer International Publishing, 2014.

[19] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. V. de Velde and
J. Perrame, editors, Agents Breaking Away: Proceed-
ings of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world (MAAMAW
’96), volume 1038 of Lecture Notes in Artificial Intel-
ligence, pages 42–55. Springer-Verlag, 1996.

[20] A. S. Rao and M. P. Georgeff. Intentions and rational
commitment. Technical Report 8, Australian Artifi-
cial Intelligence Institute, 1993.

[21] A. S. Rao and M. P. Georgeff. BDI agents: from the-
ory to practice. In V. Lesser and L. Gasser, editors,
Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS’95), pages 312–319,
1995.

[22] L. G. Valiant. A bridging model for parallel compu-
tation. Communications of the ACM, 33(8):103–111,
1990.

[23] S. Vester, N. S. Boss, A. S. Jensen, and J. Villad-
sen. Improving multi-agent systems using Jason.
Annals of Mathematics and Artificial Intelligence,
61(4):297–307, April 2011.

[24] M. Vidaković, M. Ivanović, D. Mitrović, and Z. Budi-
mac. Extensible Java EE-based agent framework –
past, present, future. In M. Ganzha and L. C. Jain, edi-
tors, Multiagent Systems and Applications, volume 45
of Intelligent Systems Reference Library, pages 55–
88. Springer Berlin Heidelberg, 2013.

[25] WildFly 8 high availability guide. https:
//docs.jboss.org/author/display/
WFLY8/High+Availability+Guide. Re-
trieved on October 15, 2014.

[26] M. Winikoff. Jack intelligent agents: An industrial
strength platform. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming, volume 15 of Multiagent Sys-
tems, Artificial Societies, and Simulated Organiza-
tions, pages 175–193. Springer US, 2005.

28 Informatica 40 (2016) 19–27 D. Mitrović et al.

Informatica 40 (2016) 29–42 29

Expressing GMoDS Models into Object-Oriented Models Using the Event-B
Language

Marius Brezovan, Liana Stanescu and Eugen Ganea
University of Craiova, Romania
E-mail: {mbrezovan, lstanescu, eganea}@software.ucv.ro

Keywords: multi-agent systems, goal-oriented specification, object-oriented specification, Event-B

Received: July 24, 2015

Among the agent-oriented methodologies that use goals for specification of multi-agent systems, the Goal
Model for Dynamic Systems (GMoDS) method allows to specify goals during requirements engineering
process and then to use them throughout the system development and at runtime. Because the semantics of
the GMoDS models involves the use of object-oriented concepts we choose to express a GMoDS model in
an object-oriented specification. We use Event-B as a method for both specifying the GMoDS models and
implementing the semantics of the runtime model of GMoDS. Because Event-B is not an object-oriented
language, the goal of our research is to add support to Event-B for object-oriented modeling by using the
modularization plug-in of the Rodin framework. This aim of paper is twofold: (a) to describe an object-
oriented specification in Event-B, and (b) to express a GMoDS model into an object-oriented Event-B
specification.

Povzetek: Razvit je agentni sistem z dodatnimi lastnostmi objektnih sistemom.

1 Introduction

In recent years the domain of multi-agent systems (MAS)
is perceived as generating a new paradigm in order to
cope with the increasing need for dynamic applications that
adapt to unpredictable situations. This new software engi-
neering domain, agent-oriented software engineering, pro-
vides the tools and techniques to use in designing complex,
adaptive systems.

Several frameworks for multi-agent system specifica-
tion have been proposed to deal with the complexity of
large software systems, such as Tropos [22], Gaia [5],
MaSE [11], and ROADMAP [21]. To reduce the com-
plexity of a correct and effective design for such sys-
tems, Organization-based Multi-Agent Systems (OMAS)
have been introduced as an effective paradigm for address-
ing the design challenges of large and complex MAS [18].
In OMAS there is a clear separation between agents and
system, allowing a reduction in the complexity of the sys-
tem. To support the design of OMAS, several methodolo-
gies have been proposed [16].

Among these proposals, the Organization-based Multi-
agent Systems (O-MaSE) methodology [12] seems to be
the only framework which integrates a set of concrete tech-
nologies aimed at facilitating industrial acceptance through
situational method engineering. In O-MaSE methodology,
goals are specified using Goal Model for Dynamic Systems
(GMoDS) [13], a methodology that provides a set of mod-
els for capturing system level goals, for using them during
both the design and runtime phases, in order to allow the
system to adapt to dynamic problems and environments.

The development of correct/safe complex MAS is dif-
ficult with traditional software development methods.
Hence, formal methods are needed in order to ensure their
correctness and structure their development from specifi-
cation to implementation. To that end, formalization is
needed, which has begun to receive a substantial amount of
interest. Several approaches for formalizing MAS develop-
ment are proposed. For instance, in [19] a general frame-
work for modelling MAS based on Object-Z and state-
charts is proposed, which focuses on organizational aspects
in order to represent agents and their roles. Similarly, in
[24] Z notations are combined with linear temporal logic
to specify the internal part of agents and the specification
of the communication protocols between agents. In [8], an
approach based on capturing interaction protocols between
requesters, providers and middle-agents as finite state pro-
cesses represented using FSP process algebra is proposed,
and the resulting specifications are formally verifiable us-
ing FLTL temporal logic.

However these approaches do not address the the prob-
lem of using formal methods within a well-defined MAS
development methodology. This is the reason for our at-
tempt to use the Event-B both as a method to specify the
O-MaSE models, and as a tool to implement the seman-
tics and the runtime model of O-MaSE. Event-B is a state-
based formal method that supports a refinement process in
which an abstract model is elaborated towards an imple-
mentation in a step-wise manner. In addition Event-B is
proven to be applicable in a wide range of domains, includ-
ing distributed algorithms and multi-agent system develop-
ment. Its deployment is supported by the Rodin toolset,

30 Informatica 40 (2016) 29–42 M. Brezovan et al.

which includes proof obligation generation and verifica-
tion through a collection of mechanical provers. Rodin was
used in several academic and complex industrial size sys-
tems.

We started our research with the study of the GMoDS
methodology, an important part of O-MaSE, by translating
GMoDS models in object-oriented specifications in Event-
B. GMoDS represents a framework for developing com-
plex multi-agent systems using goals to capture require-
ments, the same set of goals being used for MAS design,
and at runtime. In GMoDS, goals are organized in a goal
tree such that each goal is decomposed into a set of sub-
goals using AND/OR decomposition. Leaf goals are simple
goals that must be achieved by agents. Within O-MaSE,
each MAS contains a set of roles that it can use to achieve
its goals. The roles for MAS can be derived from the goal
tree, each leaf goal should have at least one role that can
achieve it. For simplicity, we assume that is an one-to-one
mapping between the set of goals and the set of roles. Each
agent from a MAS is capable of playing at least one role,
with the property that at every moment, an agent can have
only one role. Thus, at every moment, an agent from MAS
is related to a leaf goal from the goal tree of the GMoDS
framework.

In GMoDS, there are two types of goals: goal classes
and goal instances. Goal classes define templates from
which goal instances are created. A goal class contains a
set of goal attributes that are used to define the state od a
goal instance. When a goal is instantiated, all its attributes
must be given explicit values. While goal classes are used
in the design process of MAS, the goal instances are used at
runtime, or during a simulation process. Goal classes and
goal instances are analogous to object classes and object
instances from the object-orientation paradigm. This is the
reason for using an object-oriented framework to specify
the GMoDS models.

Event-B extended with several facilities, such as mod-
ularity, decomposition, the use of records and generic in-
stantiation, shows a good potential for the use in the indus-
trial practice. Unfortunately the Event-B language is not
object-oriented because it does not support the main object-
oriented concepts, such as inheritance, subtyping, class in-
stantiation, calling of public methods of class instances,
and polymorphism. Some approaches, such as records
[17], modularisation [20], generic instantiation [26], and
especially the UML-B method [27], bring closer Event-
B to an object-oriented language. The UML-B graphical
modelling notation provides four kind of diagrams: pack-
age, context, class and state machine diagrams. However,
UML-B does not address some important object-oriented
concepts, such as subtyping, polymorphism, and calling
public methods of the class instances. Because GMoDS
models involve the use of calling operations of some ob-
jects within the plans from the plan models, we use in-
terfaces and modules from the modularisation plug-in of
the Rodin framework, and the principles from the UML-
B method for managing classes, class instances, class at-

tributes and associations, in order to allow appropriate
object-oriented specifications in Event-B. In addition we
model in Event-B specifications other two main object-
oriented concepts: inheritance and polymorphism. Inheri-
tance is needed for creating dynamic trees of goal instances
from the GMoDS runtime model, while polymorphism is
needed for calling the appropriate operation, when a class
hierarchy is used.

In conclusion, the aim of this paper is twofold: (a) to
propose an extension of the Event-B method that allows the
creation and destruction of class objects, as well the call of
public methods of classes, inheritance, and polymorphism,
as well as (b) to use this extension for translating GMoDS
models into Event-B object-oriented specifications.

The rest of this paper is organized as follows. Section
2 presents the O-MaSE methodology framework, and its
associated GMoDS methodology. Section 3 presents the
main concepts of the Event-B method, and some of its ex-
tensions that will be used in the paper. Section 4 presents
a proposal for constructing an object-oriented specification
in Event-B that allows calling public methods of class in-
stances. In Section 5 this proposal is used to express the
main GMoDS models using object-oriented Event-B spec-
ifications. Finally, conclusions are given in Section 6.

2 O-MaSE and GMoDS
methodologies

The Organization-Based Multiagent System Engineering
[12] methodology extends the original MaSE [11] method-
ology to allow the design of organizational multi-agent sys-
tems. The definition of O-MaSE consists of three main
components: the O-MaSE meta-model, method fragments,
and guidelines.

The O-MaSE Meta-Model is based on an organizational
approach, which extends the organization model for adap-
tive computational systems (OMACS) [10]. OMACS de-
fines an organization as a set of Goals that the organization
is attempting to accomplish, a set of Roles that must be
played to achieve those goals, a set of Capabilities required
to play those roles and a set of Agents who are assigned to
roles in order to achieve organizational goals. The environ-
ment is modeled using the Domain Model, which defines
the types of objects in the environment and the relations
between them. In addition to OMACS, the O-MaSE meta-
model adds new concepts, such as: Plans that capture al-
gorithms that agents use to carry out specific tasks, Actions
that allow agents to perceive or sense objects in the en-
vironment, Organisational agents that capture the notion
of organizational hierarchy, and Protocols that define in-
teractions between roles or between the organization and
external actors. Figure 1 shows a simplified OMACS meta-
model.

In a multi-agent organization (MAO), organizational
goals are typically organized in a goal tree. In OMACS,
and thus in O-MaSE, goals are specified using GMoDS

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 31

possesses

Organization

Capability

capableachieves
Goal Role Agent

requires

Figure 1: Simplified OMACS metamodel.

[13]. The GMoDS specification model includes the notions
of goals, goal decomposition, events, precedence, and goal
instantiation. The GMoDS instance model captures the dy-
namics of the system state while maintaining the structure
of the specification model. The execution model imple-
ments these models in an efficient manner. The GMoDS
specification model is used in the design process of a MAO,
while the GMoDS instance and execution models are used
in execution, or simulation processes of MAOs. Both in
the design process, and in the execution process, the leaf
goals are directly related to the agent plans. A GMoDS
goal specification tree is presented in Fig. 2 (from [13]).

Legend:

g2
P

<<or>>

g1

g3 g4
P

g6

x:X

g7

y:Y

e1(x:X)

<<and>>

g0

<<or>>

y:Y

g8

e2(y:Y)

g5

Create instance:

Precedes:

Subgoal:

Figure 2: A GMoDS Goal specification tree.

A basic O-MaSE process is presented in Fig. 3.

A centralized Organization-based agent architecture is
presented in Fig. 4 [12]. The Control Component con-
tains Goal Reasoning and the Reasoning Algorithm that use
specifications of the organisation goal, role, and agent mod-
els to perform reasoning about goals, and the assignment
of agents to roles. The Execution Component contains the
agents of the MAO specified by their roles and capabilities.

From the Control Component, Goal Reasoning is the
module that implements the GMoDS framework. In this
paper we describe a specification of the Goal Reasoning
module using an object-oriented extension of the Event-B
method.

Model agent classes

SRS

Model goals

AND/OR Goal tree

Goal refinement

Refined GMoDS

Model plan

Agent plan model

Model protocol

Protocol model

Design

Requirements

Agent class model

Figure 3: A basic O-MaSE Process.

3 Event-B method
Event-B [2] is a formal method for modelling concurrent
systems by adopting a top-down development process. The
Event-B method is influenced by the B Method [1] by using
typed set theory as the mathematical language for defining
state structures and events. However there is a conceptual
difference between these two formal methods: while the B
Method is aimed at software development, the Event-B is
aimed at system development.

In order to support construction and verification of
Event-B models, RODIN, an open toolset implemented on
the top of the Eclipse platform, was constructed. The
RODIN tool was initially developed as part of the European
Union ICT Project RODIN (2004 to 2007) [25], and then
continued by the EU ICT research projects DEPLOY (2008
to 2012) [14] and ADVANCE (2011 to 2014) [3]. The tool
is implemented in Java and it uses several plug-ins that ex-
tend the basic functionality of the Event-B framework.

Event-B models are described in terms of two basic com-
ponents: contexts, which contain the static part of a model,
and machines, which contain the dynamic part. Contexts
may contain carrier sets, constants, axioms, and theorems,
where carrier sets are similar to types, while machines,
which provide behavioral properties of Event-B models,
may contain variables, invariants, theorems, and events.
The state of a machine is described by its variables, which
are constrained by invariants.

Each machine may contains a set of events, which de-
scribe possible state changes. Each event is a specialized B
operation, and it is composed of a guard G(t, v) and an ac-
tion A(t, v), where t represents parameters the event may
contain, and v a subset of the variables of the machine. A

32 Informatica 40 (2016) 29–42 M. Brezovan et al.

Agent Control Algorithm

events

Reasoning Algorithm

Goal Reasoning

Role A

Role X

Capability A

Capability Y

eventsassignments

Control Component

Execution Component

Figure 4: Organization-based agent architecture.

special event, initialisation, is used for describing the initial
state of the machine. A machine can see multiple contexts.
During the development, a context can extend one or more
contexts by declaring additional carrier sets, constants, ax-
ioms or theorems.

The refinement is the only operation that can be applied
to a machine. If a machine N refines another machine
M , then M is called the abstract machine, while N is a
concrete machine. Event-B uses two principal types of re-
finement: superposition refinement [6] and data-refinement
[7]. Superposition refinement corresponds to a spatial and
temporal extension of a model, while data refinement is
used in order to modify the state of the machine.

The Event-B language does not allow a modular devel-
opment of a system. In order to manage this development
method some plug-ins have been added to the RODIN plat-
form. In the following we shortly present the Modular-
isation plug-ins that we use for constructing our proposal.
The Modularisation plug-in allows a modular development
of a specification by defining modules [20], a new type of
Event-B components containing groups of callable opera-
tions. A module description consists of two parts, module
interface and module body. A module interface is a sep-
arate Event-B component that consists of a set of external
module variables (v), constants (c), and sets (s), the exter-
nal module invariant, and a description of module opera-
tions, specified by their pre- and post-conditions. In ad-
dition, an interface can see its context. Denoting by M a
module, by MI its interface, and by MI_ctx the context of
MI , the interface MI has a structure as follows:

INTERFACE MI
SEES M_ctx
VARIABLES v
INVARIANT M_Inv(c, s, v)
INTIALISATION M_Init(v)
OPERATIONS
oper1 =̂

ANY par1
PRE M_Pre1 (c, s, par1, v)
RETURN res1
POST M_Post1 (c, s, par1, v, v

′, res′1)
END

. . .
END,

where the primed variables of the interface and the vari-
ables representing the result of the operation, specified in
the predicates representing the postcondition of the opera-
tion, stand for the variable values after operation execution.

A module body is an Event-B machine, where the op-
erations specified in its interface are implemented. Each
operation is implemented by a group of events, one group
for each operation. Some events from a group play a spe-
cial role of operation termination events and are called final
events. A final event returns the control to a caller.

An operation defined into a module M can be invoked
into a Event-B machine, which can be another module,
only if the module M is imported into this machine. The
inclusion of a module into a Event-B machine is specified
by a clause USES in the importing machine. This clause
specify the interface of the imported module, and a prefix
that is used to emulate a dedicated namespace for the im-
ported module. All the names of the imported module are
modified by adding this prefix.

The syntax for an operation invocation is similar to a
function call. The semantics of an operation invocation is
also similar to the standard semantics of a function call as
in the most programming languages. Because an operation
invocation is atomic, the events from the group correspond-
ing to the operation in the module body run until termina-
tion without interference from other groups.

4 Writing object-oriented
specifications in event-B

Because B and Event-B methods are not object-oriented,
there are several proposals in the last years to bring object-
oriented concepts into these methods. First of all, both B
and Event-B have only static structuring mechanisms: they
allow to define abstract machines with a static architectural
structure that do not change at run-time [15]. In [4] an ex-
tension of the syntax of B is proposed for supporting the
management of dynamic populations of components. In
this proposal a population manager is associated to a ma-
chine for managing its instances. Although this extension is
not object-oriented, the population manager for a machine
M is a machine which represents a dynamic set of M in-
stances, including operations for the creation and deletion
of machine instances.

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 33

A similar mechanism is used also in the UML-B method:
for each machine representing a class hierarchy, an implicit
context is generated, which defines the set of all instances,
A_SET , for each class A from the class hierarchy. As
opposed to the B method, where an abstract machine can
represent a class, and a hierarchy of classes is constructed
by several machines that use the clause USES to include
other the classes from the hierarchy, the Event-B method
does not have USES and INCLUDE clauses, thus a hier-
archy of classes must be defined in a single machine. An-
other weakness of the UML-B method is the absence of
the method calls of the class instances, because an Event-
B machine has only events (or transitions in UML-B), not
operations as in the case of the B abstract machines.

The aim of this Section is to bring some object-oriented
concepts into Event-B modelling, without changing the
syntax of Event-B, and thus allowing the Event-B speci-
fications to be realized and verified with the Rodin tool.
We do not use the UML-B method because of the weak-
ness above mentioned, related to the absence of the method
calls. In fact, we use the modularization approach [20] in
order to allow this action, while preserving some object-
oriented elements from the UML-B, such as management
of class instances, attributes, associations, and inheritance.

We use interfaces for describing class hierarchies and the
methods (operations) of the classes, and modules for im-
plementing the class methods. For a hierarchy H contain-
ing the classes, A1, . . . , Ak, the following Event-B compo-
nents are defined:

– A context, H_Ctx , which contain: the set INST of all
instances of all class from the H hierarchy, the con-
stant Void representing the null instance, and the set
of all instances of the classes A1_Inst , . . . ,Ak_Inst
respectively, with the property that:

INST =
⋃k
i=1 Ai_Inst ∪ {Void},

Ai_Inst ∩Aj_Inst ,∀i 6= j.

– An interface, H_Intf , having:
– as variables, the sets Ai ∈ P(Ai_Inst) repre-

senting the set of active objects of the class Ai,
i = 1, . . . , k, and relations and functions repre-
senting attributes of these classes and the associ-
ations between some classes,

– as operations, the constructor and the destructor
for each class, and other operations representing
the methods of the classes Ai, i = 1, . . . , k

– A module, H_Impl , where the operations defined in
H_Intf are implemented.

As an example, we consider two classes, Node and List ,
where each list is an ordered sequence of nodes, and each
node has as attribute with an integer value. The context
related to classes Node and List is defined as follows:

CONTEXT H_Ctx
SETS INST
CONSTANTS Void , Node_Inst , List_Inst
AXIOMS

Void ∈ INST
Node_Inst ⊆ INST
List_Inst ⊆ INST
partition(INST , {Void}, Node_Inst , List_Inst)

END

From the interface H_Intf , the variables, their invariants
and initializations are defined as follows:

INTERFACE H_Intf
SEES H_Ctx
VARIABLES Node, value, List , first, next
INVARIANTS

Node ∈ P(Node_Inst ∪ {Void})
value ∈ Node_Inst → N
List ∈ P(List_Inst ∪ {Void})
first ∈ List_Inst →Node_Inst ∪ {Void}
next ∈ List_Inst → (Node_Inst → (Node_Inst ∪ {Void}))

INTIALISATION
Node := ∅, value := ∅
List := ∅, first := ∅, next := ∅

OPERATIONS
. . .

From the operations related to the Node class we present
only the constructor newNode , and the function getValue:

newNode =̂
ANY self , v
PRE

self ∈ Node_Inst \Node
v ∈ N

RETURN ret
POST

Node ′ = Node ∪ {self }
value′ = value ∪ {self 7→ v}
ret′ = self

END
getValue =̂

ANY self
PRE self ∈ Node
RETURN ret
POST ret′ = value(self)
END

From the operations related to the List class we present
only the the destructor deleteList and the operation

34 Informatica 40 (2016) 29–42 M. Brezovan et al.

insertFront :

deleteList =̂
ANY self
PRE self ∈ List
RETURN ret
POST
first′ = (dom(first) \ {self }) � first
next′(self) = ∅
List ′ = List ∪ {self }
∀a, b · a ∈ Node_Inst ∧ a ∈ Node_Inst ∧

a 7→ b ∈ next(self) ⇒ a /∈ Node ′

ret′ = Void
END

insertFront =̂
ANY self , n, v
PRE
self ∈ List
n ∈ Node_Inst \Node
v ∈ N

RETURN ret
POST
value′(n) = v
next′(self) = next(self) ∪ {n 7→ first(self)}
first′(self) = n
ret′ = first′(self)

END

In the implementation module, H_Impl , each operation
is implemented by a group containing one or more events.
Other defined operations can be called in the action part of
these events. For example, in the implementation of op-
eration insertFront , the constructor newNode of the class
Node is called:

insertFront =̂
ANY self , n, v
WHERE
self ∈ List
n ∈ Node_Inst \Node
v ∈ N

THEN
n := newNode(v)
next(self) := next(self) ∪ {n 7→ first(self)}
first(self) := n
insertFront_ret := n

END

From all operations of the class List, only the op-
eration deleteList has a group containing two events:
deleteListNonEmpty , that occurs for each node in a non-
empty list, and deleteListEmpty that occurs when the list
is empty.

In order to describe the modeling of the inheritance and
polymorphism concepts in Event-B, we use an example of
a class hierarchy with three classes, B, D1 and D2, as in
Fig. 5, where D1 and D2 inherit the class B. In addition,
all three classes have the same operation, op.

Denoting with INST the set of all instances of the
classes form the above hierarchy, with B_Inst , B_Inst ,
D1_Inst , and D2_Inst the set of all possible instances of
the classes B, D1, and D2 respectively, the fact that D1
and D2 inherit the class B can be described as follows:

op

B

D1 D2

op

op

Figure 5: A class hierarchy with one class root.

CONTEXT Ctx
SETS INST
CONSTANTS Void , B_Inst , D1_Inst , D2_Inst
AXIOMS

Void ∈ INST
partition(INST , {Void}, B_Inst , D1_Inst , D2_Inst)
partition(B_Inst ,D1_Inst , D2_Inst)

END

The polymorphism, related to the operation op in this
case, is modeled in the interface, I , which has only one
operation, denoted by op in this case, and in its associated
module,M , which contains a group with two different final
events, denoted by op1 and op2 in this case, one event for
each each operation from a inherited class.

INTERFACE I
SEES Ctx
VARIABLES B, D1, D2
INVARIANTS
B ∈ P(B_Inst ∪ {Void})
D1 ∈ P(D1_Inst ∪ {Void})
D2 ∈ P(D2_Inst ∪ {Void})

INTIALISATION
B := ∅, D1 := ∅, D2 := ∅

OPERATIONS
op =̂

ANY self
PRE self ∈ B_Inst \B
RETURN ret
POST
B′ = B ∪ {self }
self ∈ D1_Inst \D1 ⇒ D1′ = D1 ∪ {self }
self ∈ D2_Inst \D2 ⇒ D2′ = D2 ∪ {self }
ret′ = self

END

The module M can be described as follows:

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 35

MACHINE M
IMPLEMENTS I
SEES Ctx
. . .
GROUP op BEGIN

FINAL op1 =̂
ANY self
WHERE

self ∈ D1_Inst \D1
THEN
D1 := D1 ∪ {self }
op1_ret := self

END
FINAL op2 =̂

ANY self
WHERE

self ∈ D2_Inst \D2
THEN
D2 := D2 ∪ {self }
op2_ret := self

END
END

END

5 Expressing GMoDS models in
object-oriented specifications in
event-B

As stated in Section 2, we describe a specification of the
GMoDS framework using an object-oriented extension of
the Event-B method, which represents the Goal Reasoning
module from the Control Component of an Organization-
based agent architecture.

The GMoDS definition contains three different models
[13]: (i) a Specification model that contains a tree structure
of goal classes and their associations, and (ii) a Runtime
model that contains a tree structure of goal instances and
the actions that are executed, each action being related to
a association between classes, and (iii) an Execution model
that implements GMoDS using and updating continuously
a collection of sets of goal instances, according to the cur-
rent state of each goal instance.

5.1 GMoDS Models
The Specification model of GMoDS contains the goal spec-
ification tree, GSpec, which describes how the goal classes
are related to one another, and where upper level goals
(parents) are decomposed into lower level sub-goals (chil-
dren) and each parent has either a conjunctive or disjunctive
achievement condition as shown via the 〈〈and〉〉 and 〈〈or〉〉
decoration in Fig. 2. Goals without children are known as
leaf goals.

In addition to goals, the specification model uses an-
other concepts, such as, relations, events, and parame-
ters. The main relation type used by this model is the
goal precedence, specified by the precedes relationship,
that ensures that no agents work on a specific goal until all
goals that precede that goal have been achieved. In Fig.
2 there are two precedes relations: precedes(g2, g3), and

precedes(g6, g7). Events in GMoDS are represented by
triggers:

– a positive trigger, or simply trigger, which allows a
new goal instance of a certain class gj to be created
when and event ek occurs during the pursuit of a goal
instance of a class gi, eventually by passing some pa-
rameter values p. In Fig. 2 there are two triggers:
trigger(g1, e1, x) = {g5}, and trigger(g7, e2, y) =
{g8}.

– a negative trigger, or ¬trigger, which allows an ac-
tive goal instance of a certain class gi to eliminate an-
other active goal instance of a certain class gj from the
set of active goal instances when an event ek occurs.

There is always an initial trigger, usually denoted by e0,
that is used when the system starts, which creates an in-
stance of the root goal (and, recursively, it can create others
goal instances).

The Runtime model is represented by a dynamic tree of
goal instances, GInst that retains the structure of GSpec
while allowing dynamism by way of triggering and prece-
dence. For each goal instance from GInst, four predicates
are dynamically set:

– achieved, which determines whether a goal has been
achieved by the system. For leaf goals achieved be-
comes true when the agent pursing the goal notifies
the system of its achievement, while for parent goals,
the value of the achieved is based on the achievement
condition (conjunction or disjunction) and the state of
its children.

– obviated, which states whether a goal is no longer
needed by the system. A goal becomes obviated if it
is a child of a disjunctive goal that has been achieved
that does not precede any other system goal.

– preceded, which becomes true if a goal preceding it
has not been achieved, or if a new goal may still be
instantiated that may precede it.

– failed, which becomes true if the system has deemed
that the goal can never be achieved by the system.

For example, after the initial trigger, the instance tree,
GInst, has a structure as presented in Fig. 6. Instances of
the goals g5 (and subsequently g6 and g7) and g8 are not
created because they will be created (triggered) by g4 and
g7 when the events e1 and e2 respectively will occur.

g4(e0)

g0(e0)

g1(e0)

g2(e0) g3(e0)

Figure 6: The tree GInst associated to the tree GSpec from
Fig. 2 after the initial trigger.

36 Informatica 40 (2016) 29–42 M. Brezovan et al.

In the Runtime model there are maintained and up-
dated six sets, GI−Triggered, GI−Active, GI−Achieved,
GI−Removed,GI−Failed andGI−Obviated as shown in Fig.
7.

GI−Removed

GI−Triggered GI−Active

GI−Obviated

GI−Failed

GI−Achieved

Figure 7: Goal execution model.

Each set contains current instance goals having the same
state:

– triggered, for all instances created by a trigger event,
or, recursively, by a parent goal,

– active, for all triggered instances that are not pre-
ceded,

– obviated, that is based on the obviated predicate,
– achieved, that is based on the achieved predicate,
– failed, that is based on the failed predicate,
– removed, for all goal instances destroyed by a nega-

tive trigger.
When the state of a goal instance is one of the last three
state, this goals remains in this state until the system stops.

5.2 Expressing GMoDS Models into an
Object-Oriented Model

For specifying in Event-B the GMoDS framework (in fact
the Goal Reasoning module), all the three GMoDS mod-
els must be specified. I3n the case of the Specification
model, the goal tree GSpec is defined by using goal classes
as nodes. All classes from a goal tree will form a hierarchy
having an abstract class, denoted byGoal as the root of this
hierarchy. For the goal tree from the Fig. 2, the goal class
hierarchy is presented in Fig. 8, where the classes g0, g1,
. . ., g8 inherit the class Goal.

g8

Goal

g0 g1 g2 g3 g4 g5 g6 g7

Figure 8: Goal class hierarchy.

The main two attributes of the class Goal are
goal_state ∈ Goal_STATES and goal_type ∈

Gol_TY PE, where:

Goal_STATES = {triggered, active, achieved,
failed, obviated, removed},

Goal_TYPE = {AND ,OR,LEAF}.

In order to allow the specification of:
– the trigger events from the specification model,
– the predicates from the runtime model,
– the sets of goal instances, from the implementation

model,
the following associations between goal classes are used:

– down and right, which allows to specify the goal tree
from GSpec,

– creates, created and destroy, which allow to specify
the positive and negative triggers,

– precedes and preceded, which allow to specify the
precedence relation between goals,

– up, which allows to retrieve the parent of a goal.
These associations are presented in Fig. 9.

right

destroy up

down

g

gu

gd

gp

precedes

preceded

ge

gr

gccreates

created

Figure 9: Goal class associations.

For the specification the GMoDS runtime model, a tree
of goal instances must be specified. Because the type of
goal instances does not need to be specified, nor the associ-
ations precedes, creates and destroy, in this case only
the tree structure of the instances is specified. Unfortu-
nately the associations up, down, and right from GSpec
can not be used, because the tree structure of goal instances,
GInstances is not always identical with the tree structure
of GSpec: a positive trigger event can create multiple in-
stances of the same goal that are "sibling" nodes (having
the same parent). For solving this problem we use different
associations related to the sets of goal instances: upInst,
downInst, and rightInst. The class used to specify the
runtime model is Tree , a tree of goal instances, which is
related to the set G_Instance from the runtime model.

There is no need to implement the six sets of goal in-
stances from the implementation model, as presented in
Fig. 7, because the current state of each goal instance spec-
ifies exactly the set to that instance belongs to.

For translating the GMoDS framework into an object-
oriented model, we use the following classes:

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 37

– The class G_Spec, which is the main class of the trans-
lated model, because it contains both the static tree
of goal classes, and the dynamic tree of the goal in-
stances.

– The class GName , whose elements represent the
nodes of the static static tree of goal classes.

– The class Tree , which represents the dynamic tree of
the goal instances.

– The class Goal , whose elements represent the nodes
of the dynamic tree of the goal instances.

– The class Env , that implements the rest of the
Organization-based agent architecture: the Reasoning
algorithm, and the Execution component.

In fact, GName is not really a class, because it does
not have constructors and destructors (the tree of the goal
classes from G_Spec is static). We use instead the notion of
Records for GName , an extension of the Event-B method.
The main components of GName are the following:

– state , which represents the current state of the corre-
sponding goal class, from the set Goal_STATES .

– curr_inst , which represents the set of active goal in-
stances of the corresponding goal class.

– up, down, right, precedes, and preceded that repre-
sent the relations between goal classes, as presented
in Fig. 9.

The class Goal represents the goal class hierarchy, as
presented in Fig. 8. It contains only the attributes upInst,
downInst, and rightInst, representing the relations be-
tween goal instances in a dynamic tree structure. the only
operations allowed by Goal are the constructor newGoal
and the destructor delGoal.

The singleton class Tree contains only one attribute,
rootInst , which represents the root of the dynamic tree of
goal instances. Tree is a singleton class because there is a
single object of Tree , which is an attribute of G_Spec. In
addition, Tree has three operations:

– deleteInst , which deletes all the sub-tree having as
parameter its root.

– addChildInst , which adds a new created instance as
the first child of the parent specified as parameter.

– addBrotherInst, which adds a new created instance
as the right of the goal instance specified as parameter.

The elements of Tree are instances of the class Goal.
There is only one instance of the class Tree, which is a
member of the class G_Spec.

The singleton class G_Spec contains only two attributes:
– rootG , an element of the GName set, representing

the root of the static tree of goal classes (e.g. g0 in our
example).

– tr, the unique instance of the class Tree , representing
the dynamic tree of goal instances.

In addition, G_Spec has several operations, according to
the relations between the classes G_Spec and Env , as pre-
sented in Fig. 10:

– start , representing the event that starts the execution
(or simulation) process of the MAO, and thus the Goal
reasoning algorithm.

– achivedInstGoal , which informs G_Spec that a goal
instance have been achieved.

– createInstGoal , which informs G_Spec that an in-
stance of a goal class must be created.

– deleteInstGoal , which informs G_Spec that a goal in-
stance must be deleted.

– failedInstGoal , which informs G_Spec that an active
goal has failed.

– createdInstGoal , which informs Env that a goal in-
stance has been created.

– deletedInstGoal , which informs Env that a goal in-
stance has been deleted.

The unique instance of the class G_Spec, gsp, represents
the Goal reasoning module, a part of the Control compo-
nent, from the Organization-based agent architecture.

Env represents the environment for the GMoDS frame-
work that:

– Contains the Reasoning algorithm from the
Organization-based agent architecture that per-
forms the reorganisation structure of a MAO, based
of information received from the Goal reasoning
algorithm (e.g. from the GMoDS framework).

– Contains the Execution components from the
Organization-based agent architecture, which con-
tains the agents that achieve the roles related to the
instances of the leaf goals in the goal tree, and send
messages to those instances, when a goal has been
achieved, or when it failed,

– Can send a message to the GMoDS system to start its
execution (i.e. it sends the initial trigger to the parent
goal of the goal hierarchy).

The relations between the classes Env and the G_Spec are
presented in Fig. 10, where:

– The relation start exists between Env and the root of
the goal hierarchy (e.g. g0 in our example),

– The relations achieved and failed exist between
Env and the leaves of the goal hierarchy (e.g. g2,
g3, g4, g6, and g7 in our example),

– The relation create exists between Env and some
nodes from the goal hierarchy having a positive trig-
ger (e.g. g5 and g8 in our example),

– The relation delete exists between Env and some
nodes from the goal hierarchy having a negative trig-
ger.

– Relations created and deleted exist between the goal
classes from G_Spec and the Env, indicating to the
Reasoning algorithm that some goal instances have
been created, or deleted.

All these relation represent in fact operations of the class
Env. Excepting the operations start, achieved, failed,
create and delete, the rest of the classEnv is not specified
in this paper. This will be the subject of a future research.

38 Informatica 40 (2016) 29–42 M. Brezovan et al.

G_Spec

failedcreateachieved delete start created deleted

Environment

Figure 10: Environment and Goal classes associations.

5.3 An Example of Expressing GMoDS
Models in Event-B

Using the patterns specified in Subsection 5.2 we can ex-
press the GMoDS system from Fig. 2 into an object-
oriented model in Event-B. In fact, the model specified in
Event-B encapsulates the GMoDS framework representing
the Goal reasoning module into an object, gsp, instance of
the class G_Spec, while the rest of the Organization-based
agent architecture is represented by the object env, instance
of the class Env.

The context of the modeled system will contain the sets
and the constants that follows the object-oriented patterns
specified in Subsection 5.2.

CONTEXT OBAA_Ctx
SETS
INST , GName, Goal_STATES , Goal_TYPE

CONSTANTS
Void , Goal_Inst ,G_Spec_Inst , Tree_Inst , Env_Inst
g0_Inst , g1_Inst , g2_Inst , . . . , g8_Inst
gsp, tr, env
g0, g1, g2, . . . , g8
triggered, active, achieved, failed, obviated,

removed, inactive
AND , OR, LEAF , NONE

AXIOMS
Void ∈ INST
partition(INST , {Void},Goal_Inst ,Tree_Inst ,

Env_Inst,G_Spec_Inst)
partition(Goal_Inst , g0_Inst , . . . , g8_Inst)
partition(G_Spec_Inst , {gsp})
partition(Tree_Inst , {tr})
partition(Env_Inst , {env})
partition(GName, {g0}, {g1}, . . . , {g8})
partition(Goal_TYPE , {AND}, {OR}, {LEAF})
partition(Goal_STATES , {triggered}, {active},
{achieved}, {failed}, {obviated}, {removed})

END

In the interface OBAA_Intf , the variables and their in-
variants allow to specify the main object-oriented concepts,
as defined in the Subsection 5.2:

INTERFACE OBAA_Intf
SEES OBAA_Ctx
VARIABLES

Env , G_Spec, Tree, Goal
type, state, curr_inst
creates, destroy, up, down, right, precedes, preceded
rootG, rootInst, treeInst
lastInst, lastGoalChild
goalName

INVARIANTS
Env ∈ P(Env_Inst ∪ {Void})
G_Spec ∈ P(G_Spec_Inst ∪ {Void})
Tree ∈ P(Tree_Inst ∪ {Void})
Goal ∈ P(Goal_Inst ∪ {Void})
rootG ∈ G_Spec→GName ∪ {Void}
treeInst ∈ G_Spec→ Tree ∪ {Void}
rootInst ∈ Tree→Goal_Inst ∪ {Void}
lastInst ∈ GName→Goal_Inst ∪ {Void}
goalName ∈ Goal_Inst →GName
type ∈ GName→Goal_TYPE
state ∈ Goal_Inst →Goal_STATES
curr_inst ∈ GName→ P(Goal_Inst ∪ {Void})
available_inst ∈ GName→ P(Goal_Inst ∪ {Void})
up, down, right ∈ GName→GName ∪ {Void}
creates, created ∈ GName→GName ∪ {Void}
precedes, preceded ∈ GName→GName ∪ {Void}
upInst, downInst, rightInst ∈ Goal_Inst → Goal_Inst
∪ {Void}

INTIALISATION
. . .

The initialization event means in fact the creation of the
static tree structure ofGSpec, as defined in Fig. 2, and some
other initializations, such as (a) initialization of singleton
classes, (b) defining the goal types, (c) managing the goal
instances, (d) specifying the hierarchical structure of the
goal tree, (e) specifying the positive and negative triggers,
and (f) specifying the precedence relations between goals:

Env := {env}, G_Spec := {gsp}, Tree := {tr}
rootG(gsp) := g0, treeInst(gsp) := tr
rootInst(tr) := Void
. . .
type(g0) := AND , type(g1) := OR
. . .
curr_inst(g0) := ∅, curr_inst(g1) := ∅,
. . .
available_inst(g0) := g0_Inst , available_inst(g0) := g0_Inst ,
. . .
lastInst(g0) := Void , lastInst(g1) := Void ,
. . .
up(g0) := Void , up(g1) := g0,
. . .
down(g0) := q1, down(g1) := g2, down(g5) := g6,
. . .
right(g1) := g5, right(g5) := g8,
. . .
creates(g4) := g5, created(g5) := g5,
. . .
precedes(g2) := g3, preceded(g3) := g3,

In the following we present only the operations related
to the operation create of the environment. The other op-
erations are similar. 1

1The entire Event-B model is available at http://software.
ucv.ro/~mbrezovan/fm/gmods_model.zip

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 39

Because some of the operations, such as
createGoalInstance, of the class G_Spec creates
recursively all the nodes that from a sub-tree having a root
a goal instance, for correctly specifying the post-condition
of this operation we need to define the transitive closure
of the relation down. The same operation is needed for
createGoalInstance, when the transitive closure of
the relation up is needed. Unfortunately, the Event-B
language has a strict mathematical language, which is
based on a set-theoretic model and corresponding proofs
for modeling and refinement consistencies, and on the
First Order Predicate Calculus for decomposition. For
extending this mathematical language, the Theory plug-in
was implemented, which is a Rodin extension that provides
the facility to define mathematical extensions as well as
prover extensions. There three kinds of extension, one of
them is related to extensions of set-theoretic expressions or
predicates. One example extensions of this kind consist of
adding the transitive closure of relations or various ordered
relations.

Butler [9] proposes propose a special case of an oper-
ator defined as the solution of some predicate, namely a
fixed-point definition. For example, transitive closure of a
relation R may be defined as follows [9]:

operator tcl
prefix
args r
type parameters T
condition down ∈ T ↔ T
fixpoint y where
r ∪ r ; y
order{a 7→ b | a ∈ T ↔↔∧ a ⊆ b}

end

We can define the transitive closure of the relation down
(as well as for the relation up) following the above exam-
ple:

operator tcl
prefix
args down
type parameters GName
condition r ∈ GName↔GName
fixpoint y where
down ∪ down ; y
order{a 7→ b | a ∈ GName↔GName ∧ a ⊆ b}

end

The transitive closure of the relation down allow us to
determine all the pairs (g1 7→ g2) such that up(g1) = g2.

The operation newGoal of the class Goal class can be
defined as follows:

newGoal =̂
ANY self , g
PRE

self ∈ Goal_Inst
g ∈ Goal_Inst \Goal

RETURN ret
POST

Goal ′ = Goal ∪ {g}
ret′ = g

END

For allowing the polymorphism in this case, in the im-
plementation module there will be eight final events related
to the group newGoal: newGoal_g1 , newGoal_g2 , . . .,
newGoal_g8 .

The operation addGoalInst of the class Tree will add
a single goal instance to the tree.

addGoalInst =̂
ANY self , ge, gi
PRE
self ∈ Tree_Inst
ge, gi ∈ Goal_inst

RETURN ret
POST
ge = Void ⇒ rootInst′(self) = gi
ge 6= Void ∧ downInst(ge) = Void ⇒ downInst′(ge) = gi
ge 6= Void ∧ downInst(ge) 6= Void ⇒ lastInst′(ge) = gi
ret′ = self

END

In the implementation module there are three events in
the group addGoalInst: addRootInst, addChildInst
and addBrotherInst, corresponding to the three above
cases.

The main operations of create and destroy a goal in-
stance of the interface OBAA_Intf are related to the class
G_Spec, which contains the tree of goal instances as at-
tribute. The creation of an instance of a parent goals recur-
sively creates children to the corresponding subtree that are
non-triggered subgoals.

The operation createGoalInstance of the G_Spec class
can be defined as follows:

createGoalInstance =̂
ANY self , gc, gi
PRE

self ∈ G_Spec
gi ∈ available_inst(gc) \ curr_inst(gc)
gc ∈ GName
created(gc) 6= Void

RETURN ret
POST

curr_inst ′(gc) = curr_inst(gc) ∪ {gi}
preceded(gc) = Void ⇒ state′(gi) = active
preceded(gc) 6= Void ⇒ state′(gi) = triggered
. . .

The following two predicates specify the recursive cre-
ation of the sub-tree having gi as root for non-preceded
goals:

∀gc 7→ g ∈ tcl(down) ∧ created(g) 6= Void ∧
∃i ∈ available_inst(g) \ curr_inst(g)∧
preceded(g) = Void ∧ down(up(g)) = g
⇒ curr_inst ′(g) = curr_inst(g) ∪ {i}∧
state′(i) = active∧
downInst′(lastInst(up(g))) = i
∀gc 7→ g ∈ tcl(down) ∧ created(g) 6= Void ∧
∃i ∈ available_inst(g) \ curr_inst(g)∧
preceded(g) = Void ∧ down(up(g)) 6= g ∧
∃gl ∈ GName ∧ right(gl) = g
⇒ curr_inst ′(g) = curr_inst(g) ∪ {i}∧
state′(i) = active∧
downInst′(lastInst(right(gl))) = i

40 Informatica 40 (2016) 29–42 M. Brezovan et al.

The case for preceded goals is similar to the non-
preceded case. The last predicates specify the linking of
the sub-tree root, gi, in the tree treeInst of G_Spec:

rootInst(tr) = Void ⇒ rootInst′(tr) = gi
rootInst(tr) 6= Void ∧ down(up(gc)) = gc∧

card(curr_inst(gc)) = 1 ⇒ down(lastInst(up(gc))) = gi
rootInst(tr) 6= Void ∧ down(up(gc)) = gc∧

card(curr_inst(gc)) > 1 ⇒ right(lastInst(gc) = gi
rootInst(tr) 6= Void ∧ down(up(gc)) 6= gc∧
∃gl ∈ GName ∧ right(gl) = gc∧
card(curr_inst(gc)) = 1 ⇒ right(lastInst(gl))) = gi

rootInst(tr) 6= Void ∧ down(up(gc)) 6= gc∧
∃gl ∈ GName ∧ right(lastInst(gl)) = gc∧
card(curr_inst(gc)) > 1 ⇒ right(lastInst(gc)) = gi

ret′ = gi
END

When implementing this operation in the im-
plementation module, OBAA_Impl , the function
createGoalInstance can be recursively applied, be-
cause the two associations, down and right can be viewed
as the two links, left and right of a binary tree. There
are four events in the group createGoalInstance in the
implementation module, two related to the leaf nodes, and
two related to the non-leaf nodes:

– createGoalInstanceLeafNotPrededed,
– createGoalInstanceLeafPrededed,
– createGoalInstanceNotPreceded,
– createGoalInstancePreceded.
From the implementation module, OBAA_Impl , we

present only a single event for each described above op-
eration.

For the operation newGoal of the class hierarchy Goa
we present the event newGoal_g1 :

newGoal_g1 =̂
ANY self , g
WHERE

self ∈ G_Spec
g ∈ g0_Inst \ curr_inst(g0)

THEN
curr_inst(g0) := curr_inst(g0) ∪ {g}
newGoal_g1_ret := g

END

For the operation addGoalInst of the class Tree we
present the event addChildInst:

addChildInst =̂
ANY self , ge, gi
WHERE

self ∈ Tree_Inst
ge, gi ∈ Goal_inst
ge 6= Void

THEN
downInst(ge) = gi
addChildInst_ret := gi

END

When implementing the operation addGoalInstance of
the class G_Spec in the implementation module, the func-
tion createGoalInstance can be recursively applied, be-
cause the two associations, down and right can be viewed

as the two links, left and right of a binary tree. We present
the event acreateGoalInstanceNotPreceded.

createGoalInstanceNotPreceded =̂
ANY self , gn, gi
WHERE

self ∈ G_Spec
gn ∈ GName
gi ∈ available_inst(gn)
created(gn) = Void
down(gn) 6= Void
right(gn) 6= Void
preceded(gn) = Void

THEN
curr_inst(gn) = gi
state(gi) := active
addChild(treeInst(self), gi,

createGoalInstance(down(gn)))
addBrother(treeInst(self), gi,

createGoalInstance(right(gn)))
createGoalInstanceNotPreceded_ret := gi

END

Finally, the environment class, Env, has five operations
that simply call the operations of the class G_Spec: start,
create, delete, achieved, and failed. We present the op-
eration create:

start =̂
ANY self
WHERE

self ∈ Env
THEN
createGoalInstance(gsp, g0)
start_ret := Void

END

We uses the Pro-B plug-in [23] for the Rodin platform
[25] to verify the consistency of the modeled system. ProB
is an animator and model checker for Event-B. It allows
animation of Event-B specifications, and it can be used for
model-checking, and for evaluating a variety of provers or
tactics on a selection of proof obligations.

6 Conclusions

In this paper we presented an initial research related to
express Organisation-based multi-agent software engineer-
ing (O-MaSE) to an object-oriented model in Event-B.
We started to study the Goal Model for Dynamic Systems
(GMoDS), a methodology that defines the operational se-
mantics of a dynamically changing model of system goals,
which has been used as the requirements modeling for the
O-MaSE methodology.

Because the object-oriented model translated from the
GMoDS models use some object-oriented concepts, such
as inheritance, and calling of class methods, we used the
modularisation plug-in of Rodin for implementing these
concepts. We presented some pattern to translate GMoDS
models to an object-oriented specification in Event-B, and
we have illustrated these patterns for implementing an ex-
ample from [13].

Expressing GMoDS Models into. . . Informatica 40 (2016) 29–42 41

We planned to accomplish this work by testing the pro-
posed patterns on real multi-agent systems, and to extend
the research to the O-MaSE framework.

References

[1] Jean-Raymond Abrial. The B-Book: Assigning Pro-
grams to Meanings. Cambridge University Press,
1996.

[2] Jean-Raymond Abrial. Modeling in Event-B. Sys-
tem and Software Engineering. Cambridge University
Press, 2010.

[3] ADVANCE. http://www.advance-ict.eu/.

[4] Nazareno Aguirre, Juan Bicarregui, Theo Dimitrakos,
and Tom Maibaum. Towards Dynamic Population
Management of Abstract Machines in the B Method.
In ZB 2003: Formal Specification and Development
in Z and B, volume 2651 of Lecture Notes in Com-
puter Science, pages 528–545. Springer-Verlag, 2003.

[5] Michael Wooldridge ans Nicholas R. Jennings and
David Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[6] R.-J. Back and J. von Wright. Refinement Calculus,
Part I: Sequential Nondeterministic Programs. In J.W.
deBakker, W.-P. deRoever, and G. Rozenberg, editors,
Stepwise Refinement of Distributed Systems, volume
430 of Lecture Notes in Computer Science, pages 42–
66. Springer, 1990.

[7] Ralph-Johan Back. Refinement Calculus, Part II:
Parallel and Reactive Programs. In J.W. deBakker,
W.-P. deRoever, and G. Rozenberg, editors, Step-
wise Refinement of Distributed Systems, volume 430
of Lecture Notes in Computer Science, pages 67–93.
Springer, 1990.

[8] Amelia Badica and Costin Badica. FSP and
FLTL framework for specification and verification
of middle-agents. International Journal of Applied
Mathematics and Computer Science, 21(1):9—25,
2011.

[9] Michael Butler and Issam Maamria. Mathemati-
cal Extension in Event-B Through the Rodin Theory
Component. Technical Report 251, Electronics and
Computer Science, University of Southampton, 2010.

[10] S.A. DeLoach, W. Oyenan, and E.T. Matson. A Ca-
pabilities Based Model for Artificial Organizations.
J. of Autonomous Agents and Multiagent Systems,
16(1):13—56, 2008.

[11] S.A. DeLoach, M.F. Wood, and C.H. Sparkman. Mul-
tiagent Systems Engineering. Intl. J. of Software En-
gineering and Knowledge Engineering, 11(3):231–
258, 2001.

[12] Scott A. DeLoach and Juan Carlos Garcia-Ojeda.
O-mase: A Customizable Approach to Designing
and Building Complex, Adaptive Multiagent Sys-
tems. Intl. J. of Agent-Oriented Software Engineer-
ing, 4(3):244–280, 2010.

[13] Scott A. DeLoach and Matthew Miller. A Goal Model
for Adaptive Complex Systems. Intl. J. of Computa-
tional Intelligence: Theory and Practice, 5(2), 2010.

[14] DEPLOY. http://www.deploy-project.
eu/.

[15] T. Dimitrakos, J. Bicarregui, B. Matthews, and
T. Maibaum. Compositional Structuring in the B-
Method: A Logical Viewpoint of the Static Context.
In ZB 2000: Formal Specification and Development
in Z and B, volume 1878 of Lecture Notes in Com-
puter Science, pages 107–126. Springer-Verlag, 2000.

[16] A. Estefania, J. Vicente, and B. Vicente. Multi-
Agent System Development Based on Organizations.
Electronic Notes in Theoretical Computer Science,
150(3):55—71, 2006.

[17] Neil Evans and Michael Butler. A Proposal for
Records in Event-B. In FM 2006: Formal Methods,
volume 4085 of Lecture Notes in Computer Science,
pages 221–235. Springer, 2006.

[18] J. Ferber, O. Gutknecht, and F. Michel. From Agents
to Organizations: An organizational View of Multi-
Agent Systems. In P. Giorgini, J.P. Müller, and J.J.
Odell, editors, Agent-Oriented Software Engineering,
volume 2935 of Lecture Notes in Computer Science,
pages 214—230. Springer, 2004.

[19] V. Hilaire, P. Gruer, A. Koukam, and O. Simonin.
Formal Specification Approach of Role Dynamics in
Agent Organisations: Application to the Satisfaction-
Altruism Model. Intl. J. of Software Engineering and
Knowledge Engineering, 16(3), 2007.

[20] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Ro-
manovsky, K. Varpaaniemi, D. Ilic, and T. Latvala.
Supporting Reuse in Event-B Development: Modu-
larisation Approach. In Abstract State Machines, Al-
loy, B, and Z, volume 5977 of Lecture Notes in Com-
puter Science, pages 174–188. Springer, 2010.

[21] T. Juan, A. Pearce, and L. Sterling. ROADMAP:
Extending the Gaia Methodology for Complex Open
Systems. In Proc. 1st Intl. Joint Conf. on Autonomous
Agents And Multiagent Systems, pages 3–10, 2002.

42 Informatica 40 (2016) 29–42 M. Brezovan et al.

[22] J. Mylopoulos, J. Castro, and M. Kolp. Tropos: A
Framework for Requirements-Driven Software De-
velopment. In J. Brinkkemper and A. Solvberg, ed-
itors, Information Systems Engineering: State of the
Art and Research Themes, pages 261–273. Springer-
Verlag, 2000.

[23] ProB. http://www.stups.
uni-duesseldorf.de/ProB/index.php5/
ProB_for_Rodin.

[24] A. Regayeg, A. H. Kacem, and M. Jmaiel. Specifi-
cation and Verification of Multi-Agent Applications
Using Temporal Z. In Proc. Intl. Conf. on Intelligent
Agent Technology, pages 260—266, 2004.

[25] RODIN. http://www.event-b.org/.

[26] Renato Silva and Michael Butler. Supporting Reuse
of Event-B Developments through Generic Instantia-
tion. In Formal Methods and Software Engineering,
volume 5885 of Lecture Notes in Computer Science,
pages 466–484. Springer, 2009.

[27] Colin Snook and Michael Butler. UML-B and Event-
B: An Integration of Languages and Tools. In Proc.
IASTED Intl. Conference on Software Engineering,
pages 336–341, 2008.

 Informatica 40 (2016) 43–51 43

HTML5-based Mobile Agents for Web-of-Things

Jari-Pekka Voutilainen, Anna-Liisa Mattila, Kari Systä and Tommi Mikkonen

Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland

E-mail: first.last@tut.fi

Keywords: web applications, mobile agents, Internet-of-Things, Web-of-Things, HTML5, JavaScript

Received: July 24, 2015

Systems and services utilizing Internet-of-Things can benefit from dynamically updated software in a

significant way. In this paper we show how the most advanced variant of moving code, mobile agents,

can be used for operating and managing Internet-connected systems composed of gadgets, sensors and

actuators. We believe that the use of mobile agents brings several benefits, for example, mobile agents

help to reduce the network load, overcome network latency, and encapsulate protocols. In addition, they

can perform autonomous tasks that would otherwise require extensive configuration. The need for

moving agents is even more significant if the applications and other factors of the overall experience

should follow the user to new contexts. When multiple agents are used to provide the user with services,

some mechanisms to manage the agents are needed. In the context of Internet-of-Things such

management should reflect the physical spaces and other relevant contexts. In this paper we describe

the technical solutions used in the implementation of the mobile agents, describe two proof concepts and

we also compare our solution to related work. We also describe our visions of the future work.

Povzetek: Razvit je sistem mobilnih agentov v HTML5 za splet stvari.

1 Introduction
One of our drivers, the Internet of Things (IoT) refers to

an approach where extensive amount of physical objects

are inter-connected and also connected to the Internet.

When implemented, IoT systems open possibilities for

new applications and services for the users. At the

moment much of the research has been invested in low-

level issues related to addressing the different kinds of

devices, bandwidth used in the communication, and

latency in communications. However, since the main

goal is to enable new applications and services higher-

level protocols are also needed. Due to the diverse needs

of different applications and services and vast number of

different devices the protocols face extensive needs of

adaptability. Design of such protocols upfront would

assume extensive configurability and in extreme cases

extra proxies and other workarounds. If all connected

devices can dynamically accept new executable code, the

risks are significantly reduced.

The other driver, from the human user point of view

is the fact that people use an increasing number of

Internet-connected devices to access services and

applications from the Internet. This leads to a need to

different multi-device experiences and eventually to

concept of Liquid Software [23], where the user can

effortlessly use multiple devices to access their

applications and content from different devices in

different contexts. Liquid Software, as described in [23]

concentrates in systems where end-user devices with

screens interact with Internet services. In this paper we

show how the ideas of Liquid Software and Mobile

Agents, as one building block to implement Liquid

Software, can be applied in the world of Internet of

Things.

Many researchers, for instance [10] separate Web of

Things (WoT) from Internet of Things (IoT), because the

former is based on resource-based APIs, resource-

oriented architecture (ROA) and RESTful paradigm [6],

and the latter is based on approaches that reflect the

remote procedure call (RPC) paradigm. The main

purpose of both approaches is the same: to connect

devices around us to Internet and to use them in

providing value to users. The difference is in the

architectural approach, and because we share the

architectural approach of WoT we use term WoT (Web

of Things) in this paper.

In this paper we present our framework where

HTML5 based mobile agents are used for programming

WoT. The framework contains an agent framework that

enables the usual operations associated with mobile

applications, an application model for creating such

agents, and a management system that is based on

physical spaces and other real-world concepts.

This paper summarizes our earlier work on mobile

agents [11], [12], [14] and [22], but also reports new

work, for example, new way of separating user interface

from the agent logic and for management of the agent

system – including mobility of the agents.

The rest of this paper is structured as follows. After

background and motivation in Section 2, we introduce

our mobile agent framework and its implementation, and

programming framework in Section 3. This description is

based on older publication [22], but significantly

reorganized and updated to reflect our latest design

including new features like Management server and new

declarative way to handle UI. Especially in Subsections

3.5 and 3.6 we discuss how a “thing” can host agents,

44 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

what operations the agent can perform and how the

system can be organized in Cloud Spaces. In Section 4

we present some experiments we have done with the

system. In Section 5, we briefly address related work. In

Section 6 we discuss current state of our work and our

vision of future work. Finally in Section 7 we draw some

final conclusions.

2 Motivation and background
Mobile Agents are executable entities that can move

from one node to another together with the internal state

of the application. This means that an executing agent

can pause its execution in current location and then

continue in a new location. In fact, mobile agents

represent a special case of moving code combining

remote evaluation with preservation of the internal state.

The mobile agents discussed in this paper can preserve

the internal state if the application needs that

functionality. In some cases, we just need to send the

code for remote evaluation.

Mobile agents have certain benefits that we see

especially useful for Internet of Things. Among the

benefits listed in [13], the following have special

relevance in the scope of IoT:

 Mobile agents reduce the network load. Many

“things” include sensors that monitor physical

environments and thus potentially generate hidden

data flows. If all that data is sent to application on

another end of the network, the network may be

flooded with data. A mobile agent running in the

thing can reduce the network load by pre-processing

the data generated by the sensors.

 Mobile agents overcome network latency. The

latencies of networks, especially in wireless

networks, can make real-time control impossible.

Thus, everything cannot be done in the cloud and

local execution is needed.

 Mobile agents encapsulate protocols. New protocols

get invented frequently and objects in IoT should

adapt to those. Agents are good tools for introducing

new protocols or data formats.

 Mobile agents execute asynchronously and auto-

nomously. This means that there is no need to

generate network traffic for every execution. In case

of wireless networks this also reduces power

consumption.

As already pointed out, we propose using mobile

agents in the context of WoT [12]. Our mobile agents

are based on web technologies. An agent can move

between different devices, and if necessary it is also

possible to clone agents to create more instances. This

enables the creation of increasingly complex

configurations, where device- and context-specific

decisions can also be taken in devices.

The Liquid Software dimension of our research is

related to dynamically moving applications that enable

use of several devices for accessing and controlling the

WoT systems. The idea is that the execution should

dynamically move to a location where it can be done

more efficiently and where the required resources are. On

the other hand, things that matter to the user, like user

interfaces and user content should follow the user

whenever possible and be accessible with device that

user happens to have in her hand at that moment.

Third aspect of this paper is organization of the agent

platform to “spaces” that relate to physical spaces and

other real-world contexts. These Cloud Spaces define

management structure for the WoT systems.

3 Architecture and concepts
Our whole system is based on mobile agents

implemented with HTML5 technologies. This framework

has originally been described in [22], but the design has

evolved since then. Subsections 3.1, 3.2 and 3.3 report

our current design, including new technique to separate

UI from the logic, and framework for external control of

the agents. The mobile agent framework is then in

subsection 3.5 applied to Internet of Things by bringing

agent servers close to various devices [12]. Finally, in

subsection 3.6 we show how the systems are organized to

managing contexts called Cloud Spaces [14].

3.1 Execution of HTML5 agents

In our design, an HTML51 agent is an HTML5

application that can run in two modes, with a user

interface inside a browser and in a headless mode, that is,

without a user interface, in an environment called Agent

Server [22]. For executing the agent headlessly in the

Agent Server, only a JavaScript virtual machine with a

simple runtime environment is required. No full browser

is needed. The state of the agent is saved during the

migration between server and browser and the agent

continues its execution as if there wasn't any change in

the mode.

During its life cycle the agent may visit several

browsers and several Agent Servers. An example life

cycle is presented in Figure 1. The instance of an agent is

created when it is downloaded from the Origin Server.

This server is similar to an ordinary web server, and its

task is simply to host applications. After the download,

the executing agent can move to an Agent Server to

continue its execution and back to a browser again.

The Origin Server maintains and serves all the files,

and when the agent moves between Agent Servers and

Browsers we usually deliver only the URL that point to a

resource in the Origin Server. The receiving entity then

fetches the static content from Origin Server.

The dashed box “Mgmt. server” and the dashed

arrows in Figure 1 depict an optional management

functionality that allows external entities to control

agents.

Our all protocols are Web-friendly and rely on

standard HTTP. Both Origin Server and Agent Server are

1 For the purposes of this paper, the overall goal of HTML5 to

support rich applications is important; we do not refer to any

specific new technology introduced by HTML5.

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 45

HTTP servers that can be accessed with HTTP requests.

Agents are fetched for execution with GET and pushed to

server with POST. This means that an agent can also

move from one server to another. In addition, the Agent

Server can provide a list of running agents. Concretely

speaking, the most important parts of the HTTP interface

of the Agent Server are:

 /list (HTTP GET) gets a list of active agents as an

HTML file that can be shown in a browser.

 /upload (HTTP POST) sends URLs to agent code

and user interface together with serialized state.

After receiving the Agent Server instantiates and

starts the agent.

 /<id> (HTTP GET) pauses the agent in server,

serializes the state and sends it to the requesting

browser

Origin
server

Agent
server1

Agent
server2

Browser1 Browser2

1. Start and
initialize

the agent

2. Push to
server

3. Pull from
server

4. Push to
server

5. Pull from
server

7. Exit

6. Managed
 agent

Mgnt
server

Figure 1. Life cycle of an HTML5 agent in the framework.

As usually in today's web applications, the HTML

file of the agent includes references to Cascading Style

Sheets (CSS), to other HTML files, images and other

resources, and JavaScript files. Also, similarly to

standard web applications the agent is first started by

downloading the HTML file from the origin server.

Agents are serialized whenever they are moved

between servers or between a server and a browser. The

implementation of the framework provides mechanism

for serialization of the relevant parts of the state. When

an agent is about to move to a new location its state is

serialized into JavaScript Object Notation (JSON) based

on state variables defined by developer. An example of

serialized agent description is shown below, where state

of this agent includes four variables low, high, count and

history:

{"auri":

 "http://xx.xx.xx.fi:pppp/gmonitor.js",

 "huri":

 http://xx.xx.xx.fi:pppp/gmonitor.html

 "id" : "526636" ,

 "memory": {

 "high" : 0.0253 ,

 "low" : 0.0214 ,

 "count" : 3,

 "history": [0.0253, 0.0234 ,0.0214]}}

This serialization contains URIs for the agent

functionality (JavaScript file) and HTML based UI. In

addition it has a unique identity variable (id) and set

relevant variables in application state encoded in JSON

dictionary “memory”.

When an Agent server receives the serialized agent

description, it fetches the JavaScript code from the

address in auri, in addition, the Agent downloads the

other JavaScript files implementing the framework, it

initializes the agent using the serialized state, and finally

it starts the execution of the Agent.

When a browser requests the agent from the Agent

Server some special arrangements are needed due to

security and other limitations of the browsers. As

response to a request from browser to the Agent Server,

the Agent Server sends the content of HTML-file

identified by ‘huri’ field of agent description. To that

HTML file the Agent Server injects JavaScript to restore

the transferred local state of the agent,

The execution model of the agent also needs to be

suitable for the execution environment. First of all it

needs to be suitable for running in the browser. For

instance it should not block the event loop of the browser

run-time. On the other hand it needs to proceed without

user interface events delivered by the browser.

Furthermore, the agent needs to have safe points in

execution so that a consistent state can be serialized. In

practice this means that all the application logic is

embedded in specific event handlers that are triggered by

timer events. This event-based execution model fits well

to Agent Servers that have been implemented with

Node.js [19].

3.2 Management API

The management protocol is also made compatible with

the overall design. The Management Server implements

a REST interface for both the moving agents and a

control application. The control application may be

operated by a human user, or be an autonomously

running application. The most important part of the API

for agents consists of two kinds of REST calls: “ImHere”

when the agent has arrived to a new location, and

“Status” call is sent to the Management Server on regular

intervals. The response to these REST calls may contain

an instruction to the agent to move to a new location (see

arrow 6 in Figure 1). Our current implementation

includes also instructions for the application to exit and

to change values of variables. Control applications can

browse the agents and their histories. Control

applications can also send instructions to the Agent.

In the following we give a short example. When

control application makes a GET request to /Agents it

gets a list of agent IDs as a response.

GET http://host/Agents => [211, 311]

In this case the Management Server knows about two

agents. Detailed information about a specific agent can

be retrieved with

GET http://host/Agents/211 => {…}

http://xx.xx.xx.fi:pppp/gmonitor.html

46 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

The response includes information about the location and

status of the agent. The control application can request an

agent to move to a new location by sending payload

[{“goto”: http://server2}] by using a PUT

request

PUT http://host/Agents/211/todo

This request is now waiting in the Management Server

until Agent 211 contacts the Management Server. When

the agent 211 updates its status by sending

{”id”:”211”, ”Status”:”I’m fine”}

with request

PUT http://host/Management/Status

to the Management Server, the request to move to new

location is delivered to agent 211 in the response, and the

Agent framework initiates the move to the requested

location.

This is a lightweight management framework that

assumes the agents co-operate and does not affect agents

that do not participate. The REST API of the

Management Server has been designed both for

automated control and for management user interface

described in Subsection 4.2. On the other hand the

framework relies on basic HTTP protocol and thus does

not require the infrastructure to support any other

protocol. In the current implementation only the agents

that are in server obey all received instructions and

agents that are in browser ignore the requests to move.

3.3 Programming agents

Core parts of the Agent framework have been

encapsulated in a reusable JavaScript class Agent, and

the developer should specialize her own version from

that class. So far we have used the functional inheritance

pattern presented in [3], but the more traditional

prototype inheritance could be used, too. The appli-

cation-specific sub-class of the Agent can override the

following methods:

 Method getRunningStatus() – should return a string

that the management interface of the agent server

context can show.

 Method preupload() is called by upload() just before

serialization as the first the uploading. By overriding

this method the agent can implement application

specific preparations for the uploading.

 Function continueWork() – re-initializes the

execution when the agent has arrived and de-

serialized in a new location and the execution should

be resumed. This function initializes the state of the

agent by recreating the variables.

In addition, the agent has to provide a function that

creates and initializes the agent object.

The framework provides also a set of utility methods

that the above methods and functions can call. The most

important utility methods are:

 registerVar(name) – with this function the

application can state that a variable is part of

relevant local state and will be automatically

serialized.

 setWork(function, interval) – sets the work function

that is periodically executed with the given interval.

The framework assumes that the work function

returns reasonable quickly.

 upload(url) – uploads the agent to an Agent Server

specified by parameter url. This function first stops

execution, then serializes the state and finally sends

the serialized agent to the Agent Server.

As discussed earlier, the agents run in the headless

mode in Agent Server and with the HTML and CSS files

in browser. This means that the JavaScript code of the

agents has to be written to be executable without

presence of the complete Document Object Model

(DOM) tree. Separation of the application logic from the

UI part is not always easy since many Web application

frameworks rely on existence of the DOM-tree. In our

first implementation we assumed that agents are written

for the framework so that user interface is nicely

separated from the application logic. In addition, we

provided a very simple DOM emulation to help writing

of portable applications. We have later experimented

with a different approach to help application developers

in implementation of Agents that can run with and

without DOM. This approach is based of declaration of

the binding between application logic and user interface

with primitives like:

 BindModeltoView([’var’,’elem’]);

 BindModeltoView([’var.func’, ’elem’]);

The first declaration states that if element with id

‘elem’ exists in DOM-tree its value (innerHTML) is

updated with the value of variable ‘var’ whenever value

of var changes. In the latter version function ‘func’ is

used instead of simple assignment to innerHTML of

‘elem’. If the above binding mechanism is used, the

application code does not need include UI-specific code

and thus there is no need to deal with differences

between server and client since the framework includes

conditional code.

3.4 Agent communication

A simple agent-to-agent communication framework has

also been implemented [11]. This framework allows

agent to send messages and to receive their messages

regardless of their current location. Because the web

infrastructure does not support communication between

browsers, the all communication is routed through an

agent server.

With the current API, the sending agent initializes

the communication as follows:
c = new CommComponent(function(msg) {

 …

});

c.setNameSpace("myChannel");

c.initIO();

and a message is sent with:

http://server2/
http://host/Agents/211/todo
http://host/Management/Status

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 47

c.sendMessage(obj)

Like in other parts of our framework the content is

sent over the network as a JSON string. The namespace

“myChannel” is kind of channel and the receiving end

can listen the channel with the following code:
c = new CommComponent(function(msg){

 // process incoming msg

});

c.setNameSpace("myChannel");

c.initIO();

We have not used this framework much in our

applications still, because most of our example

applications have assumed that the moving agents bring

the data with them. We have just validated that our

implementation that is based on WebSockets [25] works.

3.5 Agent servers in “things”

As described earlier, the core components of our Agent

Server are the HTTP server and a virtual machine

executing JavaScript. These can be implemented, for

example, with Node.js [19] technology. The agent server

has two main functions: 1) implement execution

environment that is compatible enough with the browser

and 2) simple management function for agents.

As the implementation of the Agent Server only

requires Node.js and a few hundred lines of JavaScript

code and because our Agent Server does not require lot

of computational resources, and it can be included in

many small devices – or “things” – that are connected to

the Internet. In our experiments we have used a low-cost

single board computer Raspberry PI [20], which typically

runs Linux. The infrastructure requirements are equal to

those of WoT, because the devices are accessed with

standard HTTP requests such as GET and POST. With

these requirements the Raspberry PI device goes beyond

the bar with a clear margin.

We assume that most devices that can be nodes in

SOA based IoT or REST-based WoT can also host our

Agent Server. This would bring benefit of mobile agents

described above, but also enable new ways for remote

management and extending the functionality by adding

new code in a form of mobile agents. The possible

application areas include the following:

 Home automation that goes beyond remote control.

An intelligent agent can work on behalf of the user

and implement even complex strategies to optimize

energy consumption and user comfort.

 Support for new communication protocols or

applications. In most cases the applications are in

the Internet, but the “things” need to be accessible.

Sometimes new application will need new

functionality from the devices.

 Compatible extensions to already existing systems.

Interoperability with new devices may be achieved

by adding new intelligence to existing devices.

The proposed approach has obvious benefits over the

solutions that have been more conventionally used. From

the perspective of the “thing” executing the agent, the

agent framework based on managed runtime effectively

creates a sandbox that separates the agent from the rest of

the system. Therefore it is, for instance, possible to run

real-time critical code in the same system, and only

execute the agent when there is leftover execution time, a

partitioning which is supported by many real-time

operating systems. A further benefit over other agent

frameworks is that we are solely relying on web

protocols and technologies. The ecosystem that builds

web applications has presently advanced to a level where

the web is increasingly a platform for all applications.

Allowing this ecosystem to build mobile agents for WoT

creates low-hanging opportunities, because there is no

need to invest in familiarizing yet another platform.

3.6 Structuring of the framework

In [14], we have presented and demonstrated a

structuring concept that incorporates HTML5 agents and

their servers with a data solution to store user’s content.

Each Cloud Space is essentially a private cloud which

hosts user’s data and applications. In the context of WoT,

Cloud Spaces can be seen as ecosystem where each

“thing” provides small functionality for the Cloud Space

as a whole. Data streams between the nodes can be

implemented using agents and when adding a new node

to the system, agents can provide architecture

configuration automatically to the new node. Figure 2

depicts on possible Cloud Space configuration with Web

of Things.

Each “thing” in WoT implements minimum of the

Agent Server architecture and when new device is added

to WoT, agent is sent to the new device to configure it.

For example agent creates new public interfaces to the

new device, which can then be used for data streams. Or

the agent can implement application logic for the device,

which is then executed even without the agent. Even if

the agent does not modify the programming of the new

device, it can provide information about WoT, for

example, location of other servers and devices.

Figure 2. Cloud Space in context of WoT.

4 Proof-of-concept experiments
During our research we have implemented a few proofs

of concept and demonstrators. Here we describe two

demonstrators that relate to devices in WoT and to

management of the agents and Cloud Spaces.

48 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

4.1 Agents for embedded device

To verify and demonstrate our idea we implemented a

simple agent that collected information from different

sensors hosted by different devices (Figure 3).

Figure 3. A traveling agent in different devices.

The implementation is based on the following

components.

1. Two Agent Servers, one running in Raspberry PI,

and another in a standard Linux server running on a

virtual machine in a cloud. Both servers are based

on Node.js [19] technology, and the implementation

of the agent framework is the same in both servers. It

is also possible to connect external sensors and

actuators to Raspberry PI. In our case, we have

connected a temperature sensor DS18B20 [15] for

our experiments.

2. An agent that travels between servers and browsing

devices. The agent is written in a manner that it can

measure temperature when it is in the Raspberry-

hosted server and if temperature sensor is available.

When in browser the agent receives DOM device

orientation events [24] and measures the orientation

of the device. Based on the orientation events, the

agent also calculates a “restless index” – i.e. how

much the device is rocked or shaken lately. In other

words, the agent collects different data in different

devices but remembers and aggregates all the

collected data to a pre-processed form.

3. Visualization of the collected data when the agent is

in browser. In this visualization we show graphs of

the temperature and restless index over time.

In the scenario depicted in Figure 3 the agent is first

downloaded to a browser running on a Windows laptop.

From there it is pushed to an Agent Server in the cloud.

The graphical display disappears but collected statistics

are preserved and the agent continues its execution.

Unfortunately no sensors were available, so no real data

was collected. Next the agent is downloaded to a browser

running on a smart phone, there the graphical

visualization is generated again and the user can see from

the graph what has been measured and collected. From

mobile browser the agent is uploaded into an Agent

Server in Raspberry PI. From there the agent is finally

downloaded to a desktop browser.

The purpose of this experiment was to validate that

the agent runs in all needed hosts and also to demonstrate

the idea. An example – a different execution from the

one shown in Figure 3 – of the visualization has been

given in Figure 4. The X-axis in Figure 4 represent time

(concrete values not shown in Figure 4) and Y-axis show

the sensor values.

Figure 4. Visualization of the collected sensor data.

Additional text and images have been added to the

picture to improve the presentation in this paper. The

blue vertical lines indicate moves from one location to

another. The history of events in this example run is the

following: the agent was first downloaded to browser in a

smart phone. Since accelerator sensors were available the

restless index gets calculated and recorded, but because

temperature sensor is not accessible, temperature defaults

to -10 degrees C. The agent is next pushed to an Agent

Server in the cloud where neither sensor is available and

both readings default to 0. Then the agent is downloaded

back to a mobile browser and further pushed to a server

in Raspberry PI. In Raspberry PI the agent reads and

collects temperature data until it gets downloaded back to

mobile browser.

4.2 Managing agents in cloud space

For combining concept of agents and Cloud Space we

have also implemented a proof of concept manager for

agents running in Cloud Space [14]. The manager is a

web application with a 3D interface for managing agents

in Cloud Space contexts. By using the manager the user

can access to her Cloud Space context and agent servers

inside the Cloud Space. User can fetch agents from

servers to her web browser and move agents from a

server to another server even between contexts.

As Cloud Space context can represent a physical

place, panoramic photo spheres are used to visualize the

context in the 3D management UI. A real-world image

helps the user in mapping of the concepts of Cloud Space

to the physical space. Agent Servers in a context are

represented as 3D grids and agents running in a server

are shown as cuboids are placed to the grid. User

performs all management actions, e.g. navigating in

contexts, moving agents and fetching agents, via direct

manipulation using mouse and keyboard.

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 49

Figure 5 presents the management UI in action. In

the top section of Figure 5 (marked with 1) the user has

dragged the agent on top of the context which she wants

to move the agent. When she releases the agent the

Management View changes to the context she chose.

This is visualized in the middle section of Figure 5.

Finally the user can drag the agent to the server in the

context and the agent is moved there (bottom section in

Figure 5).

Figure 5. Examples of management views [14].

5 Related work
Use of Web and HTML as an agent platform is not very

common. The Radigost system [16] [17] uses Web and

JavaScript as an implementation platform for multi-agent

systems. It has many interesting features like support for

standard agent communication mechanisms and yellow-

pages service for agent directories. However, it does not

support dynamically moving agents or running agents

outside browser. Radigost has later been merged with

JavaEE-based agent framework that allows execution of

agents also in the server side. In contrast to many

benefits of JavaEE-based agent platform, it cannot be

hosted on small devices as required by WoT applications.

Another Web-based agent-framework has been described

in [5]. In that concept the agent platform is based on

concepts of Pneuna that is relatively close to our agent

description and Soma that is the execution environment.

In this approach Soma hides the differences of browser

and server environment and creates a completely new

application platform for mobile agents. In our approach

standard and well-known HTML5 is the agent platform.

In addition, the approach presented in [5] has not been

designed for pushing agents to agent server when user or

browser is not active or when the agent should find a new

browser to run on.

As discussed earlier, Web of Things (WoT) and

Internet of Things (IoT) approaches lead to a bit different

architectures. Because the former leads to resource-

oriented architecture (ROA) and the latter is based on

approaches that reflect the remote procedure call (RPC)

paradigm. While our work could be connected to both

approaches, we propose a third approach that is based in

sending code for execution in or close to a “thing”. In the

categorization of moving code proposed in [1], this is

called Remote Evaluation. The code sent to remote host

can expose new interfaces either in WoT or IoT style. As

our system allows executing code to move with its

internal state and because the code and state can further

move to a yet another location, our system fulfills the

criteria of mobile agents. For many WoT and IoT

applications, the core subset of mobile agent behavior –

remote evaluation – is enough, but moving with state and

ability to move even further are available for those

applications that benefit from it.

There are a few approaches that support uploading

and remote evaluation of code in a “thing”. For example,

MoteLab [27] is a test bed for sensor networks. The

developers using MoteLab can upload executable Java

code with a job description towards a “thing”. The Web

interface is a separate system based on PHP. Somewhat

similar system is Kansei [4] – later refactored to

KanseiGenie – where developers can also create jobs to

execute sensor applications. Our system can also be used

in a similar way and from similar motivations. However,

in our system the uploaded code is Web content and we

can upload an executing agent with its internal state.

Use of web technologies to for IoT or WoT appli-

cations is not new. For example, WebIoT [1] is based on

similarities to our work. Similarities lie especially in the

aim to bring IoT to Web 2.0 and allowing users to

develop, deploy and execute their own applications.

However, WebIoT does not support agent model.

Maybe the most similar approach to us is the mobile

agent framework proposed in [6]. It provides nodes in

heterogeneous device networks with a way to

communicate and co-operate. Furthermore, it provides

means to proactively search for required resources. The

system is based on Java-based AgentSpace [21] mobile

agent platform. At the moment we do not have similar

automatic searching – this is left for future work. On the

other hand we have the unique benefits of using the Web,

which enables leveraging the power of the web

development ecosystem in application development [22].

6 Discussion and future work
The ability to send code for remote evaluation and

especially mobile agents is useful when implementing

new types of IoT applications. This approach increases

flexibility of the system design and evolution of IoT

since the new code can add new functionality and adapt

the device to new requirements. Moving code and

especially agents can also be used to add autonomous

intelligence to systems.

Our example agent collected data that was available

at the particular location of execution and different data

50 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

was collected in different locations. So, the agent adapts

to its execution environment. One benefit of mobile

agent is reduction of communication. In our case the

sensor data, like temperature measurement, was

continuously collected but sent over network only when

agent moves. Furthermore, calculation of the restless

index is an example of agent that reduces communicated

data by pre-processing the raw data.

We see that use of web technologies as a basis for

our agent framework gives us several benefits. First of all

we gain ecosystem benefits in terms of competencies,

training material and tools. Secondly, any device with a

reasonable recent browser can be used to run and control

the agents. Thirdly, web-based agents can be run both in

“things” and servers in the cloud, and integrate well with

the infrastructure of the Internet.

In the future we would like to study the opportunities

when combining our mobile agents to RESTful or SOA

paradigms more closely. For instance, and an agent that

is located in a “thing” with a temperature sensor can

expose a REST API for applications to ask current

temperature, list of recent measurements, or some other

information, depending on the application needs.

Mapping our framework to agent-related standards is

also a potential future topic. Since our agent-to-agent

communication solution is very generic, we assume that

it can be used as a transport layer to FIPA Agent

Communication language [7] in a similar manner as in

Radigost [17], but the mapping between our management

system and corresponding FIPA standard [8] requires

some analysis.

So far we have tried the framework only in

reasonable small cases, and one of the most important

topics for future work is testing it in a larger context. One

potential case is experience roaming with Liquid

Software [23]. Mobile agents would allow users to bring

their preferences and on-going work to the physical

smart spaces they enter. For instance the user can bring

his lightning, heating and other preferences to hotel

rooms while they travel and they can also use their

favourite user interface in favourite mobile device to

monitor and control devices in the visited environment.

Another possible experimentation would involve a

system that moves agents autonomously. Especially in

sensor network systems, automatic crawling of agents

could allow them autonomously search and collect the

needed data. The recently added management API (see

Subsection 3.2) and its underlying mechanisms provide a

basis for this such experiment. One of the design goals of

the management API was to support such autonomy.

Since this API is still a reasonable new feature our

framework and we need experiment with it by

implementing some example application. Moreover,

some obvious things that require attention are related to

non-functional properties of our agent system, including

scalability and security in particular.

7 Conclusions
In summary, we believe that by the end of this decade

multi-device usage will become so seamless and

ubiquitous that “it will weave itself into the fabric of

everyday life until it is indistinguishable from it” [26]. In

contrast to numerous platform and vendor-specific

systems, our work on HTML5 agents and related

infrastructure demonstrates that such future can be

created with technologies that reflect Open Web

principles laid out in the Mozilla Manifesto [18]. Built

with technologies that are open, accessible and as

interoperable as possible, and run in standards

compatible web browser without plugins, extensions or

additional runtimes, they require no installation or

manual upgrades, and they can be deployed instantly

worldwide, and allow application development and

instant worldwide deployment without middlemen,

distributors, or platform-specific app stores.

We believe that these properties will be key

characteristics for the IoT and WoT devices of the future

as well. When these properties are extended to devices,

the devices can be part of the new and unified computing

infrastructure defined by the Internet.

In particular, we believe that mobile agents can play

a special role of connecting devices to the Internet and in

allowing the most efficient use of them in the world

where everything becomes Internet-connected.

8 References
[1] Carzaniga, A., Picco, G., P., Vigna, G., 1997.

Designing distributed applications with mobile code

paradigms. In Proceeding of the 19th international

conference on Software engineering (ICSE’97), May

17-23, 1997, Boston, Massachusetts, USA. Pages 22-

32.

[2] Castellani, A.P., Dissegna, M., Bui, N., Zorzi, M.,

WebIoT: A Web Application Framework for the

Internet of Things, Wireless Communications and

Networking Conference Workshops (WCNCW),

2012 IEEE, Paris France, 2012, pages 202 – 207.

[3] Crockford, D.: JavaScript: the Good Parts, O'Reilly

Media, Inc. May 8, 2008.

[4] Ertin E., Arora A., Ramnath R., Naik V., Bapat S.,

Kulathumani V., Sridharan M., Zhang H., Cao H.,

and Nesterenko M., “Kansei: a testbedfor sensing at

scale,” in ACM/IEEE IPSN, Nashville, Tennessee,

USA,2006, pp. Pages 399–406.

[5] Feldman, M.: An approach for using the Web as a

Mobile Agent infrastructure, In pro-ceedings of the

International Multiconference on Computer Science

and Information Technology, pp. 39 – 45, 2007.

[6] Fielding R.. Architectural styles and the design of

network-based software architectures. Doctoral

Dissertation. University of California, 2000.

[7] FIPA Agent Communication Language

Specifications,

http://www.fipa.org/repository/aclspecs.html, last

visited 2.2.2015.

[8] FIPA, Agent Management Specifications,

http://www.fipa.org/repository/managementspecs..ht

ml, last visited 2.2.2015.

[9] Godfrey W. W., Jha S. S., B. Nair S. B., On A

Mobile Agent Framework for an Internet of Things,

http://www.fipa.org/repository/managementspecs..html
http://www.fipa.org/repository/managementspecs..html

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 51

In proceeding of: International Conference on

Communication System and Technologies, CSNT

2013, 05-08 April 2013, Gwalior, India, At Gwalior,

India. Pages 345 – 350.

[10] Hong Y, A Resource-Oriented Middleware

Framework for Heterogeneous Internet of Things,

International conference on Cloud and Service

Computing (CSC), 2012, Shanghai, China, Pages

12-16.

[11] Järvenpää, L., Development and evaluation of

HTML5 agent framework. Master of Science Thesis,

Tampere University Technology, 2013.

[12] Järvenpää, L., Lintinen, M., Mattila, A-L.,

Mikkonen, T., Systä, K, Voutilainen, J-P. Mobile

Agents for the Internet of Things, In WASA2013,

3rd Workshop on Applications of Software Agents,

Sinaia, Romania, October 11-13, 2013.

[13] Lange, D., B., Oshima, M., 1999. Seven good

reasons for mobile agents, In Communications of the

ACM, Volume 42 Issue 3, March 1999, Pages 88 –

89.

[14] Mattila, A.L., Systä, K., Mikkonen, T. and

Voutilainen, J.-P., Cloud Space – Web-based Smart

Space with Management UI, A short paper in 10th

International Conference on Web Information

Systems and Technologies (WEBIST), Barcelona 3-

5, April, 2014.

[15] Maxim Integrated, DS18B20, Programmable

Resolution 1-Wire Digital Thermometer, Datasheet.

http://datasheets.maximintegrated.com/en/ds/DS18B

20.pdf

[16] Mitrović, D., Ivanović, M., Budimac, Z., Vidaković

M., Radigost: Interoperable web-based multi-agent

platform, The Journal of Systems and Software 90,

2014. Pages 167–178.

[17] Mitrović, D., Ivanović, M., and Bădică, C.,

Delivering the multiagent technology to end-users

through the web. In Proceedings of the 4th

International Conference on Web Intelligence,

Mining and Semantics (WIMS14) (WIMS '14).

ACM, New York, NY, USA, 2014.
[18] MOZILLA-MF Mozilla, Inc., The Mozilla Manifesto.

URL: http://www.mozilla.org/en-US/about/manifesto/.

[19] Node.js. Web page for document and download of

nodejs technology, http://nodejs.org/. Last viewed

03.02.2013.

[20] Raspberry PI web page, http://www.raspberrypi.org,

Last visited 28.6.2013

[21] Silva A., Da Silva M., An Overview of AgentSpace:

A Next-Generation Mobile Agent System, In

Proceedings of the Mobile Agents'98, Springer,

1998. Pages 148 – 159.

[22] Systä, K., Mikkonen, T., Järvenpää, L.,. HTML5

Agents – Mobile Agents for the Web, In the

Proceedings of 9th International Conference on Web

Information Systems and Technologies (WEBIST),

Aachen, Germany, 8-10.5.2013. Pages 37-44.

[23] Taivalsaari, A., Mikkonen, T., Systä, K., Liquid

Software Manifesto: The Era of Multiple Device

Ownership and Its Implications for Software

Architecture. A short paper to appear in 38th Annual

IEEE International Computers, Software, and

Applications Conference (COMPSAC) in Västerås,

Sweden 21–25 July, 2014.

[24] W3C, DeviceOrientation Event Specification, W3C

Working Draft 1 December 2011

http://www.w3.org/TR/orientation-event/

[25] W3C, The WebSocket API, W3C Working Draft, 19

April 2011, http://www.w3.org/TR/2011/WD-

websockets-20110419/

[26] Weiser, M.,, The Computer for the 21st Century.

Scientific American, September 1991, pp. 94-104.

[27] Werner-Allen G., Swieskowski P., and Welsh M.,

“MoteLab: a wireless sensor network testbed,” in

ACM/IEEE IPSN, Apr. 2005, Pages 483–488.

http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://www.raspberrypi.org/
http://www.w3.org/TR/orientation-event/

52 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

 Informatica 40 (2016) 53–61 53

Secured Storage for Dynamic Data in Cloud

Veeralakshmi Ponnuramu, Department of Computer Science and Engineering

B.S.Abdur Rahman University, Chennai, India

E-mail: veerphd1@gmail.com

Dr. Latha Tamilselvan, Department of Information Technology

B.S.Abdur Rahman University, Chennai, India

E-mail: latha_tamilselvan@yahoo.com

Keywords: confidentiality, remote integrity verification, dynamic data operations, public verifiability, symmetric

encryption, data storage security, privacy preserving auditing

Received: December 21, 2015

Cloud is a growing computing paradigm in which the services and resources are provisioned

dynamically through internet. In cloud, the users’ data can be stored in the remotely located data

servers that are maintained by cloud service providers to relieve the users from the local storage and

maintenance. The major security challenge with cloud computing is that the users cannot have direct

control over the remotely stored data. The imperative security concerns in cloud are the integrity and

confidentiality of data. Many existing remote integrity checking methods fail to serve for the data that

can be dynamically updated. To preserve the privacy of dynamically changing data, an efficient

approach maintaining the confidentiality and assuring the integrity of data is proposed. In this scheme,

public auditability is enabled by introducing a Third Party Auditor (TPA) for verifying the data

integrity. It is ensured that the data stored in the untrusted cloud server is confidential and consistent

by using a data encryption algorithm called 2-Keys Symmetric Encryption. Unlike other encryption

algorithms, this encryption algorithm needs lesser computation overhead. Encryption and decryption

algorithms are developed in java and Remote Method Invocation (RMI) concepts are used for

communication between client and server. Simulation environment is set up with the eucalyptus tool.

The performance analysis and simulation results prove that our proposed scheme is secure and

proficient and it reduces the computation cost of server and verifier.

Povzetek: Ta članek predlaga postopek za zagotavljanje varnosti za dinamično spreminjanje podatkov,

ki so shranjeni v oblaku.

1 Introduction
Cloud is an on-demand, pay-by-use model for sharing a

pool of computing resources like servers, CPU cycles,

memory, applications, storage and services that is

managed by cloud service providers. The services can be

easily provisioned from the cloud providers and released

with minimum endeavor by the cloud users. The users

can access data and applications from remote servers

with the fixed or mobile devices. Cloud storage becomes

an increasing attraction in cloud computing paradigm.

Amazon Elastic Compute Cloud (EC2) and Amazon

Simple Storage Services (S3) are the well-known

examples of cloud storage services. With the cloud, the

small organizations can hire the resources from the cloud

rather than purchasing them and avoid the capital costs

for software and hardware. With cloud, IT infrastructure

can be easily adjusted to accommodate the changes in

demand [5].

 There are various [6], [10] issues like security,

scalability, availability, resource scheduling, data

migration, memory management, data privacy, data

management, reliability, load balancing, access control

in cloud because it uses many technologies including

virtualization, networks, transaction management,

databases and operating systems. Cloud moves the

applications, software and databases to the large data

centers that are located anywhere in the world, where the

servers can’t be trustworthy. This unique feature of cloud

imparts many new security challenges like

confidentiality and integrity. At the same time, the cloud

offers many benefits like enhanced collaboration,

limitless flexibility, portability and simpler devices. To

enjoy the benefits of cloud, the users have to store their

data in the encrypted format. Encryption of data can

handle the confidentiality issue. But verification of

integrity without having a local copy of data is a difficult

task in cloud. So the existing methods like SHA, MD5

[16] can’t be directly used. The simple way to check the

integrity of data is to download the full data stored in the

cloud to ensure its integrity. It incurs excessive I/O cost

and heavy communication overhead across the network.

So some effective methods are required for assuring the

mailto:veerphd1@gmail.com
mailto:latha_tamilselvan@yahoo.com

54 Informatica 40 (2016) 53–61 V. Ponnuramu et al.

confidentiality and integrity of data stored in the cloud

with the minimum overhead.

 Recently many remote integrity checking methods

[13], [8], [14], [1], [6], [15] were proposed to check the

integrity of data stored at the remote server. In these

some of the methods are not dealing with confidentiality

and are not supporting the dynamic data operations. So, a

new cryptographic mechanism for protecting

confidentiality and integrity of stored data in cloud is

needed.

• Confidentiality: It ensures that computer

information are used and gained access by only

authenticated and authorized individuals.

• Integrity: It denotes that the data in the cloud

can be updated only by authorized persons in authorized

ways. Updates of data file include writing, appending to

the existing data, changing, deleting the data and creation

of new information.

 There are two kinds of encryption algorithms. That is

symmetric and asymmetric encryptions. In symmetric

algorithms, the same key can be used for both encryption

and decryption. Symmetric algorithms are highly secured

and can be executed in high speed. In case of asymmetric

algorithms, different keys are used for encryption and

decryption [16]. In this, data can be encrypted using a

public key, and decrypted with a private key.

Asymmetric encryption algorithms (called as public-key

algorithms) need a key of 3,000 bits to produce the same

level of security as that of a symmetric algorithm with a

128-bit key. Since the asymmetric encryption algorithms

are slow, they cannot be used for encrypting bulk of data.

So, in this paper, a novel symmetric encryption algorithm

has been proposed for maintaining confidentiality and

assuring data integrity.

2 Related work

2.1 Security issues in cloud

There are numerous security issues in cloud as the

customers are not having direct control over the stored

data in cloud. Jensen et al., [11], [12] discussed the

security issues arising from the usage of cloud services

and by the technologies used to build the internet-

connected and cross-domain collaborations. It emphases

browser security, WS-security, cloud integrity, transport

layer security, and binding issues in the field of cloud.

2.2 Merkle hash tree (MHT)

Wang et al., [3] verified the correctness of data stored in

server by allowing the Third Party Auditor. With the aid

of Merkle hash tree it is possible for the clients to

perform block-level operations on the data files by

preserving the level of data correctness assurance. In this

scenario, chances are there for the third party auditor to

misuse the data while doing the verification operation.

Lifei Wei et al., [9] established a new mechanism to

verify the correctness of computations (addition,

subtraction, multiplication, division, etc.) done by the

cloud provider. For that, they have used the Merkle hash

tree for checking the computation correctness. The only

criteria are the number of computations submitted to the

server must be in the power of 2, since the Merkle hash

tree has the 2n number of leaves.

2.3 Advance computation of tokens

A storage correctness model for verifying the correctness

of stored data by calculating a few numbers of tokens

was proposed by Wang et al., [3]. This insists the user

to pre-compute a number of verification precomputed

tokens, each of them covering a random subset of data

blocks. It allows the cloud user to challenge the cloud

server with a set of pre-computed tokens. Once accepting

the challenge token, the cloud server computes a

signature over the specified data blocks and returns the

signature to the cloud user. The signatures returned by

the provider should match the relevant tokens pre-

computed by the user. The main challenge of this system

is that the cloud user can able to test the cloud server

only for a definite number of times.

2.4 Proof of retrievability scheme (POR)

For verifying the data integrity some sentinel characters

were embedded in the data file by A.Juels and B. S.

Kaliski [1]. These sentinels were hidden in the data

blocks. In the verification phase, the user can challenge

the server by mentioning the positions of sentinels and

request the provider to return the relevant sentinel values.

This procedure allows the user to challenge the server

for a limited number of times by knowing the positions

of the sentinel values in advance. G.Ateniese et al., [6]

proposed a new model called “Provable Data Possession”

to ensure the possession of files stored on the untrusted

server. They had used RSA- based homomorphic tags for

assessing outsourced data. Here also the user needs to

pre-compute the tags and store all the tags in advance.

The computation of tags requires a lot of computation

overhead and storage space. The homomorphic

properties were also used to check the integrity of data

[7]. For ensuring the remote integrity, the MAC and

reedsolomon code were used [5].

2.5 Dynamic data operations

 Many of the existing remote checking methods support

only static data [13], [1], [6], [7], [5]. These are not

featured with the methods for handling dynamically

changing data. Several methods have been proposed for

provisioning dynamic data in cloud [4], [15], [17], [8].

Among these, some of the papers are not offering the

support for block insertion operations and are detecting

the data corruption with a lesser probability [8]. For the

high probability of detection of data corruption, it is

needed for the increased number of challenges to the

server from the client or TPA. These methods are not

considering the issue of confidentiality. In this paper, a

new method for assuring confidentiality and integrity of

dynamically changing data is proposed.

 Our scheme uses a stream cipher encryption algorithm

called 2-Keys Symmetric Encryption [18] for protecting

Secured Storage for Dynamic Data in Cloud Informatica 40 (2016) 53–61 55

the confidentiality of data. This method generates the

metadata for all the data blocks stored in the server for

ensuring the integrity of data.

2.6 Secure storage and secure computation

To ensure the integrity of stored data in cloud, a scheme

considering the positions of data has been suggested in

[13]. And to ensure secure computation this method uses

the Merkle hash tree for checking the correctness of

computations done by the cloud service provider. This

method is not featured for the dynamically changing data

stored in cloud.

3 Problem definition
The major security issues in cloud computing are

integrity and confidentiality of data stored at the servers.

In cloud, the service providers and consumers should

ensure that the data stored at the server is secure. In this

paper a method for ensuring data integrity and

confidentiality for dynamically changing data has been

proposed. Dynamic data operations like insertion,

deletion and appending are conceivable without

retrieving the entire data from server by using the linked

list data structure. Here public auditability is enabled by

introducing a Third Party Auditor (TPA) without

disclosing original data to the TPA.

3.1 System model

Our storage model consists of Data Owners (DO), n

cloud storage servers (s1, s2., sn) under the direct control

of Cloud Service Providers (CSP) and Third Party

Auditors (TPA). Storage servers provide storage

services.

Data Owners: Users having their data to be stored in

cloud and depend on the CSPs for data computation. The

client can be the individual user or an organization.

Cloud Service Providers: It can be the organization

comprising many storage servers and offering significant

storage space and computing resources.

Third Party Auditors: The Data Owner may call the

Third Party Auditor to verify the integrity of data. The

verifier’s role falls into two categories.

1. Private Auditability: It permits the Data Owner to

verify the integrity of data file stored in the server.

2. Public Auditability: It allows anyone including TPA

to verify the integrity of data stored in the server.

3.2 Threat model

It is presumed that the TPA is honest. It executes

honestly in the whole auditing process of checking the

integrity of data. The data will not be leaked out to the

third party auditor during the auditing process. But the

server may conduct the following attacks:

Replace Attack: If the server discarded a challenged

block or its metadata, it may choose another valid

uncorrupted pair of data block and replace the original

data block and metadata.

Replay Attack: The server generates the proof from the

previous proof without retrieving the challenged data.

External Attacks: The external hackers who are capable

of compromising the cloud servers can access the data

stored in the server. He may delete or modify the data

and may the leak the sensitive information.

3.3 System overview

To ensure the confidentiality and integrity of data stored

in cloud, an efficient scheme has been proposed. The

overall architecture of our system is described in the

Figure 1. This system consists of four phases namely

Setup phase, Verification phase, Dynamic data

operations and Decryption phase.

3.3.1 Setup phase

The Data Owner (DO) preprocesses the file F before

storing it in cloud server. The setup phase consists of

four steps.

(1). Key generation

(2). Binary sequence generation

(3). Encryption and

(4). Metadata generation.

(1). Key generation

The DO generates two symmetric keys by using the

algorithm1. Two keywords (keyword1 and keyword2) of

variable length are given as the input from the user for

generating the keys. From the keywords two keys (key1

and key2) are generated by making use of the ASCII

values of characters in the keywords and their position in

the keyword. The two keywords are kept secret by the

DO by storing it in the key store of data owner.

(2). Binary Sequence Generation

The DO generates the binary sequence consisting of 0s

and 1s. This binary sequence is generated using the

recurrence relation of the form as in the equation 1.

Xn+m = (C0Xn+C1Xn+1+C2Xn+2+…Cm-1Xn+m-1)

mod 2 (1)

For generating the recurrence relation, the user needs an

initial seed value m, the initial vector values like

(X1, X2, X3, X4., Xm) and the coefficient values like

(C0,C1,C2 C3.,Cm-1).For example, for the initial seed

m=5, initial vector (0,1,0,0,0) i.e. X1=0; X2=1; X3=0;

X4=0; X5=0 and for the coefficient (1,0,1,0,0) i.e.

C1=1; C2=0; C3=1; C4=0; C5=0, m=5 the recurrence

relation is like the equation 2.

Xn+5=Xn+Xn+2 (2)

The binary sequence generated for the initial vector

(0,1,0,0,0) and the coefficient (1,0,1,0,0) is

0100001001011001111100011011101010000 .

(3). Encryption

To ensure the confidentiality of data, the DO encrypts

each data block using the 2-keys Symmetric Encryption

algorithm [18]. It takes as input the data file F, binary

sequence, key1,key2 and a secret random number for

encryption and produces the cipher text in file F’. This

56 Informatica 40 (2016) 53–61 V. Ponnuramu et al.

encryption technique splits the data file F into n data

blocks db1, db2, db3., dbn considering that each of the

n data blocks contains s bytes.

(4). Metadata generation

After encrypting the data, the DO computes the metadata

of the encrypted data blocks to ensure the integrity of

data stored in the server. To generate the metadata the

algorithm proposed in [13] can be used.

 It is using some random functions involving the

position of characters in the file F’ and a secret key (Sk)

chosen by the DO. The DO has to keep the random

function as a secret one. The DO can issue the random

function and the secret key (Sk) to the TPA for verifying

the integrity of data.

 An example for such random function f (i, j) to

generate the Metadata M is

f(i,j)=M[i,j]=ASCII(F[i,j])*i*j*Sk. (3)

The generated metadata is concatenated with the

encrypted data of each block and is stored in the F’’.

3.3.2 Verification phase

After storing data in the server, to ensure the integrity of

data, our system depends on this phase. The Data Owner

assigns this job to the Third Party Auditor (TPA). The

DO submits {f, Sk} consisting of the random function,

secret key used to generate metadata to the TPA. After

receiving the key and the random function, the TPA

creates a challenge message and sends it to the untrusted

server. Upon receiving the challenge message from the

TPA, the server generates response message and send it

to the TPA. Using this, the TPA checks the integrity of

the message as discussed with [13].

3.3.3 Dynamic data operations

The proposed scheme provisions dynamic data

operations at the block level such as Modification,

Insertion and Deletion operations. To achieve the

dynamic data operations, we can use indexing [8],

Merkle Hash Tree [14]. Here the simple data structure

called the linked list is used. When generating metadata

for the data file F, create a singly linked list such that

each node in the list consists of the starting position of

the new block .The linked list for the file will be stored

with the data owner along with the keys for encryption.

The DO can use the linked list to retrieve the original

data in the correct order. The TPA and Cloud Server

(CS) do not know about the linked list maintained with

the DO.

Construction of linked list

For a file F containing n blocks with BS as the block

size, linked list can be constructed as the Figure 2. Each

node contains the starting position of the new block. This

Figure 1: System Architecture Diagram.

Secured Storage for Dynamic Data in Cloud Informatica 40 (2016) 53–61 57

linked list is maintained with the DO for retrieving the

data in order.

3.3.3.1 Block insertion

In this, the Data Owner can insert a new block db* after

the position k in the file F’’ = {db1, db2, db3., dbn}.

Usually the insertion operation changes the logical

structure of the file F’’. So, instead of inserting the block

at the middle, append the block at the end and insert a

node at the position k in the linked list maintained with

the DO. This scheme performs the insertion operation

without re-computing the metadata and encrypted data

for all blocks that have been shifted after inserting a

block. It calculates the encrypted metadata only for the

block which we are going to insert. Block insertion can

be done using the block insertion algorithm.

Block Insertion Algorithm

Input: Block to be inserted {db*}, Position k

Output: Appended data at the server, Inserted Linked list

at the DO

1. Get the new block to be inserted. (i.e.) db* and the

position k after which it is to be inserted.

2. Perform the encryption for the new data block db*

using the 2-keys symmetric encryption algorithm as

explained in [18] considering the position i, the end of

data file F’’.

3. Generate the metadata of the encrypted block.

4. Append the metadata and encrypted data the end of the

file F’’ in the server.

5. Insert a node in the linked list at the position k. The

data at the node should be the position at which the data

was appended in the server

The server contains the data as {db1, db2, db3., dbk-1,

dbk, dbk+1,. db*,}.

The DO updates the linked list as in the Figure 3.

3.3.3.2 Block modification

Block modification can be simply done using our

scheme. If the user wants to modify a block db2 at the

position k with dbm, for the individual block dbm the

encrypted data as well as the metadata can be calculated

without affecting the other blocks in the server. After

calculating the encrypted metadata, make an update

request like Update (F’’, dbm, k) to the server to modify

the block db2 with dbm.

 Upon receiving the update request Update (F’’,

dbm, k), the server update the data as {db1, dbm, db3.,

dbn}. It is not required to update the linked list in the

user side for block modification operation.

3.3.3.3 Block appending

Appending a block is also very simple in our method. To

append a block dba at the end, the data owner computes

the encrypted data and metadata without disturbing the

other blocks. Then the user makes an append request

Append (F’’, dba) to the cloud server to append the data

block dba at the end of the File F’’.

 The server appends the data block dba at the end as

{db1, db2, db3., dbn, dba}. The client updates the

linked list as in the Figure 4.

3.3.3.4 Block deletion

To delete a block at the position k, the user makes a

delete request Delete (F’’, k) to the server and the server

deletes the encrypted data and the metadata at the

position k and replaces the block with null (Ф).For

example to delete a block at the 2nd position, the server

update the file as {db1, Ф, db3., dbn}. The client

updates the node at the 2nd position with Ф.

3.3.4 Decryption phase

The user uses the secret key (Sk) and the reverse of the

random function used to generate the metadata and

recovers the encrypted data. From the encrypted data,

the DO gets the original data using the decryption

algorithm [18]. The DO generates the binary sequence

from the recurrence relation, initial vector and the

coefficients and the keys key1, and key2 from the

keywords keyword1, keyword2 respectively for

decryption. The DO divides the encrypted data file

encdata.txt into n data blocks db1, db2, db3., dbn

considering each n data blocks contains s bytes like b1,

b2, b3., bs.

4 Security analysis
 In this section, we present the security analysis for the

integrity and confidentiality of the stored data in cloud.

4.1 Integrity

 To assure the integrity, we need the following

properties.

Public Verifiability: It permits anyone not just the DO

to check the integrity of data. In our system, there is a

Third Party Auditor (TPA), for integrity verification. So,

this supports the public verifiability and also the private

verifiability.

Privacy of Data: Because the verification is done at the

TPA, we should assure the privacy of data such that no

information should be leaked to the Third Party Auditor

(TPA). In our scheme, the TPA does the auditing only in

Figure 2: Linked List Construction.

1+(k-1)*BS

1+(n+1)BS

1+(k*BS)

1+(n*BS)

Figure 3: Linked list after Block insertion.

1

1+(n-1)BS

1+(n*BS) 1+(n+1)BS

Figure 4: Linked list after Block Appending.

58 Informatica 40 (2016) 53–61 V. Ponnuramu et al.

the encrypted data whose keys are maintained with the

DO. So it is guaranteed that, no information is leaked to

the TPA.

Block less Verification: No challenged file blocks

should be fully retrieved by the TPA during the

verification phase for security concerns. In our system,

the TPA get only two characters (metadata and encrypted

data) at the positions specified by the DO. No full block

is retrieved from the server. Our System ensures block

less verification.

Low Computation: Only a lesser computation should be

done at the TPA to verify the integrity of the file.

Low Storage Overhead at TPA: The amount of storage

in the TPA should be as small as possible to check the

integrity. In our scheme, the TPA has to store only the

random function and the secret key (Sk). So the storage

at the TPA is less.

Support Dynamic Operations: After storing the data in

server, the user can update the data dynamically. It

should dynamic operations like block insertion, block

modification, block deletion and block appending. Our

system supports efficiently supports all the dynamic

operations that is not discussed with [13].

Probability of Detection of Data Corruption (Pd):

The TPA should check the data corruption with high

probability. We investigated the probability Pd based on

the type of data corruptions done at the untrusted server.

The data corruption can be classified into data deletion,

data modification, data insertion and data appending. For

data deletion, data insertion and data appending

corruptions, our system detects the corruption with high

probability of 1 with minimum number of challenges,

because these operations change the position of

characters in the file F.

 To find the probability (Pd) of data replacement

corruption, consider the following assumptions.

 The file F contains the n blocks and the

probability to pick any block is 1/n.

 The attacker modifies m blocks and the

probability of modified block is m/n.

 The TPA makes t number of challenges to the

server to detect the corruption.

 s-> the number of bytes in a block.

 Based on these assumptions, probability detection of

data replacement corruption is calculated by using the

equation 4.

Pd=1-(1-m/n) ts (4)

 The Figure 5 illustrates the probability detection of

data corruptions like data replacements, data appending,

data insertion and data deletion for the file containing

n=1000 blocks, s=20 sectors in a block and 1 corrupted

block. This figure infers that the data appending, data

insertion and data deletion corruptions are identified by

the highest probability of 1 requiring minimum number

of challenges. The data replacement corruptions are

identified by somewhat high probability. In this the

number of challenges is proportional to the number of

corrupted blocks.

4.2 Confidentiality

We analyzed the confidentiality of our scheme. Here we

have designed a symmetric stream cipher encryption

algorithm. Stream ciphers are suitable for the larger data

than the block cipher methods. In block cipher, the data

is split into blocks. The same encryption algorithm and

key are used for encrypting all the blocks in the data. If a

same block is repeated again in the plaintext, in

electronic code book (ECB) mode, we get the same

cipher text for the repeated blocks. The modes of

operations like Cipher Block Chaining (CBC), Cipher

Feedback (CFB) and Output Feedback (OFB) are not

suitable for dynamic data. So, it is decided that block

ciphers are not suitable for larger dynamically changing

data.

 The existing stream ciphers are vulnerable to

frequency analysis attack, brute force attack, correlation

attack, algebraic attack known plain text attack, cipher

text only attack, etc. One time pad encryption algorithm

is getting relaxed from these attacks. But to generate the

key, it is required to use the LFSR sequence, blub-blub

generator, or recurrence relations for generating binary

sequence. This binary sequence is prone to correlation

attack. So we have used the 2-keys symmetric encryption

algorithm which is freed from all the attacks.

4.3 Analysis of 2-Keys symmetric

algorithm

Brute Force attack:

In this method, two keywords are used for encryption

and also the keywords are of variable sizes. Along with

the keywords, initial vector values. (X1, X2, X3, X4.,

Xm) initial coefficients (C0, C1, C2, C3., Cm-1) random

number randno, number of characters in the block –q are

all the secret information maintained by the cloud user.

0

0,2

0,4

0,6

0,8

1

1,2

0 100 200 300

Data Replacement

Data Appending, Data Insertion,
Data Deletion

Corruption
Detection

Probability

No. of Challenges t

Figure 5: Probability of detection Pd of data corruptions

for 1000 blocks, 20 sectors in a block and, 1corrupted

block.

Secured Storage for Dynamic Data in Cloud Informatica 40 (2016) 53–61 59

So the brute force attack is not conceivable in this

algorithm.

Frequency Analysis Attack

This cryptanalysis method computes the number of

occurrences of characters in the cipher text and plain

text. And it also compares their frequencies. Figure 6

shows the frequency of characters of the encrypted data.

Correlation attacks:

The attacks try to extract some information about the

initial state from the output stream. Here, since the

recurrence relation has been used to generate binary

sequence, the attacker can try to get the initial seed

(initial vector and initial coefficients) from the binary

sequence. If the length of the initial seed is smaller, then

the binary sequence will be getting repeated. Then it is

possible for a hacker to get initial seed. In order to avoid

this, the user must choose a larger initial seed.

4.4 Complexity of encryption function

The encryption function, we have proposed is

Encrypt [i,j] = (key +ASCII(F [i,j])+randno(i+j))mod256

(5)

Keythe key generated from the keyword using the

algorithm1.

ASCII ((F (i, j))the ASCII value for the character at

the jth position in the ith block.

Randnoany random number chosen by the DO.

Mod256the result of the bigger value from the

equation 5 is reduced to 256 so that the size of the cipher

text never increases.

Randno ((i+j)) mod256it is very difficult to find the

values of i and j for a given plaintext-cipher text pair. It

is based on the concept of discrete logarithm

problem [16].

Let x, α, y and β are non-zero integers.

Suppose

β≡ αx mod y (6)

It is very difficult to find the value of x given α, y and β.

Even though there is a method called Pohlig-Hellman

algorithm [16] to compute the discrete log it is not

possible in this algorithm to find the values of x, since it

is changing for every character in the text.

5 Performance analysis
The performance in terms of storage, communication

and computation complexity is analyzed.

5.1 Storage cost:

The storage cost of DO, TPA and CS (Cloud Server) are

as follows.

Data Owner: client needs to store only the security

parameters like keyword1,keyword2, initial seed,

randno-q (the number of characters in the block), the

random function and secret key (Sk) constantly. So the

storage cost of the Data Owner is O(1).

Server Side: The server has to store the complete file

containing encrypted data (n bits) along with the meta

data (n bits) [13]. So the storage cost at the server side is

O(2n). It is illustrated in the Figure 7.

 The metadata is generated for all the characters in the

plaintext depending on the position of characters in the

file and the secret key (Sk). Then the metadata is

appended to the data file. So the size of the data file

becomes doubled. Even though the data size is increased,

the client needs to store only the random function and the

secret key (Sk). The data file along with the metadata is

stored in the cloud server.

Third Party Auditor: The TPA or the verifier has to

store only the random function and secret key (Sk)

constantly. So the storage cost of the TPA O(1).

5.2 Computation cost

We analyzed the computation cost of the DO, TPA and

the cloud server.

Client: The client generates the key1, key2 and the

binary sequence of length n blocks. The cost of this

computation is O(n). The cost of encryption function is

O(n). The cost of metadata generation is O(n). So total

computation cost at the user is O(n).

Server: The computation done at the server is very less.

It has to send the response message consisting of

encrypted data and metadata for the challenge message.

The computation cost is O(1).

TPA: The computation done at the verifier is lesser. It

has to generate the challenge message, and verify the

integrity by doing the inverse of random function. The

computation cost of TPA is O(1).

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

3
2

3
1

3
4

3
3

3
6

3
5

3
8

3
7

4
0

4
3

4
2

4
5

4
4

4
7

4
6

4
9

4
8

5
1

1
7

8
1

8
2

1
8

1
1

8
4

1
8

3
1

8
6

1
8

5
1

8
8

1
8

7
1

9
0

1
89

1
9

2
1

9
1

1
9

5
1

9
4

1
9

7
1

9
6

1
9

9
1

9
8

3
9

4
1

5
0

5
2

5
4

5
3

5
6

2
0

0
2

0
2

2
0

1
2

0
4

2
0

3
2

0
6

2
0

5
2

0
8

2
0

7
2

1
0

2
0

9

N
o

 o
f

o
cc

u
rr

en
ce

s
o

f
C

h
ar

ac
te

rs

ASCII of Cipher text

Figure 6: Frequency of characters of encrypted data.

60 Informatica 40 (2016) 53–61 V. Ponnuramu et al.

5.3 Communication cost

The communication cost between the client and server is

O(n), between the verifier and the server is O(1) and

between the client and TPA O(1). The storage and

computation costs are summarized in the Table 1.

Table 1: Storage and computation cost of our proposed

scheme.
 Storage Cost Computation Cost

DO TPA Server DO TPA Server

O(1) O(1) O(2n) O(n) O(1) O(1)

6 Results
.A private cloud environment has been established with

the open source eucalyptus cloud simulator. To install

and configure an Ubuntu enterprise cloud, two Servers

(Server1 and Server2) that run with 32-bits, 1GHz

server version and two machines that run as a Desktop

32-bit version (Client and TPA) are required. The

Ubuntu desktop version is installed on Client and TPA so

that the browsers can be used to access the web interface

of UEC. The experiment was conducted using a setup

consisting of two servers and one desktop.

 Encryption and decryption algorithms are

implemented in java and communication between client

and server is implemented with the java Remote Method

Invocation (RMI) concepts. We compared our scheme

with the existing remote integrity checking methods. The

comparison analysis of our proposed method with the

existing methods is illustrated in the Table 2. It shows

that our scheme is the one which offers the highest

probability of corruption detection. And also if there are

corruptions like appending, deletion, and insertion of

malicious data in the data stored in cloud, our scheme

detects the corruptions with the highest probability of 1.

 Probability of detection of data replacement

corruption is illustrated in Figure 8. From this it is

inferred that, the probability of detection of data

replacement corruptions is higher in our proposed system

and in the papers [8], [13], [5], [2]. But for the other data

corruptions like data deletion, data insertion and data

appending, our proposed system has the highest

probability detection of 1 that was not achieved through

the previous integrity checking methods.

7 Conclusion
In this paper, various security challenges in cloud

environment have been analyzed and an appropriate

solution for providing confidentiality and ensuring

integrity of dynamically changing data has been

proposed by using an efficient block cipher, 2-Keys

Symmetric Encryption technique with the linked list

data structure. This scheme can also be applied for the

secure storage of bulk data. After the detailed study, it is

analyzed that it is the first method that detects the data

corruptions with the probability of 1. Since this system

requires less computation and communication cost, it can

be used for large-scale cloud storage systems. This can

be further extended by finding a method that applies this

mechanism for the security of unstructured data.

Table 2: Comparison of our proposed scheme with other integrity checking protocols.

Issues [13] [14] [8] [13] [6] [7] [2] Proposed

Confidentiality No Yes Yes No No No No Yes
Public Verifiability Yes Yes Yes No No No Yes Yes
Data Dynamics Yes Yes Yes No No No Yes Yes
Server Computation cost O(log n) O(log n) O(ts) O(1) O(t) O(t+s) O(t logn) O(1)

Verifier computation cost O(log n) O(log n) O(ts) O(1) O(t) O(t+s) O(t logn) O(1)

Probability of corruption

detection (insertion,

deletion, appending)

1-(1-p)t 1-(1-p)t 1-(1-p)ts 1 1-(1-p)t 1-(1-p)ts 1-(1-p)ts 1

Probability of corruption

detection (data

replacement)

1-(1-p)t 1-(1-p)t 1-(1-p)ts 1-(1-p)ts 1-(1-p)t 1-(1-p)ts 1-(1-p)ts 1-(1-p)ts

n- the number of blocks in the file, t- number of challenge requests to server, s- number of sectors in a block

p-probability of corrupted blocks

0

20

40

60

80

100

120

File1 File2 File3 File4 File5

File without metadata

File with metadata

B
lo

ck
 S

iz
e

(M
B

)

Data Files

Figure 7: Comparison of file sizes with and without

metadata.

Secured Storage for Dynamic Data in Cloud Informatica 40 (2016) 53–61 61

References

[1] A. Juels and B.S.Kaliski, (2007), “Pors: proofs of

retrievability for large files,” in Proceedings of the

14th ACM conference on Computer and

communications security, New York, NY, USA:

ACM, pp. 584–597.

[2] C. Wang., Q. Wang., S.S.M.Chow., K. Ren., and

W.Lou, (2013), “Privacy-Preserving Public

Auditing for Secure Cloud Storage”, IEEE

Transactions on Computers, Vol 62, No.2.

[3] C. Wang., Q. Wang., K. Ren., and W. Lou, (2009),

“Ensuring Data Storage Security in Cloud

Computing,” in Proc. Of IWQoS’ 09.

[4] C. Wang., Q. Wang., K. Ren., and W. Lo, (2010)

“Privacy-Preserving Public Auditing for Data

Storage Security in Cloud Computing” in Proc.

IEEE INFOCOM, pp. 525-533.

[5] E.-C.Chang., and J. Xu, (2008), “Remote integrity

check with dishonest storage server” in Proc. Of

ESORICS’08.Berlin, Heidelberg: Springer-verlag,

pp. 223– 237.

[6] G. Ateniese., R. Burns., R. Curtmola., J. Herring.,

L. Kissner., Z. Peterson., and D. Song, (2007),

“Provable data possession at untrusted stores,” in

Proceedings of the 14th ACM conference on

computer and communications security. New

York, NY, USA, pp. 598– 609.

[7] H. Shacham., and B. Waters., (2008), “Compact

Proofs of Retrievability” in Proc. 14th Int’l Conf.

Theory and Application of Cryptology and

Information Security:Advances in Cryptology, pp.

90-107.

[8] Kan Yang, and Xiaohua, (2013), ” An Efficient and

Secure Dynamic Auditing Protocol for Data

Storage in Cloud Computing”, IEEE Transactions

On Parallel and Distributed systems, VOL 24, NO.

9, pp.1717-1726.

[9] Lifei Wei., Haojin Zhu., Zhenfu Cao., and Weiwei

Jia, (2010), “SecCloud: Bridging secure storage and

computation in cloud”, in ICDCS’10.

[10] M. Armbrust et al., (2009), "Above the clouds: A

berkeley view of cloud computing", ECS

Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2009-28,.

[11] M. Jensen et al., (2009), "On Technical Security

Issues in Cloud Computing," in IEEE International

Conference on Cloud Computing, Bangalore, India,

pp. 109-116.

[12] Pearson (2009), “Taking Account of Privacy when

Designing Cloud Computing Services”, in

Proceedings of ICSE-Cloud’09, Vancouver.

[13] Ponnuramu Veeralakshmi, and Latha Tamilselvan,

(2012), “Data Integrity Proof and Secure

Computation in Cloud Computing’. J. Comput.Sci.,

8: 1987-1995.

[14] Q. Wang., C. Wang., J. Li, K. Ren., and W. Lou,

(2012), “Toward Secure and Dependable Storage

Services in Cloud Computing,” IEEE Transactions

On Services Computing, VOL. 5, NO. 2, pp.220-

232.

[15] Q. Wang., C. Wang., J. Li, K. Ren., and W. Lou,

(2011), “Enabling public auditability and data

dynamics for storage security in cloud computing,”

IEEE Transactions On Parallel and Distributed

systems,VOL. 22, NO. 5, pp.847-858.

[16] W. Stallings, (2007), Cryptography and network

security principles and practice, Fourth edition,

Prentice hall

[17] Y. Zhu., H. Hu., G. Ahn., and M. Yu, (2012)

“Cooperative Provable Data Possession for

Integrity Verification in Multi-Cloud Storage”,

IEEE Trans. Parallel and Distributed Systems,

vol. 23, no. 12, pp. 2231-2244.

[18] Veeralakshmi Ponnuramu., and Latha Tamilselvan,

(2014), ”Encryption for Massive Storage in Cloud”

in Computational intelligence in Data Mining,

Volume 2,pp 27-38, Smart Innovation, Systems,

and Technologies(Springer), volume 32.

0

0,2

0,4

0,6

0,8

1

1,2

0 100 200 300

Pd of proposed scheme, [8], [13], [5],[2]

Pd of [14], [11], [15]

Corruption

Detection

Probability

No. of Challenges t

Figure 8: Probability of detection Pd of data

replacement corruptions for 100 blocks, 10 sectors in a

block and 1corrupted block.

62 Informatica 40 (2016) 53–61 V. Ponnuramu et al.

Informatica 40 (2016) 63–70 63

A Novel Video Steganography Algorithm Based on Trailing Coefficients for
H.264/AVC

Yingnan Zhang, Minqing Zhang, Xu An Wang, Ke Niu and Jia Liu
Key Laboratory of Network and Information Security of CAPF, Electronic Department
Engineering University of the CAPF, Xi’an, Shaanxi, 710086, P. R. China
E-mail: zyn583@163.com, wangxazjd@163.com

Keywords: information security, video, steganography, trailing coefficients

Received: December 22, 2015

With the development of high-speed networks, life is more convenient than ever. However, the information
security issue of high-speed networks is still a big problem. As an important branch of information secu-
rity, steganography is a useful method to protect confidential information. In this paper, by combining the
trailing coefficient produced in the process of the quantization ofthe H.264 encoding standard with the cur-
rent video steganographic algorithms, we implement a new kind of algorithm based on trailing coefficients.
The algorithm firstly conducts a DCT transform on the frame, and then it obtains the trailing coefficient
for each quantized DCT block;lastly, the secret information bit is embedded into the video. The experi-
mental result indicates that this algorithm has little influence on video quality and has a large capacity of
steganography;also, it has a strong anti-steganalysis capability and high robustness.

Povzetek: Opisan je nov algoritem za video steganografijo.

1 Introduction
Currently, people are enjoying a high standard life due to
the continuing growth of network bandwidth. In the past,
people were unable to easily upload or share large digi-
tal content because of the bandwidth restrictions on net-
works. With the advancement of various technologies such
as 4G/5G, the network speed has substantially increased,
allowing people to share almost whatever they want. In
this paper, we explore the concept of high bandwidth to
design new video steganographic algorithms. As an im-
portant branch of information security, information hiding,
also called steganography, has provided an efficient method
to protect the security of sensitive information.

Steganography is a technique that can be used to trans-
mit secret information publicly via digital media, while
achieving covert communication [1]. There has been much
advancement made in image steganography algorithms.
However, because of the limited capacity of digital images,
the capacity of secret information that can be embedded
in the image is also restricted. Compared with a digital
image, video has more advantages regarding steganogra-
phy, such as it can support a larger capacity and there is
more redundancy, a high communication quality, robust-
ness, etc. As a new standard, H.264 has more advantages
over the previous ones. There is a better compression of
digital TV broadcasting, video real-time communication,
network video streaming and multimedia messaging. Some
of its biggest features are high reliability and high compres-
sion efficiency [2]. As a result, the study of steganographic
methods based on video for H.264/AVC has become a pop-
ular research topic[3-8].

In the past, when video was transmitted on a network,
it was transmitted by frames, like pictures, and an attacker
would be able to observe the network’s package transmit-
ting. When an attacker would find many video frames in
the network, he/she would pay attention to them; this situ-
ation,shown in Figure 1, is not an ideal situation for video
steganography. Now, since there are very high-speed net-
work and supported techniques [9-13], people can transmit
video content easily. This does not gain the attacker’s at-
tention, as shown in Figure 2. It also satisfied the original
intention of steganography-to hide the existence of secret
information-so our algorithm can achieve a high security
standard in networks when protecting sensitive informa-
tion.

SENDER

ATTACKER

RECEVIER

NETWORK IN

THE PAST

VIDEO

SEQUENCE

VIDEO

SEQUENCE

Figure 1: Transmitting video sequence in a network with
low bandwidth.

When embedding secrets in the spatial domain, we found
that it is easy to be detected by many steganalysis algo-
rithms, so we chose to embed secrets in DCT coefficients.
Furthermore, we believe that using the characteristic of the
H.264 coding standard is a better choice because we can

64 Informatica 40 (2016) 63–70 Y. Zhang et al.

SENDER

ATTACKER

CURRENT

NETWORK

VIDEO

SEQUENCE

VIDEO

SEQUENCE

RECEVIER

Figure 2: Transmitting video sequence in a current net-
work.

embed secrets during the compression process. We save
the time that being cost in embedding procession, thus re-
ducing the complexity of our algorithm.

Hua et al. proposed a video steganography algorithm
based on H.264/AVC [14]. The algorithm can be imple-
mented to achieve good embedding and extracting, but the
algorithm is weak when it is under attack. Langelaar pro-
posed a mechanism for the compressed video stream [15].
The advantage of this algorithm is that it only needs part of
the coding stream. As a result, this algorithm can achieve a
higher data embedding capacity, but the algorithm is weak
regarding anti-steganalysis detection. Ma proposed a novel
algorithm based on H.264 [16],and it improves the visual
quality, but the embedding efficiency and embedding ca-
pacity needs improvement. He also proposed a new method
based on a motion vector [17], but the capacity of em-
bedding is also limited. Zhang proposed a robust video
watermarking algorithm for H.264/AVC based on texture
features [18], it has little impact on the video quality and
bit rate, but it can only achieve little capacity for embed-
ding. Liu proposed a method based on macro-block seg-
mentation [19], but the bit rate increase is very low, and it
has weak anti-steganalysis detection. Ultimately, almost
all of the steganography algorithms based on video for
H.264/AVC exist some problems such as negative impacts
on video quality, high complexity in embedding, and less
capacity of embedding.

In this paper, we present a new video steganography al-
gorithm by modifying trailing coefficients through certain
rules to embed secret information. Experimental results
showed that this algorithm has better visual invisibility,
while improving the steganographic capacity, strong anti-
steganalysis ability, and high robustness. Our algorithm’s
sketch is shown in Figure 3.

2 Trailing coefficients

Trailing coefficients are produced from CAVLC. By sim-
ply denoting, the trailing coefficient can be a number in the
range of 0-3 and the amplitude can be 1. When the num-
ber of coefficients satisfying this condition is more than 3,

Original

video

sequence

Additional data

Data hiding key

Video sequence

containing

embedded data

Data hider

Receiver

Data extraction with

algorithm’s rules
Extracted

bits

Video

sequence

Data embedding

Figure 3: Sketch of proposed scheme.

we only choose the last three trailing coefficients; the other
coefficients are considered normal non-zero coefficients.

Here is an example below: 3, 2, 1, 0, 2, -1, 1, -1, 0, 1, -1,
0, 0, 0, 0, 0, where the number of the trailing coefficients is
3, the value is -1, 1, -1 (8th, 10th, and 11ththat were zigzag
scanned), and the other coefficients (3rd, 6th, and 7th that
were zigzag scanned) are normal non-zero coefficients.

3 Proposed scheme

3.1 Trailing coefficients’ application in
steganography

Generally speaking, there are 15 kinds of trailing coeffi-
cients in DCT blocks, as shown in Table 1. As can be seen

Table 1: 15 kinds of trailing coefficients.

1 none 6 -11 11 -111
2 1 7 -1-1 12 1-1-1
3 -1 8 111 13 -11-1
4 11 9 11-1 14 -1-11
5 1-1 10 1-11 15 -1-1-1

from the table, the trailing coefficients’ distribution follows
certain regularity. As a result of entropy coding, trailing co-
efficients will not be affected by the compression. There-
fore, there is an advantage of selecting trailing coefficients
as points in information hiding.

3.2 Embedding algorithm
– Step 1. Pretreatment: use K to generate a pseudo-

random sequence, p, and preprocess it as the following
formula:

fi = mi ⊕ pi (1)

where mi is the original secret information and fi is
the sequence of post-processing. The purpose is to re-
duce the correlation of secret information and improve
safety. This method can achieve real-time processing;

– Step 2. Perform a DCT transform on frames, then
traverse all the DCT trailing coefficients and arrange
the blocks in order;

A Novel Video Steganography Algorithm. . . Informatica 40 (2016) 63–70 65

Embedding

algorithm begin

Perform DCT on frames

Judge the block is odd or even

Odd Even

Judge the trailing coefficients

belong to which kind

Embedding by

the rules

Judge the nearest odd

block before it use which

kind of rules to embedding

Correcting the

even block by

rule

Judge whether embedding all

the secret information or not

Embedding all

Not yet

Embedding

algorithm finish

Figure 4: Flow of embedding algorithm.

– Step 3. Use the odd-numbered blocks as embed-
ding blocks and the even-numbered blocks as correct-
ing blocks. Simply speaking, if the current block is
embedding secret information, the following block is
a correcting block;

– Step 4. Embedding process. Determining whether
the summary value of trailing coefficients is positive
or negative is the key point to our algorithm. We want
the value to be negative when the secret information
bit is 0, and the value should be positive when the se-
cret information bit is 1. The embedding rules are as
follows:

1. The embedding rules of the odd blocks. When
the secret information bit is 0, the rule is as
shown in Table 2. When secret information bit
is 1, the rule is shown in Table 3.

Table 2: The embedding rules when the secret information
bit is 0.

1→ -1 -1-1→ -1-1 1-1-1→ 1-1-1
-1→ -1 111→ 1-1-1 -11-1→ -11-1

11→ -1-1 11-1→ 1-1-1 −1− 11→ -1-11
1-1→ -1-1 1-11→ 1-1-1 −1− 1− 1→ -1-1-1
-11→ -1-1 -111→ -11-1 0→ -1

As can be seen from the above tables, when
modifying the DCT coefficients, the max num-

Table 3: The embedding rules when the secret information
bit is 0.

1→ 1 -1-1→ 11 1− 1− 1→ 1-11
-1→ 1 111→ 111 −11− 1→ -111

11→ 11 11-1→ 111 −1− 11→ -111
1-1→ 11 1-11→ 111 −1− 1− 1→ -111
-11→ 11 -111→ -111 0→ 1

ber that can be modified is 2. When modifying
0, we choose the first 0 scanned by zigzag af-
ter the last non-zero numbers; the rest situations
in Table 2 and Table 3 are only modified a num-
ber or without modification, so the algorithm can
achieve better security.

2. The rules of even blocks for correcting. When
an odd block has been modified, we will use the
next even block to correct. If we change -1 to
1 to embed the secret, then we change the last
1 of a correction block to -1. If there is no ex-
isting1 in the correcting block, we change the
first 0 bit which after the last non-zero numbers
to -1. In the odd block, if we change 1 to -1,
then we change the last -1 in the correcting block
to 1; if there is no existing -1 in the correction
block, change the first 0 bit which after the last
non-zero numbers to 1.If we change 0 to 1 in
odd block to hide the secret information, then
the last 1 in the corrected block is changed to 0;
if there is no existing 1, nothing is modified; if
we change 0 to -1 in the modified block to hide
the secret information, the last -1 in corrected
block is changed to 0; if there is no existing -1,
nothing is modified; the purpose of this correc-
tion is to hold the histogram between stego-DCT
coefficients’ and cover-DCT coefficients’;

– Step 5. Repeating Step 4, until all the secret informa-
tion is embedded. The flow of the embedding algo-
rithm is show in Figure 4.

3.3 Extraction algorithm

– Step 1. Perform a DCT transformation on frames, and
traverse all the DCT trailing coefficients, then arrange
the blocks in order;

– Step 2. Follow the rules of extracting, based on the
following Formula:

mi =

{
0, if S(j) < 0 and j mod 2 = 1

1, if S(j) > 0 and j mod 2 = 1
(2)

Where mi is the secret information bit, j is the order
of the DCT block based on Step 1, and S(j) is the
sum-value ofthe trailing coefficients;

66 Informatica 40 (2016) 63–70 Y. Zhang et al.

Extracting

algorithm begin

Perform DCT

on frames

Judge the block is odd or even

Judge the sum value of the

trailing coefficients

Odd

Even

Secret is 1

Bigger than 0

Secret is 0

Smaller than 0

Judge whether extracting all the

secret information or not

Extracting all

Extracting

algorithm finish

Not yet

Figure 5: Flow of the extracting algorithm.

– Step 3. Repeat Step 2 until all the secret information
is extracted;

– Step 4. Inverse pretreatment; the rules are shown in
the following Formula:

mi = fi ⊕ pi (3)

Where mi is the original secret information and fi is
the sequence of extracting information. The flow of
the extracting algorithm is shown in Figure 5.

4 Experimental results and analysis

Our experimental environment is based on X.264, VC++
2008, and Matlab2008. The video sequences are down-
loaded from the website, "media.xiph.org". Each sequence
is 15 frames/s, the bit rate is 396kbit/s, and the format is
QCIF (News, Mobile), CIF (Container, Carphone). The se-
cret information is the image "lena.bmp."

4.1 Theoretical analysis
The probability that changes the coefficient -1 to 1 can be
expressed as follows:

P ((−1)→ (1)) = p(m(i) = 1){p((−1)→ (1))

+ p((1,−1)→ (1, 1)) + p((−1, 1)→ (1, 1))

+ 2p((−1,−1)→ (1, 1))

+ p((1,−1,−1)→ (1,−1, 1))

+ p((−1, 1,−1)→ (−1, 1, 1))

+ p((1,−1, 1)→ (−1, 1, 1))

+ 2p((−1,−1,−1)→ (−1, 1, 1)) + p((0)→ (1))}
+ p(m(i) = 0){0}

(4)

The probability that changes the coefficient 1 to -1 can
be expressed as follows:

P ((1)→ (−1)) = p(m(i) = 0){p((1)→ (−1))

+ p((1,−1)→ (−1,−1)) + p((−1, 1)→ (−1,−1))

+ 2p((1, 1)→ (−1,−1))

+ 2p((1, 1, 1)→ (1,−1,−1))

+ p((1, 1,−1)→ (1,−1,−1))

+ p((1,−1, 1)→ (1,−1,−1))

+ p((−1, 1, 1)→ (−1, 1,−1))}
+ p(m(i) = 1){0}

(5)
Since the secret information is encrypted, the probability
of 0 and 1 remains the same, as shown below:

p(m(i) = 1) = p(m(i) = 0) (6)

We can conclude from formula (4),formula (5), and for-
mula (6), that we can obtain the probability p((1) →
(−1)) = p((−1) → (1)). Therefore, this method can
achieve high security.

4.2 Analysis of invisibility
4.2.1 Subjective analysis of visibility

The original and embedded frames of test sequences are
shown in Figure 6. As can be seen, there is no significant
difference between them. So, we can conclude that our
algorithm is better in terms of visibility.

4.2.2 Objective analysis of visibility

The PSNR value is the key to judging the visibility. Ac-
cording to the HVS,when the PSNR value is above 30dB,
the sequence is clear and fluent. The PSNR value of the test
sequence has been shown in Table 4, and the results show
that the decrease is low after embedding, and the average
decline of the PSNR value is about 1.156dB.

Since the Carphone sequence is rich in texture blocks,
and there are also many smoothing blocks, we calculate out
pre-30 frames’ PSNR value of it. Figure 7 shows the PSNR

A Novel Video Steganography Algorithm. . . Informatica 40 (2016) 63–70 67

(a) News original image (b) News image after being embedded

(c) Mobile original image (d) Mobile image after being embedded

(e) Container original image (f) Container image after being embedded

(g) Carphone original image (h) Carphone image after being embedded

Figure 6: Comparison on the original and embedded
frames of test sequences.

Table 4: Comparison of PSNR values before and after em-
bedding.

Test Original PSNR value Decrease
sequence PSNR after /dB

value/dB embedding/dB
News 36.743 35.945 0.798

Mobile 35.376 34.347 1.029
Container 36.232 35.089 1.143
Carphone 35.798 34.141 1.657

value of the pre-30 frames of Carphone after embedding
secret information. As can be seen, the impact of the first
frame is about 2.27dB, and the impact of the No.16 frame
is about 1.89dB; the other frames are not affected much.

Figure 7: Video image and extraction of the secret infor-
mation image after attack.

4.3 Steganographic capacity

Reference [16] proposed a steganographic algorithm based
on modifying the DCT coefficients, and reference [19] also
proposed an algorithm based on modifying the DCT co-
efficients for hiding, so we use these two references to be
compared with our algorithm.

As can be seen from Figure 8, our algorithm’s capacity
has been improved.Because of our algorithm embedding
secret information in half of the DCT blocks, it can achieve
an improved capacity.

4.4 Robustness testing

The main goal of the robustness test of the steganographic
algorithm is to detect anti-attack capability. For this test,
we use salt and pepper noise and Gaussian low-pass filter-
ing.

In the experiment, we add salt and pepper noise to the
video sequence, and the intensity is 0.05; Figure 9 shows

68 Informatica 40 (2016) 63–70 Y. Zhang et al.

Figure 8: Video image and extraction of the secret infor-
mation after attack.

the effect it has on News and the secret information image
we extract.

Figure 9: Video image and extraction of the secret infor-
mation image after attack.

Figure 10 represents the experiment after a 3 × 3 Gaus-
sian low-pass filter, the effect on Mobile, and the secret
information image we extract.

Figure 10: Video image and extraction of the secret infor-
mation after attack.

Table 5 is the SIM value between the secret information
after attack and the original one. The formula of SIM is as
follows:

SIM(X,Y) =

∑
iX(i)Y (i)√∑

iX(i)2
√∑

i Y (i)2
(7)

In the formula, X(i) and Y (i) represent the original
image and the stego-image to be evaluated in the one-
dimensional sequence of pixel values respectively; SIM ∈
(0, 1] takes the value of 1 only when the images we com-
pared are exactly the same.

Table 5: The SIM value of extracting secret information
after attack.

Video Add salt Add Gaussian
sequence and pepper low-pass

noise filtering
News 0.827 0.899

Mobile 0.846 0.943
Container 0.813 0.921
Carphone 0.790 0.906

Figure 9, Figure 10, and Table 5 indicate that the algo-
rithm has high robustness and anti-attack capability.

4.5 Steganalysis detection
Heidari has proposed a steganalysis algorithm [20], and it
has a high detection rate for the steganography algorithm
based on modifying the DCT coefficients. Therefore, our
video sequence would be extracted for each frame, and we
then we test the detection rate of every frame.

A false positive (FP) represents classifying the non-stego
frames as stego frames. A false negative (FN) indicates
classifying the stego framesas non-stego frames [21]. The
results can be shown in Table 6:

Table 6: The results of using Heidari’s algorithm.

Video FP (%) FN (%) Error rate(%)
News 53.45 48.12 50.79

Mobile 46.51 45.08 45.80
Container 52.67 49.59 51.13
Carphone 47.75 40.64 44.20

Generally, the higher the FN and FP is, the better the
steganographic algorithm is. As can be seen from Table 6,
when detecting our algorithm,FP and FN are high.

5 Conclusion and discussion
In the past, transmitting a huge video sequence would take
a great amount of time, so the video sequence is not com-
mon in steganography.Usually,the image is used as the
cover carrier, but it also limits the information bit that is
to be hidden. However, a high speed network offers a plat-
form to transmit large multimedia, so we can use it to hide
more information than before.

This paper proposed a video steganography algorithm
based on trailing coefficients in a high speed network,
and we modified the value of trailing coefficients to make
sure that when the secret information bit is 0, the sum

A Novel Video Steganography Algorithm. . . Informatica 40 (2016) 63–70 69

value is negative, and when the secret information bit is
1, the sum value is positive. In order to ensure that the
DCT coefficients of the cover video after embedding have
been changed, the algorithm used the method that modified
the odd-numbered blocks to hide and modified the even-
numbered blocks to correct. The experimental results indi-
cated that our algorithm has little impact on the video’s vi-
sual invisibility, the capacity of steganography is improved,
and it has high robustness. Therefore, our research has bet-
ter performance compared to previous algorithms.

Although this paper has proposed a scheme to protect
the security of a high-speed network, and our algorithm
can achieve some good features as mentioned before, some
problems should also be discussed.For example, if we hide
secret information in images or videos, no method to com-
pletely recover the hidden media has been found. In future
studies, there will be a focus on revising the process of hid-
ing information.

The next inadequacy of our method is that we did not use
the protocol of a high-speed network; if we hide informa-
tion in it, we will raise the capacity greatly and increase the
cost of bandwidth. In future studies, the goal will be to find
a method of hiding information in the protocol of networks,
but without greatly increasing the cost of bandwidth.

Acknowledgment
The authors would like to thank the anonymous review-
ers for the constructive comments. This work was sup-
ported by the National Science Foundation of China: The-
ory research on extracting and optimizing feature of im-
age steganalysis (Grant No.61379152). And it was also
supported by the National Science Foundation of China:
Cross-Domain Human Action Recognition by Knowledge
Transfer (Grant No.61403417).

References
[1] H. G. Zhang, R. Y. Du, J. M. Fu, B. Zhao, L. N. Wang.

(2014) Information security: an independent disci-
pline a new subject. Information and Communication
Security, no.5 (in Chinese).

[2] H. J. Bi (2005). A New Generation of Video Compres-
sion Standard—H.264/AVC. Beijing: Posts & Tele-
com Press, pp. 110-111 (in Chinese).

[3] R. J. Mstafa, K. M.Elleithy (2014). A Highly Se-
cure Video Steganography using Hamming Code (7,
4). 2014 IEEE Long Island Systems, Applications
and Technology Conference (LISAT), pp.1 - 6.

[4] M. M. Sadek, A. S.Khalifa, M. G. M.Mostafa (2014).
Video steganography: a comprehensive review. Mul-
timedia Tools & Applications, vol.74, pp.1-32.

[5] J. Ridgway, M. Stannett (2014). Developing a Video
Steganography Toolkit. Eprint Arxiv.

[6] K. P. Divya, K. Mahesh (2014). Random Image Em-
bedded in Videos using LSB Insertion Algorithm. In-
ternational Journal of Engineering Trends & Technol-
ogy, vol. 13, no.8, pp.381-385.

[7] K. Churin, J. Preechasuk, C. Chantrapornchai (2013).
Exploring Video Steganography for Hiding Images
Based on Similar Lifting Wavelet Coefficients. Ad-
vances in Information Technology. Springer Interna-
tional Publishing, vol. 409, pp.35-46.

[8] H. Gupta, S. Chaturvedi (2014). Video Steganography
through LSB Based Hybrid Approach. International
Journal of Computer Science and Network Security
(IJCSNS), vol.14, no.3, pp. 99-106.

[9] Y. Shen, Q. Pei, Q. Xu, Z, Zhang (2012). The mul-
timedia service session handoff method in heteroge-
neous wireless networks. International Journal of
Grid and Utility Computing, vol. 3, no. 1, pp. 68-77.

[10] D. V. Bernardo, D. B. Hoang (2012). Multi-layer
security analysis and experimentation of high speed
protocol data transfer for GRID. International Jour-
nal of Grid and Utility Computing, vol. 3, no. 2/3, pp.
81-88.

[11] Y. Wang; J. Du; X. Cheng; Z. Liu; K. Lin (2016).
Degradation and encryption for outsourced PNG im-
ages in cloud storage. International Journal of Grid
and Utility Computing, vol. 7, no. 1, pp. 22-28.

[12] J. Kolodziej, F. Xhafa (2011). Supporting situated
computing with intelligent multi-agent systems. Inter-
national Journal of Space-Based and Situated Com-
puting, vol. 1, no. 1, pp. 30-42.

[13] R. Pereira, E. G. Pereira (2016). Future internet:
trends and challenges. International Journal of Space-
Based and Situated Computing, vol. 5, no. 3, pp. 159-
167.

[14] G. L. Hua, Z. B. Li, B. Feng (2013). Low frequency
steganography algorithm for H.264/AVC. Journal on
Communications, vol. 34, no. Z2, pp. 47-50.

[15] G. C. Langelaar, R. R. Lagendijk (2001). Optimal dif-
ferential energy watermarking of DCT encode images
and video. IEEE Transactions on Image Processing,
vol. 10, no.1, pp. 148-158.

[16] X. J. Ma (2010). The Research on Video Data Hid-
ing Algorithms Based on H.264/AVC. Huazhong Uni-
vercity of Science and Technology (in Chinese).

[17] X. S. He, Z. Luo (2008). A Novel Steganographic Al-
gorithm Based on the Motion Vector Phase. Interna-
tional Conference on Computer Science and Software
Engineering CSSE, Wuhan, China, pp. 822-825.

70 Informatica 40 (2016) 63–70 Y. Zhang et al.

[18] W. W. Zhang, R. Zhang, Y. J. Liu , et al (2012). Ro-
bust Video Watermarking Algorithm for H.264/AVC
Based on Texture Feature. . Journal on Communica-
tions, vol. 33, no.3, pp. 82-89 (in Chinese).

[19] C. H. Liu, O. T. Chen (2008). Data Hiding in Intra
Prediction Modes of H.264/AVC. IEEE International
Symposium on Circuits and Systems, pp.3025-3028.

[20] Heidari, Mortaza, G.Shahrokh (2013). Universal im-
age steganalysisusing singular values of DCT coef-
ficients. 10th International ISC Conference on In-
formation Security and Cryptology (ISCISC), Yazd,
Iran, pp.1-5.

[21] T. Filler, J. Judas, J. Fridrich (2011). Minimizing ad-
ditive distortion in steganography using syndrome-
trellis codes. IEEE Transactions on Information
Forensics and Security, vol. 6, no.3, pp. 920-935.

 Informatica 40 (2016) 71–94 71

An Ontology-Based Context Model to Manage Users Preferences And

Conflicts

Salima Bourougaa Tria
Tebessa university, Tebessa, Algéria

E-mail: bourougaasalima@gmail.com

Hassina Seridi-Bouchelaghem

Annaba University, Algéria

E-mail: h_seridi@yahoo.com

Farid Mokhati
Oum-el-bouaghi university

E-mail: mokhati@yahoo.fr

Keywords: context of use, user profile, web-based information system, nomadic environment, ontology, user
preferences, conflicts, ubiquitous computing, web service

Received: April 22, 2015

In the last decade, ubiquitous computing (UC) has become an aspiration of the computing community.

Nowadays, it is so profound that it is increasingly indistinguishable from the overall agenda of computing

research. In UC, the main objective is to provide users the ability to access services and resources anytime,

anywhere, in particular using Mobile Devices (MD). Applications in this domain are sensitive to the context.

They have to be able to perceive this context and to adapt their behaviours by considering data that deals with

the context of use and user preferences. Actually, ensuring access by nomadic users to information Systems

through various devices and the adaptation of responses to nomadic users profile and context of use are two

bound problems. In this paper, we attempt to answer to these problems and we propose a novel approach

allowing essentially: (1) representing the context and preferences of nomadic users through ontology, to

support context representation and reasoning (2) resolving conflicts that may arise between user preferences

and, (3) adapting such applications to the context of use and user’s profile. The approach is supported by a

visual tool we developed. A case study is presented to give more illustration.

Povzetek: Opisana je uporaba konteksta s pomočjo ontologije za preference in profile mobilnih

uporabnikov.

1 Introduction
Currently, Web users access to a large mass of various

data situations through distinct devices, to have answers

to their requests that are usually very numerous, from

multiple sources of information (heterogeneous and

remote). Such answers are not all equally interesting and

relevant, and they do not answer all the user’s wishes,

which may decrease the user satisfaction. This

complexity is increased if the user is nomadic (user who

frequently changes localization) and appealed the SIW

(System Information on the Web), anywhere and anytime

via mobile devices (PDAs, phones, laptops) because the

change of localization, for example, causes a change in

working conditions and consequently a change in the

general context of use. Consequently, developers are

incited to integrate these mobiles devices into their

applications, giving rise to new information systems

called pervasive or ubiquitous [1]. In this case, these

applications must considering the user’s situation called

contextual situation. This latter includes the context of

use as well as information on its profile. Adapting all

application’s behaviors, in order to return to users

relevant responses (i.e. while considering content and

time), is the subjacent idea of ubiquitous computing,

where applications are sensitive to the context (context-

aware applications) [2].

Actually, ensuring access by nomadic users to

information Systems through various devices and the

adaptation of responses to nomadic users profile and

context of use are two bound problems. Dealing with

these problems requires answers to the following

questions:

 How to perceive the user’s context?

 How to model the context of use and the nomadic

user profile?

 How to resolve conflicts that may arise between

user’s preferences?

 How to adapt the context-aware application

behavior to satisfy the needs of these mobile users?

mailto:bourougaasalima@gmail.com
mailto:h_seridi@yahoo.com

72 Informatica 40 (2016) 71–94 S. Bourougaa et al.

In order to answer these questions, we propose, in

this paper, a novel approach which essentially allows: (1)

to model the context of use and the user’s preferences

using a developed ontology “Contology”, basing on a

new definition of the context which separates application

data from contextual data. The ontology is useful to

support context representation and reasoning, and the

Dynamic requirements can be defined as context

constraints and need to be supported by context

reasoning features of the ontology, and they are most

expressive and most promising for context description in

an environment sensitive to the context. (2) To resolve

conflicts that may occur when managing user’s

preferences, we propose to model conflicts and their

solution in the ontology as rules by using the semantic

web rule language (SWRL). Finally, to ensure the

dynamic functional adaptation of context-aware

applications, Web Service based architecture is proposed

to show the effectiveness of our proposal in the context

model.

The remainder of this paper is organized as follows:

In Section 2, we give a brief overview of major related

works. Section 3 outlines the motivation for using

ontology, while section 4 presents the context model and

the conflict management. We explain the ontology

process building in Section 5. Section 6 details the

context rules description and the ontology

implementation is given in section 7. Section 8 details

the adaptation process (ontology exploitation). We

present a case study in section 9. Finally, we discuss our

actual research, draw some conclusions and give some

future work directions.

2 Related works
We distinguish four categories of context modeling

approaches. The first category consists in storing the

context by using key-value pairs (attribute, value) or by

using a set of triplets. Famous examples of this category

are: Context Toolkit of [3] and approaches used by [4]

.The second category of the model-oriented approaches

includes: (1) Markup Scheme Models: represent the

context by using RDF. For example: CC/PP [5], [6] and

ConteXtML [7], (2) Graphical Models: use UML

(Unified Modeling Language) to model the context. For

example: ContextUML [8] and CML [9], (3) Object

Oriented Models use principal advantages of the

modeling object. For example: Active Object Model [10]

and the TEA project CUES [11]. The third category

represents the context by a logic-based model. The

context is defined like facts, expressions and rules. An

early representative of this approach type is: ' Extended

Situation Theory' [12], [13] and [14]. (4) The last

category models the context by using ontologies. The

most referred modeling are: CoOL [15] , SOUPA [16] ,

[17] a formal context model based on ontology using

OWL to address issues including semantic context

representation, context reasoning and knowledge sharing,

context classification, context dependency and quality of

context , [18] and [19] COBRA-ONT an ontology to

support pervasive context-aware systems. COBRA-ONT,

expressed in the Web Ontology Language OWL, is a

collection of ontologies to describe places, agents and

events and their associated properties in an intelligent

meeting-room domain. [20] an intelligent web portal to

serve as a service provider in the airlines travelling tasks

, [21] a metadata model encoding semantic tourism

destination information in an RDF-based P2P network

architecture. The model combines ontological structures

with information for tourism destinations and peers, [22]

an approach based on ontologies provide the elements

and guidelines to define and create a user profile in any

multimedia domain. In order to describe the multimedia

context and ontologies of PUMAS a framework based on

the agents [23], [14] and [1].

In [24] and [6], we find a synthesis on the

characteristics of the context modeling approaches and

this let us deduce that in spite of the principal

disadvantage of the ontology approaches which is the

ontology’s complexity execution and the reasoning

weight on their facts and their entities. They are most

expressive and most promising for context description in

an environment sensitive to the context. This is our

motivation to choose ontology in context modeling in

this work. Those works have considerably forwarded the

domain by proposing novel strategies to context

modeling. However, they omit some important aspects

which can be summarized as follows: firstly, none of

existing ontologies of context modeling separate between

the context data and the applications data. According to

[25] and [6], this separation is very necessary to a

reliable modeling of context. Also, the user’s preferences

management was only considered by PUMAS [23], [14]

and [1]. Although, it represents a very important point to

satisfy the user and to return him answer adapted to its

context. Finally, the conflict’s resolution is considered

only by PUMAS [23]. It defined some conflicts and

presents their corresponding solutions. But this approach

does not solve this problem, because it has not

considered all conflicts which can arise during the user’s

preferences checking.

3 Motivations for using ontology
The main goal of the proposed approach is to model the

context of the user by use of a semantic representation

and resolve conflicts that may arise during these

preferences verification. This proposed context modeling

objective is to adapt the initial request of use to this

context, to have a contextual query, used to give to user a

response adapted to his context. We opted, in the context

of this work, for the use of ontologies for the advantages

they procure. They provide the means to describe

semantically information, share described data, easily to

be used by other applications and to extend the initial

description when new needs arise. Ontology languages

can create expressive, scalable, reusable, sharable

models, and on which we can reason using inference

engine. OWL [26] for example, is a W3C recommended

language to describe ontologies. It provides a simple and

effective means based on an XML description model to

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 73

share described data, reasoning about these data and

adding axioms to describe specific relationships between

information. Finally, ontologies are most expressive and

most promising to context description in an environment

sensitive to the context [24], [1].

 In existing context-aware systems, notations like

XML, XMbased CC/PP [27], UML [28], Topic Maps

[29] and OWL [30], [31] are used in context modeling.

We use the OWL to formalize context relationships

based on the underlying DL representation. The choice of

OWL is motivated by its reasoning support. It provides a

logical language support to reasoning (OWL-DL) and

supports Semantic Web Rule Language (SWRL) to

enable rule-based reasoning [1]. The logical language

(DL) supports context composition and context

constraints enhancements. OWL facilitates the sharing of

conceptualizations. The core elements of the DL used as

an underlying abstract language shall be introduced. The

Attributive Language with Complements (ALC) is the

basis of many DL languages. The OWL-DL, the DL

variant of OWL corresponds to SHOIN(D) [32], a DL

language based on ALC with transitive roles, role

hierarchies, nominals (enumerated classes of object value

restrictions), inverse properties, cardinality restrictions

and concrete data types[1]. In order to encode context

aspects in SHOIN(D), and eventually in OWL-DL, an

introduction of the constructors for SHOIN(D) is

necessary. Their semantics is based on the usual

interpretations of first-order logic. C denotes concepts,

and R denotes property relationships. A DL specification

can be constructed as a set of axioms. The basic

constructors of SHOIN(D) can be used with either the

subsumption or equivalence ≡ symbols to create DL

statements. Axioms can be terminological axioms

(TBox) or assertional axioms (ABox). Terminological

axioms (statements about entities such as concepts and

roles, but not individuals) can be subsumption or

equivalence axioms. Assertional axioms (pertain only to

individuals) can be concept assertions or role assertions

axioms. A Subsumption axiom gives necessary

conditions for some a concept tobe included (Subclassed)

in another, e.g. A B where A, B are concepts. An

equality axiom has the form A≡ B. A concept assertion is

of the form C(i) where C is a concept from a TBox and i

is an individual. A role assertion is of the form R(a, b),

where R is some role from a TBox and a and b are

individuals.

4 The Context model representation
We will describe how we can define the context

concepts. For the development of our Context Ontology

“Contology”, we used "METHONTOLOGY" [33].

According to [33], it is important to bear in mind that

knowledge acquisition is an independent activity in the

ontology development process. However, it is coincident

with other activities. Most of the acquisition is done

simultaneously with the requirements specification

phase, and decreases as the ontology development

process moves forward. Experts, books, handbooks,

figures, tables and even other ontologies are sources of

context from which the context can be elucidated using

in conjunction techniques such as: brainstorming,

interviews, formal and informal analysis of texts, and

knowledge acquisition tools. In our approach the

knowledge is the context of the user. The used

techniques in the Context acquisition are: (1) Non-

structured interviews with experts, to build a preliminary

draft of the requirements specification document. (2)

Informal text analysis, to study the main concepts given

in books and handbooks. This study enables to fill in the

set of intermediate representations of the

conceptualization. (3) Formal text analysis. The first

thing to do is to identify the structures to be detected

(definition, affirmation, etc.) and the kind of knowledge

contributed by each one (concepts, attributes, values, and

relationships). (4) Structured interviews with experts to

get specific and detailed knowledge about concepts, their

properties and their relationships, to evaluate the

conceptual model once the conceptualization activity has

been finished, and to evaluate implementation. (5) All

given definitions of context given by researchers and

experts of context-awareness domain.

4.1 The context definition

Researches in the context-awareness domain have not yet

led to a generic and pragmatic definition of context.

Several definitions for the context were advanced [34],

[35], [36], [25], [6]and [1].The definitions issued so far

are very abstract or very specific to a particular domain,

making the formalization of the context very difficult.

The [3] definition is widely accepted as a “good”

definition. According to [25], this definition does not

help in separating the contextual data from the

application data, and the core of the application should

be designed in a context in dependent way. This

separation separating the contextual data from the

application data, and the core of the application should

be designed in a context in dependent way. This

separation according to [25] is very important, before

beginning the design of an application sensitive to the

context. A data defined as contextual in a field can be a

data application in another field. For example, GPS

localization is part of application data in a traffic

regulation system, but is part of context data in a

telemedicine application. Separation between the

contextual data and the application data is also important

in modeling context. [25] define the context as: ’ the set

of the external parameters that can influence the behavior

of the application by defining new views on its data and

its available services”. Consequently, in the

determination of the most descriptive concepts of

information which constitutes the context, we chose the

separation of the contextual data of the application data

according to the definition of [25] of the context, because

it seems to us relevant and generic. According to this

definition, we can divide the concepts of context into two

parts: the concepts which represent the context of use of

a user and the concepts which represent the user profile.

The context of use in our approach presents the set of

74 Informatica 40 (2016) 71–94 S. Bourougaa et al.

data which allows indicating the situation of the user

when it connects to the ubiquitous application. For

example, it is represented by the following concepts:

The user; the session; the used mobile device (MD) and

location of the user. The user profile is presented by a set

of preferences of user. We detailed these concepts in the

following sections.

4.2 The Context representation:

preferences, conflicts

Among the concepts of the user's context, we find the

preferences. In this part we will define the concept of

preference of the user and we detail a classification of

different types of preferences. We will detail the concept

of conflict and we will present its causes and solutions.

4.2.1 Preferences

By the concept of user preference, we refer to a set of

descriptions covering what the user likes to receive as

services, also the display of results choice. We define

two types of preferences: Requested Service Preferences

and Display Preferences and five conflicts.

a. Requested Service Preferences
Describe how the user chooses its services in the system.

We define this type of preferences as follows: During his

first contact with our system, the user can define the

contents of each of his preferred services. The user can

define from the beginning when he asks the service "S"

what implies automatically the contents: C1, C2Etc.

Service (S) contents (C1, C2,……. etc.)

As example to illustrate our proposition let us

consider a user in travel who wants to have the list of

restaurants in his entourage. He prefers that this list is

displayed as a map. His user profile can, for example,

specify that when it executes the service "consultation

list of restaurants. » this user is only interested in

restaurants offering dishes which respect his diet,

because he has health problems. Thus, the preference

says that user wants to execute the service "S" =

"consultation list of restaurants" whose content is C =

"restaurants that offer adequate food.", and preferably in

the form of display image. Therefore, the preference of

requested service is represented as follows:

Requested_Service_Preferences(S, {content},

{ associated_ Requested_Services}).

S: is the service which the user wishes to carry out in

the system. {Content}: is a list of the contents defined by

the user from his first contact with our system.

{Associated_Requested_Service} is a list of the

associated services which the user wants to execute if he

asks the service S. As example, we consider that a user

wishes to execute service “S” which consists of one or

several contents and possess one or several associated_

RequestedServices. Every time a teacher consults “the

list of the planned meetings ", he wishes to know the

meetings of the current week. Also, he executes

associated_RequestedServices "possibility meeting", to

see the possibilities of fixing a meeting between teachers

by specifying the day, the hour and the list of the

concerned teachers, and the associated_

Requesed_Services “the other possible dates " to know

all the possible dates of meeting of one or several

teachers (days and hours free).We can represent the data:

Requested_Service_Preferences as follows:

S1 = Possibility meeting (list of teaching concerned,

day, hour). S2 = the other possible dates (free day, free

hours, list teachers). C1= meetings of the current week.

Then, the Requested_Service_Preferences is presented as

follows:

Requested_Service_ Preference (S: “the list of the

planned meetings ", {S1, S2}, {C1})

In the following, we present the display preferences.

b. Display Preferences
Display Preferences describe how the user wants the

information to be displayed on his MD (for example, the

user only wants information in text format). At every

service is associated a Display preference. It is

represented as follows:

Display _Preference (format, characteristics)

Format which can take the value: "video", “text",

"image", "sound". Each format is based on a set of

characteristics. Following sections, detail the conflict in

our approach, present their causes and details there

solutions.

4.2.2 Conflict
By conflict we refer to problems which can arise during

the verification of user preferences. For example,

“Contradiction between the display preferences and the

characteristics of used MD”, this conflict can arise when

user requests a display which is not supported by his

used MD. For these problems (conflicts) that we will

define later, we offer some solutions to solve them. At

every type of conflict is associated a solution. It is

represented as follows:

Conflict (Type, Solution, Suggestion)

Type: represent the conflict which can arise.

Solution: allows defining how to take action to resolve

the conflict that occurred. Suggestion: represents the

proposal of the user in cases where the system cannot

find a solution to the conflict that occurred.

Our approach manages five conflicts which can be

arising between the user preferences during the check of

these last ones. The following two tables present our

proposal to conflicts resolution. Table1 presents the

conflicts and their causes, while Table2 presents the

conflicts and their solutions in our proposal.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 75

N°

Conflict

Conflict Cause

1

a. Contradiction between

TheRequested_Service_Pre

ferences and access

rights of the user

 The user requests a service which does not suit with

these access rights.

2 b. Contradiction between

the display preferences

and the characteristics

of used MD

 The user requests a display which is not supported by his

used MD.

3 c. Various wishes of Display

for the same service.

 This conflict can arise in two cases:

a. The user did not specify display preferences.

b. Display preferences are not suitable to the

characteristics of MD. In these two cases the system will

returns to the Context Ontology “Contology” for resolve

it.

4 d. Absence of display

preferences after

checking the historic of the

user.

 The user cannot specify display preferences, in this

case the system will return to the historic of the

user, and it cannot find display preference for favorite

service.

5 e. Contradiction between the

Display preferences

requested and display

capabilities expressed

 The user can request the service in a format not

offered by the system. For example, if the user wants a

list of restaurants in card format, while the system

has this information in text format only.

Table 1: Conflicts and Causes.

Conflict Solution

1
 The system returns to the user to inform him that he has not the right to access

these services and asks consequently, suggestions for this problem. If the user does not give

suggestions, the system stops.

2
 Our approach execute one of the following cases:

a. Uses the ontology “Contology” for searching and reasoning about a solution for the conflict,

using the information of the precedents sessions, to extract the display preferences that agrees

with the characteristics of the used MD.

b. if no, Returns to the user and demands suggestions.c. if no in the 2 previous alternative, he

takes a default display preference which suits with the characteristics of the used MD.

3
 We propose using an arithmetic operation that gives us the number of specification of every

encountered preference. The system will perform a comparison and it will retain the preference

which has the maximum number of specification by the user. In the case of equality

between preferences, we propose to use a default preference which suits with the

characteristics of MD used.

4
 The system executes one of the following cases:

a. It returns to the user and asks for these suggestions, b. It uses a default preference.

5
 In this case the system executes one of the following cases:

a. Uses the ontology “Contology” for searching and reasoning about a solution for the conflict,

using the information of the precedents sessions, to extract the display preferences that agrees

with the characteristics of the used MD.b. it returns to the user and asks these suggestions,

c. if no in the 2 previous alternative, he takes a default display preference which suits with the

characteristics of the used MD.

Table 2: Conflicts and Solutions.

After detailing the context acquisition, defining what

means context in our work, and presetting the context

representation. In the following section we will present

the ontology process building based on the method

“METHONDOLOGY”.

5 Ontology process building
This section presents the steps followed to build the

ontology of context "ContoLogy", for this, we use a

construction process in the development of the ontology

76 Informatica 40 (2016) 71–94 S. Bourougaa et al.

starting from raw knowledge and arriving at an

operational ontology represented by OWL. The main

steps of this process are based on the methodology of

ontology construction "METHONTOLOGY" [33] which

is the basic support for the conceptualization of the

ontology to create, through a series of semi-formal

intermediate representations. The logic descriptions, is

the used formalism to express the semi-formal ontology.

OWL language for defining ontologies is chosen to

codify the ontology using the Protégé OWL ontology

editor. Finally, the inference RACER (Renamed Abox

and Concept Expression Reasoner) system is used to test

the consistency of the ontology throughout the

development process. This process consists of five steps:

(1) Specification of Requirements, (2) Conceptualization,

(3) Formalization., (4) Ontology implementation, (5) Test

& evolution of ontology. We start this part by the

motivation of the build method choice. Then, we detail

the steps process.

5.1 Ontology method build choice

Born of the needs of knowledge representation,

ontologies are currently at the center of the research in

knowledge engineering. The construction of ontology

requires both a study of human knowledge and the

definition of representation languages and the realization

of systems to handle them. The knowledge engineering

has given birth to the ontological engineering, where the

ontology is the key item that needs to be addressed.

Several studies propose methods of constructing

ontologies. In this case, we have study some methods for

creating ontologies such as: ENTERPRISE [37], TOVE

[38] and METHONTOLOGY [33] and we present a

comparative study in order to choose a method.Table3

summarizes the comparable study on the various

methodologies and methods. Each cell in of the table may

be filled with three types of values. Value "++" means

that the method or methodology describes how to execute

each task in the proposed activity (specification,

conceptualization….)? When to do? Who should do it? ...

Etc. The value "+" means that the just methodology

identifies the process. The value "-" means that public

documentation does not mention the activity.

“METHONTOLOGY” is the approach that provides

the most precise descriptions of each activity. Most

approaches are carried on of the activities of

development, particularly on the implementation of the

ontology, and they not interested in furthering other

important aspects related to the management,

development and evaluation of ontologies. This is

because the field of conception of ontology is a relatively

new field. However, low conformity with the formally

established criteria does not mean poor quality

methodology or method. The most approaches have

drawbacks. According to table2, we choose

“METHONTOLOGY” for the construction of our

Context Ontology.

Table 3: Comparison of methods for developing

ontologies [39] [40].

5.2 Specification and Requirements.

The goal of the specification phase is to produce either an

informal, semi-formal or formal ontology specification

document written in natural language, using a set of

intermediate representations or using competency

questions, respectively. See figure1

Figure 1: Ontology Requirements Specification.

5.3 Conceptualization

In this step, we will structure the domain knowledge

in a conceptual model that describes the problem and its

solution in terms of the domain vocabulary identified in

the ontology specification activity [Fernandez, 1997].

This phase comprises several stages which are: the

Construction of: (1)Terms glossary,(2)Concepts

classification diagram, (3)Binary relations

diagram,(4)Dictionary concepts, (5)Tables of binary

relations, (6) Attributes table, (7)Logical axioms table,

(8) Instances Table.

a) Construction of Terms Glossary:
This glossary contains the definition of all the terms

relating to the field (concepts, instances, attributes,

Criterias of

comparison

TOVE ENTER-

EPRISE

METHO-

NTOLOGY

OTK

Specification ++ + ++ ++

Acquisition of

knowledge

+ + ++ ++

Conceptualisati

-on

++ - ++ +

Formalisation ++ - ++ ++

Evaluation + + ++ +

supports tools specifi

c tools

specific

tools

ODE,

WebODE,Pro

tégé-2000

OntoE-

dit

ONTOLOGY REQUIREMENT
SPECIFICATION DOCUMENT

Domain : context-aware application (Ubiquitous
applications)
Date : January, 15th 2014
Conceptualized-by : authors
Implemented-by: authors
Purpose: Context modeling ontology in context-aware
applications to be used by our architecture of
adaptation based on Web service.
Level of Formality: Semi- formal.
Scope: List of 33elements of substances:
List of concepts : ContextModel, ApplicationContext,
ServicesApplication, ConflictContext………..etc
At least information about the following
properties:IsConceredBy, HasSugg, AttachedTo,
CausedBy, OccuredIn,
Sourcesofknowledge: Definitions of the context in the
domain of context-aware applications.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 77

relations) which will be represented in final ontology, we

have 128 terms, for example: UserContext and

ContextModel are concepts, PreferredBy and

CoveredByrepresent relations,…etc.The table4 provides

an example of some used terms in the ontology:

Name of
the term

Synonyms Description

ContextMode

l
The model

of context
 Model all the

concepts of the

context related to the

ubiquitous

environment.

Applicatio

nContext
 -  Represent the

ubiquitous

application

ServicesA

pplication
 -  Represent the

services offered by

the application in

question.

………..  ………

……

 ……………….

Table 4: Glossary of Terms.

b) Concepts Diagram
In this step, we build the diagram classification of

concepts. The classification hierarchy of concepts

demonstrates the organization of ontology concepts in a

hierarchy that expresses the relationships in the sub-class

(see figure2). A universal concept "Thing" that

generalizes all the roots concepts of the different concept

hierarchies is used to form one global hierarchy. To

build the taxonomy of concepts, METHONTOLOGY

proposes to use the four relationship,s: Subclass-Of,

Disjoint-Decomposition, Exhaustive-Decomposition,

andPartition. A concept C1 is a subclass of concept C2 if

and only if every instance of C1 is an instance C2. for

example, CauseConflict is a subclass of ConflictContext.

A Disjoint-Decomposition of a C is a set of subclasses of

C which not cover C and do not have common instances.

For example, the concepts: DevicesPreferences and

NetworkPreferences constitute a Disjoint-Decomposition

of the concept PreferencesContext. Exhaustive-

Decomposition of a concept C is a set of subclasses of C

which cover C and may have common instances.A

Partition of a concept « C » is a set of subclasses of C

which cover C and may have common instances have no

common instance. For example, the concept

CauseConflict and SolutionConflict constitute a Partition

of the concept ConflictContext. Figure.2 presents the

concepts classification diagram.

c) Binary Relations Diagram:
A binary relation is used to connect two concepts together

(a source concept and a target concept). This activity

consists in building a binary relationship diagram (see

figure3) which allows representing graphically the

various relations existing between the various concepts of

the same or different hierarchy.

d) Concepts Dictionary:
The concept dictionary contains the domain concepts. For

each concept we define its known Concept name,

Instances, Attributes instance, Relationships (see table5

for some concepts).

Concept

name

Instance

s

Attributes

Instance

Relationships

ContextModel - IDContMod

Description

-

ConflictConte

xt
Conflict1,

conflct2

Conflict3,

conflict4

Conflict5

IDConf

DescripConfl

HasSugg

AttachedTo

CausedBy

OccuredIn

CauseConflict C1,C2,C3

,C4,C5

IDCause

DescripCause

HasSolution

SolutionConfli

ct
S1,S

2,S3,S4,S

5

IDSolution

DescripSoluti

on

ConcernCause

………

…………

……

…….

………

……

…………

…

Table 5: Concepts Dictionary.

e) Table of Binary Relations:
This table defines for each relation used in the diagram of

binary relations: Name relationship, Source concept,

source cardinality (max), Target concept and inverse

relationship (see table 6 for some relations).

Name

relations

hip

Source

concept

Source

cardina

-lity,

(max)

Target

concept

inverse

relatio

n-ship

IsConcere

dBy

ServicesA

pplication
 N Requested

Service

Preference

s

Concer

n

HasSugg ConflictC

ontext
 N Conflict

Suggestion

Concer

n-Conf

Attached

To

ConflictC

ontext
 N Display

Preference

s

Occur

……

…………

…

……

……….

…

…

……

……

…

……..

Table 6: Table of Binary Relations.

78 Informatica 40 (2016) 71–94 S. Bourougaa et al.

 Partition

ContextModel

ApplicationContext Location-
Context

MobileDeviceContext UserContext

ServicesApplication

RulesApplication

DataBase

ConflictContext

CauseConflict

SolutionConflict

ConflictSuggestion

PreferencesContext

ServicesPreferences

NetworkPreferences

DevicePreferences

UserPreferences

MD
Characteristic Profile

MDServices

RequestedServices
Preferences

DisplayPreferences

Network

Sensor

LogicalSensor

PhysicalSensor

Interfaces

Access Rights
User

ActivityUser

RoleUser

Rules

Thing

SessionContext

LocationCoordinates

Figure 2: Concepts Classification Diagram.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 79

CoveredBy

UserContext
UserPreference

s

MobileDeviceContext

AccessRights

LocationContext

RoleUser

ActivityUser

Execute

Executed
By

HasRole

LocatedIn

Location
Coordinates

HasCoordinates

HasAccess

Concern
User

Profile

HasProfile

Caracterize
Includes

Has Preferences

PreferredBy

Use

UsedBy

RequestedServicesPreferences

Requests

RequestedBy

Sensor

Network

Network
Preferences

RelatedToSen

Connect

AttachedToNet

ConflictSuggestion

Suggest

ConflictContext

Causes CausedBy
HasSugg

ConcernConf

DisplayPreferences

Occur

AttachedToDisp

AttachedTo

SessionContext

OccuredIn

Has
Conflict

Associated

ServicesApplication

Concern

(1)

(1)

ConnectedThrough

DevicePreference
s

HasDevPref

IsSuggestedBy

IsConceredBy

(2)

PreferredByUser

(2)

CauseConflict

SolutionConflict

HasSolution

Concern
Cause

Distinguish

Figure 3: Binary Relations Diagram.

f) Attributes Table:

80 Informatica 40 (2016) 71–94 S. Bourougaa et al.

The attribute table (see table 7 for some attributes)

specifies for each attribute included in the dictionary of

concepts, the set of constraints and restrictions on these

values.

Attribu
te name

Concept
name

Value
Type

Value
range

Cardina
lity

IDCont
Mod

Context
Model

String  -  (1,1
)

Descript
ion

Context
Model

String  -  (1,1
)

IDApp Applicati
onConte
xt

String   (1,1
)

Descript
App

Applicati
onConte
xt

String  -  (1,1
)

………
…….

………
………

……… ……… ……..

Table 7: Table of Attributes.

g) Instances Table.
This table describes the known instances that are already

identified in the dictionary of concepts. For each instance,

specify the instance name, the concept where she

belongs, these attributes and values that are associated

with it. Table 8 illustrates some instances created.
Instance
Name

Concept
name

Attributes Values

ContextCo
nflict_1

Conflict
Context

IDConf
DescripConf
l

Contradictio
n between
the
Requested_S
ervice_Prefer
ences and
access rights
of the user

CauseCon
flict_1

CauseCo
nflict

IDCause
DescripCaus
e

The user
requests a
Service
which does
not suit with
these access
rights.

SolutionC
onflict_1

Solution
Conflict

IDSolution
DescripSolu
tion

Suggestion

SolutionC
onflict_2

Solution
Conflict

IDSolution
DescripSolu
tion

Stop

SolutionC
onflict_3

Solution
Conflict

IDSolution
DescripSolu
tion

ContoLogy

……
……

……
………
….

………
………..

………
……………

Table 8: Instances Table.

h) Logical Axioms Table
The table of axioms defines the concepts using logical

expressions. Each axiom includes the name of the

concept on which gate the axiom, a natural language

definition and logical expression (see table9, for some

logical axioms).

Concept Descript
ion

Expression logique

UserCont
ext

A user
has rights
access,
execute
activities,
request
services,
has a
role, hasa
profile,
exist in a
location,
prefer
display
preferenc
es

(X), UserContext(X)
Ǝ(Y), AccessRights (Y)
HasAccess (X, Y) Ǝ(Z),
ActivityUser (Z) Execute
(X, Z) Ǝ(W),
RequestedServicePreferences
(W) 

Requests (X,
W)Ǝ(R),RoleUser (R)
HasRole(X,R)Ǝ(P),Profile
(P)
HasProfile(X,P)Ǝ(L),Loc
ationContext (L)
LocatedIn(X, L)Ǝ (D),

DisplayPreferences (D)
PreferredByUser (X,
D)…….

……
……..

……
……….

………………………

Table 9: Logical axioms.

5.4 Formalization

In this step, we use the formalism of description logic to

formalize the conceptual model that we obtained in the

previous stage of conceptualization. We Define the

ContextModel as follows: ContextModel =(T ,A)

with T= (Tbox) et A=(Abox)

a) The TBox Construction:
We build the TBox concepts by defining concepts, roles

and using constructors provided by description logics.

For example, the definition « a 'ActivityUser' must be at

least performed by a 'user' , can be written in description

logic : ActivityUser≡ ∃ExecutedBy

In addition, we build the TBox by specifying

subsumption relations between the various concepts /

roles; for example, specify that the class 'User Context ' is

subsumed by the class' ContextModel we written:

UserContext⊑ContextModel

The definition of some concepts is illustrated in the

table10 below.

Conce

pt

Definition Subsumption

relations

Cont

extM

odel

≡ (UserContext
⊔MobileDeviseContext

⊔ LocationContext ⊔
ApplicationContext ⊔
ConflictContext ⊔
ConflictSuggestion ⊔
PreferencesContext ⊔
Profile ⊔ Intrefaces ⊔
Network ⊔ Sensor ⊔
Rules ⊔ ActivityUser ⊔
AcessRights ⊔

ContextModel
⊑ ⊤

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 81

Location Coordinates
⊔ RoleUser)

Confl

ictCo

ntext

≡ (CauseConflict ⊔
SolutionConflict) ⊓
∃HasSugg.ConflictSugg
estion ⊓
∃CausedBy.Requested
ServicesPreferences ⊓
∃
AttachedTo.DisplayPr
eferences ⊓
∃OccoredIn.SesionCon
text

ConflictCo
ntext ⊑
ContextModel

…

……

……

…..

…………………………
……………

………………
…………………

Table 10: Definition of TBox.

b) The ABox Construction:
We describe the facts by using the assertional language,

as follows: (1) A(C): To specify that A is an instance of

class C, for example: CauseConflict(CauseConflict_1).

(2) R (A1, A2): To specify that the two individuals A1

and A2 are connected by the relation R. For example:

HasSolution (ConflictContext_1, Solutionconflict_1). In

both Tables: Table11 and Table12, we define some

assertions:

Concept Definition

Conflict
Context

 ConflictContext(ConflictContext_1
),ConflictContext(ConflictContext_
2)

 …………………………….
Cause

Conflict
 CauseConflict(CauseConflict_1)

 ………………………

Solution

Conflict
 SolutionConflict(SolutionConflict_1

) ……………………

Table 11: Concepts Assertional Part.

Relation Definition
HasSolution HasSolution(ConflictContext_1,

SolutionConflict_1)

…………………
……..

…………………

Table 12: Relations Assertional Part.

6 The context rules description:

conflicts manage rules

By using the ontology “ContoLogy”, we can derive a new

context. The context derived is an implicit context

derived from explicit context. In our context ontology,

derived based on rules in the form antecedent →

consequent. Antecedent and consequent are composed of

one or more concepts of context and the description of

roles. Derived context can affect other contextual aspects.

For example: ConflictContext is a context derived from

MobileDeviceContext, UserContext and UserPreferences.

In our work, we planned to resolve all conflicts which can

arise when checking the user's preference. In the

precedent section, we have defined five conflicts that may

arise during the verification of user preferences. To

manage these conflicts, we used the Semantic Web Rule

Language (SWRL), we have defined five SWRL to

derive conflicts, five SWRL to resolve these conflicts and

we have created these rules under ProtégeOwl [41].

6.1 SWRL to Derive Conflicts

We define five rules to derive the five conflicts (see table

N°9)

 Rule1: derive the Conflict1: “ Contradiction

between The Requested_Service_Preferences

and access rights of the user ” :

 UserContext(?x) ∧

RequestedServicesPreferences(?A) ∧

AcessRightsUser(?AR) ∧ differentFrom(?A, ?AR) ∧

ConflictContext(?c) → Causes(?A, ?c)

 Rule2: derive the Conflict2: “Contradiction

between the display preferences and the

characteristics of used MD “: UserContext(?x) ∧
DisplayPreferences(?d) ∧ MobileDeviceContext(?dm)

∧ differentFrom(?dm, ?d) ∧ ConflictContext(?c) →

Occur(?d, ?c)

 Rule3: derive the Conflict3: “Various wishes of

Display for the same service”: UserContext(?x) ∧
RequestedServicesPreferences(?A) ∧
MobileDeviceContext(?dm) ∧ differentFrom(?dm,

?d) ∧ sqwrl:isEmpty(?d) ∧ ConflictContext(?c) →

Causes(?A, ?c)

 Rule4: derive the Conflict4: “Absence of display

preferences after checking the historic of the user”:

UserContext(?x) ∧
RequestedServicesPreferences(?A) ∧
sqwrl:isEmpty(?d)∧ Notprefered(?d, ?x) ∧
ConflictContext(?c) → Causes(?A, ?c)

 Rule5: derive the Conflict5: ” Contradiction

between the Display preferences requested and

display capabilities expressed”: UserContext(?x) ∧
RequestedServicesPreferences(?A) ∧
MobileDeviceContext(?dm) ∧ differentFrom(?dm,

?d) ∧ sqwrl:isEmpty(?d) ∧ ConflictContext(?c)

→Causes(?A, ?c)

82 Informatica 40 (2016) 71–94 S. Bourougaa et al.

6.2 SWRL to Resolve Conflicts

We define five SWRL for resolving the five Conflicts,

see table N°9 for the description (values) of all

parameters of the following rules.

 Rule6: resolve the Conflict1:

ConflictContext(ConflictContext_1) ∧
CauseConflict(CauseConflict_1) →

HasSolution(ConflictContext_1,

SolutionConflict_1)∧
HasSolution(ConflictContext_1,

SolutionConflict_2).

 Rule7: resolve the Conflict2:

ConflictContext(ConflictContext_2) ∧

CauseConflict(CauseConflict_2) →

HasSolution(ConflictContext_2,

SolutionConflict_3)∧

HasSolution(ConflictContext_2,

SolutionConflict_1)∧

HasSolution(ConflictContext_2,

SolutionConflict_4)

 Rule8: resolve the Conflict3:

ConflictContext(ConflictContext_3) ∧

CauseConflict(CauseConflict_3) →

HasSolution(ConflictContext_3,

SolutionConflict_5) ∧

HasSolution(ConflictContext_3,

SolutionConflict_4)

 Rule9: resolve the Conflict4:

ConflictContext(ConflictContext_4)

∧CauseConflict(CauseConflict_4) →

HasSolution(ConflictContext_4,

SolutionConflict_1) ∧

HasSolution(ConflictContext_4,

SolutionConflict_4)

 Rule10: resolve the Conflict5:

ConflictContext(ConflictContext_5) ∧

CauseConflict(CauseConflict_5) →

HasSolution(ConflictContext_5,

SolutionConflict_1)∧

HasSolution(ConflictContext_5,

SolutionConflict_3)∧

HasSolution(ConflictContext_5,

SolutionConflict_4)

6.3 SWRL Rules Creation with Protégé:

We have used PROTÉGÉ 2000 to implement the

precedent rules. Figure 4 show the creation of the SWRL

rules under protégé

7 Ontology implementation
After the conception of the ontology “ContoLogy”, we

will implement our ontology. For this, we choose the

editor Protégé OWL [41] and we used to formulate the

ontology in the knowledge representation the language

OWL. OWL represents a codification language used to

implement the OWL ontology, and that, for all semantic

functionalities than allows OWL which is richer than

languages DAML + OIL & RDFS. In addition, we use

to check the ontology the reasoner RACER (calculate the

subsumption relation between concepts, and check the

consistency of all concepts) [42].

Figure 4: SWRL for Managing Conflicts.

PROTEGE OWL is a modular interface, developed

at Stanford Medical Informatics, to edit, visualize, control

(check constraints) ontologies [41]. PROTEGE OWL

allows the definition of meta-classes which whose

instances are classes, which allows you to create its own

model of knowledge before building ontology. Many

plugins are available or can be added by the user. The

software architecture allow the insertion of plug-ins that

can introduce new features (for example, the ability to

import and export ontologies built in various operational

representation languages such as OWL or specification of

axioms) participated in the success of PROTEGE OWL,

which includes a very large user community and is a

reference for many other tools [43].

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 83

7.1 Implementation steps

First we start by creating concepts specified in the

conceptualization step. After building classes, we create

the properties for each of them see figure 5, and then we

create restrictions on classes and properties see Figure6

and figure 7.

Figure 5: Contology classe and properties creation.

Figure 6: Contology restriction view1 with PROTÉGÉ.

After this step, we can transform the ontology to

OWL form. An excerpt from the context model ontology

in OWL is illustrated below:

Figure 7: Contology restriction view2 with PROTÉGÉ.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/0

2/22-rdf-syntax-

ns#"xmlns:protege=http://protege.stanf

ord.edu/plugins/owl/protege#

 xmlns="http://www.owl-

ontologies.com/Ontology1230076269.

owl#"

xmlns:swrl="http://www.w3.org/2

003/11/swrl#"

xmlns:swrlb="http://www.w3.org/

2003/11/swrlb#"

 ………..

</owl:Ontology>

<owl:Classrdf:ID="ServicesPreference

s">

<rdfs:subClassOf>

<owl:Classrdf:ID="PreferencesContext

"/>

</rdfs:subClassOf>

</owl:Class>

.......<owl:Classrdf:ID="Profile">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Classrdf:ID="

UserPreferences"/>

</owl:someValuesF

rom>

<owl:onProperty>

<owl:ObjectPropert

yrdf:ID="Includes"/

>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

 ……….

<owl:Restriction>

<owl:someValuesFr

om>

<owl:Classrdf:about

="#ConflictContext

"/>

</owl:someValuesF

rom>

<owl:onProperty>

<owl:ObjectPr

opertyrdf:ID="Caus

es"/>….

7.2 The “Contology” Test

We used the system Racer to test the ontology

"Contology", we distinguish three types of test: Inference,

Consistency test and classification test; The first consists

on remove the inconsistency between concepts, and this

by using the subsumption test incorporated into the Racer

system, against the second allows to check the existence

http://protege.stanford.edu/plugins/owl/protege
http://protege.stanford.edu/plugins/owl/protege

84 Informatica 40 (2016) 71–94 S. Bourougaa et al.

of each concept instances; a concept C is satisfiable if and

only if there is at least an interpretation I (instance) for

the concept C. Racer is in the form of a server which can

be accessed by TCP or HTTP. So we must first configure

the connection to the server hosting the system Racer.

We have carried all tests, and they are checked. Figure8

shows an example of inference test, figure 9 shows an

example of consistency test and figure 10 shows an

example of classification test.

Figure 8: Test of inference.

Figure 9: Test of Consistency.

According to the tests we have applied to the

ontology "ContoLgy", no error is produced during the

test.

Figure 10: Test of classification.

8 The context ontology exploitation:

adaptation process
We exploit and use the ontology “ContoLogy” to adapt

the user's initial request to the current context. Thus, we

propose a web service based architecture to ensure the

adaptation process. By use of the ontology "ContoLogy",

adaptation can reasoning about the user's context and

adapts the user's initial request to the current context.

Among the different context parameters, we focus on: the

location and the used Mobile Device (MD).

After having implemented the application, it is

mandatory, for many reasons, to undergo it to the

adaptation process. These reasons can be classified into

four categories [44]: (1) Correctional Adaptation, (2)

Adaptive Adaptation (3) Scalable Adaptation and (4)

Perfective Adaptation. In our approach, we are interested

to the adaptive adaptation in order to adapt ubiquitous

applications to their execution environment. We adopt

this kind of adaptation because the application is running

properly, but its execution environment, hardware

components or other applications or depending data are

changing (e.g. the context of user). In this case, the

application is adapted in response to changes in its

execution environment. Consequently, to ensure this

adaptation process, we use the context ontology

“contology” to the adaptation composed of two main

parts: static part and the dynamic part.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 85

(1) Static part: This part is described by the ontology

“Contology”. It focuses, on one hand, on modeling the

contextual information of users and their preferences and,

on the other hand, on managing the potential conflicts

which may arise between the users’ preferences during

their checking process.

(2) Dynamic part: the role of this part is to ensure the

functional dynamic adaptation of context-sensitive

applications to various user’s contextual situations. The

adaptation process adopted by this part is based on “

ContoLogy” in order to offer a better respond to user.

Also, this process is assured by the user's initial request

adaptation to the context of use and user’s preference

using the ontology “ContoLogy”. The methodology in

our approach consists in three main steps: (1) the context

of use modeling and the user’s preferences managing,

basing on a new context definition which separates the

application data from the contextual data by by using

“ContoLogy”,, (2) the resolution of potential conflicts

which may be occurred during managing of user’s

preferences and (3) the dynamic functional adaptive

adaptation of web service-based context-aware

applications. The accomplishment of the two last steps (2

and 3) is based on “ContoLogy”.

In ubiquitous computing, applications are sensitive to

the context (context-aware applications), user’s access to

various information’s using different mobiles devices and

in different localization, which implies, an overly

dynamic, heterogeneous environment. To respond better

to this challenge, we propose to use web service, for

those benefits, such as:

1. The ultimate goal of the Web service approach is to

transform the Web into a distributed computing

system where programs (services) can interact

intelligently by being able to automatically discover

and negotiate with each other and consist into more

complex services [45].

2. The establishment of web services facilitates the

dialogue between heterogeneous environments. As

web services can be implemented on different

platforms and with different languages, they

facilitate interoperability between heterogeneous

systems and platforms, which is our case. [46]

3. Web Services [47] work with standard Web

protocols (HTTP and TCP / IP) and XML. Many

companies already have a Web infrastructure the

staff have the knowledge and experience of

maintenance. This is why the cost of access to Web

services is much lower than that of previous

technologies.[6]

The figure 11 shows the general architecture of the

proposed approach.

As illustrated by the figure 11, the adaptation process to

the context of use and the user’s profile is accomplished

in 16 steps explained bellow:

(1) Request: the user sends his request to the platform

via his Mobile Device (MD). The Module Context

integration (CI) receives this request.

(2) Contextual information: the module Context sensor

sends contextual information of the user to the

module Context integration, such us: the used MD,

the localization.

(3) Contextual request: in this step, the Module Context

Integration increases the user request by the

contextual information; the result of this step is a

contextual request. The module (CI) sends this

contextual request to the Preferences Management

Web Service (PMWS).

(4) Preferences check: In this step, the PMWS checks

the contextual request using “ContoLogy”. It

checks the conformity between the user preferences

and his access rights and the type of the used MD.

(5) Prefrences OK/ Conflict: by consulting the ontology,

the PMWS can detect that preferences are checked or

can detect a conflict

(6) Soap Message: Conflit; Soap Message: Conflit:

when a conflict arises, the PMWS sends a soap

message containing the conflict to the Conflict

Management Web Service (CMWP).

(7) Search Conflict Solution: using the Context

Ontology, the CMWS Searches a solution for the

detected conflict.

(8) Solution conflict/ no solution: this step indicates

whether or not there is a solution for the Conflict.

(9) Ask suggestion: if no solution to the conflict, the

CMWS asks a suggestion of solution for the conflict

from the user.

(10) Soap message: conflict solution: in this step,

if the user sends a suggestion of solution for the

conflict to the CMWS, it takes this solution and

sends it to the PWSM.

(11) Update conflict information: the CMWS

updates the conflict information by adding the

conflict information of the current session.

(12) Soap message: request updated: The PMWS

sends the request of the user, after the verification, to

the adapter web service (AWS).

(13) Search answer: the AWS search an answer for

the request of the user.

(14) Soap message: answer: Once the answer is

found, the AWS sends it to the PMWS.

(15) Answer adapted to the context: this later

sends this answer adapted to the context to the user

(16) Update contextual information: finally, the

PMWS updates the contextual information by adding

the contextual information of the current session to

the Context Ontology.

86 Informatica 40 (2016) 71–94 S. Bourougaa et al.

dynamic
 part :
Adaptation
Core

Context ontology

Application Data

Application Web
Service

Context sensor

user

Pref-MAN-WS
Conflict-MAN

WS

Adapter

WS

12: S
OAP M: re

quest adapted

14: S
OAP M: A

nswer

6: Soap Mesage: Conflict

10: Soap Message:Conflict- Sol

Context

integration

1
:

R
e
q

u
e
s
t

2: C
o
n
textu

al

in
fo

rm
atio

n 3: Contextual request

4:
 p

re
fe

re
n
ce

s
ch

ek

Static part : Context Historic

7: s
earc

h C
onfli

ct-

Solu
tio

n
8: S

olu
-c

onfli
ct

/

no s
ol

9
:

A
s
k
 s

u
g

g
e
s
ti
o

n

1
3

:
s

e
a

rc
h

 A
n

s
w

e
r15: A

nswer A
dapted to

 th
e context

16
: u

pdat
e

co
nte

xt
ual

in
fo

rm
at

io
n

11: u
pdate

 C
onfli

ct

in
fo

rm
atio

n

5:
 p

re
f O

K
/

co
nfli

ct

Figure 11: Architecture of our approach.

8.1 Process adaptation presentation

In this section, we present the dynamic part of our

approach to adapt the ubiquitous applications to the

user’s context and the user’s profile, using “ContoLogy”.

This part assures the functional dynamic adaptive

adaptation of these applications sensitive to the context of

use and the user’s profile, it is assured by the adaptation

of the initial request of user to the context of the current

session in the various contextual situations. At the end,

the user can meet the best answers to their expectations.

The context of use of a user witch accedes to a

ubiquitous application, in addition to be composed of

multiples aspects is very variable and in constant

evolution, which makes the adaptation process of the

application hard to accomplish. In order to ensure this

adaptation process and to be able to change the behavior

of such application sensitive to the context of use, we

propose to use Web Services (WS) both during the

development of this type of application and in the

dynamic part of the adaptation.

We opted for web service for the advantages it

procures. The dynamic part of our approach is composed

of three Web Services: Preferences Manager Web

Service (PMWS), Conflicts manager Web Service

(CMWS) and Adapter Web Service (AWS) and two

modules: Context integration and context sensor. This

part assures the adapting of the user request to the

context, resolving the conflicts and returning an answer

adapted to the user's context.

8.1.1 Preferences Manager Web Service

This web service is charged of the preferences

management. Consequently, it ensures checking of the

user’s preferences using the initial request of the user and

“ContoLogy”, the PMWS can reason on the user context.

The PMWS can analyze the context of the user that

appears in the contextual request of the user.

Consequently, it verifies the conformity between the

requested preferences and the context of use, mainly the

used MD, localization and his accesses rights. This step

can generate conflicts which can be detected by PMWS.

Also, it reformulates the initial request of user, in the

case of conflicts, by adding the new preferences. It sends

to the user the adapted answer to the context, and stored

the new context for using it in the next sessions, when we

receive the same context and request (see Figure 12).

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 87

Figure 12: PMWS Sequence Diagram.

Technical Example: see section 9.1

8.1.2 Conflicts Manager Web Service

The role of this web service is to manage the conflicts

that may arise between user preferences. The conflicts are

managed, by our approach, according to the following

sequence diagram (Figure 13). Specifically, our approach

manages five conflicts (1) Contradiction between The

Requested_Service_Preferences and access rights of the

user. (2) Contradiction between the display preferences

and the characteristics of used MD. (3) Various wishes of

Display for the same service. (4) Absence of display

preferences after checking the historic of the user. (5)

Contradiction between the Display preferences

requested and display capabilities expressed.) (see table

2). This web service executes the proposed solution for

each conflict can be arose between the preferences of user

(Table 3). After receiving a message containing the

conflict which has occurred, Conflicts Manager Web

Service reasons and infers a solution to conflict occurred

by using “ContoLogy”, if not; it implies the user to give

his suggestions for this conflict. If there are no

suggestions it takes a default solution, for each conflict

(i.e. our approach proposes a determinate solution (see

table 3). At the end, it sends a message which contains

the solution of the conflict to the PMWS. Consequently,

it updates the history of conflict information. This web

service ensures: the resolution of conflicts using

“Contology”, and the storage of information of the

occurred conflict.

Figure 13 .Conflicts Sequence Diagram.

Technical Example: see section 9.1

8.1.3 Adapter Web Service

Its role is to return an adapted request to the user. It

executes the following steps: firstly, it accedes to the

Web Services of the application and researching on the

WSDL of these latter, in order to extract Web Services

with their interfaces, their operations and the number of

interfaces specific to each Web Service. Secondly,

selecting the Web Service which answers better the

request of the user. Then, it reformulates and sends to

PMWS the adapted answer to the context of use.

8.1.4 Context Sensor

This module is responsible of the capture of the user

context at a connection time, namely: localization, MD,

session. Then, it sends this contextual information to the

module “Context integration”. It is composed of the two

following Sub-modules:

1- Logical context sensor: a set of interfaces used by

the user to enter his context.

2- The physical context sensor: a set of physical

dispositive used to capture the context of the use.

8.1.5 Context Integration

This module receives the initial request of the user and

reformulates it by adding the contextual information.

Then, it sends this contextual request to PMWS.

88 Informatica 40 (2016) 71–94 S. Bourougaa et al.

8.2 Utilization of “CONTOLOGY”:

In this section, we explain how the user communicates

with our platform to get an adapted response to its

context (figure14), the adopted communication process is

accomplished in four main steps:

user

Ontology

ContoLogy

Adaptation Plate-forme

1

3

4

2

Figure 14: Communication between the user and

platform using ”ContoLogy”.

(1) Sending Request: The user sends a request to the

platform asking the available services and providing the

necessary information (context, location, MD).

(2) initial request augmentation : The platform,

using context sensor module and the module context

integration, increases the initial user request by adding

contextual information, this contextual request will be

sent to PMWS for checking preferences using ”

ContoLogy”.

(3) Conflicts resolving: in the case of conflicts when

checking the preferences, the platform using the CMWS

and the ontology search a solution for the conflict, or

demands a suggestion from the user.

(4) Adapting Response: after checking preferences

and taking into account the context of the user, this latter

receives a response adapted to his context.

 In the flow, we presents two scenarios using “

ContoLogy”, in order to show how our p roposed

approach uses "contology" to reason and infer new

information for taking into account the context.

a- Scenario1: Preferences Checking:

The preferences checking process (figure 15) is

accomplished in three main steps:

Ontology

ContoLogy

Preferences Manager
WService (PMWS)

1

3

2

Figure 15: Scenario1: Checking of the preferences.

(1) Contextual request: PMWS uses "ContoLogy" to

verify the contextual request of the user that contains

the user's context namely the type of the used MD

and the location. The PMWS checks the conformity

of services requested by the user with their access

rights, and display preferences with display

capabilities offered by the used MD, and that using

the information of the previous sessions stored in the

ontology.

(2) Reasoning and inference: according to the

contextual information that exists at "ContoLogy" we

can check the user preferences, reasoning on the

current context with the available information and

also infer new user preferences in the case of conflict.

(3) Chek result: in this case, "Contology" can refer two

answers. The first answer is: preferences OK, where

preferences are checked. The second one is, a conflict

has been arisen between user preferences, which must

be resolved by the CMWS (see next scenario).

b- Scenario2: Conflicts Resolution:

Figure 16 illustrates the conflicts resolving

process we propose. It is accomplished in seven

steps:

Ontology

ContoLogy
Conflicts Manager WService

(CMWS)

2

4

3

user

5

7

Preferences Manager
WService (PMWS)

1 6

Figure 16: Scenario2: Conflicts resolution.

(1) Conflict: the previous scenario can cause a conflict,

so it will be sent to the CMWS by the PMWS.

(2) Searching for a solution to the conflict: using the

Context Ontology, the CMWS Searches a solution for the

detected conflict.

(3) Reasoning and inference about the conflict: using

"ContoLogy", the CMWS can reason about the conflict

information of previous sessions and infer a solution to

the current conflict.

 (4) Solution / no solution: this step indicates whether or

not there is a solution for the Conflict.

 (5) Conflicts suggestions: if CMWS does not find a

solution to the conflict in the ontology, it asks a

suggestion of solution from the user. This latter can give

a solution, change the request or does not responds.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 89

(6) Soap message: conflict solution: in this step, if the

user sends a suggestion of solution of the conflict to the

CMWS, he takes this solution and sends it to the PWSM.

(7) Update conflict information: the CMWS updates the

conflict information by adding the conflict information of

the current session.

9 The case study: the travel booking

application
In this section, we present using a case study, how we

exploit the Ontology “ContoLogy” for the adaptation of

the user request. For this, we have created a travel

booking application to be used in the process adaptation,

and we have implemented the dynamic part of our

approach. We will present the different steps we followed

during the implementation. Firstly, we present the

environment and the tools that we used in the

implementation. Secondly, we will present the

application we have developed; finally, we detail the

implementation steps, by a detailed example, from the

reception of the request of the user passing through the

resolution of conflicts, until reception of the adapted

response by the user.

The environment and tools we used to implement the

system Such: Microsoft visual studio(Visual Web

Developer, Smart Device Applications, Web Forms,

Windows Forms, XML Web Services, XML Support,

C#) [48] , Protégé [49], OWL [50].

Travel booking is a web service-based application to

manage a travel agency and Online reservation (see

figure17).

It offers to user to make flight reservation and hotels

reservation. This application is adapted by our

architecture to the context and the profile of the user.

Using this application the user can search for a flight, a

hotel and car, and he can receive an answer adapted to his

context, for example: adapted to: his location, the used

MD, his city and the location of the airport. For example:

the user can receive a list of hotel situated near the

airport. For designing the agency services, we

distinguished three web services:

(1) Airline Service: It offers services responsible

for online managing of the flights reservations of

customers.

(2) Hotel Service: It offers services which have like

function, the online control of the hotels and reservations

of the customers.

 (3) Location Car service: It classifies all services

responsible for online managing of cars and location.

Figure 17: Global architecture of the application.

We have created a service portal that serves as

a gateway to various web services. This portal does not

store any data on its physical basis, but acts as a service

provider. The application we have developed allows to a

customer to avoid making several research on

the web (airlines, hotel, car ...), to plan his travel. The

portal we have implemented provides the interfaces

necessary to planning travel through the use of web

service technology. This application will be used by our

system for the adapting to the context of use and the

profile of user. The dynamic part of our approach ensures

the process of adaptation, which will be the subject of the

following section.

All web services related to the dynamic part which

are necessary to validate our approach are created using

Microsoft visual studio. More precisely, three web

services have been created to handle the interaction and

the messages between the user and the application. After

the web service creation, a C# page will pop on which

named service1.asmx.cs. The page contains the library

that we need and the web service code behind. To create

a web service method in .net environment, simply we

write the [WebMthode] and after that we write the

method .

9.1 Process Adaptation Unfolding

In this section, we detailed our approach to manage

preferences and conflicts, and detail the process

adaptation unfolding, by using an example which explain

the interactions between web services of our architecture,

the ubiquitous application (Travel booking application);

the context ontology “ContoLogy” and the user. For this,

we present an example which includes basically the

following points: (1) Interaction between user and the

dynamic part and the context ontology “ContoLogy”. (2)

The receipt and the check of the user request. (3)

Resolution of conflicts. For this, we take a conflict that

can occur and we explain how the system will handle this

conflict and we will see how the system resolves this

conflict step by step. (4) Adaptation of the answer of the

application to the context information. In this case we

will take as example:

90 Informatica 40 (2016) 71–94 S. Bourougaa et al.

 The ConflictContext(ConflictContext_2)

=“Contradiction between the display preferences and

the MD characteristics”

 causes by CauseConflict(CauseConflict_2)= “The

user requests a display which is not supported by his

used MD”

 With:

o The solution SolutionConflict_3= “ContoLogy”

witch means: reasons and infers a better solution

from “ContoLogy”.

o If no, then

SolutionConflict_1=”suggestion”witch means,

demands a suggestion from user.

o If no, then SolutionConflict_4=”

default_display_preference”

a. Interaction between user, our dynamic

part and context ontology:

At the first time when the user login to the system, the

system asks him to be registered on it, by giving his

personal information such as name, username and

address, email and choose his services and preferences

that he prefer. The system will get automatically the MD

(Mobile Device) characteristics from the MD information

files. The MD characteristics in the ontology will be look

like:

 default:MD_i0435 MD:MDid "MD_i0435"
 MD:Class "MD" ;
 MD:Type "Nokia";
 MD:ImageD "0" ;
 MD:TextD "1" .

 User:
Default: i0435 profil:id "profile_i0435" ;
 profile:Class "USERPROFILE"
 profil:FName "MM1" ;
 profil:LName "TT1" ;
 profil:UserName "us11" ;
 profil:Password "pass1" ;
 profil:address "adress AD" ;
 profil:email "AD@hotmail.com".

 Service Preference “Show flight”:
default:preser_i043501
 preser:Num_Ser "preser_i043501" ;
 preser:Class "ServicePreferences"

 preser:ser "Show flights" ;
 preser:serAso1 "preser_i043502" ;
 preser:serAso2 "0" ;
 preser:dispser disser_i043501_pre01" .

As we see here, this service has an associated service

"preser_i043502"which is “Show hotel” service

 Service Preference “Show hotel”:
default:preser_i043502
 preser:Num_Ser "preser_i043502" ;
 preser:Class "RequestedServicePreferences "
 preser:ser "Show Hotels" ;
 preser:serAso1 "0" ;
 preser:serAso2 "0" ;

 preser:dispser "disser_i043501_pre01".

 Display Preference for: “Show flight” and

“Show hotel”:

default:disser_i043301_pre01
disser:Num_Dis "disser_i0433_pre01" ;
 preser:Class "DisplayPreferences "

 disser:default "disText" ;
 disser:disText "1" ;
 disser:disImage "1".

b. Check of The User Request

After user login, the next figure presents flight

searching form will be displayed.

Figure 18: Flight searching result form.

After clicking on show details link, the PMWS

receives the query and the contextual information for the

user, and checks it with the user preferences and services

on the ontology “ContoLogy” by the following steps:(1)

PMWS receives the service ID and the contextual

information (localization and used MD) by the method

“Service_check“. This method returns the

associated_services and the display preference (figure

19).

Figure 19: Service_check method call.

2- Next figure presents the soap message receive by the

PMWS

Figure 20: Service_check method SOAP 1.1.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 91

3- In figure21, we find the result receive by the PMWS

after checking the request of the user using “ContoLogy”

Figure 21: Service_check result.

4- In the next step, the PMWS compare the values that

return from “MD_check” method, and the

“display_check” method. In our example, the values will

be not the same because:

- User MD does not support image display which its value is 0

(figure22).

Figure 22: MD_check result.

-Text and image forms in display preference have

both the value 1 (figure 23).

Figure23:Display_check result

c. Conflict of md characteristics and

display preferences
In this step the PMWS will detect the conflict between

the display preference and the MD characteristics see

figure23 and figure24. PMWS send the conflict to the

CMWS, which it will consult the conflict and the solution

will take to resolve it from the ontology “ContoLogy”.

The system will check the user history by History_check”

method for similar service, and the preferences of that

service. If there is not result from the user history, the

system will demand the suggestion to the user. The

suggestion will aim to change the display preference to

this service to be appropriate with user MD (figure 24).

Figure 24: Conflict suggestion.

 If the user chooses to take the suggestion, the

CMWS sends to the PMWS the suggestion with method

“change_cont_info” to update the display preference and

change the display image to 0 values (figure 25).

Figure 25: Check display result after the update.

d. The User Request Adaptation
After updating display preference, the PMWS

reformulates the user request by adding the contextual

information and sends it to the AWS and gets the result

from the travel-booking application (see figure26)

Figure 26: Result after the adaptation.

Figure 26 shows the result of the user request that it

adapted to the user context and preferences. Our

adaptation process is assured by the adaptation of the

request of the user to their preferences.

92 Informatica 40 (2016) 71–94 S. Bourougaa et al.

According to all steps of this section, we can see the

use of the ontology of the context “ContoLogy” for

managing preferences and resolving Conflicts, in order to

adapt the initial request of the user to his context of use

and his profile, which includes his preferences.

10 Conclusion
The ubiquitous computing focuses on the use of two

essential notions: user profile and context of use in order

to satisfy better demands of nomadic users. Furthermore,

a reliable modeling of such two notions and an adaptation

of the application behavior to them are two required

processes. In this paper, firstly, we presented a novel

approach allowing, on one hand, modeling the context of

use and the user profiles using an ontology, to support

context representation and reasoning, and, on the other

hand, resolving the conflicts using some proposed

solutions. An architecture illustrating the dynamic

adaptation of web service-based ubiquitous applications

is also proposed. Secondly; we detailed a prototype

implementation and system performance. Through this

part in this paper, we tried to explain how we implement

the web services, the ontology and shown up the

adaptation process to resolve the conflicts by a detailed

example.
As future directions to this work, we plan to:
1. Complete the implementation of the context

acquisition module composed of two sub-

modules: context sensor and context integration.

2. Use a probabilistic approach to represent the

users' preferences. Because, it is a very complex

challenge to represent the users' preferences with

its contexts and the ambiguity posed by these

ubiquitous applications. One of the

considerations which generate abstraction data

sources of information are cited for example:

temporality, uncertainty, heterogeneity, online

processing, and conflicting information. In the

literature, several probabilistic (SVM, CPnet,

HMM, HHMM, etc) are studied and we decide

on the Hierarchical Hidden Markov Model

(HHMM). HHMM is legible, easy for the

preferences representation and does not require

expertise in prior.

3. The cloud computing provides the next

generation of Internet based, highly scalable

ubiquitous computing systems in which

computing resources are provided as a service.

A new computing model that allows convenient

access and on-demand network to a shared pool

of configurable computing resources (eg,

networks, servers, storage, applications and

services) that can be rapidly provisioned.

However, ubiquitous computing refers to a

scenario in which computing is ubiquitous,

particularly where devices that do not look like

computers have computational capabilities. The

idea is how to use cloud computing resources

efficiently and earn maximum profits with

ubiquitous systems?

Acknowledgement
This work summarizes doctoral thesis research, supported

by the University of Annaba and the University of

Tebessa- Algeria.

References
[1] Kosala.Y, MingXue.W, & Claus. P.2013. An

extended ontology-based context model and

manipulation calculus for dynamic Web service

processes. Journal of Service Oriented Computing

and Applications, ISSN 1863-2386. Springer-Verlag

London.

[2] Rebei.I. 2012. Informatique ubiquitaire et pervasive .

F2B506, Telecom Bretagne, 22 février.

[3] Dey A. K., Abowd. G. D., & Salber.D. 2001. A

Conceptual Framework and a Toolkit for Supporting

the Rapid Prototyping of Context- Aware

Applications. Human-computer Interaction, 16 : 97–

166,.

[4] Schmidt. A., Aidoo. K. A., Takaluoma. A., U.

Tuomela, K. V. Laerhoven, & W. V.de Velde. 1999.

Advanced Interaction in Context. In HUC ’99 :

Proceedings of the 1st international symposium on

Handheld and Ubiquitous Computing, pages 89–101,

London, UK, Springer- Verlag

[5] Held.A, Buchholz.S, & Schill .A. 2002. A Modeling

of Context Information for Pervasive Computing

Applications. In: Proceedings of the 6th World

Multiconference on Systemics, Cybernetics and

Informatics (SCI), Orlando, FL, USA, Jul 14-18

[6] Soukkarieh. 2010. SOUKKARIEH Bouchra

“Technique de l’internet et ses langages : vers un

système d’information Web restituant des services

Web sensibles au contexte. thèse Doctorat,

Université de Toulouse III, France, 30 avril.

[7] Ryan. N. 2006. ConteXtML: Exchanging contextual

information between a mobile client and the

fieldnoteserver.

Httpwww.cs.kent.ac.uk/projects/mobicomp/fnc/Cont

eXtML.html.

[8] Sheng .Q. Z & Benatallah. B .2005.ContextUML: A

UML Based Modeling Language for Model- Driven

Development of Context-Aware Web Services. In

The 4th International Conference on Mobile

Business(ICMB’05), IEEE Computer Society.

Sydney, Australia. July 11-13.

[9] Henricksen.K and Indulska. J. 2004.Modelling and

Using Imperfect Context Information. In PerCom

Workshops, pp 33–37.

[10] Chevert, K., Mitchell, K., & Davies, N. 1999.Design

of an object model for a context sensitive tourist

GUIDE. Computers and Graphics 23, 6 883–891.

[11] Schmidt, A., Beigl, M., & Gellersen, H.-W. 1999.

There is more to context than location. Computers

and Graphics 23, 6, 893–901.

An Ontology-Based Context Model to… Informatica 40 (2016) 71–94 93

[12] Akman, V., & Surav, M. 1997. The use of situation

theory in context modeling. Computational

Intelligence 13, 3 427–438.

[13] Chahuara P. 2013. Contrôle intelligent de la

domotique à partir d’informations temporelles multi-

sources imprécises. Thèse doctorale. s.l., France :

Université de Grenoble, 27 mars.

[14] Miao. LV, Chun.JIN, Yoshiyuki.H, & Jim. C. 2013.

Ontology-based User Preferences Bayesian Model

for Personalized Recommendation. Dalian University

of Technology. China, Fukushima University. Japan,

Florida Atlantic University .USA, Journal of

Computational Information Systems 9: 16 6579–

6586.

[15] Strang.T, Linnhoff-Popien.C, & Frank. K. 2003.

CoOL: A Context Ontology Language to enable

Contextual Interoperability. In J.-B. Stefani, I.

Dameure, and D. Hagimon, editors, LNCS 2893 :

Proceedings of 4th IFIP WG 6.1 International

Conference on Distributed Applications and

Interoperable Systems (DAIS2003), volume 2893of

Lecture Notes in Computer Science (LNCS), pp 236–

247, Paris/France, November. Springer Verlag

[16] Chen, H., Perich, F., Finin, T., & Joshi, A. 2004.

SOUPA: Standard Ontology for Ubiquitous and

Pervasive Applications. International Conference on

Mobile and Ubiquitous Systems: Networking and

Services, Boston, 22-25 August

[17] Gu, T. et al. (2004) “An ontology-based context

model in intelligent environments”. Proceedings of

Communication Networks and Distributed Systems

Modelling and Simulation Conference, San Diego

(CA), USA.

[18] Chen, H., Finin, T. and Joshi, A. 2003.Using OWL

in a Pervasive Computing Broker. In Proceedings of

Workshop on Ontologies in Open Agent Systems

(AAMAS) .

[19] Chen, H., Finin, T. and Joshi, A. (2004) “An

ontology for context aware pervasive computing

environments”, Knowledge Engineering Review,

Vol. 18, No. 3, pp.197–207.

[20] Kanellopoulos D. (2008) "An ontology-based system

for intelligent matching of travellers' needs for

airlines seats", International Journal of Computer

Applications in Technology, Vol. 32, No.3, pp. 194-

205.

[21] Kanellopoulos D., Panagopoulos A. (2008)

"Exploiting tourism destinations' knowledge in an

RDF-based P2P network". Journal of Network and

Computer Applications (Elsevier Science), Vol. 31,

No. 2, pp.179-200.

[22] Kanellopoulos D. (2009) "Adaptive multimedia

systems based on intelligent context management",

International Journal of Adaptive and Innovative

Systems, Vol. 1, No.1, pp.30-43.

[23] Carrillo R.A. 2007.Agents ubiquitaires pour un accès

adapté aux systèmes d’information : Le Framework

PUMAS. Thèse pour obtenir le grade de docteur de

l’université joseph fourier Spécialité : Informatique,

préparée au Laboratoire l’Informatique de Grenoble

présentée et soutenue publiquement le 5 mars.

[24] Belhanafi N. 2006. Ajout de mécanismes de

réactivité au contexte dans les intergiciels pour

composants dans le cadre d’utilisateurs nomades.

Thèse présentée pour l’obtention du grade de Docteur

de l’Institut National des Télécommunications

Soutenue le 27 Novembre.

[25] Chaari.Tand Laforest. F. 2006. Adaptation in

Context-Aware Pervasive Information Systems : the

secas project, journal of pervasive computing and

communications, vol.2, no. 2, june 2006. received:

august 2 2005; revised: january 27.

[26] W3C. 2004. Recommendation W3COWL, 2004.

http://www.w3.org/TR/owl-ref/

[27] Doulkeridis.C, Loutas.N, &Vazirgiannis.M .2006. A

system architecture for context aware service

discovery. J Electron Notes Theoretic ComputSci, pp

101–116.

[28] Kapitsaki G, Kateros D, Prezerakos G, & Venierris I.

2009. Model driven development of composite

context-aware web applications. J

InformSoftwTechnol 51:1244–1260

[29] Goslar K, & Schill A. 2004. modelling contextual

information using active data structures. In:

Proceedings of the EDBT workshops.Lecture notes

in computer science, vol 3268. Springer

[30] Farrar S, & Langendoen DT.2010. An owl-dl

implementation of gold- an ontology for the semantic

web. Journal of Linguistic modeling of Information

and Markup Languages 40:45–66

[31] Wang X, Zhang DQ, Gu T, & Pung H. 2004.

Ontology based context modelling and reasoning

using owl. In: Proceedings of the 2ndannual

conference on pervasive computing and

communications workshops. IEEE

[32] Horrocks I, Patel-Schneider F. 2003. Reducing owl

entailment to description logic satisfiability. The

Semantic Web—ISWC 2003.Lect Notes ComputSci

2870:17–29

[33] Fernandez-Lopez. M & al. 1997. Methontology:

from ontological art towards ontological engineering.

In Proceedings of the AAAI97 Spring Symposium.

Series on ontological engineering. Stanford, CA, (pp,

33-40)

[34] Zacarias, M., Caetano, A., Pinto, S., & Tribolet, J.

2005.Modeling Contexts for Business Process

Oriented Knowledge Support. In :Althoff, K.D.,

Dengel, A., Bergmann, R., Nick, M., Roth-

Berghofer, T. (eds.) : Proceedings of the 3rd

Conference on Professional Knowledge Management

- Experiences and Visions (WM 2005)

(Kaiserslautern, Germany, April 10-13,2005), DFKI,

pp. 389-396

[35] Belotti, R., Decurtins, C., Grossniklaus, M., Norrie,

M.C., & Palinginis, A. 2004. Interplay of Content

and Context. In : Koch, N., Fraternali, P., Wirsing,

M. (eds.) : Proceedings of the 4th International

Conference on Web Engineering (ICWE

2004)(Munich, Germany, July 26-30, 2004), Lecture

94 Informatica 40 (2016) 71–94 S. Bourougaa et al.

Notes in Computer Science, vol. 3140, Springer-

Verlag, Berlin Heidelberg, pp. 187-200.

[36] Pittarello, F. 2005. Context-Based Management of

Multimedia Documents in 3D Navigational

Environments. Proc. of the 11th International

Workshop on Multimedia Information Systems (MIS

2005). Lecture Notes in Computer Science 3665,

Springer Verlag, 2005, pp. 146-162

[37] Sowa.j. 1984. Conceptual Structures: Information

Processing in Mind and Machine. Addison-Wesley.

A , Reading, MA

[38] Baader.F et al,. 2003. The description logic

handbook theory, Implementation and Applications,

Cambridge University Press.

[39] Driouch.R. 2007. Proposition d’une architecture

d’intégration des applications d’entreprise basée sur

l’interopérabilité sémantique de l’EbXML et la

mobilité des agents. Thèse présentée pour obtenir le

diplôme de Doctorat en science.

[40] Keita.A. 2007. Conception coopérative d’ontologies

pré-consensuelles : application au domaine de

l’urbanisme. Thèse pour l’obtention du diplôme de

Doctorat à l’institut national des sciences appliquées,

Lyon, Ecole Doctorale Informatique et Information

pour la Société 209 pages.

[41] N. Noy, R. W. Fergerson M. & A.Musen. 2000 The

knowledge model of Protégé2000: combining

interoperability and flexibility. In: Dieng R, Corby O

(eds) 12th International Conference in Knowledge

Engineering and Knowledge Management

(EKAW’00). JuanLes-Pins, France. Springer-Verlag,

LNAI 1937, Berlin, Germany.

[42] Bachimont, B., J. Charlet& R. Troncy. 2004.

Ontologies pour le Web Sémantique. Action

spécifique 32 CNRS / STIC Web sémantique

Rapport final.

[43] Troncy. Bachimont, B., J. Charlet& R.. 2004.

Ontologies pour le Web Sémantique. Action

spécifique 32 CNRS / STIC Web sémantique

Rapport final.

[44] Ketfi. A., Belkhatir. N., P-Y Cunin. 2002.

Adaptation Dynamique Concepts et

Expérimentations. , In Proceedings of ICSSEA. In

French.

[45] Kouadri Mostefaoui. S. & Hirsbrunner.B.2003. Vers

une approche orientée contexte pour la découverte et

la composition des services dans des environnements

mobiles.

[46] Kadima. H. &Montfort.V. 2003. Les services Web:

Techniques, démarches et outils XML, WSDL,

SOAP, UDDI, Rosetta, UML, Dunod. Paris

[47] Ponge, J. 2004. comptabilité et substitution

dynamique des web services. Mémoire de fin

d’études, université Blaise Pascal Clermont II, juillet.

[48] Msdn. 2012 :. msdn.microsoft.com

[49] Protege 2000 Ontology Editor Home Page, http:

//protege.stanford.edu

[50] w3c. 2012. www.w3.org.

Informatica 40 (2016) 95–107 95

Evaluating the Dual Randomized Kaczmarz Laplacian Linear Solver

Erik G. Boman
Sandia National Laboratories1

Center for Computing Research USA
E-mail: egboman@sandia.gov

Kevin Deweese2 and John R. Gilbert2

UC Santa Barbara, Department of Computer Science, USA
E-mail: kdeweese@cs.ucsb.edu and gilbert@cs.ucsb.edu

Keywords: Laplacian solver, randomized Kaczmarz, cycle basis

Received: May 28, 2015

A new method for solving Laplacian linear systems proposed by Kelner et al. involves the random sampling
and update of fundamental cycles in a graph. Kelner et al. proved asymptotic bounds on the complexity
of this method but did not report experimental results. We seek to both evaluate the performance of this
approach and to explore improvements to it in practice. We compare the performance of this method to
other Laplacian solvers on a variety of real world graphs. We consider different ways to improve the
performance of this method by exploring different ways of choosing the set of cycles and the sequence of
updates, with the goal of providing more flexibility and potential parallelism. We propose a parallel model
of the Kelner et al. method, for evaluating potential parallelism in terms of the span of edges updated at each
iteration. We provide experimental results comparing the potential parallelism of the fundamental cycle
basis and our extended cycle set. Our preliminary experiments show that choosing a non-fundamental set
of cycles can save significant work compared to a fundamental cycle basis.

Povzetek:

1 Introduction

1.1 Graph Laplacians

The Laplacian matrix of a weighted, undirected graph is
defined as L = D − A, where D is the diagonal matrix
containing the sum of incident edge weights and A is the
weighted adjacency matrix. The Laplacian is symmetric
and positive semidefinite. The Laplacian is also defined for
directed graphs [2]. Because they are not symmetric, most
of the solvers discussed in this paper do not apply, and ef-
ficient solution techniques remain an open problem. Solv-
ing linear systems on the Laplacians of structured graphs,
such as two and three dimensional meshes, has long been
important in finite element analysis (with applications in
electrical and thermal conductivity, and fluid flow mod-
eling [6]) and image processing (with applications in im-
age segmentation, inpainting, regression, and classification
[12, 20, 22]). More recently, solving linear systems on the
graph Laplacians of large graphs, with irregular degree dis-
tributions, has emerged as an important computational task
in network analysis (with applications to maximum flow

1Sandia is a multi-program laboratory managed and operated by San-
dia Corporation, a wholly owned subsidiary of Lockheed Martin Corpo-
ration, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

2Supported by Contract #618442525-57661 from Intel Corp. and Con-
tract #DE-AC02-05CH11231 from DOE Office of Science.

problems [8], graph sparsification [24], and spectral clus-
tering [17]).

Most applied work on Laplacian solvers has been on pre-
conditioned conjugate gradient (PCG) solvers, including
support graph preconditioners [4, 5, 13], or on specialized
multigrid methods [20, 21]. Several of these methods seem
efficient in practice, but none have asymptotic performance
guarantees based on the size of the graph.

The theoretical computer science community has devel-
oped several methods, which we refer to generally as com-
binatorial Laplacian solvers. These solvers have good com-
plexity bounds but, in most cases, no reported experimental
results. Spielman and Teng [25] first showed how to solve
these problems in linear times polylogarithmic work, later
improved upon by Koutis, Miller, and Peng [19], but their
algorithms do not yet have a practical implementation. An
algorithm proposed by Kelner et al. [16] has the potential to
solve these linear systems in linear times polylogarithmic
work with a simple, implementable algorithm.

1.2 The dual randomized Kaczmarz
algorithm

The inspiration for the algorithm proposed by Kelner et
al. [16], which we refer to as Dual Randomized Kaczmarz
(DRK), is to treat graphs as electrical networks with resis-
tors on the edges. For each edge, the weight is the inverse

96 Informatica 40 (2016) 95–107 E.G. Boman et al.

of the resistance. We can think of vertices as having an
electrical potential and a net current at every vertex, and
define vectors of these potentials and currents as v and f
respectively. These vectors are related by the linear sys-
tem Lv = f . Solving this system is equivalent to finding
the set of voltages that satisfies the net “injected” currents.
Kelner et al.’s DRK algorithm solves this problem with an
optimization algorithm in the dual space, which finds the
optimal currents on all of the edges subject to the constraint
of zero net voltage around all cycles. They use Kaczmarz
projections [15] to adjust currents on one cycle at a time,
iterating until convergence.

We will also refer to the Primal Randomized Kaczmarz
(PRK) method that applies Kaczmarz projections in the pri-
mal space [26]. One sweep of PRK performs a Kaczmarz
projection with every row of the matrix. Rows are taken in
random order at every sweep.

DRK iterates over a set of fundamental cycles, cycles
formed by adding individual edges to a spanning tree T .
The fundamental cycles are a basis for the space of all cy-
cles in the graph [11]. For each off-tree edge e, we define
the resistance Re of the cycle Ce that is formed by adding
edge e to the spanning tree as the sum of the resistances
around the cycle,

Re =
∑

e′∈Ce

re′

which is thought of as approximating the resistance of the
off-tree edge re. DRK chooses cycles randomly, with prob-
ability proportional to Re/re.

The performance of the algorithm depends on the sum of
these approximation ratios, a property of the spanning tree
called the tree condition number

τ(T) =
∑

e∈E\T

Re

re
.

The number of iterations of DRK is proportional to the tree
condition number. Kelner et al. use a particular type of
spanning tree with low tree condition number, called a low
stretch tree. Specifically, they use the one described by
Abraham and Neiman [1] with τ = O(m log n log log n),
where n refers to the number of vertices and m refers
to the number of edges of the original graph. The work
of one iteration is naively the cycle length, but can be
reduced to O(log n) with a fast data structure, yielding
O(m log n2 log log n) total work.

1.3 Overview
The rest of the paper is organized as follows. In Section
2 we survey the related experimental work. Section 3 is
an initial evaluation of the DRK algorithm as compared to
PCG and PRK. We present our new ideas for improving the
performance of DRK in Section 4. In this section we also
consider how to perform cycle updates in parallel. Section
5 is an evaluation of the new ideas proposed in Section 4.

2 Related experimental work

As the DRK algorithm is a recent and theoretical result,
there are few existing implementations or performance re-
sults. Hoske et al. implemented the DRK algorithm in C++
and did timing comparisons against unpreconditioned CG
on two sets of generated graphs [14]. They concluded that
the solve time of DRK does scale nearly linearly. However,
several factors make the running time too large in practice,
including large tree stretch and cycle updates with unfa-
vorable memory access patterns. They cite experimental
results by Papp [23], which suggest that the theoretically
low stretch tree algorithms are not significantly better than
min-weight spanning trees in practice, at least on relatively
small graphs.

Chen and Toledo [7] experimented with an early and
somewhat different combinatorial approach to Laplacians
called support graph preconditioners. They demonstrated
that support graph preconditioners can outperform incom-
plete Cholesky on certain problems. There has also been
some experimental work in implementing the local cluster-
ing phase of the Spielman and Teng algorithm [27].

3 Initial evaluation of DRK
and comparison to PCG and PRK

3.1 Experimental design

Our initial study of DRK measures performance in terms
of work instead of time, and uses a somewhat more diverse
graph test set than Hose et al. [14]. We implemented the
algorithm in Python with Cython to see how it compared
against PCG (preconditioned with Jacobi diagonal scaling)
and PRK. However, we did not implement a low stretch
spanning tree. Instead we use a low stretch heuristic that
ranks and greedily selects edges by the sum of their inci-
dent vertex degrees (a cheap notion of centrality). In prac-
tice this works well on unweighted graphs. We also did not
implement the fast data structure Kelner et al. use to update
cycles in O(log n) work.

Our results do not include wall clock time, since our
DRK implementation is not highly optimized. Instead we
are interested in measuring the total work. For PCG the
work is the number of nonzeros in the matrix for every it-
eration, plus the work of applying the preconditioner at ev-
ery iteration (number of vertices for Jacobi). For PRK the
work is the number of nonzero entries of the matrix for ev-
ery sweep, where a sweep is a Kaczmarz projection against
all the rows of L. As the DRK work will depend on data
structures and implementation, we consider four different
costs for estimating the work of updating a single cycle,
which we refer to as cost metrics. The first metric is the
cost of updating every edge in a cycle, which is included
because it is the naive implementation we are currently us-
ing. The second metric relies upon the data structure de-
scribed by Kelner et al., which can update the fundamen-

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 97

tal cycles in O(log n) work. This may be an overestimate
when the cycle length is actually less than log n. The third
metric considers a hypothetical log of cycle length update
method which we do not know to exist, but is included as
a hopeful estimate of a potentially better update data struc-
ture. The last metric costs O(1) work per cycle, which is
included because we surely cannot do better than this.

Metric 1. cycle length (naive)

Metric 2. log n (using fast update data structure)

Metric 3. log(cycle length) (optimistic)

Metric 4. 1 (lower bound)

We ran experiments on all the mesh-like graphs and ir-
regular graphs shown in Appendix Table 1. Mesh-like
graphs come from more traditional applications such as
model reduction and structure simulation, and contain a
more regular degree distribution. Irregular graphs come
from electrical, road, and social networks, and contain a
more irregular, sometimes exponential, degree distribution.
Most of these graphs are in the University of Florida (UF)
sparse matrix collection [10]. We added a few 2D and 3D
grids along with a few graphs generated with the BTER
generator [18]. We removed weights and in a few cases
symmetricized the matrices by adding the transpose. We
pruned the graphs to the largest connected component of
their 2-core, by successively removing all degree 1 ver-
tices, since DRK operates on the cycle space of the graph.
The difference between the original graph and the 2-core
is trees that are pendant on the original graph. These can
be solved in linear time so we disregard them to see how
solvers compare on just the structurally interesting part of
the graph.

We solve to a relative residual tolerance of 10−3. Ac-
curacy in the solution is sacrified in order to run more ex-
periments and on larger graphs. The Laplacian matrix is
singular with a nullspace dimension of one (because the
pruned graph is connected). For DRK and PRK this is not
a problem, but for PCG we must handle the non-uniqueness
of the solution. Our choice for handling singularity is to re-
move the last row and column of the matrix. One could also
choose to orthogonalize the solution against the nullspace
inside the algorithm, but in our experience the performance
results are similar.

We also ran a set of PCG vs. DRK experiments where the
convergence criteria is the actual error within 10−3. Ac-
tual error can be calculated by knowing the solution in ad-
vance. One of the interesting results of the DRK algorithm
is that, unlike PCG and PRK, convergence does not depend
on the condition number of the matrix, but instead just on
the tree condition number. Since higher condition number
can make small residuals less trustworthy, we wondered
whether convergence in the actual error yields different re-
sults.

3.2 Experimental results
We compare DRK to the other solvers by examining the ra-
tio of DRK work to the work of the other solvers. The ratio
of DRK work to PRK work is plotted in Figure 1, separated
by graph type. Each vertical set of four points are results
for a single graph, and are sorted on the x axis by graph
size. The four points represent the ratio of DRK work to
PRK work under all four cost metrics. Points above the line
indicate DRK performed more work while points below the
line indicate DRK performed less work. Similar results for
the PCG comparison are shown in Figure 2. Another set of
PCG comparisons, converged to the actual error, is shown
in Figure 3.

An example of the convergence behavior on the USpow-
erGrid graph is shown in Figure 4. This plot indicates how
both the actual error and relative error behave during the
solve for both PCG and DRK. A steeper slope indicates
faster convergence. Note this only shows metric 1 work for
DRK.

3.3 Experimental analysis
In the comparison to PRK (shown in Figure 1), DRK is
often better with cost metrics 3 and 4. On a few graphs,
mostly in the irregular category, DRK outperforms PRK
in all cost metrics (all the points are below the line). In
the comparison to PCG (shown in Figure 2), DRK fares
slightly better for the irregular graphs, but on both graph
sets these results are somewhat less than promising. PCG
often does better (most of the points are above the line).
Even if we assume unit cost for cycle updates, PCG out-
performs DRK. The performance ratios also seem to get
worse as graphs get larger.

The results concerning the actual error (shown in Figure
3) are very interesting as they are quite different than those
with the residual tolerance. For all of the mesh graphs, con-
sidering the actual error makes DRK look more promising.
The relative performance of cost metrics 3 and 4 are now
typically better for DRK than PCG. However, PCG is still
consistently better with cost metrics 1 and 2. For some of
the irregular graphs, the convergence behavior is similar,
but for others things look much better when considering ac-
tual error. Informally the number of edges updated by DRK
did not change much when switching convergence criteria,
but PCG work often increased. The USpowerGrid example
(shown in Figure 4) gives a sense of this. The residual error
and actual error decrease similarly for DRK, but the actual
error curve for PCG decreases much more slowly for the
actual error.

4 New algorithmic ideas
We consider ways in which DRK could be improved by al-
tering the choice of cycles and their updates. Our goals are
both to reduce total work and to identify potential paral-
lelism in DRK. To this end we are interested in measuring

98 Informatica 40 (2016) 95–107 E.G. Boman et al.

104 105 106

Graph Size (Edges)

10−2

10−1

100

101

To
ta

lD
R

K
W

or
k

To
ta

lP
R

K
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(a) Mesh-like Graphs

103 104 105 106

Graph Size (Edges)

10−2

10−1

100

101

102

To
ta

lD
R

K
W

or
k

To
ta

lP
R

K
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(b) Irregular Graphs

Figure 1: DRK vs. PRK: Relative work of DRK to PRK work under the four cost metrics is shown (PRK is better than
DRK at points above the line).

104 105 106

Graph Size (Edges)

100

101

102

103

To
ta

lD
R

K
W

or
k

To
ta

lP
C

G
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(a) Mesh-like Graphs

103 104 105 106

Graph Size (Edges)

10−2

10−1

100

101

102

103

To
ta

lD
R

K
W

or
k

To
ta

lP
C

G
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(b) Irregular Graphs

Figure 2: DRK vs. PCG: Relative work of DRK to PCG work under the four cost metrics is shown (PCG is better than
DRK at points above the line).

104 105 106

Graph Size (Edges)

10−1

100

101

102

To
ta

lD
R

K
W

or
k

To
ta

lP
C

G
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(a) Mesh-like Graphs

103 104 105 106

Graph Size (Edges)

10−2

10−1

100

101

102

103

To
ta

lD
R

K
W

or
k

To
ta

lP
C

G
W

or
k

Metric 1
Metric 2
Metric 3
Metric 4

(b) Irregular Graphs

Figure 3: DRK vs. PCG Converged to Actual Error: Relative work of DRK to PCG work under the four cost metrics is
shown, convergence tolerance is norm of actual error within 10−3.

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 99

0 1 2 3 4 5
Edges Updated ×106

10−4

10−3

10−2

10−1

100

101

R
el

at
iv

e
E

rr
or

PCG Residual Error
PCG Actual Error
DRK Residual Error
DRK Actual Error

Figure 4: DRK and PCG Convergence Behavior on US-
powerGrid: Relative residual error and actual error are
shown for both solvers over the iterations required for con-
vergence.

the number of parallel steps, the longest number of steps
a single thread would have to perform before before con-
vergence, maximized over all threads. Parallel steps are
measured in terms of the four cost metrics described in
Section 2. We will also define the span [9], or critical
path length, which is the number of parallel steps with un-
bounded threads.

4.1 Expanding the set of cycles

Sampling fundamental cycles with respect to a tree may re-
quire updating several long cycles which will not be edge-
disjoint. It would be preferable to update edge-disjoint cy-
cles, as these updates could be done in parallel. The cycle
set we use does not need to be a basis, but it does need
to span the cycle space. In addition to using a cycle ba-
sis from a spanning tree, we will use several small, edge-
disjoint cycles. We expect that having threads update these
small cycles is preferable to having them stand idle.

4.1.1 2D grid example

A simple example of a different cycle basis is the 2D grid
graph, shown in Figure 5. In the original DRK, cycles are
selected by adding off-tree edges to the spanning tree as in
Figure 5(a). As the 2D grid graph is planar, the faces of
the grid are the regions bounded by edges, and we refer to
the cycles that enclose these regions as facial cycles. We
consider using these cycles to perform updates of DRK, as
the facial cycles span the cycle space of a planar graph [11].
Half of these cycles can be updated at one iteration and then
the other half can be updated during the next iteration, in a
checkerboard fashion, as in Figures 5(b)(c). Furthermore,
to speed up convergence, smaller cycles can be added to-
gether to form larger cycles (in a multilevel fashion) as in
Figure 5(d).

(a) (b)

(c) (d)

Figure 5: Grid Cycles: (a) Fundamental cycles are formed
by adding edges to the spanning tree. (b-c) First level facial
cycles are shown, grouped into edge-disjoint sets. (d) Sec-
ond level facial cycles are formed by adding smaller facial
cycles.

101 102 103 104 105

Grid Size (Edges)

102

103

104

105

106

107

108

109

1010

E
dg

es
U

pd
at

ed

Fundamental Cycles
Face Cycles w/o Hierarchy
Face Cycles with Hierarchy

Work
Span

Figure 6: Grid Cycle Performance: Work and span of DRK
using facial cycles and fundamental cycles for two dimen-
sional grids of various sizes.

We implemented such a cycle update scheme using the
grid facial cycles, and performed experiments to see how
the facial cycles affected the total work measured in both
the number of cycles updated (metric 4) and edges updated
(metric 1). With the facial cycles, the span per iteration
is the cost of updating two cycles at each level. We ran
experiments with and without the hierarchical combination
of the facial cycles against the original set of fundamental
cycles. In the case of the fundamental cycles we use H trees
[3], which have optimal stretch O(log n). Solutions were

100 Informatica 40 (2016) 95–107 E.G. Boman et al.

Algorithm 1 Local Greedy Finder.
function LOCAL-GREEDY(G)

for ei,j ∈ E do
if ei,j unmarked then

pi,j = Truncated-BFS(G \ (ei,j), i, j,max_edges)
Add pi,j + ei,j to cycle set
Mark all edges in pi,j + ei,j

end if
end for

end function

calculated to a residual tolerance of 10−6. The accuracy
here is slightly better than the rest of the experiments since
these experiments were faster.

The results shown in Figure 6 indicate that the facial cy-
cles improve both the work and span. Using a hierarchi-
cal update scheme reduces the total number of edges up-
dated. However as this requires updating larger cycles it
has a worse span than simply using the lowest level of cy-
cles.

4.1.2 Extension to general graphs

We refer to small cycles we add to the basis as local greedy
cycles. Pseudocode for finding these cycles is shown in
Algorithm 1. We construct this cycle set by attempting
to find a small cycle containing each edge using a trun-
cated breadth-first search (BFS). Starting with all edges
unmarked, the algorithm selects an unmarked edge and at-
tempts to find a path between its endpoints. This search
is truncated by bounding the number of edges searched so
that each search is constant work and constructing the en-
tire set is O(m) work. If found, this path plus the edge
forms a cycle, which is added to the new cycle set, and all
edges used are marked. Appendix Table 1 shows the num-
ber of local greedy cycles found for all the test graphs when
the truncated BFS was allowed to search 20 edges. Greedy
cycles were found in all the graphs except for tube1, all
of whose vertices had such high degree that searching 20
edges was not enough to find a cycle.

Adding additional cycles to the cycle basis means we
need new probabilities with which to sample all the cycles.
Since in the unweighted case, the stretch of a cycle is just its
total length, it seems natural to update cycles proportional
to their length.

4.2 Cycle sampling and updating in parallel

In the original DRK algorithm, cycles are chosen one at
a time with probability proportional to stretch. We pro-
pose a parallel update scheme in which multiple threads
each select a cycle, at every iteration, with probability pro-
portional to cycle length. If two threads select cycles that
share an edge, one of the threads goes idle for that itera-
tion. In Figure 8, threads 1, 2, and 4 select edge-disjoint
cycles. However the third processor selects a cycle which

Figure 7: Local Greedy Cycles: An edge is selected on the
left and a local greedy search is performed to find the cycle
on the right.

contains edge 3, which is already in use by the cycle on
thread 1. Processor 3 sits this iteration out while the other
processors update their cycles.

Thread 1 Thread 2 Thread 3 Thread 4

1 2

34

6

7

5 3
8

9
10

11 12

13

Figure 8: Example of Processors Selecting Cycles:
Threads 1, 2, and 4 select edge-disjoint cycles, but thread 3
selects a cycle with edge 3 already in use. Thread 3 will go
idle for an iteration.

We compute several measures of parallel performance.
The first is simply the number of iterations. The second is
the total work across all threads at every iteration. Lastly
we measure the span, or critical path length. This is the
maximum of the work over all threads, summed over all
the iterations.

We envision threads working in a shared memory envi-
ronment on a graph that fits in memory. This might not be
realistic in practice as there must be some communication
of which edges have already been used which might be too

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 101

expensive relative to the cost of a cycle update. However
we are simply interested in measuring the potential paral-
lelism, thus we ignore any communication cost.

The parallel selection scheme conditions the probabili-
ties with which cycles are selected on edges being available

p(Ce) =
1

τ

Re

re
p(e′ ∈ Ce available).

This scheme creates a bias towards smaller cycles with less
conflicting edges as more threads are added, which can in-
crease total work.

5 Experiments and results

5.1 Experimental design
We performed experiments on a variety of unweighted
graphs from the UF Sparse Matrix Collection (the same
set as in Section 2, shown in Appendix Table 1). Again we
distinguish between mesh-like graphs and irregular graphs.
We also use a small test set for weak scaling experiments,
consisting of 2D grids and BTER graphs.

We continue to use our Python/Cython implementation
of DRK, without a guaranteed low stretch spanning tree or
a cycle update data structure. The code does not run in par-
allel, but we simulate parallelism on multiple threads by
selecting and updating edge-disjoint cycles at every itera-
tion as described above.

Our experiments consist of two sets of strong scaling ex-
periments, the spanning tree cycles with and without local
greedy cycles, up to 32 threads. We set a relative resid-
ual tolerance of 10−3. Again we sacrifice accuracy to run
more experiments on larger graphs. We consider the same
four cycle update cost metrics as in Section 2: cycle length,
log n, log(cycle length), and unit cost update. However in
the case of the local greedy cycles, which cannot use the
log n update data structure, we always just charge the num-
ber of edges in a cycle. For all the cost models, we measure
the total work required for convergence and the number of
parallel steps taken to converge. For metric 4 these will
be the same. A condensed subset of the scaling results is
shown in Appendix Table 2.

5.2 Experimental results
First, we examine the effects of using an expanded cycle
set in the sequential algorithm. We estimate the useful-
ness of extra cycles as the length of the largest cycle in the
fundamental set normalized by the number of cycles in the
fundamental set. This is because we suspect the large cy-
cles to be a barrier to performance, as they are updated the
most frequently, and at the highest cost. The performance
of the local greedy cycles for the two different graph types,
using metrics 1 and 4, is shown in Figure 9. These plots
show the ratio between the work of the expanded cycle sets
as a function of the estimated usefulness. Points below the

line indicate that adding local greedy cycles improved per-
formance.

We examine how the local greedy cycles perform as
graph size increases with weak scaling experiments on 2D
grid graphs and BTER graphs. The 2D grids used for this
experiment are the same as in Figure 6, and the BTER
graphs were generated with the parameters: average degree
of 20, maximum degree of

√
n, global clustering coeffi-

cient of 0.15, and maximum clustering coefficient of 0.15.
The performance of cost metric 1 as graph size scales is
shown in Figure 10.

Figure 11 shows examples of our results on three of the
graphs. In Figure 11(a) the parallel steps (with the four
different metrics) is plotted as a function of the number of
threads used for the barth5 graph. The total edges (metric
1) is at the top of the plot, while the unit cost (metric 4) is
at the bottom. These results are shown for both fundamen-
tal and extended cycle sets. Figure 12 shows the effect of
adding threads to the total work.

To measure the parallel performance across multiple
graphs we look at the average speedup of the parallel steps
across all graphs. Speedup is defined as the sequential work
using one thread over the number of parallel steps using a
number of multiple threads. The speedup with and without
extended cycles is shown in Figure 13. Note that without
local greedy cycles metric 2 and metric 4 speedup are the
same as the costs differ by log n. We compare the speedup
between the different cycle sets for the different graph types
in Figure 14. Results are shown only for metric 1. The
speedup of using 8 threads without local greedy is plotted
against the speedup of using 8 threads with local greedy.

5.3 Experimental analysis

In the sequential results shown in Figure 9, there seems to
be a threshold of largest cycle length above which local
greedy cycles can be useful, but below which there is not
much difference. However, there is not a clear scaling with
the cycle length ratio, indicating that this is still a crude
guess as to where the extended cycle set is useful. Also
note that mesh-like graphs tend to have larger girth (max
cycle length) than irregular graphs, leading to local greedy
cycles working better on meshes. The local greedy cycle
improvement is slightly better for metric 1 where we count
every edge update. At the other extreme, when updating
large cycles is the same cost (unit) as small cycles added
by local greedy, the local cycles are less effective. However
there is still an improvement in number of cycles updated.
We were unable to find some measure of the usefulness of
a single local greedy cycle.

The weak scaling experiments shown in Figure 10 show
that, with the exception of a BTER outlier, the work scales
nicely with graph size. Also results for both cycle sets
scale similarly. The extended cycle set benefits the 2D grid
graphs while the BTER graphs see little improvement or
are worse. This is consistent with Figure 9 since the BTER
graphs are irregular and the 2D grids are mesh-like.

102 Informatica 40 (2016) 95–107 E.G. Boman et al.

10−5 10−4 10−3 10−2 10−1

Largest Fundamental Cycle
Number of Fundamental Cycles

.5

1

1.1
D

R
K

S
eq

ue
nt

ia
lW

or
k

w
ith

Lo
ca

lG
re

ed
y

D
R

K
S

eq
ue

nt
ia

lW
or

k
w

ith
ou

t

Irregular Graphs
Mesh-like Graphs

(a) Metric 1

10−5 10−4 10−3 10−2 10−1

Largest Fundamental Cycle
Number of Fundamental Cycles

.5

1

1.1

D
R

K
S

eq
ue

nt
ia

lW
or

k
w

ith
Lo

ca
lG

re
ed

y
D

R
K

S
eq

ue
nt

ia
lW

or
k

w
ith

ou
t

Irregular Graphs
Mesh-like Graphs

(b) Metric 4

Figure 9: Sequential Comparison of Cycle Set Work: The ratio of DRK work with and without local greedy cycles, on
one thread, is plotted against an estimate of the usefulness of extra cycles. Points below the line indicate that adding local
greedy cycles helped.

101 102 103 104 105

Vertices

103

104

105

106

107

108

109

D
R

K
S

eq
ue

nt
ia

lW
or

k

Without Local Greedy
With Local Greedy

(a) 2D Grid

102 103 104 105

Vertices

106

107

108

D
R

K
S

eq
ue

nt
ia

lW
or

k

Without Local Greedy
With Local Greedy

(b) BTER

Figure 10: Weak Scaling of Cycle Set Work Under Cost Metric 1: The DRK work with and without local greedy cycles,
on one thread, is plotted against the graph size in vertices.

100 101

Threads

105

106

107

108

109

P
ar

al
le

lS
te

ps

(a) barth5

100 101

Threads

105

106

107

108

109

P
ar

al
le

lS
te

ps

(b) tuma1

100 101

Threads

104

105

106

107

P
ar

al
le

lS
te

ps

Without
Local Greedy
With
Local Greedy
Metric 1
Metric2
Metric 3
Metric 4

(c) email

Figure 11: Parallel Steps Scaling (shown for three example graphs): As threads are added, parallel steps decreases for
both cycle sets (steeper slope indicates better scaling).

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 103

100 101

Threads

105

106

107

W
or

k

Without
Local Greedy
With
Local Greedy
Metric 1
Metric2
Metric 3
Metric 4

Figure 12: Total Work Scaling of email Graph: As threads are added the total work increases for both cycle sets (ideally
it would stay constant).

0 5 10 15 20 25 30 35
Threads

1

2

3

4

5

6

7

8

S
pe

ed
up

(a) Mesh-like Graphs

0 5 10 15 20 25 30 35
Threads

1

2

3

4

5

6

7
S

pe
ed

up

Without
Local Greedy
With
Local Greedy
Metric 1
Metric 2
Metric 3
Metric 4

(b) Irregular Graphs

Figure 13: Average Parallel Steps Speedup: The ratio of sequential work on one thread to parallel steps on multiple
threads is plotted up to 32 threads.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Speedup with Local Greedy

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
pe

ed
up

w
ith

ou
tL

oc
al

G
re

ed
y Irregular Graphs

Mesh-like Graphs

Figure 14: 8 Thread Speedup Comparison: The ratio of the 8 thread speedups of both cycle sets are plotted for all graphs
(below the line local greedy speedup is better).

The scaling of parallel steps plots show a variety of dif-
ferent behavior on the example graphs. On the mesh-like
barth5 graph (shown in Figure 11(a)), the local greedy cy-
cles improve both sequential performance and the scaling
of parallel steps performance. At the left of this plot we see
the extra cycles improve sequential results. Then as threads

are added in parallel, the steeper slope indicates the local
greedy cycles improved the scaling of the parallel steps. On
the tuma1 graph (shown in Figure 11(b)), the local greedy
cycles improve sequential performance, but result in simi-
lar or worse scaling. At the left of this plot we see the extra
cycles improve results sequentially, but when scaled to 32

104 Informatica 40 (2016) 95–107 E.G. Boman et al.

threads performance is similar. On the email graph (shown
in Figure 11(c)), the local greedy cycles do not improve se-
quential performance, and scaling is poor with both cycle
sets. There is little difference between the different cycle
sets in this plot. Furthermore scaling is poor and quickly
flattens out by about four threads. For a better understand-
ing of the poor parallel steps scaling on the email graph, we
examine the total work scaling (shown in Figure 12), show-
ing how much extra work we have to do when skewing the
probability distribution. This extra work quickly increases,
limiting the parallel performance.

In the average parallel steps speedup plot (shown in Fig-
ure 13), we see similar speedup for both cycle sets. On
mesh-like graphs the local greedy cycles do slightly bet-
ter on all cost metrics beyond 16 threads. However on the
irregular graphs, only with cycle cost metric 4 do the lo-
cal greedy cycles perform better, and under metric 3 they
perform worse. (Again note that without local greedy cy-
cles metric 4 and metric 3 speedups are the same). We
hypothesized that giving the solver smaller, extra cycles
would improve the parallel performance compared to the
fundamental cycles. However this seems to only be true
for mesh-like graphs, and even then the improvement is
minimal. An interesting thing to note is that the speedup
is better with the log n cost model. This is probably due to
overcharging small cycles, which is less problematic when
there are more threads to pick potentially larger cycles.

Taking a snapshot of the parallel steps speedup results
on eight threads (shown in Figure 14), we see that there are
some irregular graphs which do not have much speedup for
either cycle set (bottom left of the plot). However there are
mesh-like and irregular graphs which enjoy a speedup for
both cycle sets (top right of the plot). It is difficult to say
on which graphs will different cycles aid with parallelism.

6 Conclusion

We have done an initial comparison of Kelner et al.’s DRK
algorithm with PCG and PRK. These preliminary results,
measuring algorithm work by number of edges touched or
by number of cycles updated, do not at present support the
practical utility of DRK. For mesh-like graphs, PCG usu-
ally takes less work than DRK, even if DRK is charged
only one unit of work per cycle update. This suggests that
the fast cycle update data structure proposed by Kelner et
al. (or any undiscovered fast update method) will not be
enough to make DRK practical. It does seem that DRK is
an improvement to PRK on several graphs, mostly irregular
graphs. One promising result of these experiments is that
DRK converges to small actual error similarly to residual
error, while PCG sometimes does not. More PCG iterations
are required when solving to a low actual error, while DRK
work does not increase very much. More work should be
done to understand this behavior.

The experiments in this paper were limited to un-
weighted graphs for simplicity. Experiments with weighted

graphs should be run for more complete results. An open
question is whether there is a class of graphs with high con-
dition number, but with practical low stretch trees, where
DRK will perform significantly better in practice.

We suggest techniques for improving DRK in practice.
One possible improvement is to use a spanning set, includ-
ing non-fundamental cycles, to accelerate convergence.
Using facial cycles of a two-dimensional grid graph greatly
reduces the required number of edge updates compared to
the fundamental cycle basis. We try to generalize these cy-
cles by finding small local greedy cycles. These cycles can
accelerate convergence, especially for mesh-like graphs. It
is difficult to measure the usefulness of any one cycle in the
basis, so it is difficult to determine where and which extra
cycles are useful.

We also consider how DRK could be implemented in
parallel to take advantage of simultaneous updates of edge
disjoint cycles. We describe a model in which threads se-
lect cycles, and go idle if a conflicting edge is found. While
this can increase total work, it can often reduce the number
of parallel steps. However there is a limit to this paral-
lelism. Furthermore, scaling behavior seems to be similar
with or without local greedy cycles.

References
[1] I. Abraham and O. Neiman (2012) Using petal-

decompositions to build a low stretch spanning tree,
Proceedings of the 44th annual ACM Symp. on The-
ory of Comp., ACM, New York, NY, USA, pp. 395–
406.

[2] R. Agaev and P. Chebotarev (2005) On the spectra
of nonsymmetric Laplacian matrices, Linear Algebra
and its Appl., Elsevier, pp. 157–168.

[3] N. Alon, M. Karp, D. Peleg, and D. West (1995)
A graph-theoretic game and its application to the k-
server problem, SIAM Journal on Comp., SIAM, pp.
78–100.

[4] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen,
and S. Toledo (2006) Support-graph preconditioners,
SIAM Journal Matrix Anal. Appl., SIAM, pp. 930–
951.

[5] E. G. Boman, D. Chen, B. Hendrickson, and S.
Toledo (2004) Maximum-weight-basis precondition-
ers, Numerical Linear Algebra Appl., Wiley, pp. 695–
721.

[6] E. G. Boman, B. Hendrickson, and S. Vavasis (2008)
Solving elliptic finite element systems in near-linear
time with support preconditioners, SIAM Journal on
Numerical Anal., SIAM, pp. 3264–3284.

[7] D. Chen and S. Toledo (2003) Vaidya’s precondition-
ers: Implementation and experimental study, Elec-

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 105

tronic Transactions on Numerical Anal. [electronic
only], pp. 30–49.

[8] P. Christiano, J. A. Kelner, A. Madry, D. A. Spiel-
man, and S.-H. Teng (2011) Electrical flows, Lapla-
cian systems, and faster approximation of maximum
flow in undirected graphs, Proceedings of the 43rd
annual ACM Symp. on Theory of Comp., ACM, San
Jose, CA, USA, pp. 273–282.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein (2009) Introduction to Algorithms, MIT Press
and McGraw-Hill.

[10] T. A. Davis and Y. Hu (2011) The University of
Florida sparse matrix collection, ACM Transactions
on Mathematical Software, ACM, pp. 1:1–1:25.

[11] R. Diestel (2012) Graph Theory, Springer.

[12] L. Grady (2006) Random walks for image segmen-
tation, IEEE Transactions on Pattern Anal. and Ma-
chine Intelligence, IEEE, pp. 1768–1783.

[13] K. Gremban (1996) Combinatorial Preconditioners
for Sparse, Symmetric, Diagonally Dominant Lin-
ear Systems, PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA.

[14] D. Hoske, D. Lukarski, H. Meyerhenke, and M. Weg-
ner (2015) Is nearly-linear the same in theory and
practice? A case study with a combinatorial Lapla-
cian solver, Computing Research Repository [elec-
tronic only], http://arxiv.org/abs/1502.07888.

[15] S. Kaczmarz (1937) Angenäherte auflösung von sys-
temen linearer gleichungen, Bulletin International de
l’Academie Polonaise des Sciences et des Lettres, pp.
355–357.

[16] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu
(2013) A simple, combinatorial algorithm for solv-
ing SDD systems in nearly-linear time, Proceedings
of the 45th ACM Symp. Theory of Comp., ACM, Palo
Alto, CA, USA, pp. 911–920.

[17] N. L. D. Khoa and S. Chawla (2015) A scalable ap-
proach to spectral clustering with SDD solvers, Jour-
nal of Intelligent Info. Sys., Springer, pp. 289–308.

[18] T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri
(2014) A scalable generative graph model with com-
munity structure, SIAM Journal on Scientific Comp.,
SIAM, pp. C424–C452.

[19] I. Koutis, G. L. Miller, and R. Peng (2014) Approach-
ing optimality for solving SDD systems, SIAM Jour-
nal on Comp., SIAM, pp. 337–354.

[20] I. Koutis, G. L. Miller, and D. Tolliver (2011) Com-
binatorial preconditioners and multilevel solvers for
problems in computer vision and image processing,

Computer Vision and Image Understanding, Elsevier,
pp. 1638–1646.

[21] O. E. Livne and A. Brandt (2012) Lean alge-
braic multigrid (LAMG): Fast graph Laplacian linear
solver, SIAM Journal on Scientific Comp., SIAM, pp.
B499–B522.

[22] J. McCann and N. S. Pollard (2008) Real-time
gradient-domain painting, ACM Transactions on
Graphics, ACM, pp. 93:1–93:7.

[23] P. A. Papp (2014) Low-Stretch Spanning Trees, Un-
dergraduate thesis, Eötvös Loránd University, Bu-
dapest, Hungary.

[24] D. A. Spielman and N. Srivastava (2011) Graph spar-
sification by effective resistances, SIAM Journal on
Comp., SIAM, pp. 1913–1926.

[25] D. A. Spielman and S. Teng (2004) Nearly-linear time
algorithms for graph partitioning, graph sparsifica-
tion, and solving linear systems, In Proceedings of the
36th Annual ACM Symp. on Theory of Comp., ACM,
New York, NY, USA, pp. 81–90.

[26] T. Strohmer and R. Vershynin (2009) A randomized
Kaczmarz algorithm with exponential convergence,
Journal of Fourier Anal. and Appl., Springer, pp.
262–278.

[27] Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni (2013) A
local algorithm for finding well-connected clusters,
Proceedings of the 30th International Conference on
Machine Learning, JMLR Workshop and Conference
Proceedings, Atlanta, GA, USA, pp. 396–404.

106 Informatica 40 (2016) 95–107 E.G. Boman et al.

Graph Nodes Edges 2-core 2-Core Greedy Probability of Largest
(Collection) Nodes Edges Cycles Selecting Greedy Cycle Length

jagmesh3 (HB) 1.09k 3.14k 1.09k 3.14k 1.92k 0.2419 77
lshp1270 (HB) 1.27k 3.70k 1.27k 3.70k 2.17k 0.4712 95

rail_1357 1.36k 3.81k 1.36k 3.81k 1.85k 0.2507 55
(Oberwolfach)

50 x 50 grid 2.50k 4.90k 2.50k 4.90k 2.40k 0.5000 120
data (DIMACS10) 2.85k 15.1k 2.85k 15.1k 7.43k 0.1760 92

100 x 100 grid 10.0k 19.8k 10.0k 19.8k 9.80k 0.5000 230
20 x 20 x 20 grid 8.00k 22.8k 8.00k 22.8k 3.57k 0.1941 122

L-9 (A-G Monien) 18.0k 35.6k 18.0k 35.6k 17.6k 0.4992 411
tuma1 23.0k 37.2k 22.2k 36.5k 10.7k 0.0610 420

(GHS_indef)
barth5 (Pothen) 15.6k 45.9k 15.6k 45.9k 29.9k 0.1765 375

cti (DIMACS10) 16.8k 48.2k 16.8k 48.2k 7.27k 0.0501 172
aft01 (Okunbor) 8.21k 58.7k 8.21k 58.7k 26.6k 0.6680 105
30 x 30 x 30 grid 27.0k 78.3k 27.0k 78.3k 8.35k 0.1399 202

wing (DIMACS10) 62.0k 122k 62.0k 122k 27.9k 0.0301 605
olesnik0 88.3k 342k 88.3k 342k 220k 0.1327 363

(GHS_indef)
tube1 (TKK) 21.5k 438k 21.5k 438k 0 0.0000 102

fe_tooth (DIMACS10) 78.1k 453k 78.1k 453k 217k 0.3673 286
dawson5 (GHS_indef) 51.5k 480k 20.2k 211k 19.8k 0.0941 165

(a) Mesh-like Graphs

Graph Nodes Edges 2-core 2-core Greedy Probability of Largest
(Collection) Nodes Edges Cycles Selecting Greedy Cycle Length
EVA (Pajek) 8.50k 6.71k 314 492 84 0.2346 18

bcspwr09 (HB) 1.72k 2.40k 1.25k 1.92k 651 0.3276 54
BTER1 981 4.85k 940 4.82k 510 0.0465 18

davg = 10, dmax = 30
ccmax = .3, ccglobal = .1

USpowerGrid (Pajek) 4.94k 6.59k 3.35k 5.01k 1.68k 0.2997 80
email (Arenas) 1.13k 5.45k 978 5.30k 362 0.0433 11

uk (DIMACS10) 4.82k 6.84k 4.71k 6.72k 1.97k 0.2488 211
as-735 (SNAP) 7.72k 13.9k 4.02k 10.1k 3.83k 0.0822 9

ca-GrQc (SNAP) 4.16 13.4k 3.41k 12.7k 4.43k 0.2315 22
BTER2 4.86k 25.1k 4.54k 24.8k 2.69k 0.0468 17

davg = 10, dmax = 70
ccmax = .3, ccglobal = .1

gemat11 (HB) 4.93k 33.1k 4.93k 33.1k 9.72k 0.0011 42
BTER3 4.94k 37.5k 4.66k 37.2k 4.79k 0.0518 18

davg = 15, dmax = 70
ccmax = .6, ccglobal = .15

dictionary28 (Pajek) 52.7k 89.0k 20.9k 67.1k 20.2k 0.1410 36
astro-ph (SNAP) 16.7k 121k 11.6k 111k 13.2k 0.0786 18
cond-mat-2003 31.2k 125k 25.2k 114k 32.5k 0.1533 23

(Newman)
BTER4 999 171k 999 171k 33 0.0002 7

davg = 15, dmax = 30
ccmax = .6, ccglobal = .15

HTC_336_4438 (IPSO) 226k 339k 64.1k 192k 32.9k 0.0339 990
OPF_10000 (IPSO) 43.9k 212k 42.9k 211k 122k 0.3146 53

ga2010 (DIMACS10) 291k 709k 282k 699k 315k 0.1466 941
coAuthorsDBLP 299k 978k 255k 934k 297k 0.1524 36

(DIMACS10)
citationCiteseer 268k 1.16M 226k 1.11M 150k 0.0484 56
(DIMACS10)

(b) Irregular Graphs

Appendix Table 1: Statistics of All Graphs Used in Experiments.

Evaluating the Dual Randomized Kaczmarz. . . Informatica 40 (2016) 95–107 107

Graph Sequential Work 2 Thread Parallel Steps 8 Thread Parallel Steps
and Metric (with Local Greedy) (with Local Greedy) (with Local Greedy)

jagmesh3 (Metric 1) 2.73M (1.72M) 2.02M (1.26M) 1.07M (28.3K)
jagmesh3 (Metric 4) 127K (101K) 69.7K (51.2K) 632K (17.4K)
lshp1270 (Metric 1) 6.80M (4.35M) 4.87M (3.50M) 3.41M (2.29M)
lshp1270 (Metric 4) 192K (150K) 104K (85.1K) 61.0K (41.9K)
rail_1357 (Metric 1) 1.64M (1.26M) 1.21M (909K) 653K (550K)
rail_1357 (Metric 4) 119K (114K) 63.8K (57.0K) 143K (143K)

50 x 50 grid (Metric 1) 9.42M (4.32M) 9.42M (4.43M) 3.55M (1.50M)
50 x 50 grid (Metric 4) 213K (125K) 115K (62.5K) 45.0K (20.0K)

data (Metric 1) 17.9M (16.4M) 13.1M (13.1M) 8.43M (7.41M)
data (Metric 4) 815K (878K) 416K (470K) 185K (168K)

100 x 100 grid (Metric 1) 84.0M (38.1M) 59.7M (29.1M) 27.2M (13.1M)
100 x 100 grid (Metric 4) 1.11M (610K) 560K (310K) 180K (90.0K)

20 x 20 x 20 grid (Metric 1) 64.7M (63.3M) 45.3M (46.0M) 30.9M (28.6M)
20 x 20 x 20 grid (Metric 4) 1.55M (1.61M) 816K (856K) 448K (416K)

L-9 (Metric 1) 820M (382M) 557M (266M) 346M (124M)
L-9 (Metric 4) 3.92M (2.03M) 2.07M (1.04M) 1.10M (396K)

tuma1 (Metric 1) 597M (282M) 362M (186M) 147M (75.9M)
tuma1 (Metric 4) 3.36M (1.69M) 1.60M (845K) 512K (267K)
barth5 (Metric 1) 282M (149M) 212M (119M) 118M (54.9M)
barth5 (Metric 4) 3.11M (1.98M) 1.61M (1.03M) 655K (312K)

cti (Metric 1) 204M (195M) 142M (143M) 87.7M (103M)
cti (Metric 4) 3.87M (3.89M) 2.02M (2.09M) 1.01M (1.20M)

aft01 (Metric 1) 127M (118M) 90.8M (88.3M) 45.4M (43.5M)
aft01 (Metric 4) 4.38M (4.32M) 2.19M (2.22M) 763k (738k)

30 x 30 x 30 grid (Metric 4) 401M (394M) 284M (283M) 152M (142M)
30 x 30 x 30 grid (Metric 4) 6.51M (6.62M) 3.35M (3.40M) 1.35M (1.27M)

wing (Metric 1) 4.98B (4.16B) 3.41B (2.99B) 2.58B (2.08B)
wing (Metric 4) 21.8M (18.8M) 12.2M (10.8M) 8.31M (6.70M)

olesnik0 (Metric 1) 2.69B (1.71B) 1.99B (1.36B) 978M (630M)
olesnik0 (Metric 4) 33.8M (24.6M) 16.9M (1.28M) 5.47M (3.62M)

tube1 (Metric 1) 2.74B (N/A) 1.98B (N/A) 1.59B (N/A)
tube1 (Metric 4) 56.1M (N/A) 32.0M (N/A) 22.9M (N/A)

fe_tooth (Metric 1) 6.56B (5.76B) 4.46B (4.09B) 3.04B (2.87B)
fe_tooth (Metric 4) 65.5M (62.1M) 34.3M (32.7M) 19.8M (18.8M)
dawson5 (Metric 1) 1.49B (1.45B) 1.06B (1.05B) 650M (658M)
dawson5 (Metric 4) 24.9M (24.7M) 12.8M (12.8M) 6.11M (6.19M)

(a) Mesh-like Graphs

Graph Sequential Work 2 Thread Parallel Steps 8 Thread Parallel Steps
and Metric (with Local Greedy) (with Local Greedy) (with Local Greedy)

EVA (Metric 1) 41.4K (25.1K) 22.5K (23.8K) 18.5K (15.1K)
EVA (Metric 4) 6.28K (4.08K) 2.83K (3.14K) 1.88K (1.88K)

bcspwr09 (Metric 1) 308K (242K) 199K (165K) 130K (115K)
bcspwr09 (Metric 4) 26.2K (24.9K) 12.5K (12.5K) 4.99K (4.99K)
BTER1 (Metric 1) 2.26M (2.25M) 1.78M (1.76M) 1.59M (1.64M)
BTER1 (Metric 4) 246K (253K) 243K (253K) 333K (397K)

USpowerGrid (Metric 1) 1.06M (887K) 735K (557K) 297K (279K)
USpowerGrid (Metric 4) 73.8K (77.1K) 36.9K (33.5K) 10.1K (10.1K)

email (Metric 1) 1.22M (1.23M) 871K (862K) 639K (638K)
email (Metric 4) 199K (204K) 127K (127K) 87.0K (87.0K)

uk (Metric 1) 7.30M (3.88M) 5.51M (3.29M) 3.04M (1.62M)
uk (Metric 4) 160K (108K) 84.8K (61.2K) 33.0K (18.8K)

as-735 (Metric 1) 911K (887K) 498K (550K) 293K (267K)
as-735 (Metric 4) 201K (201K) 96.6K (109K) 48.3K (44.2K)

ca-GrQc (Metric 1) 2.98M (3.39M) 1.92M (2.16M) 923K (950K)
ca-GrQc (Metric 4) 413K (509K) 201K (242K) 71.7K (75.1K)
BTER2 (Metric 1) 11.3M (11.7M) 8.21M (8.31M) 6.52M (6.60M)
BTER2 (Metric 4) 1.30M (1.39M) 876K (894K) 658K (667K)
gemat11 (Metric 1) 63.7M (62.2M) 50.4M (49.4M) 45.7M (44.9M)
gemat11 (Metric 4) 3.30M (3.22M) 2.38M (2.33M) 2.07M (2.04M)
BTER3 (Metric 1) 18.5M (19.0M) 14.6M (14.1M) 13.4M (12.4M)
BTER3 (Metric 4) 2.13M (2.27M) 1.59M (1.54M) 1.39M (1.29M)

dictionary28 (Metric 1) 38.0M (33.8M) 24.4M (24.6M) 16.4M (15.2M)
dictionary28 (Metric 4) 3.20M (3.18M) 1.65M (1.78M) 941K (878K)

astro-ph (Metric 1) 25.3M (25.9M) 15.7M (16.3M) 8.63M (8.57M)
astro-ph (Metric 4) 4.45M (4.74M) 2.27M (2.43M) 1.01M (1.01M)

cond-mat-2003 (Metric 1) 38.8M (40.9M) 27.4M (30.3M) 21.0M (20.5M)
cond-mat-2003 (Metric 4) 4.57M (5.35M) 2.62M (3.10M) 1.74M (1.72M)

BTER4 (Metric 1) 25.4M (26.4M) 15.1M (15.1M) 8.53M (8.01M)
BTER4 (Metric 4) 6.78M (7.06M) 3.67M (3.67M) 1.84M (1.73M)

HTC_336_4438 (Metric 1) 14.2B (13.7B) 8.50B (8.89B) 4.10B (3.67B)
HTC_336_4438 (Metric 4) 32.2M (32.0M) 15.9M (16.9M) 6.80M (6.09M)

OPF_10000 (Metric 1) 47.3M (49.1M) 31.8M (33.2M) 16.0M (16.5M)
OPF_10000 (Metric 4) 6.86M (8.66M) 3.34M (4.29M) 857K (1.07M)

ga2010 (Metric 1) 8.77B (6.16B) 6.88B (4.97B) 3.21B (2.59B)
ga2010 (Metric 4) 40.8M (33.5M) 20.8M (16.9M) 6.48M (5.35B)

coAuthorsDBLP (Metric 1) 539M (552M) 356M (371M) 264M (237M)
coAuthorsDBLP (Metric 4) 44.4M (51.3M) 23.5M (26.3M) 15.3M (13.8M)
citationCiteseer (Metric 1) 1.08B (1.07B) 716M (723M) 506M (482M)
citationCiteseer (Metric 4) 74.4M (76.2M) 40.7M (41.8M) 25.3M (24.2M)

(b) Irregular Graphs

Appendix Table 2: Condensed Results of Scaling Experiments.

108 Informatica 40 (2016) 95–107 E.G. Boman et al.

Informatica 40 (2016) 109–116 109

Parameter Tuning of PI-controller with Bat Algorithm

Dušan Fister
University of Maribor, Faculty of Mechanical Engineering
Smetanova 17, 2000 Maribor
E-mail: dusan.fister@student.um.si

Riko Šafarič, Iztok Jr. Fister and Iztok Fister
University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova 17, 2000 Maribor

Keywords: PI-controller, nature-inspired algorithms, optimization

Received: January 6, 2016

Correct input controller parameter settings are vital and in constant connection with output functions - e.g.
robotic positioning. Optimal positioning of robotic arm automatically provides a high level of safety and
functionality. The first prevents robot from hurting any people around or even itself, while the second
ensures robot advantage. In order to improve both safety and functionality, we propose two nature-inspired
algorithms for parameter tuning of PI-controller and test them on the laboratory robotic manipulator. How-
ever the manipulator is not designed to perform a real robotic work, it offers a detailed approach of position-
ing control. Our goal is to access the positioning control unit and combinatorially set the input controller
parameters with the help of two implemented algorithms. This principle is called automatic parameter
tuning, which firstly tests the corresponding setting, then evaluates it and finally tries to improve former
result with new one.

Povzetek: Za natančno pozicioniranje zahteva robotski regulator pravilno nastavljene parametre. Ti zago-
tavljajo varno in funkcionalno delovanje robota. S testiranji, opisanimi v nadaljevanju, želimo določiti op-
timalne konstante regulatorja z algoritmom za nastavljanje parametrov, ki sloni na nelinearnem, dvoosnem
robotskem mehanizmu. Implementirana optimizacijska algoritma temeljita na vzorih iz narave in določata
parametre avtomatsko, brez človeške interakcije. Naš pristop je iterativen, kar pomeni, da se želimo s
kombinatoričnim ugotavljanjem čimbolj približati idealni rešitvi, ki pa je sicer ne moremo doseči. Av-
tomatski postopek nastavljanja parametrov z optimizacijskim algoritmom predstavlja odskočno desko za
zagotavljanje varnosti ter funkcionalnosti, povečanega obsega dela robota ter višje natančnosti in kakovosti
izdelkov.

1 Introduction

A robot is typically an electro-mechanical device con-
trolled by a computer program. It operates in an environ-
ment which can be changed using actions for whether it is
delegated. The robot performs repeated actions that were
before executed by humans. They have been displaced and
upgraded by robots especially by performing dangerous
tasks, e.g., coating cars in the automotive industry, aero-
nautics, etc.

A robotic arm, for instance, is moved and positioned us-
ing a closed-control loop. The control loop consists of a
controller and a control plant. The controller is a part of
the electrical scheme, which controls a mechanical part of
the robotic arm (control plant). The control plant consists
of electrical motors to lift and lower the arm. However, this
process is subject of gravity forces.

Typically, the control loop is implemented by so called
PID-controllers in the real-world applications (Fig. 1). This
controller calculates an error value e between desired in-

CONTROLLER CONTROL PLANT
+

-

ydes

yact

e u

Figure 1: Scheme of a robot.

put value ydes and actually measured output yact . Then,
a derivative and integral of the error signal is calculated.
Actually, the output signal u is obtained as follows

u = KP (ydes − yact) +KI

∫
(ydes − yact) +KD(ydes − yact)

′
. (1)

Eq. (1) consists of three parts, i.e., proportional, integral
and derivative terms weighted by corresponding propor-
tional gain KP , integral gain KI and derivative gain KD,
respectively. The control signal u is sent to the control plant
in order to obtain the new output y that serves as the new
yact value for generating the new error signal e. This pro-
cess continues until equilibrium is achieved. Let us notice

110 Informatica 40 (2016) 109–116 D. Fister et al.

that the desired values are input variables that represent a
reference generator output, while the desired values are ob-
tained as a feedback of the control plant on the input vari-
ables. There are more types of the reference generators,
e.g., micro-controllers, DSP, FPGA, etc. A discrete equa-
tion of PID-controller can be written (Eq. 2).

u(k) =u(k − 1) + q0 · e(k)+

q1 · e(k − 1) + q2 · e(k − 2),
(2)

where
q0 = KP · (1 +KI +KD), (3)

q1 = −KP · (1 + 2 ·KD −KI) and (4)

q2 = KP ·KD. (5)

Only PI-controller type is used for our application. In
line with this, KD gain should be set to zero. Eq. 3-5 can
be then simplified to new form (Eq. 6-8):

q0 = KP · (1 +KI), (6)

q1 = −KP · (1−KI) and (7)

q2 = 0. (8)

In the next chapters, parameters q0 and q1 of PI-controller
will be optimized.

There are few strategies for parameter tuning of robotic
controller. Using Bode plotting [16] and root locus
method [4] a linear controller can be tuned. For non-linear
control plants, an iterative approach of tuning should be
employed. In this method, random parameters are entered
into the robotic controller and according to mechanic re-
sponse of manipulator little corrections are made through
more iterations. A new set is then entered into controller
and so on. The basic and the simplest strategy of tuning is
a manual approach. Requires an experienced and patient
engineer, what makes this strategy time-consuming. It can
be automated using the micro-controller, which makes the
process faster up to few times, but then an optimization al-
gorithm is required. Every algorithm is intended to find an
optimal solution of the problem, so the question is, how fast
can algorithm approach to an ideal solution? Today, many
algorithms are widely-known. They differ to each other
by the ease of use, complexity, principle of working and
most importantly, convergence speed. The last parameter
could be simply compared to algorithm’s efficiency. The
fact is, faster than the algorithm is searching, more local is
the search space becoming and slower it is searching, more
global it can go.

In previous century a greater demand of quality, quan-
tity and efficiency of making products was sensed. As a
result, an optimization has been became more and more
important. Using computer guided optimization, control-
ling machines have became easier and even more precisely
to use. Optimization algorithms are today frequently and
widely used in order to maximize quality and quantity of
products, to minimize the production costs as well as in-
crease the functionality, safety and duration of services.

For solving the real-world problems, where the domain-
specific knowledge is absent, a general problem solvers
have been emerged. Today, evolutionary and swarm intel-
ligence algorithms act increasingly in that role.

Basic principles of evolutionary algorithms (EA) were
discovered a bit longer ago. In 1871, Charles Darwin pub-
lished an article about natural selection [2]. Alan Tur-
ing was the first who successfully implemented the al-
gorithm [20], that based on results of Charles Darwin’s
work. He implemented an optimizational algorithm, named
genetic search, and has later also strived for other topics
of artificial intelligence. His work was upgraded by John
Holland in 1988, who created a genetic algorithm (GA)
that is today one of the most often worldwide used evolu-
tionary algorithm [13].

On the other hand, a new way of optimization was be-
ing commenced in 1995, called the Swarm Intelligence
(SI). Particle Swarm Algorithm (PSO) invented by Russell
Eberhart and James Kennedy [3] became quickly widely
used. Interestingly, the SI-based algorithms use the bio-
logical and social relations, since individuals collaborate
between each other by learning of experiences. Many SI-
based algorithms are known, e.g. ant colony, bee colony,
bird flocks, bats, cuckoo search, termites and fish schools.
The Bat algorithm (BA) is one of the newest, since it was
proposed in 2010 by Yang. The BA quickly widened for
testing purposes on various applications [23]. Firstly on
numeric and discrete applications, after that also for multi-
objective optimization [24]. The possibility of constrained
optimization was proved by Gandomi et. al. [10]. The
BA was hybridized with Differential Evolution strategies
in 2013 by Fister et. al. [9] as well as by Random Forest
Regression method [8]. The self-adaptation was proposed
by Fister et. al. [5] and [6], which presents one of the most
successful BA variants.

The remainder of the paper is divided into next sections:
Section 2 presents a control plant and controller. Section
3 describes both nature-inspired algorithms used in this
study, i.e., GA and BA.

2 Control plant

In this study, the 2 degree-of-freedom (2 DOF) Selective
Compliance Assembly Robot Arm (SCARA) [18] depicted
in Fig. 2 was taken into account. The robot arm is con-
trolled in a 2-dimensional space and parameters of this
controller are tuned by an optimization algorithm. Since
2005, four different optimization methods were proposed
for parameter tuning of the same robot. Albin Jagarinec
developed an adaptive regulator in 2005 [15], while Marko
Kolar the fuzzy controller in the next year [17]. A neural
sliding-mode controller was implemented on the system in
the same year by Jure Čas [21]. Finally, the genetic algo-
rithm was tested by Tomaž Slanič [19].

The control plant is responsible for moving the robotic
arm that is enabled by two direct-current ESCAP 28 D2R

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 111

Figure 2: 2-DOF robot.

11 motors and the appropriate power electronics. Opposite
to power electronics, two incremental decoders are con-
nected, which transform an incremental encoder’s signals
from both motors to angles of rotation. These are both pro-
cessed in a custom input/output interface card based on a
digital signal processor (DSP-2 Roby) [22]. Besides decod-
ing signals, the DSP-2 Roby serves also as motor’s driver.
In addition, the DSP-2 Roby retrieves other basic informa-
tion, like angles of rotation and time to personal computer,
which plots the step responses of the robot and outputs
usable information for evaluation of robot arm behavior.
Moreover, the optimization algorithm is also being run on
this processor.

2.1 Robot’s model
The robot’s model can be written using Eq. (9) basing on
the principles of Lagrangian mechanics, as follows

[
Jm1N1 +

a1+a2 cos(q2)
N1

a3+a2 cos(q2)
N1

a3+a2 cos(q2)
N2

Jm2N2 +
a3+J3o

N2

]
·
[
q̈1
q̈2

]
+

−a2 q̇2(2q̇1+q̇2)+sin(q2)
N1

a2 sin(q2)q̇1
2

N2

 =

[
τmot1

τmot2

]
,

(9)

where J means moment of inertia, l length of handles
and m mass of handles with gears. Parameters qi, q̇i and
q̈i mean position (angle of rotation), velocity and acceler-
ation of specific axis [21]. Eq. 10 presents the meaning of
parameters a1, a2 and a3.

a1 = I1 + I2 + I4 +m2 · l21T + (m3 +m4) · l21 +m4 · l22T
a2 = m4 · l1 · l2T

a3 = I4 +m4 · l22T

(10)

As seen, equation is a two dimensional, which tends the
control plant of robot as non-linear. The equation presents
the motor’s torque, necessary for correct motion of robot’s
peak. The full elaboration of this equation is presented
in [21]. Note that only proportional and integral gains (PI-
controller) were used in our study.

INPUT

VECTOR
SCARA

OUTPUT

VALUES

MICROCONTROLLER

Figure 3: Searching for the optimal parameter setting of the
PI-controller.

2.2 Optimization problem
In general, the optimization problem is defined as a quadru-
ple OP = 〈I, S, f, goal〉 [11], where I presents a set of in-
stances that can be arisen on the input, S is a set of feasible
solutions, f objective function and goal denotes if the min-
imum or maximum of the objective function is searched
for. The input vector is expressed as

x = {q0,1, q1,1, q0,2, q1,2}, (11)

where q0,1 and q1,1 mean the controller input parameters
for the first axis and q0,2 and q1,2 for the second axis of
a robotic manipulator. The task of the optimization is to
maximize the fitness function, i.e., max(fi). The fitness
function evaluates three different measures obtained as a
feedback y from the control plant consisting of:

– Overi - actual overshoot,

– Essi - actual steady state error and

– Timei - actual settling time.

According to mentioned measures, the fitness function is
expressed as follows:

f (y) =
2∑

i=1

1

2
(E1i(1− |Pi −Overi|)+

E2i(1− T imei) + E3i(1− Essi)),

(12)

where Eij are initialized constants representing weights
that determine an influence of the specific outputs for each
axis in Eq. 12. Obviously, the sum of these three constants
of specific axis is:

3∑
i=1

Eij = 1, (13)

where i is the specific output variable and j the specific
axis.

The optimization problem can now be defined as search-
ing the best input values in order to obtain the best output
values estimated by the fitness function. The process is
graphically presented in Fig. 3, from which it can be seen
that the optimization algorithm puts the input vector x to
SCARA robot arm controller that moves and its position is
then being measured. The output vector y is obtained after
the moving and positioning the arm. The value of fitness
function is determined from this vector.

112 Informatica 40 (2016) 109–116 D. Fister et al.

3 Algorithms for parameter tuning
of PI-controller

The majority of real-world problems with which human are
confronted today are NP-hard. This means that the time
complexity of solving these problems increases by increas-
ing a problem size. The problem size is estimated by the
number of input variables. As a results, when the number
of variables increased to some high value, the user can wait
for the results indefinitely. Therefore, engineers responsi-
ble for solving these in practice are not interested for their
optimal solutions, but they are satisfied with an approxi-
mate optimal solutions obtained in real-time as well. Con-
sequently, a lot of heuristic algorithms have been emerged
that are able to obtain the non-optimal solutions, but well
enough for practical applications.

The stochastic nature-inspired population-based algo-
rithms are heuristic methods that can be applied to prob-
lem domains, where no domain-specific knowledge has yet
been discovered. In this study, we focus on searching for an
optimal parameter tuning of PI-controller with EA and SI-
based algorithms. Precisely, a comparative study of the bat
algorithm (BA) and genetic algorithm (GA) for solving this
problem has been performed, where the former belongs to a
class of SI-based algorithms, while the latter is the member
of EA-family.

In the remainder of the paper, characteristics of both al-
gorithms are illustrated in details.

3.1 Bat algorithm
As already mentioned, BA is one of the newest represen-
tatives of SI-based algorithms. Since 2010, its reputation
and visibility are highly rising. Bat algorithm is easy to
implement and applicable to various applications. It offers
solid results by solving of the low-dimensional problems
and that is one of the reasons to be applied to tune the pa-
rameters of PI-controller. Thus, high convergence of the
BA algorithm is expected.

3.1.1 Fundamentals of Bat algorithm

Bats are night animals. Nature has given them ability
to navigate in darkness, using a so-called sonar, named
echolocation. This phenomenon consists of generating
an ultrasonic pulse, which echoes from obstacles and prey,
bouncing back to the bat, who calculates the distance to ei-
ther obstacle or prey. More information on bats behavior
and their abilities can be found in [14].

The BA algorithm treats bats as a swarm of bats, search-
ing for a prey. Since bats search for the prey individually,
BA emphasizes the phenomena of echolocation by con-
verging the whole swarm by approaching the found prey.
This means that one random individual can achieve the
whole swarm to divert for food. From the engineer’s point
of view, more food means higher fitness function and better
solution of the problem. The whole swarm is converging to

the best solution during generations by changing their cur-
rent positions.

3.1.2 Model of Bat algorithm

The moving of bats, their attitude and acting in a swarm
presented in previous section can be modelled using simple
mathematical equations. The whole modelling process is
described in [23], so only main results are shown here. At
first, three different variables should be defined describing
bat moving as follows:

– frequency of pulse Q(t)
i ,

– velocity v(t)
i and

– position x(t+1)
i ,

where Q(t)
i represents actual pulse frequency, v(t)

i velocity
of an individual bat and x(t+1)

i position of the i-th bat at
generation t.

The flight of a bat can be summarized in Eqs. 14-16:

Q
(t)
i = Q

(t)
min + (Q(t)

max −Q
(t)
min) · β, (14)

v
(t+1)
i = v

(t)
i +

[
x
(t)
i − x

(t)
best

]
·Qi, (15)

x
(t+1)
i = x

(t)
i + v

(t)
i . (16)

Output pulse frequency can vary in the interval Q(t)
i ∈

[Qmin, Qmax]. The random number β ∈ [0, 1] specifies the
output pulse and x(t)best presents the current best solution.

The BA search process consists of two components, i.e.,
exploration and exploitation. Exploration means a discov-
ering of the new solutions, while the exploitation directs
the search in the neighborhood of the existing solutions.
Both processes cannot be run simultaneously because they
typically depend on the variation operators, while balanc-
ing between exploration and exploitation performs a con-
trol parameter setting. There are more optimal parameter
settings.

In the BA, the exploration and exploitation components
of the search process are balanced by using two exploration
strategies and parameter r(t)i . The first exploration strategy
expressed by Eq. 16 is more explorative in its nature, while
the second strategy expressed as

xnew = xold + ε · Ā(t), (17)

implements the random walk, i.e., a kind of the local search
that is more focused on the exploitation of the current best
solution. Let us notice that xnew in the equation presents
new best solution, if applicable, and xold presents current
best solution. ε is the random number in range (-1,1) and
Ā(t) is the average loudness.

The last strategy is applied according to the pulse rate
r
(t)
i .The pulse rate is normally being changed during gener-

ations, where simulates nature behavior of bats outputting
loud pulses with low pulse rate when searching for preys
and outputting silent pulses with high pulse rate when ap-
proaching to the prey.

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 113

3.1.3 Pseudocode of Bat algorithm

A pseudo-code of the BA algorithm is illustrated in Algo-
rithm 1. This algorithm consists of the following elements:

– initialization of bat population (function ’init_bat’ in
line 1),

– generation of new solution according to Eq. 16 (func-
tion ’generate_new_solution’ in line 6),

– the local search step according to Eq. 17 and parame-
ter r(t)i (function ’improve_the_best_solution’ in lines
7-9),

– evaluation of the new solution (function ’evalu-
ate_the_new_solution’ in line 10),

– save the best solution conditionally (in lines 12-15),

– find the best solution (in line 15).

BA is a population algorithm, what means that a popula-
tion size and maximal number of generations should be
pre-defined. During the optimizational process, the new
position is being calculated for every bat and generation
value is incremented. The execution of algorithm stops
when maximal number of generations are reached.

Algorithm 1 Original Bat algorithm.
Input: Bat population xi = (xi1, . . . , xiD)T for i = 1 . . . Np,
MAX_FE.
Output: The best solution xbest and its corresponding value
fmax = max(f(x)).

1: init_bat();
2: eval = evaluate_the_new_population;
3: fmax = find_the_best_solution(xbest);
4: while termination_condition_not_met do
5: for i = 1 to Np do
6: y = generate_new_solution(xi);
7: if rand(0, 1) > ri then
8: y = improve_the_best_solution(xbest)
9: end if{local search step}

10: fnew = evaluate_the_new_solution(y);
11: eval = eval + 1;
12: if fnew ≥ fi and N(0, 1) < Ai then
13: xi = y; fi = fnew;
14: end if{save the best solution conditionally}
15: fmax=find_the_best_solution(xbest);
16: end for
17: end while

3.2 Genetic algorithm
As already mentioned, GA was one of the first optimization
algorithms, belonging to a family of EA [1]. Although GA
is similar as BA a population-based algorithm, it differs in
comparison to BA a lot.

3.2.1 Fundamentals of Genetic algorithm

GA searches for the global optimum using unique genetic
operators. There are three common operators, i.e., a selec-
tion, a crossover and a mutation. The parent’s selection is
a part of algorithm, where so called parent genomes (so-
lution of the problem) are chosen to enter into crossover
procedure. The two common parent selections are roulette-
wheel selection and tournament selection [12]. Crossover
is the most important part of the algorithm, since it enables
the two parents to vary their genetic material in order to
improve the existing solutions. The last operator, mutation
could be represented as a rescue method, which prevents al-
gorithm from trapping in local optima, which usually stops
improving process. A task of the survivor selection is to
determine the better solutions for surviving and transfer-
ring their good characteristics in the next generations.

Nevertheless, the basic GA consists of six elements:

– initialization of individuals,

– parent’s selection,

– crossover,

– mutation,

– evaluation and

– survivor’s selection.

Initialization is a process, where random (starting) popula-
tion is generated and evaluation is process where the fitness
value determining success of each individual is calculated.
The optimization runs until the number of generations has
not reached its maximum specified value, or its optimal
value was found or enough quality solution was discovered.
The most important issue by using the EA is the represen-
tation of individuals. Although the original GA uses binary
representation, where solutions are represented as binary
strings, the real-coded GA is becoming more important to-
day. This type of GA is applied also in this study.

3.2.2 Pseudocode of Genetic algorithm

The pseudo-code of the GA is presented in Algorithm 2,
from which it can be seen the following elements of the
GA:

– initialization of initial population (function
’init_population_with_random_candidate_solutions’
in line 1),

– parent’s selection (function ’select_parents’ in line 4),

– crossover operator (function ’recom-
bine_pairs_of_parents’ in line 5),

– mutation operator (function ’mu-
tate_the_resulting_offspring’ in line 6),

– evaluation function (function ’evalu-
ate_new_candidates’ in line 7),

114 Informatica 40 (2016) 109–116 D. Fister et al.

– survivor’s selection (function ’se-
lect_individuals_for_the_next_generation’ in line
8).

The main evolutionary cycle is performed until the ’ter-
mination_condition_not_met’ is not met. Each solution
is represented as real-coded vector x(t)i = {x(t)i,j}, where
i = 1, . . . ,NP ∧ j = 1, . . . ,D , NP is a population and D
a dimension of the problem.

Algorithm 2 Evolutionary algorithm.
1: init_population_with_random_candidate_solutions;
2: eval = evaluate_each_candidate;
3: while termination_condition_not_met do
4: select_parents;
5: recombine_pairs_of_parents;
6: mutate_the_resulting_offspring;
7: eval += evaluate_new_candidates;
8: select_individuals_for_the_next_generation;
9: end while

3.3 Parameter tuning of PI-controller with
nature-inspired algorithms

In order to solve parameter tuning of PI-controller, the
nature-inspired algorithms need to be modified properly.
As we know, the results of our optimization problem de-
pend on the input vector xi according to Eq. 11. This
means that only a representation of solution for the nature-
inspired algorithms must be changed in order to adapt them
for solving the parameter setting of PI-controller. In other
words, the solution in these algorithms is represented as
follows

x(t)
i = {xi,j}, for i = 1, . . . , NP ∧ j = 1, . . . , D, (18)

where xi,1 = q0,1, xi,2 = q1,1, xi,3 = q0,2 and xi,4 =
q1,2, and NP denotes a population size and D is a dimen-
sion of the problem. All the other elements of the origi-
nal nature-inspired algorithms do not demand any modifi-
cations.

4 Results
The goal of our experimental work was to show that
the stochastic nature-inspired algorithms can successfully
be applied for searching the optimal parameters of PI-
controller that controls the robotic arm SCARA. In line
with this, two population-based algorithms were devel-
oped and customized to this problem, i.e., BA and GA.
The development was performed on a personal computer
(PC) with installed Windows operating system and MAT-
LAB/Simulink in language C/C++. The algorithms were
loaded onto DSP2-Roby interface card, where these were
also executed, while the results were received from the
card via USB connection to the PC and displayed in MAT-
LAB/Simulink.

The algorithm’s parameters as presented in Table 1 were
used during the simulation.

Parameter Setting
NP 10
ngen 10
Q [0.5,1.5]
β [0,1]
ri 0.1
Ai 0.9

(a) BA

Parameter Setting
NP 10
ngen 10
pc 0.8
pm 0.01
Par.sel. Tour.m = 2
Sur.sel. Fittest

(b) GA

Table 1: Parameter setting by nature-inspired algorithms.

Let us notice that both algorithms used the same num-
ber of fitness function evaluations, i.e., MAX _FE = 10×
10 = 100, where MAX _FE = NP × ngen . This number
of fitness function evaluations is relatively low, but this set-
ting enables algorithms to run in the real-time. In order to
limit the search space rationally, lower and upper bounds as
presented in Table 2 were considered during the optimiza-
tion for both algorithms.

Parameter
Bounds

Lower Upper
q0,1 0 400
q1,1 0 40
q0,2 0 400
q1,2 0 40

Table 2: Limited values of parameters.

In the table, parameters q0,1 and q1,1 denote limited pa-
rameter values for axis 1, while q0,2 and q1,2 limited values
for axis 2.

The results of the optimization using algorithms BA and
GA are illustrated in Table 3, from which it can be ob-
served that 10 independent runs were conducted for each of
the algorithm in test. This is normally, when dealing with
stochastic algorithms, where we are usually not interested
for the best solution, but rather the average results of the
optimization. However, in our case, we made an exception
here and considered the best solutions. The obtained results
for each of two axis are presented together with the corre-
sponding average values and the average values according
to all runs are presented. The best results are marked in the
table as bold.

As can be seen from the table, the best result of the BA
was obtained in seventh run, while the GA was the best in
the third run. When comparing the results of both algo-
rithms with each other, it can be observed that the result
achieved by GA was slightly better than this achieved by
the BA. However, when these results were estimated statis-
tically using the Wilxocon signed rank non-parametric test
with confidence α = 0.05, it turned out that the BA outper-
formed the results of GA significantly (p-value= 0.03 <
0.05).

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 115

Run BA GA
Axis-1 Axis-2 Average Axis-1 Axis-2 Average

1 0.9729 0.9726 0.9727 0.9804 0.9600 0.9702
2 0.9795 0.9497 0.9646 0.9729 0.9556 0.9642
3 0.9702 0.9847 0.9775 0.9726 0.9845 0.9786
4 0.9757 0.9802 0.9780 0.9455 0.9653 0.9554
5 0.9778 0.9592 0.9685 0.9638 0.9443 0.9540
6 0.9724 0.9790 0.9757 0.9782 0.9640 0.9711
7 0.9746 0.9810 0.9778 0.9752 0.9727 0.9740
8 0.9647 0.9887 0.9767 0.9774 0.9409 0.9592
9 0.9787 0.9733 0.9760 0.9721 0.9569 0.9645

10 0.9748 0.9430 0.9589 0.9662 0.9568 0.9615
Average 0.9741 0.9712 0.9726 0.9704 0.9601 0.9653

Table 3: Comparing the results of BA and GA.

The corresponding best results as obtained by BA and
GA algorithms are presented in Table 4.

Alg.
Axis-1 Axis-2

Eff.
q0,1 q1,1 q0,2 q1,2

BA 257.064 18.9201 163.155 15.1531 0.9778
GA 56.4213 3.27043 108.571 7.68699 0.9786

Table 4: The best results obtained by BA and GA.

As can be observed from the table, there is not only
one optimal solution, because both sets of input parameters
were very different when compared between each other.
However, it seems that more important is a relation be-
tween both pairs of input parameters.

In order to show how the optimal values are changed dur-
ing the optimization, the convergence graphs in Fig. 4 are
drawn that depict a changing of the best solution during one
run according to increasing of generations for each of the
observed algorithm.

Figure 4: Convergence graph by BA and GA.

As can be seen from the graph, the BA showed a rapid
convergence to the optimal value, which is already found in
fifth generation. After this generation the algorithm shows
signs of stagnation. On the other hand, the GA converge

to the optimal value slower. Therefore, it can improve the
results also in later generations.

5 Conclusion

The aim of our experimental work was to show that
stochastic nature-inspired population-based algorithms can
successfully be applied to tuning parameters of PI-
controller of the robot arm SCARA. Two nature inspired
algorithms were taken into consideration, i.e., the BA and
GA algorithms. The former is simple and easy to imple-
ment and because of its rapid convergence interesting to
use in robotics.

The results of experiments showed that both the algo-
rithms can be used for optimal tuning parameters of PI-
controller. Although the BA algorithm significantly out-
performed the results of GA according to the best obtained
results for each of two axis in ten runs, it turned out that the
GA converges slower than the BA. This means that the GA
demands the larger population as well as higher number of
generations. On the other hand, increasing the population
size and/or the maximum number of generations causes in-
creasing the optimization time that can dramatically affect
the real-time response of the system. In this context, the
BA algorithm is more appropriate for this optimization as
GA.

In the future, the BA algorithm could be hybridized with
differential evolution mutation strategies [9] and thus the
results of optimization would be improved. An adaptation
of control parameters represents additional method, where
these are encoded into representation of solutions and un-
dergo acting the variation operators [7].

References

[1] T. Bäck. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming,
genetic algorithms. Oxford university press, 1996.

116 Informatica 40 (2016) 109–116 D. Fister et al.

[2] C. Darwin. R.(1859): On the origin of species by
means of natural selection. Murray. London, 1871.

[3] R. C. Eberhart and J. Kennedy. A new optimizer us-
ing particle swarm theory. In Proceedings of the sixth
international symposium on micro machine and hu-
man science, volume 1, pages 39–43. New York, NY,
1995.

[4] W. R. Evans. Control system synthesis by root locus
method. American Institute of Electrical Engineers,
Transactions of the, 69(1):66–69, 1950.

[5] I. Fister, S. Fong, J. Brest, and I. Fister. A novel hy-
brid self-adaptive bat algorithm. The Scientific World
Journal, 2014, 2014.

[6] I. Fister, S. Fong, J. Brest, and I. Fister. Towards the
self-adaptation in the bat algorithm. In Proceedings
of the 13th IASTED international conference on arti-
ficial intelligence and applications, 2014.

[7] I. Fister, D. Strnad, X.-S. Yang, and I. Fister Jr.
Adaptation and hybridization in nature-inspired algo-
rithms. In Adaptation and Hybridization in Compu-
tational Intelligence, pages 3–50. Springer, 2015.

[8] I. Fister Jr, D. Fister, and I. Fister. Differential evo-
lution strategies with random forest regression in the
bat algorithm. In Proceedings of the 15th annual con-
ference companion on Genetic and evolutionary com-
putation, pages 1703–1706. ACM, 2013.

[9] I. Fister Jr, D. Fister, and X.-S. Yang. A hybrid bat
algorithm. Elektrotehniški vestnik, 2013.

[10] A. H. Gandomi, X.-S. Yang, A. H. Alavi, and S. Ta-
latahari. Bat algorithm for constrained optimiza-
tion tasks. Neural Computing and Applications,
22(6):1239–1255, 2013.

[11] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[12] D. E. Goldberg and K. Deb. A comparative analy-
sis of selection schemes used in genetic algorithms.
Foundations of genetic algorithms, 1:69–93, 1991.

[13] D. E. Goldberg and J. H. Holland. Genetic algorithms
and machine learning. Machine learning, 3(2):95–99,
1988.

[14] D. R. Griffin. Listening in the dark: the acoustic ori-
entation of bats and men. 1958.

[15] A. Jagarinec. Adaptivni regulator z mehko logiko za
dvoosni SCARA mehanizem. Diplomsko delo : Uni-
verza v Mariboru, Fakulteta za elektrotehniko, raču-
nalništvo in informatiko, 2005.

[16] L. H. Keel and S. P. Bhattacharyya. A bode plot char-
acterization of all stabilizing controllers. Automatic
Control, IEEE Transactions on, 55(11):2650–2654,
2010.

[17] M. Kolar. Vodenje SCARA robota z mehko logiko.
Diplomsko delo : Univerza v Mariboru, Fakulteta za
elektrotehniko, računalništvo in informatiko, 2005.

[18] H. Makino, N. Furuya, K. Soma, and E. Chin. Re-
search and development of the scara robot. In Pro-
ceedings of the 4th International Conference on Pro-
duction Engineering, pages 885–890, 1980.

[19] T. Slanič. Genetski regulator za dvoosnega SCARA
robota. Diplomsko delo : Univerza v Mariboru,
Fakulteta za elektrotehniko, računalništvo in infor-
matiko, 2006.

[20] A. M. Turing. Intelligent machinery, a heretical the-
ory. The Turing Test: Verbal Behavior as the Hall-
mark of Intelligence, page 105, 1948.

[21] J. Čas. Izdelava zveznega nevronskega sliding-mode
regulatorja za teleoperiranje SCARA robota. Diplom-
sko delo : Univerza v Mariboru, Fakulteta za elek-
trotehniko, računalništvo in informatiko, 2006.

[22] M. Čurkovič. Vgrajeni sistemi DSP/FPGA v sis-
temih vodenja. Magistrsko delo Univerza v Mari-
boru, Fakulteta za elektrotehniko, računalništvo in in-
formatiko, 2010.

[23] X.-S. Yang. A new metaheuristic bat-inspired algo-
rithm. In Nature inspired cooperative strategies for
optimization (NICSO 2010), pages 65–74. Springer,
2010.

[24] X.-S. Yang. Bat algorithm for multi-objective optimi-
sation. International Journal of Bio-Inspired Compu-
tation, 3(5):267–274, 2011.

 Informatica 40 (2016) 117–123 117

PCARD Platform for mHealth Monitoring

Matjaž Depolli, Viktor Avbelj and Roman Trobec

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana

E-mail: matjaz.depolli@ijs.si, viktor.avbelj@ijs.si, roman.trobec@ijs.si

Jurij Matija Kališnik

Department of Cardiovascular Surgery, University Medical Center Ljubljana, Zaloška Cesta 2, 1000 Ljubljana

E-mail: jurij-matija.kalisnik@mf.uni-lj.si

Korošec Tadej

Društvo distrofikov Slovenije, Linhartova 1/III, p.p. 2618, 1001 Ljubljana

E-mail: info@drustvo-distrofikov.si

Antonija Poplas Susič

Community Health Centre Ljubljana, Metelkova ulica 9, 1000 Ljubljana

E-mail: antonija.poplas-susic@zd-lj.si

Uroš Stanič

Kosezi d.o.o., Cesta na Laze 7, 1000 Ljubljana

E-mail: uros.j.stanic@gmail.com

Aleš Semeja

Terme Dobrna d.d, Dobrna 50, 3204 Dobrna, Slovenia

E-mail: ales.semeja@terme-dobrna.si

Keywords: mHealth, cloud computing, ECG, pilot study

Received: December 11, 2015

The introduction of information and communication technologies (ICT) into the integrated healthcare

system could increase the self-management of health and therefore increase the efficacy and decrease

the costs of overall health management. A personal mobile health monitoring system (PCARD) has been

developed, which uses moderately-priced and user-friendly technological solutions, e.g. wireless body

sensors for data acquisition, advanced algorithms for data analysis, widely available smart phones for

visualization of measurements, and the existing communication infrastructure for data transfer. The

solution is unobtrusive, works with existing devices, and provides useful information to both direct users

and to the health care system. The PCARD system starts with measurement of ECG signal that

incorporates significant information about the global health state. It then continues with display of the

signal and its analysis on a personal terminal, such as smartphone and on Cloud-based storage,

processing, and visualization software. Four pilot studies have been designed to validate to which extent

the continuous measured ECG data could contribute to improved quality and efficiency of the

healthcare. Also, the level of safety and reliability, the acceptance from users, and the potential for

commercialization will be validated in the scope of the pilots.

Povzetek: Uvedba informacijskih in komunikacijskih tehnologij (IKT) v celostno zdravstveno oskrbo

lahko poveča sposobnost samoupravljanja zdravja s čimer poveča učinkovitost ter zmanjša stroške

zdravstvene oskrbe. Razvit je bil osebni mobilni sistem spremljanja zdravja (PCARD), ki privablja z

zmerno ceno in uporabniku prijaznimi tehnološkimi rešitvami, kot so brezžične telesni senzorji za

zajemanje podatkov, napredni algoritmi za analizo podatkov, vizualizacija meritev na široko dostopnih

pametnih telefonih in uporaba obstoječe komunikacijske infrastrukture za prenos podatkov. Rešitev je

nevsiljiva, deluje z obstoječimi napravami, ter nudi koristne informacije tako za neposredne uporabnike

kot tudi za sistem zdravstvenega varstva. Sistem PCARD temelji na merjenju EKG-signala, ki vključuje

pomembne informacije o svetovnem zdravstvenem stanju. Nato nadaljuje s prikazom signala in njegovo

analizo na osebnem terminalu, ter končuje s skladiščenjem, obdelavo in vizualizacijo v oblaku. Štiri

pilotne študije so bile zasnovane, da bi preverili, v kolikšni meri bi lahko neprestano merjenje EKG

prispevajo k izboljšanju kakovosti in učinkovitosti zdravstvenega varstva. Poleg tega bodo študije

prispevale tudi k večji stopnji varnosti in zanesljivosti, analizi nivoja uporabniškega sprejemanja

mobilnega EKG merilnika, in potrditvi potenciala za komercializacijo PCARD sistema.

mailto:matjaz.depolli@ijs.si
mailto:viktor.avbelj@ijs.si

118 Informatica 40 (2016) 117–123 M. Depolli et al.

1 Introduction
Future mHealth solutions based on wearables for

monitoring ECG, vital signs, and activity of subjects will

provide an important means of healthcare. Although such

wearables are also usable in clinical environments, they

are most efficient when used in subjects’ everyday

activities. As such, they are perfect for discovering

arrhythmias, measuring the impact of drugs on

arrhythmias, documenting ischemia, following up on the

adherence to drug therapies, checking up the results of

ablation procedure, evaluating syncope and light-

headedness [1], etc. Aided by the computer analysis of

the provided rich set of measured data, the mHealth

based monitoring could also tackle a large set of

comorbidities (e.g. diabetes, cardio-oncology,

cerebrovascular disease, and other neurological disorders

affecting patient’s mobility).

The PCARD mHealth solution could be applied in

medicine (e.g. follow-ups of patients in tertiary level, or

motoring of patients with palpitations in primary level),

in wellness and health centers, at home for personal use,

in protection of professionals during stressful and

physically intensive tasks - for example firemen in

action, and in sports, both amateur and professional.

Although the mHealth solution could be usable almost

entirely on its own, it should be integrated into the

existing health care system for bigger impact.

Existing cloud-based mHealth solutions [2] are

mostly aimed at gathering, storing, using, and sharing

health information online. Most of them suggest various

sensors to users but these sensors are all specialized to

perform a single task. There is no integration of multiple

sensors and no integration of these solutions with the

modern electronic health records. The PCARD platform

integrates users, caregivers, and medical community. It

provides safe data transfer, secure data storage and

manipulation, and application services for a completely

integrated solution while it allows for manual

interventions to the system if they prove to be necessary.

To evaluate PCARD, four pilot studies will be

implemented. The resulting integrated health care model

will advance the current health care system by providing

additional links, data and knowledge pathways between

the patients, their family and other informal care givers,

and formal care givers.

This paper is based upon Kališnik et al. [3], extended

with the following new contributions: (i) the personal

computer software for ECG analysis has been added to

PCARD, (ii) personal terminal software description has

been expanded, (iii) the pilot studies performances have

been expanded.

The rest of this article is as follows. First the method

is explained – the PCARD platform for constant

monitoring of vital ECG parameters. Next, the main

constituents of the PCARD platform are described - the

sensor device, personal terminal software, cloud-based

software, and personal computer software. Then the pilot

studies are presented, on which the PCARD platform will

be evaluated. Finally, in Conclusion, the obtained results

are summarized and the required future steps for PCARD

implementation are listed.

2 Methods
We propose PCARD platform - a scheme of an mHealth

system for mobile monitoring, which is schematically

shown in Figure 1. The system comprises a small

wearable device, Android application, protocols for data

transfer, and software on the cloud.

cloud based
applications tailored

to groups of users

BT 4.0

authorized users:
 - careivers
 - medical personnelsafe storage server

(on the coud)
portable personal terminal users (subjects)

wearable device with
integrated sensors

PCARD Android
application

software for processing,
storage and analysis

data transfer protocols

Secure data
transfer

Secure data
transfer

Figure 1: PCARD platform as adapted for the follow-up of cardiac patients.

PCARD Platform for mHealth Monitoring Informatica 40 (2016) 117–123 119

The wearable device is a wireless ECG sensor, it has

measuring and communicating capabilities,

microcontroller, and software designed specifically for it.

The application on ubiquitous Android based mobile

devices (such as tablets and smartphones) has two

functionalities: to act as a link between the wearable

device and the cloud, and to display the measured data.

The cloud software residing on secure computer servers

takes care of the measurement storage, analysis, and

interface for various cloud applications for all the

intended PCARD users – subjects themselves, the

authorized caregivers and authorized medical personnel.

Standard technologies are used for the transmission of

the measurements, e.g. Internet, Bluetooth Smart, Wi-Fi,

SSL, and SOAP. Usage of cloud and standard

communication building blocks offers an inexpensive

implementation, as well as wide availability of the

system.

The design of the system takes into account the

existing technical standards, allowing easy connection of

various wearables and their immediate replacement if an

improved version becomes available. Besides the ECG

sensor, the system architecture allows the inclusion of

additional sensors on the same wearable or the additional

wearables, which could help improve the monitoring of

the patient's condition, for example, sensors for remote

monitoring of respiratory acoustic phenomena (cough,

obstruction), or sensors for activity detection, etc. Some

of the measurements are already feasible with our custom

sensors [4].

Based on the graphic presentation of a critical vital

parameter and its recent changes, it is possible to

evaluate the effectiveness of a treatment and to foresee a

possible deterioration. An alarm can be implemented to

alert the medical personnel on the high possibility of

deterioration before the monitored vital parameter

reaches a critical value. Based on the simultaneous

evaluation of multiple variables, the automatic analysis

can provide the threat level and its trend (MEWS) [5].

The analysis of vital functions in a longer time period

allows for the implementation of cognitive methods, for

example, analysis of a cardiogram over longer time

period contributes to the personalized patient’s threat

level[6][7][8].

2.1 ECG body sensor

The heart of the PCARD system is its small and

lightweight wearable device, which is fixed to the

subject’s skin using standard self-adhesive electrodes.

The device measures ECG with high resolution, which is

suitable for both personal and clinical use. In addition to

the ECG, the device also senses its environment,

including position and movement of the subject [4][9],

and subject’s skin temperature, thus providing

information about the measurement conditions. This

device is also suitable for inclusion of other features,

such as: EEG, vascular pressure, skin resistance and

respiratory rate measurements. Such an electrode

represents an important worldwide technological

breakthrough.

With a single charge of the built-in battery, the

device can operate continuously for more than three

days. The device itself is extremely simple to use, to

maintain and clean, as it requires no setup, it exposes no

cables or switches, and is enclosed in smooth

biocompatible plastics. With no movable parts it is

extremely robust, can be made watertight, and by itself

poses no absolutely risk to the users. It is intended for

wide individual use, is affordable and is the basic

building block of the mHealth technological network.

With an appropriate placement of the device on the

chest, good visibility of all electrocardiographic waves

(P, QRS and T) can be achieved with the quality

sufficient for medical analysis. Therefore, PCARD can

be used to help identifying arrhythmias and other cardiac

conditions [5]. In contrast, the measurements from

implanted ECG recorders (Implantable Loop Recorders

[10]), often record P waves that are poorly visible or not

visible at all. With an ECG sensor fixed by standard

electrodes on the chest as is case with PCARD, the

placement of electrodes can be easily modified and fine-

tuned to maximize the recording quality of the desired

electrocardiographic waves, and allows for a better

quality ECG recording.

To maximize their potential, wearable devices

should be non-disruptive to their users; to this end,

PCARD device is made small, multifunctional and

wireless. It can be worn under any kind of garments. We

have already successfully prototyped a differential

wireless sensor for measuring body surface potential on

short distances. One of the prototypes is shown in

Figure 2 with the raw measured ECG signal displayed on

the Android based smartphone.

Figure 1: Prototype personal equipment of PCARD

system: small body sensor and Smartphone.

2.2 Personal terminal

The necessary link between the ECG sensor and the ECG

analysis available to appropriate experts is a personal

terminal – a device with computing and interconnection

capabilities that the user carries around at all times.

Ubiquitous smart phones can readily fulfill this role [12]

and the PCARD makes extensive use of Android

powered smart phones.

120 Informatica 40 (2016) 117–123 M. Depolli et al.

Personal terminal connects to the ECG sensor via

Bluetooth Smart protocol and records everything that the

ECG sensor measures. This protocol offers sufficient

bandwidth, data encryption and is low-power, meaning it

conserves well the ECG sensor’s and the personal

terminal’s batteries, which are the limiting factor for

autonomy length.

For an integrated care solution, the measured data

should be available to the patient herself as well as to the

medical personnel. Therefore, the personal terminal

analyses and displays the data to the user in real-time and

in a user-friendly fashion on the personal terminal

display, while it also forwards the un-processed data to

the cloud via Internet connection. The data can be sent

either in near real-time (with only several seconds of

delay) or in larger packets, for example once a day,

depending on the monitoring purpose. It can also be

processed before sending to lower the data size and to

provide only the pre-defined statistics to the cloud.

Software running on the personal terminal could be

extended to provide alerting in case it detected life-

threatening heart conditions. The alerting could be

directed either to the user, to the nearby health care

provider or even to the emergency dispatch center.

Furthermore, software could be extended to provide

assistance for physical training or for workers that often

face life-threatening situations, such as firemen,

policemen, etc.

2.3 Secure data transmission and storage

Bluetooth Smart technology enables encryption of

transferred data between the ECG sensor and the

personal terminal. The measured data are only

temporarily stored on the personal terminal storage and

are accessible to be processed by other software. Transfer

of data to the cloud is again encrypted and largely

depersonalized – personal data is never transmitted with

the measurement. It is also only not required (although it

can be) to be stored on the cloud. In the end, aside from

the users themselves, only authorized medical personnel

possess the personal information of the subjects of

measurements.

2.4 Cloud software

Medical and informal caregivers can access the measured

data and their visualization on the cloud according to

their permissions, which are managed with a safe and

reliable accounting system. Since the PCARD system is

on the cloud, customized interfaces can be provided for

various medical personnel profiles to aid them in using,

viewing, and analyzing the data. Private users also get

custom interface to access their own data, although they

may instead use only their personal terminal without ever

connecting to the cloud.

The data on the cloud also offer a unique opportunity

for scientific exploration to advance the medical

knowledge. Never before have ECG measurements of

multi-day length and enriched with subject’s activity data

been available in large quantity. PCARD offers an

interesting new Bigdata problem – immense quantities of

novel data type to be explored with statistics and data-

mining algorithms. Although processing this data will be

difficult, the state-of-the-art Bigdata techniques should

be able to tackle it. If not, the Bigdata is being heavily

researched and should provide adequate tools soon

enough.

Opening the PCARD interfaces for custom made

applications and add-ons that communicate either with

the cloud or the personal terminal software provide the

opportunity to extend the pre-designed use cases of

PCARD. A more suitable representation of the measured

data for the laymen may be discovered, or the possibility

for the patient to better monitor his or her vital functions

added. We have already developed an Android

application that provides a comfortable option for tele-

monitoring the heart activity, and display the real-time

data from the electrode. The options for using the

measured data are endless, however, they will have to be

approached with caution, since sensitive personal data

are at stake and should be protected with great care.

2.5 Personal computer software

During the pilot studies, future cloud software

functionality is emulated by modified NeuroEKG

software for personal computers [13]. NeuroEKG (see

Figure 3) is a software package for semi-automatic

analysis of ECG and correlated bio-signals, e.g., blood

pressure. It will be used within the pilot studies for the

prototyping, testing, and evaluation of algorithms and

procedures.

Figure 2: A sample screen from NeuroEKG application

with an ECG channel (red curve), measured with

PCARD system and the detected individual heart beats

(blue x-es).

To pave the way for greater integration of mHealth

services into health care and the daily lives, the medical

personnel should first get a better understanding of what

mHealth offers. Pilot studies will partially also focus on

familiarizing the participating medical staff with the

PCARD capabilities and limitations. Their understanding

of ECG processing should evolve in this time, and their

requirements towards the software should mature.

NeuroEKG will serve well to showcase the software

capabilities, to manually try out various algorithms, and

to discuss ways of automating software processing. Thus

the pilot studies will help mature the requirements for

PCARD Platform for mHealth Monitoring Informatica 40 (2016) 117–123 121

cloud-based software and for possible future evolution of

PCARD system.

2.6 Pilot studies of PCARD platform

applications

In order to show that the proposed system for the

monitoring of mobile health is applicable at the various

stages of the integrated health care, four pilot studies

were designed for validation and evaluation of the

medical, scientific, social and industrial impacts.

2.6.1 POAF - UKC Ljubljana

Postoperative atrial fibrillation (POAF) is a common

complication of cardiac surgery. It results in many

complications and increased healthcare resources [14].

Despite substantial findings in prediction and prevention

of POAF, there is still some uncertainty about the risk

stratification and the management of POAF.

Department of Cardiovascular Surgery of the

University Medical Center Ljubljana (UKC Ljubljana)

extends previous studies [15][16] and introduces a

clinical study about the mechanisms of atrial fibrillation

through recognizing dynamics of heart rhythm and

electrophysiological properties of the heart after cardiac

operation. This clinical study will use the PCARD

system for constant monitoring of patients after a surgery

and evaluation of malignancy of the rhythm and

estimation of electrophysiological properties. Within the

pilot study, a tablet showing current heart rhythm will be

posted near the patient’s bed and the analysis of the ECG

will be done off-line. If the study is able to demonstrate

constant on-line monitoring with automatic recognition

of certain events is beneficial, the required functionality

will be implemented in PCARD to provide on-line

analysis.

The constant all-day ECG monitoring with PCARD

will start immediately after the surgery, and end on the

fifth day after the surgery. Atrial fibrillation is expected

to occur in some of the monitored patients in this time

frame. It is theorized that such monitoring should enable

preventive activity, based on detected anomalies prior to

the fibrillation itself.

2.6.2 Physicians - HCL Ljubljana

Community Health Centre Ljubljana (HCL) is a

development oriented institution in primary health care

with 1400 employees and with more than 400000

registered patients. The patients of HCL are treated

within the medical doctrine and the ethics defined in it.

HCL wishes to ensure a high-quality and time-optimal

access to health care services for all of their users in all

segments of acting. The patients of HCL come from the

Slovene capital Ljubljana and its periphery. This is a

diverse environment that includes urban and rural areas.

The proposed pilot system could trigger the

penetration of the ICT and mHealth solutions in main-

stream medicine in the primary care level and could

improve and integrate the health care. PCARD will be

used in parallel to current procedures of treating patients

with unconfirmed palpitations or other heart rhythm

disturbances. The patients participating in the study will

already be provided with a more comprehensive care in

terms of preventive and curative treatments than they

would be using only the existing primary care.

2.6.3 Monitor - Terme Dobrna

Terme Dobrna (TD) is a health resort, well recognized by

the two pillars: the positive impact of their natural

healing factors on the health and the advanced medical

treatment practices. TD is the only Slovenian thermal spa

that holds international accreditation by DNV GL for

quality and safety of its medical services. Medical center

within the resort operates in fields of inflammatory

rheumatic diseases, degenerative soft tissue rheumatism,

post injury and post operation rehabilitation, and

rehabilitation of neurologic (post stroke) and oncologic

patients (mostly in fields of gynecology and urology). A

part of TD is also Institute for applied research in

medical rehabilitation, which aims to develop advanced,

modern, evidence based, and software supported medical

services that could be offered to their customers and

therefore represents an ideal partner for a pilot study.

Pilot study will partly cover TD’s wish to provide

additional services to their customers. The goal will be to

evaluate the hypothesis that visit to TD improves the

persons overall health state. Within the pilot study, some

of the customers could be provided with constant or

intermittent health status monitoring for the time of their

visits. ECG monitoring should provide enough data to

evaluate or follow up on the eventual changes in person’s

health status. While the most important result of the

study will be weather ECG monitoring can help evaluate

health state changes, the customers receiving the

monitoring within the study will already benefit, by

receiving valuable health state information.

2.6.4 MDS - Rehabilitation Izola

Muscular Dystrophy Association (MDS) of Slovenia

cares for the constant health and rehabilitation of their

members. The people with special needs, such as those

with muscular dystrophy, are exposed to health induced

life threatening situations much more easily than the

healthy population and therefore much more interested in

the introduction and application of ICT-supported health

care devices and services.

The study will focus on personalized health state

monitoring of people staying in the MDS rehabilitation

center. During the rehabilitation period, PCARD will be

used for ECG monitoring, which will provide enough

data to assess and analyze the heart condition. Treatment

will be personalized and will include all the specificity of

individual patients.

The study will shed more light on the usability of

PCARD for relatively healthy population. Besides the

studied assessment of short-term trend in health status,

study will open up new options in: follow-up

examinations for assessment of the long-term health

status trends, and the impact of the physical activities on

the health status. The latter could help in the preparation

122 Informatica 40 (2016) 117–123 M. Depolli et al.

of personalized rehabilitation programs for more

demanding customers.

2.6.5 Requirements and targets of pilot studies

The requirements and performances of the PCARD

platform pilots are shown in Table 1. The success of

PCARD will be validated through the opinions of all the

participating actors, that is, its direct users and the

medical personnel. Targets of PCARD to be

implemented though the described pilot studies:

 Near zero obtrusiveness of the sensor device to

the direct users.

 Intuitive operation with the sensor device and

the mobile device software.

 Inclination of the direct users towards the

mHealth monitoring provided by PCARD.

 Ease of use of software, both on the mobile

device and on the Cloud.

 Minimal overhead for the medical personnel,

even when PCARD is used in addition to the

standard procedures.

 Data security and safety on the communication

channels between all the actors (either users or

devices) in the pilots.

Furthermore, pilot studies will help refine the future

direction of development both the wireless ECG sensor

and the software on all levels of PCARD.

Requirements/performances
POAF - UKC

Ljubljana

Personal doctor -

HCL
Monitor - TD

MDS -

Rehabilitation

Izola

Number of concurrently

monitored users
6 3 3 2

Measurement length per user 6 days 3 days up to 5 days up to 5 days

Data stream capacity per

user
200 Bytes/second 200 Bytes/second 200 Bytes/second 200 Bytes/second

Amount of generated data

per day
0.1 GBytes/day 52 MBytes/day 52 MBytes/day 34 MBytes/day

Number of medical experts

involved
6 3 3 2

Study of performance

Atrial fibrillation

warning sign

recognition

Palpitation

detection

Short or long term

health state

assessment

Short or long term

heart condition

assessment

Table 1: PCARD platform as adapted for the follow-up of cardiac patients.

3 Conclusion
We have designed four pilot systems around the PCARD

platform, designed for long-term monitoring of users at

cardiac risk or those who wish to evaluate their health

state, using mHealth solution for data acquisition and

medical expert support for analysis. Appropriate medical

expertise and the required form of the produced reports

will be identified during the experimental period of the

maintained pilot systems. It is expected that the

responses of medical personnel to eventual changes in

users’ health state will be faster and more objective when

using the PCARD pilot system; therefore the users will

experience improved level of treatment and better

correlation between their perceptive and actual health

conditions.

The pilot studies alone demonstrate that the

applicability of the PCARD system is not limited to

hospitals and health care centers, where the added benefit

of the system will enable “doctor-to-doctor” and

“patient-to-doctor” communication. We expect also to

obtain a large amount of user opinions about the level of

obstructiveness of the protested system. Based on the

pilot results, an improved and clinically evaluated system

will be developed for the international market with a

wide spectrum of opportunities for R&D companies.

The system can be also installed in non-specialized

medical institutions, e.g. health centers, nursing and

patients’ homes for early postoperative care and similar.

The patient-friendly approach can contribute to easier

evidence-based health evaluation and to advantageous

innovative services in wellness and health centers.

4 Acknowledgments
This work was partially supported by the Slovenian

Research Agency under Grant P2-0095. Thanks to

anonymous volunteering users and medical staff of UKC

Ljubljana, Terme Dobrna, Community Health Centre

Ljubljana and Društvo distrofikov Slovenije.

5 References
[1] Lobodzinski, S. S. (2013). ECG patch monitors for

assessment of cardiac rhythm abnormalities.

Progress in Cardiovascular Diseases, 56(2), 224–

229. doi:10.1016/j.pcad.2013.08.006

[2] "HealthVault." 2007. Accessed at

https://www.healthvault.com/ on April 14, 2015.

[3] Kališnik J M, Poplas-Ssusič T, Semeja A, Korošec

T, Trobec R, Avbelj V, Depolli M, Stanič U. Mobile

health monitoring pilot systems. Proceedings of the

18th International Multiconference Information

PCARD Platform for mHealth Monitoring Informatica 40 (2016) 117–123 123

Society - IS 2015, October 9th and 12h, 2015,

Ljubljana, Slovenia. volume G.

[4] Trobec R., Avbelj V., Rashkovska A., Multi-

functionality of wireless body sensors. The IPSI BgD

transactions on internet research. 2014;10:23-27.

[5] C.P. Subbe, M. Kruger, P. Rutherford and L.

Gemmel, “Validation of a modified Early Warning

Score in medical admissions”, Q. J. Med. 94, 521-

526, 2001.

[6] R.Miller, “Rise of the machines: Computers

construct new, better biomarkers”, theheart.org

[Clinical Conditions > Imaging > Imaging], October

5, 2011. Accessed at

http://www.theheart.org/article/1290375.do on

February 3, 2012.

[7] S. Esposito et al., “Altered cardiac rhythm in infants

with bronchiolitis and respiratory syncytial virus

infection”, BMC Infect. Dis. 10, 305, 2010.

[8] Trobec R, Rashkovska A, Avbelj V. Two proximal

skin electrodes - a respiration rate body sensor.

Sensors, 2012, vol.12, no. 10, pp. 13813-13828.

[9] Gjoreski H, Rashkovska A, Kozina S, Luštrek M,

Gams M. Telehealth using ECG sensor and

accelerometer. Proceedings of MIPRO 2014, 37th

International Convention, May 26-30, 2014, Rijeka,

Croatia. pp. 283-287.

[10] Zellerhoff C, Himmrich E, Nebeling D, Przibille O,

Nowak B, Liebrich A., How can we identify the best

implantation site for an ECG event recorder? Pacing

Clin Electrophysiol 2000;23:1545–9.

[11] Tomašić I., Frljak S., Trobec R., Estimating the

universal positions of wireless body electrodes for

measuring cardiac electrical activity. IEEE

transactions on bio-medical engineering.

2013;60:3368-3374.

[12] Rashkovska A, Tomašić I and Trobec R, “A

telemedicine application: ECG data from wireless

body sensors on a smartphone”, Proceedings of

MEET & GVS on the 34th International Convention

MIPRO 2011, Opatija, Croatia, May 2011, vol. 1,

293-296.

[13] Trobec R, Avbelj V, Šterk M, Meglič B, Švigelj V.

Neurological data measuring and analysis software

based on object oriented design. Clinical autonomic

research, 2005; 15; 173.

[14] Kaireviciute D, Aidietis A, Lip GYH. Atrial

fibrillation following cardiac surgery: clinical

features and preventive strategies. Eur Heart J. 2009;

30: 410-25.

[15] Kališnik J M, Avbelj V, Trobec R, et al. Effects of

beating- versus arrested-heart revascularization on

cardiac autonomic regulation and arrhythmias. Heart

Surg Forum. 2007; 10: E279-87.

[16] Ksela J, Suwalski P, Kalisnik J M, et al. Assessment

of nonlinear heart rate dynamics after beating-heart

revascularization. Heart Surg Forum. 2009; 12: E10-

6.

124 Informatica 40 (2016) 117–123 M. Depolli et al.

 Informatica 40 (2016) 125–132 125

Modular Integrated Probabilistic Model of Software Reliability

Estimation

Roman Yu. Tsarev, Alexey S. Chernigovskiy, Elena N. Shtarik and Andrey V. Shtarik

Siberian Federal University, Department of Informatics, Krasnoyarsk, Russia

E-mail: tsarev.sfu@mail.ru

Mustafa S. Durmuş

Pamukkale University, Department of Electrical and Electronics Engineering, Denizli, Turkey

E-mail: msdurmus@pau.edu.tr

Ilker Üstoglu

Yildiz Technical University, Department of Control and Automation Engineering, Istanbul, Turkey

E-mail: ustoglu@yildiz.edu.tr

Keywords: software reliability, reliability estimation, mean time to failure, mean time to repair, availability,

multiversion software

Received: October 22, 2015

A modular integrated probabilistic model of software reliability estimation and an algorithm of its

application for estimation of software reliability with different architecture such as multilevel,

multiversion, distributed and object-oriented ones are presented in the article. The modification of this

model is given there for the object-oriented multiversion software with the distributed architecture. The

procedure of its estimation is perfected to improve the quality of the reliability prediction. The

description of the developed program system based on the modular integrated probabilistic model of

reliability estimation of the object-oriented multiversion software with the distributed architecture is

presented in the article. The analysis of relation of software reliability parameters to the component

count, conditional and unconditional probability of the failure appearance in components and

temporary components characteristics is done there as well.

Povzetek: Opisan je modularni verjetnostni model za oceno zanesljivosti programske opreme.

1 Introduction
The interest to the software reliability estimation has

arisen at the same time as the software origin. It has been

caused by the natural need to get traditional probabilistic

software reliability estimation as one of the computer

system components. Originally the approach to the

computer system parts reliability estimation was a little

different from the hardware reliability estimation and it

consisted in application of well-known statistical

methods of classical reliability theory in a new

technological branch which laid the corner stone of the

individual trend like the software reliability theory [22].

However, as far as computing machinery was developed

it became obvious that software was not only the part of

the computing system.

In the modern conditions of digital technology

development the software discontinued to be a part of the

one computing system as it used to be, it began to be

used on hundreds and thousands of similar computers

(basically, on personal ones) [16]. It is obvious that the

problem of assurance of the stable programs functioning,

identification and correcting the failures in programs

sharply exists for software developers nowadays.

Over previous decades, lots of approaches, models

and methods of software reliability research have been

created [3], [4], [5], [19]. However, any unified approach

to the solution of this problem has not been proposed yet

and, apparently, it will not happen in the near future.

Nevertheless, developing difficult programs systems,

their creators are trying to get software reliability

estimation [8], [17], [20]. One of the most effective

approaches consists in sequential estimation of the

programs reliability at every stage of their development

[10], [19]. The main difficulty in using statistical

methods is the absence of the sufficient amount of the

input data. The detection of errors dynamics should be

thoroughly registered and processed. Another important

problem is a grain size of element’s computing reliability

[7], [14]. Defining all the paths of program execution

during information processing as it sometimes offers is

virtually unreal even for an easy program. According to

this, the elements’ computing reliability detailing (they

are theoretically called program modules) should be

limited by the completed program formations, which are

connected to each other, compose more complicated unit

(complex) which reliability holds our interest [6], [11],

[12]. In this case it is acceptable that the computing

machinery, the operating system and the programming

environment are absolutely reliable. Of interest is only

mailto:tsarev.sfu@mail.ru

126 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

the reliability of functioning of special software tools

which solve the main system problem [21].

As the result of the analysis of many researchers’

works [2], [5], [9], [13], [15], [16] in the field of software

reliability research, three basic problem groups can be

distinguished. They are:

- the absence of the unified methodology of high-

reliable software system development;

- the absence of the unified methodology of high-

reliable software system testing;

- the absence of the unified approach in software

systems reliability estimation and analysis.

One of solutions of the previous problems is the

usage of the software reliability estimation models

presented in this paper. The generic modular integrated

probabilistic model of software reliability estimation and

its modification for the multiversion software with the

distributed architecture are adapted to the modern

analysis and software development methods; in particular

the option of application of the models for the software

building following the object-oriented approach is

presented there.

2 Methodology

2.1 The generic modular integrated

probabilistic model of software

reliability estimation

The following generic modular integrated probabilistic

model of software reliability estimation has been

developed to evaluate the reliability parameters of the

software.

It is obligatory to satisfy the condition for this

model:

1
1




F

i
iPU ,

where F is a number of software architecture

components; PUi is probability of using component i, i =

1, …, F.

The mean time to repair is calculated as follows:

.]]]]])(

[[

[

]]])([

[[

[[

,

,1

,

,

,1

1

 

 

 

 

 

 













Dml
llllm

F

jmm
mmmmk

Dik
kkkki

Djl
llllj

F

ijj
jjjji

F

i
iiiii

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPL

TETCTAPFPUMTTR

 (1)

where M is a number of the software architecture levels;

PFi is theoretical probability of component i failure, i =

1, …, F; PLij is conditional probability of component i

failure under component j failure, i = 1, …, F, j = 1, …,

F; TAi is relative time of the access to component i, i = 1,

…, F; TCi is relative time of failure’s analysis in

component i, i = 1, …, F; Dmj is disjoint sets of

component j at level m, m = 1, …, M, j = 1, …, F; TEi is

relative time of failure recovery in component i, i = 1, …,

F.

The mean time to failure is calculated as follows:

,]]]]]]]]]])1[(

[)1[([)1[(

)1[([)1[(

[)1([

,

,1,

,,1

1

 

  

  

 









Dml
llm

F

imm
mmk

Dik
kki

Djl
llij

F

ijj
ji

F

i
i

TUPL

TUPLTUPL

TUPLTUPL

i
TU

i
PFPUMTTF

(2)

where TUi is relative time of using component i, i = 1,

…, F.

The software availability ratio is calculated as

follows:

.)(/ MTTRMTTFMTTFS 

The software reliability is computed as follows:

 


F

i
ii RPU

s
R

1

, where 
Zik

iki PFR 1 . (3)

where Ri is component i’s reliability, i = 1, …, F; Zi is a

set of component i’s versions, i = 1, …, F.

The cost of software development is calculated as

follows:

 
 

F

i Zij
js CC

1

,

where Ci is the cost of component i’s development, i = 1,

…, F.

2.2 The algorithm of using the generic

modular integrated probabilistic model

of software reliability estimation

The algorithm of software reliability parameters’

evaluation with the help of the developed generic

modular integrated probabilistic model is described

below.

Algorithm 1: software reliability parameters’

evaluation with the help of the developed generic

modular integrated probabilistic model

1) Divide the estimating software into modules, define

the modules’ scopes, their characteristics and

interaction order.

2) Define the number of architecture levels. If the

architecture is multilevel, it is necessary to pass to

step 4 or follow step 3 if it is not.

3) Eliminate Dmj from the model in formulas (1) and

(2). Next, pass to step 4.

4) Define the number of versions. If the architecture is

multiversion, it is necessary to pass to step 6 or

follow step 5 if it is not.

5) Eliminate Zi from the model in formula (3). After

that, pass to step 6.

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 127

6) Define if it is possible to eliminate failures. If it is

not, pass to step 8 or, if it is so, follow step 7.

7) Eliminate TCi, TEi from the model in formula (1).

Then, pass to step 8.

8) Get summarized expressions R, MTTR, and MTTF,

solving formulas (1), (2), and (3).

There is a flowchart of the algorithm of the generic

modular integrated probabilistic model of software

reliability estimation in Figure 1.

Figure 1: Flowchart of the algorithm of the generic

modular integrated probabilistic model of software

reliability estimation.

2.3 The modular integrated probabilistic

model of reliability estimation of the

object-oriented multiversion software

with the distributed architecture

The difficulty in the usage of the generic modular

integrated probabilistic model at the step of designing the

software architecture is that all required parameters are

not always known. If the component reliability is

unknown beforehand, it can be estimated only at the

coding stage. More exact information about reliability

can be obtained at the module testing stage. The

probability of using the component and component’s

failure can be gained after software testing. Parameters

such as access, analysis and recovery component time for

the distributed multiversion software can be estimated

after testing, so it is not ruled out that the structure

formation of the architecture of the projectable software

can be at the conceptual phase. It is possible to build a

class hierarchy and method’s tree for the object-oriented

software. In general, at this step it is necessary to set the

parameters which have to be estimated at the following

stages.

According to the object-oriented approach

computational process is a consecutive calling sequence

of class methods. The number of architecture levels

equals 1 for this variant. Such parameters as access,

analysis and recovery time are parts of the distributed

multiversion software.

Let us examine the modification of the generic

modular integrated probabilistic model for the instance of

the object-oriented multiversion software with the

distributed architecture in detail.

The software architecture is a set of class hierarchies

for the object-oriented approach. Every class is a set of

properties (variables) and methods (functions) of the

object.

The process is a set of transitions from one class

method to different class method [1], [9]. It is obligatory

to satisfy the condition for this model:

1
1




F

i
iPU ,

where F is a general component (class) count in the

software architecture, PUi is a probability of component

i's usage, i = 1, …, F.

The reliability of the multiversion component

depends on the reliability of each version and meta-class

which implements the multiversion approach:

mul
ZK

iki RPFR

i

)1(


 ,

where Ri is a reliability of component i, i = 1, …, F;

Zi is a variety of component i's versions, i = 1, …, F; Rmul

is a reliability of the meta-class which implements the

multiversion approach. Let us mention that the meta-

class should not be considered as the architecture’s

component and it should be eliminated from computing

MTTR, MTTF, and Rs.

The mean time to repair is calculated as follows:

no

yes

no

no

yes

yes

The start

Define

the component’s

scope

Define

the number of

architecture levels

Multilevel?

Eliminate Dmj

from the model

Multiversion?
Eliminate Zi

from the model

Possibility

of failure’s

elimination?

Eliminate TCi,

TEi from the

model

The end

Get summarized

expressions

MTTR and MTTF

128 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

]].]][[

[[

,1

1

 

 





F

ijj
jjjji

F

i
iiiii

TETCTAPL

TETCTAPFPUMTTR

The mean time to failure is calculated as follows:

]].])1[([

)1([

,1

1

 

 





F

ijj
jjii

F

i
ii

TUPLTU

PFPUMTTF

The software availability ratio is computed in the

following way:

)/(MTTRMTTFMTTFS  .

The software reliability is calculated as follows:

 


F

i
iis RPUR

1

, where 
Zik

iki PFR 1 .

As the suggested approach does not take into

account the conditional probability of the failure in

components, the following model modification was used

in the implementation of the model:

  


F

ijj
jijj

F

i
iis PLRPURPUR

,11

)]1([.

3 Results and discussion
Let us study the program realization of the system of the

reliability estimation of the object-oriented multiversion

software with the distributed architecture based on the

presented model.

3.1 The system of the reliability estimation

of the object-oriented multiversion

software with the distributed

architecture

The modular integrated probabilistic model of reliability

estimation of the object-oriented multiversion software

with the distributed architecture has been realized as the

program system in C# language.

The operational system’s function is:

the system user’s provision of the information about

the projectable software reliability parameters;

the definition of the likehood degree of the modular

integrated probabilistic model of software reliability

estimation in comparison with the real software.

The primary performing functions are:

the definition of the reliability parameters of the

projectable software by means of the modular integrated

probabilistic model;

the definition of the reliability parameters of the

projectable software by means of estimation of its

simulator’s behaviour;

the visualization of components’ behaviour of the

software simulator in the time.

A great number of the system functions forms the

structure from five blocks (Figure 2):

the data reduction provides data input and

presentation in the form which is convenient for the user;

the modular integrated probabilistic model makes it

possible to define the reliability parameters of the

projectable software;

the simulator duplicates the behavior of the

projectable software following the data which are

obtained from the block of data reduction during the

specified number of cycles;

the simulator monitoring is done for the statistics’

gathering of the simulator work and definition of the

reliability parameters of the projectable software

following the collected data;

the output is done to lead the results of system work.

Figure 2: The structure of the system of the object-

oriented multiversion software reliability estimation.

The subsystem “The block of the data reduction”

serves for the solution of the following tasks:

data editing;

checkout of the correction of the posted data.

The statistical data about the structure of the

projectable software are imported into the table with the

clipboard or directly by the user.

The visualization of the array of software parameters

and its components is performed as the table. In case of

having a mistake in edited data the system user will be

informed about it by means of the message “An error”.

The subsystem “The block of the modular integrated

probabilistic model” is basic in the system structure and

serves for definition of the reliability parameters of the

projectable system by means of using the modular

integrated probabilistic model of estimation of object-

oriented multiversion software with the distributed

architecture.

The input data of the block of the modular integrated

probabilistic model is a result of the subsystem “The

block of the data reduction” works.

The block of

the data reduction

The block of

modular

integrated

probabilistic

model

The simulator

block

The block of

the simulator

monitoring

The block of

the output

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 129

The subsystem “The simulator block” is basic in the

system structure and serves for the imitation of the

projectable software work in compliance with the data

received from the subsystem “The block of the data

reduction”. The imitation of software execution

continues during the time interval specified by the user.

During the work of this block it is supposed that each

component of the projectable software is invoked to

execute the probability PUi during the time equal TUi. At

the same time during the execution of the component the

failure will be made with the probability PFi, which time

equals the sum of TAi (the access time of the component

i), TCi (the analysis time of the failure in the component

i) and TEi (the time of failure’s elimination in component

i). Defining the failure, the probability PLij (the

probability of the failure in the component i during the

failure of the component j) is also considered.

The subsystem “The block of simulator monitoring”

is assigned for the statistics information gathering about

simulator work and defining the reliability parameters of

the projectable software on basis of this statistics.

The subsystem “The block of output” serves to lead

the results of the system work. It displays the operating

schedule of the simulator for the user and the results in

the work of the block of simulator monitoring and the

block of the modular integrated probabilistic model.

3.2 The analysis of the modular integrated

probabilistic model of reliability

estimation of the object-oriented multi-

versioned software with the distributed

architecture

The analysis of the modular integrated probabilistic

model of reliability estimation of the software includes

the analysis of the model behaviour subject to the

software components number, conditional and

unconditional probability of the failures in the

components, and also the relation of software reliability

parameters to time characteristics of the components.

Let us guess that the software consists of

homogeneous components with the following

characteristics: the probability of using PUi = 1,

unconditional probability of the failure PFi = 0.1,

conditional probability of the failure PLij = 0 for all j, the

access time TAi = 5 cycles, the analysis time TCi = 7

cycles, the clearing rime of the failure TEi = 10 cycles,

the average time of the using components TUi = 30

cycles. The time of imitation is 1200 cycles.

The analysis of the software reliability relation to the

component count has detected the different behavior

pattern of reliability parameters in the modular integrated

probabilistic model of software reliability estimation

from the component count. Thus, for example, the

relation of the mean time to repair MTTR and of the

reliability R to the component count F has a linear form

(Figure 3 and 4). At the same time, the relation of the

meaning of the mean time to failure to the component

count has a nonlinear form (Figure 5).

Figure 3: The relation of the mean time to repair to the

component count.

Figure 4: The relation of the software reliability to the

component count.

Figure 5: The relation of the mean time to failure to the

component count.

Analyzing the relation of software reliability

parameters to the committed component count F = 10

from the quantity of the unconditional probability of the

failure in the software components, the linear growth of

the mean time to repair time (Figure 6), the scaling-down

of the mean time to failure and the reliability have been

detected (Figure 7 and 8).

Figure 6: The relation of the mean time to repair to the

quantity of unconditional probability of the failure in

software components.

130 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

Figure 7: The relation of the mean time to failure to the

quantity of the unconditional probability of the failure in

the software components.

Figure 8: The relation of the reliability to the quantity of

unconditional probability of the failure in software

components.

Analyzing the relation of software reliability

parameters to the committed component count F = 10

from the value of the conditional probability of the

failure in the software components, the scaling-down of

the mean time to failure MTTF is marked due to

increasing of unconditional probability of the failure in

the component (Figure 9). The scaling-up of the mean

time to repair MTTR occurs during the augmenter of the

unconditional probability of the failure in software

components (Figure 10). At the same time, the relation of

the probability point of the meaning of the software

reliability R to the value of conditional probability of the

failure in the component is absent (Figure 11).

Figure 9: The relation of the mean time to failure to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

Figure 10: The relation of the mean time to repair to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

Figure 11: The relation of the software reliability to the

conditional probability of the failure in the component in

case of the failure’s appearance in component 1.

As this exponent of the software reliability as the

probability of no-failure operation does not take into

account conditional probability of the failure in

components, let us use its modified evaluation (10) to

increase the quality of the forecast. The result is shown in

Figure 12.

Figure 12: The relation of the software reliability to

conditional probability of the failure in the component

during the failure’s appearance in component 1.

In Figure 13 there is a relation of the average time of

usage of the component from the component count

included in the software structure to the average time

between the failures which equals 675 cycles.

Modular Integrated Probabilistic Model... Informatica 40 (2016) 125–132 131

Figure 13: The relation of the average time of the usage

of the component to the component count in the system.

In Figure 14 there is a relation of the mean time of

the recovery of the component from the software

component count to the average time of the system

recovery which equals 11 cycles.

Figure 14: The relation of the mean time of the recovery

after the failure of the component to the component count

in the system.

During the analysis a backward exponential relation

of the average time of the component recovery to the

software component count has been detected.

The analysis has shown a high forecast accuracy of

the meanings of the reliability parameters in the modular

integrated probabilistic model of reliability estimation for

the systems with a low intermodule relation. The

degradation of the forecast accuracy has been detected

for the systems with a high intermodule relation who is

specified by a lack of attention to conditional probability

of the component’s failure and partial ignorance of the

intermodule communications and the depth of system

components integration. The presented modification of

reliability calculation for the modular integrated

probabilistic model permits to expand a model range of

application and to improve the quality of forecasting.

4 Conclusion
The presented generic modular integrated probabilistic

model of reliability estimation of software permits to do

sums of assessment of the software reliability parameters

of different architecture: multilevel, multiversion,

distributed, object-oriented ones. The authors have

offered the algorithm of the developed model application

for the software reliability estimation with specified

software architecture.

In the work the modification of generic modular

integrated probabilistic model for the case of the object-

oriented multiversion software with the distributed

architecture has been analyzed in detail.

The developed system on the basis of the presented

modification of the generic modular integrated

probabilistic model for the case of the object-oriented

multiversion software with the distributed architecture

provides end-to-end solution of the following problems:

the system user’s support in reliability parameters of the

projectable software and the definition of the adequacy

degree of modular integrated probabilistic model of

software reliability estimation towards the real software.

The research has confirmed high performance of the

modular integrated probabilistic model of software

reliability estimation which is characterized by the weak

dependence between the modules. The nonlinear relation

between the quantities of the average time of using the

component, the average time of recovery after the

component’s failure and the number of the components

in software, and also behaviour pattern of the model

during the change of the quantities in conditional and

unconditional probability of the failure in software

components have been detected. It has been revealed

experimentally that the mean time to failure and the

mean time to repair linearly depend on unconditional

probability of the failure in the components of software.

5 Acknowledgment
The reported study was funded by RFBR according to

the research project №16-57-46016 СТ_а and by

TUBITAK according to the research project №215E196.

References

[1] Abdallah, C., Hafida, B. (2010). A new

architectural approach for dynamic adaptation of

components-based software using multi agent

system. Control Engineering and Applied

Informatics, vol.12, no.4, pp. 43-50.

[2] Avizienis, A., Laprie, J.C., and Randell, B. (2001).

Fundamental Concepts of Dependability, Research

Report no. 1145, LAAS-CNRS.

[3] Avizienis, A., Laprie, J.C., Randell, B. and

Landwehr, C. (2004). Basic concepts and taxonomy

of dependable and secure computing. IEEE

Transactions on Dependable and Secure

Computing, vol.1, no.1, pp. 11-33.

[4] Benso, A., Di Carlo, S. (2011). The art of fault

injection. Control Engineering and Applied

Informatics, vol.13, no.4, pp. 9-18.

[5] Boehm, B. (2011). The Future of Software

Engineering, Springer Berlin Heidelberg.

[6] Golubev, I.M., Tsarev, R.Ju., Semenko, T.I. (2005).

N-version software systems design. 11th

International Scientific and Practical Conference of

Students, Postgraduates and Young Scientists;

"Modem Techniques and Technologies", MTT 2005

- Proceedings, IEEE, Tomsk, Russian Federation,

pp. 147-149.

132 Informatica 40 (2016) 125–132 R.Y. Tsarev et al.

[7] Huang, C.-Y., Hung, T.-Y. (2010). Software

reliability analysis and assessment using queueing

models with multiple change-points. Computers

and Mathematics with Applications, vol.60, no.7,

pp. 2015-2030.

[8] Huang, G., Mei, H., and Yang, F. (2006). Runtime

recovery and manipulation of software architecture

of component based systems. Automated Software

Engineering, vol.13, no.2, pp. 257-281.

[9] Huang, C.-Y., Lin, C.-T. (2006). Software

reliability analysis by considering fault dependency

and debugging time lag. IEEE Transactions on

Reliability, vol.55, no.3, pp. 436-450.

[10] Kang, W.-H., Kliese, A. (2014). A rapid reliability

estimation method for directed acyclic lifeline

networks with statistically dependent components.

Reliability Engineering and System Safety, vol.124,

pp. 81-91.

[11] Kulyagin, V.A., Tsarev, R.Y., Prokopenko, A.V.,

Nikiforov, A.Y., Kovalev, I.V. (2015). N-version

design of fault-tolerant control software for

communications satellite system. 2015

International Siberian Conference on Control and

Communications, SIBCON 2015 - Proceedings,

IEEE Inc., Omsk, Russian Federation, pp. 1-5.

[12] Landon, J., Özekici, S., Soyer, R. (2013). A Markov

modulated Poisson model for software reliability.

European Journal of Operational Research,

vol.229, no.2, pp. 404-410.

[13] Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.

(1985). Fault tree analysis, methods, and

applications - a review. IEEE Transactions on

Reliability, vol.34, no.3, pp. 194-203.

[14] Li, X., Xie, M., Ng, S.H. (2010). Sensitivity

analysis of release time of software reliability

models incorporating testing effort with multiple

change-points. Applied Mathematical Modeling,

vol.34, no.11, pp. 3560-3570.

[15] Myers, G.J., Hocker, D.G. (1981). Use of software

simulators in the testing and debugging of

microprogram logic. IEEE Transactions on

Computers, vol.C-30, no.7, pp. 519-523.

[16] Okamura, H., Dohi, T., Osaki, S. (2012). Software

reliability growth models with normal failure time

distributions. Reliability Engineering and System

Safety, vol.16, pp. 135-141.

[17] Park, G.-Y., Jang, S.C. (2014). A software

reliability estimation method to nuclear safety

software. Nuclear Engineering and Technology,

vol.46, no.1, pp. 55-62.

[18] Rekab, K., Thompson, H., Wu, W. (2013). A

multistage sequential test allocation for software

reliability estimation. IEEE Transactions on

Reliability, vol.62, no.2, pp. 424-433.

[19] Rekab, K., Thompson, H., Wu, W. (2013). An

efficient test allocation for software reliability

estimation. Applied Mathematics and Computation,

vol. 220, pp. 94-103.

[20] Toader, C. (2010). Increasing reliability of web

services. Control Engineering and Applied

Informatics, vol.12, no.4, pp. 30-35.

[21] Tyagi, K., Sharma, A. (2012). A rule-based

approach for estimating the reliability of

component-based systems. Advances in

Engineering Software, vol.54, pp. 24-29.

[22] Zheng, C., Liu, X., Huang, S., Yao, Y. (2011). A

parameter estimation method for software reliability

models. Procedia Engineering, vol.15, pp. 3477-

3481.

Informatica 40 (2016) 133–143 133

A Distributed Security Mechanism for Resource-Constrained IoT Devices

James King1 and Ali Ismail Awad1,2
1Department of Computer Science, Electrical and Space Engineering
Luleå University of Technology, Luleå, Sweden
2Faculty of Engineering, Al Azhar University, Qena, Egypt
E-mail: {jamyking@gmail.com}, {ali.awad@ltu.se}

Keywords: internet of things (IoT), IoT security, class-0 IoT devices , object data encryption

Received: October 30, 2015

Internet of Things (IoT) devices have developed to comprise embedded systems and sensors with the
ability to connect, collect, and transmit data over the Internet. Although solutions to secure IoT systems
exist, Class-0 IoT devices with insufficient resources to support such solutions are considered a resource-
constrained in terms of secure communication. This paper provides a distributed security mechanism that
targets Class-0 IoT devices. The research goal is to secure the entire data path in two segments, device-
to-gateway and gateway-to-server data communications. The main concern in the provided solution is
that lighter security operations with minimal resource requirements are performed in the IoT device, while
heavier tasks are performed in the gateway side. The proposed mechanism utilizes a symmetric encryption
for data objects combined with the native wireless security to offer a layered security technique between the
device and the gateway. In the offered solution, the IoT gateways provide additional protection by securing
data using Transport Layer Security (TLS). Real-time experimental evaluations have demonstrated the
applicability of the proposed mechanism pertaining to the security assurance and the consumed resources
of the target Class-0 IoT devices.

Povzetek: V članku je analiziran mehanizem za varen prenos podatkov med napravami interneta stvari
(IoT).

1 Introduction

Recently, the Internet of Things (IoT), coined as such in
1999, has become an evolving paradigm in wireless com-
munications [1]. IoT is now a hot topic in Information and
Communication Technology (ICT) and has drawn the at-
tention of many research institutions [2, 3]. The generic in-
frastructure of IoT is a network of devices or objects such
as embedded computers, controllable and intelligent auto-
mated devices, sensors, and Radio Frequency IDentifica-
tion (RFID) tags, in addition to the IoT gateway and the re-
mote server. IoT devices have the ability to connect and ex-
change data with other devices and services over a network
and over the global Internet [4, 5]. The deployments of IoT
core technology encompass home automation, manufactur-
ing, environmental monitoring, and medical and healthcare
systems. A future mega-market is anticipated for a broad
scope of applications that utilize IoT devices and technol-
ogy [1].

The constrained IoT devices, Class-0 IoT devices, are
devices with limited or constrained resources with respect
to CPU processing power, ROM, RAM, and battery life.
However, these devices still have the capability of provid-
ing their intended functionalities. The constrained IoT de-
vices are often small in size with limited functions, such
as sensors and smart devices controlling electrical appli-
ances or services [6]. They are capable of collecting and

transmitting data, such as sensor readings, across the Inter-
net for storage and analysis. The collected and transmit-
ted data may be personal, private, and sensitive. Figure 1
demonstrates a general architecture of an IoT system using
an example of constrained IoT medical devices.

Due to a wide range of IoT applications, data security
has become a major concern in IoT systems in addition to
the system’s scalability [7]. Information insecurity will di-
rectly impact the performance of the entire IoT system [8].
A study states that 70% of the ordinarily used IoT devices
face security vulnerabilities such as insufficient authoriza-
tion, lack of encryption, and insecure web interfaces [9].
In some application domains such as healthcare, data leak-
age can threaten the life of individuals. Therefore, devel-
oping security and privacy protection approaches is an im-
perative requirement [10, 11, 12]. While solutions exist to
secure data from IoT devices, the majority of these solu-
tions require support for Transport Layer Security (TLS)
standards. Class-0 IoT devices fall short of the resource
requirements to support most of the security approaches
offered [13, 14]. Therefore, a particular security mecha-
nism, which is designed for Class-0 IoT devices, is highly
demanded.

This paper provides a distributed security mechanism
that is appropriate for the Class-0 IoT devices. The phi-
losophy behind the provided solution is that light resource-
consuming object encryption is implemented on the IoT

134 Informatica 40 (2016) 133–143 J. King et al.

Figure 1: A generic IoT system using the example of resource-constrained IoT medical devices. The IoT system includes
a network of devices, a gateway, and a web server. The IoT devices record and communicate data over the Internet.

device side, where object and protocol processing, which
consumes resources heavily, is delegated to the gateway.
The IoT gateway acts as an intermediary between the IoT
device and the Internet [6]. The IoT gateway, shown in
Figure 1, can take the form of a microcomputer, router,
smart phone, or any device with ample resources to con-
duct TLS-based secure communication. In this research,
a device-to-gateway layered security architecture has been
designed and developed by implementing an Advanced En-
cryption Standard (AES) for the data object within the IoT
device [15, 16, 17]. The extra device-to-gateway security
layer has been created by employing the standard wireless
security mechanism for IoT device authentication.

1.1 Paper contribution

The major contribution of this research is that it offers a
complete security mechanism for the resource-constrained
IoT devices. The security mechanism spans the IoT de-
vice, the IoT gateway, and the remote Internet server. The
contribution comprises the design and implementation of a
symmetric encryption of data objects at the IoT device over
the native wireless security. We are thereby able to create
a two-layer device-gateway security architecture. The im-
plementation of a TLS-based security at the gateway works
on standardly secure data objects before it travels over the
Internet [6, 18]. The server has been configured to accept,
process, and extract the data from the IoT gateway in its
new format.

1.2 Paper structure

The rest of this paper is structured as follows: Section 2
provides background information on the IoT system, the
problem description, and the related work. In section 3, the
proposed security mechanism is theoretically explained in
terms of the design requirements and interactions between
IoT components. Section 4 is dedicated to demonstrating
the implementation phase of the solution and the experi-

mental setups. The performance evaluation of the proposed
mechanism is documented in Section 5. Conclusions and
future works are discussed in Section 6.

2 Preliminaries

IoT technology has developed in recent years to include
more and more devices adopting embedded systems and
communication interfaces. The future growth of IoT de-
ployments comprises healthcare, education, manufactur-
ing, and transportation. The main concept behind IoT de-
vices is the possibility of collecting and sending informa-
tion over the Internet [4, 11]. The architecture of the IoT
components can be divided into three layers: the percep-
tion layer (physical devices), network layer (transmission
layer), and application layer [7, 19]. However, each layer
has its own security needs. This paper focuses on the per-
ception layer for securing the entire data path. Figure 2
represents the layered architecture of IoT components and
the data networks.

Constrained IoT devices can be grouped based on the
available resources into three categories: Class-0 (C0),
Class-1 (C1), and Class-2 (C2) devices. A comparison of
the available resources in every category is shown in Table
1 [6]. It is apparent that the Class-0 devices have much
fewer resources in terms of RAM and ROM memories.
Furthermore, the available RAM size is not able to handle
intensive security mechanisms.

IoT security needs to cover the entire IoT hierarchal ar-
chitecture. IoT security spans the application layer, net-
work layer, and perception layer. The basic security con-
cerns include data confidentiality, integrity, and availability
[7, 19, 20]. Constrained IoT devices have limited resources
and therefore are limited to the protocols and standards they
can support [21]. Efforts have been made by groups such as
the Internet Engineering Task Force (IETF) to develop pro-
tocols and standards more suited for constrained environ-
ments, such as Datagram Transport Layer Security (DTLS)

A Distributed Security Mechanism for. . . Informatica 40 (2016) 133–143 135

Table 1: A comparison of the available resources in the categories of the constrained IoT devices [6].

RAM (Data size) ROM (Code size)
Class-0 (C0) � 10KB � 100KB
Class-1 (C1) ∼ 10KB ∼ 100KB
Class-2 (C2) ∼ 50KB ∼ 250KB

and Constrained Application Protocol (CoAP), by increas-
ing the efficiency and minimizing the required computing
resources [22, 23].

The security of the transport layer for Class-1 and Class-
2 IoT devices can be achieved using DTLS over HTTP or
CoAP. DTLS is an adaptation of the TLS protocol and has
a heavy resource footprint in addition to existing applica-
tion code in the device itself [14]. Like HTTP, CoAP as a
stand-alone protocol does not contain security features nec-
essary for secure data communication [24]. In order to fix
this issue, a variation of TLS was developed to run under
CoAP and over UDP called (DTLS) [22]. DTLS contains
many features of TLS such as data encryption and authen-
tication, with added features to deal with the unreliability
of UDP [23]. Recently, CoAP over DTLS has been termed
as CoAPS.

Despite the efforts of the IETF group, there is still a
range of devices that fall short of the minimal resources
needed to support such technologies on top of existing ap-
plications. These devices are known as “Class-0" as they
fall short of the minimum threshold (10 KB of RAM and
100 KB of ROM) to support secure communication using
TLS-based solutions [6].

The minimal code size and memory consumption for us-
ing DTLS were presented by Kumar et al. [14] in the DTLS
implementation guide. The memory requirements outlined
in the report suggest that the minimum resource require-
ments for DTLS (3.9 KB of RAM and 15.15 KB of ROM)
would not be feasible in most Class-0 devices. It may also
perform poorly on some Class-1 devices with connection
times as slow as 24 seconds for a secure transmission [25].
As a conclusion, an alternative security solution is required
for highly constrained IoT devices, especially for Class-0
IoT devices.

Doukas et al. [18] have attempted to secure data com-
munication from constrained IoT medical devices by de-
ploying IoT security in the gateway as an intermediary be-
tween the device and the Internet. This developed security
solution secures data communication over the Internet by
applying Public Key Encryption (PKI) and Secure Socket
Layer (SSL) at the gateway. Although the solution pre-
sented in [18] focuses on the communication between the
gateway and the Internet, the IoT system is still susceptible
to attacks and data interception between the device and the
gateway.

A solution offered by Vučinić et al. [26] was designed
for more resource-heavy devices (C1 and C2). This offered
solution uses DTLS-based security, and it applies a data

object encryption inside a data transmission payload. The
security of data objects is provided with symmetric encryp-
tion by way of an extra layer of protection for data commu-
nication. Although object layer security on its own does
not offer effective security, it may be possible to add it to
other security mechanisms for stronger security solutions.

Existing research addresses different challenges of se-
cure data communication in Class-0 devices, but no sin-
gle solution can be considered as a comprehensive solution
that aims to secure the data path through all the IoT system
components represented in Figure 2 Moreover, most of the
available solutions do not target Class-0 devices. A security
mechanism similar to that developed by Doukas et al. [18]
provides a good base for securing IoT devices. However, it
does not cover the entire data path, and it leaves a security
gap between the device and the gateway. A comparison of
some available solutions is presented in Table 2.

Driven by the demand for a comprehensive security solu-
tion to Class-0 IoT devices, this paper presents a complete
and distributed security mechanism for these devices. Data
encryption is one of the security requirements in the per-
ception layer [21]. The novelty of the proposed solution
is three-fold: the presented security mechanism focuses on
the perception layer and aims to secure the entire data path
from Class-0 IoT devices to the Internet; the distribution of
the proposed solution over the IoT device, the gateway, and
the remote server; and the provided multi-layer security be-
tween the IoT device and the gateway. By adding an extra
layer of encryption at the object layer, message content can
be protected inside the local network and at the gateway
until it can be securely transferred over the Internet to its
final destination.

3 A distributed security mechanism

This section focuses on the conceptual design of a dis-
tributed security mechanism. The design covers three IoT
systems components: the IoT device, IoT gateway, and re-
mote web server. Each component is discussed in detail
along with a description of how the data are communicated.
The design of the proposed security mechanism aims to
achieve the requirements for Class-0 devices that are docu-
mented in Table 3.

The proposed solution secures data communication in
Class-0-constrained devices by applying a 128-bit symmet-
ric encryption (AES-128) to data objects, such as sensor
readings, before they are transmitted between the device

136 Informatica 40 (2016) 133–143 J. King et al.

Figure 2: The three main layers of the layered architecture of IoT components. From the networking viewpoint, IoT
devices and IoT gateway fall into a Personal Area Network (PAN), whereas the web server falls into a Public Network
(PN).

Table 2: A comparison of some available security solutions for IoT devices.

The concept The drawback for Class-0 devices
Doukas et al. [18] Enabling data protection through PKI encryption Does not secure the device to the gateway
Rescorla et al. [22] Datagram Transport Layer Security V1.2 Very heavy resource requirements
Vučinić et al. [26] Object Security Architecture for the IoT Very heavy resource requirements

Table 3: The design requirements for the proposed distributed security mechanism.

Requirement
#1 Provide data security between the Class-0 device and the IoT gateway
#2 Secure data transported between the IoT gateway and the Internet
#3 Perform efficiently with minimal resource consumption

and the gateway. The data are formatted in JavaScript Ob-
ject Notation (JSON) and are sent as a CoAP or HTTP
POST to the gateway. The data object is encrypted using
a secret key and can only be decrypted by devices with the
same key. This key is shared with the destination, in this
case, the web server.

Wireless transmissions in the LAN/PAN between the de-
vice and the gateway are secured at the Data Link Layer us-
ing a wireless interface module. Constrained wireless stan-
dards such as IEEE 802.15.4 and protocols such as Low
power Wireless Personal Area Network (6LoWPAN) [27]
are capable of supporting AES 128-bit symmetric encryp-
tion at this layer. By using an offered Pre-Shared Key
(PSK) to encrypt wireless transmissions, only authorized
devices connected to the network can receive traffic. By en-
crypting data objects at the device level (perception layer),
only the device and the final destination will be able to read
the encrypted data. An overview of the proposed security
mechanism is represented in Figure 3. Further descriptions
of the proposed distributed security mechanism on each
IoT system component are provided in the following para-
graphs.

3.1 Device-to-Gateway security

From the communication standpoint, another level of se-
curity between the IoT device and the gateway can be
achieved using hardware-based symmetric encryption of
the Data Link Layer (DLL) as part of the wireless proto-
col (e.g., IEEE 802.15.4, IEEE 802.11n). Wireless trans-
mission can be provided using an IEEE 802.15.4 module
such as a ZigBee or 6LoWPAN interface. When connect-
ing to a network, devices are secured with a PSK, which
is installed on each authorized device, and it is required
for communication initiation between the gateway and the
constrained devices in the network. Any unauthorized de-
vices monitoring the traffic will not be able to decrypt data
without the correct PSK. However, the built-in wireless se-
curity protects data from entities without the PSK, leaves
data exposed if someone manages to compromise the wire-
less security, or capture the PSK from another device or
from the gateway.

Confidentiality is assured between the IoT device and
the destination by encrypting data at the object level. Ob-
ject layer security exists at the application layer inside the
payload of a transmission packet. Objects in this context

A Distributed Security Mechanism for. . . Informatica 40 (2016) 133–143 137

Figure 3: An overview of the proposed security mechanism shows the major processes that run on each component. The
figure also represents the data connections and transmissions between the three IoT system components.

refer to a container of information, which has been format-
ted to be human readable. Different data formats exist for
the web, including JSON, XML, and YAML. It is worth
noting that object-layer security applies cryptography to a
data object, but the header information such as the source
and destination addresses remain exposed. The packet for-
mat and data encryption are shown in Figure 4. This level
of encryption is used as a primary layer of protection, and
it can be combined with the offered wireless security for
stronger security between the IoT device and the IoT gate-
way. It works as a second defensive wall in case of a com-
promised wireless network.

Figure 4 depicts the two layers of security applied to data
transmitted from the device to the gateway. Security is ap-
plied at the Data Link layer in the form of hardware-based
AES encryption secured with a PSK. The second layer of
security is applied only to the contents of the data object.
Addressing and source information remain unencrypted in
this layer. The data object is encrypted with a symmetric
key, which has only been shared with the server so that no
intermediaries will be able to decrypt the data.

3.2 Gateway-to-Internet security

IoT gateways are computational devices with enough re-
sources to run operating systems and protocols necessary to
securely transfer traffic across the Internet. An IoT gateway
may take the form of a microcomputer with a Linux-based
operating system. The gateway has sufficient resources

to apply heavy security and communication protocols that
cannot be supported by Class-0 devices. Once data are re-
ceived by the gateway, they are processed into HTTPS and
prepared for transmission to the remote server. The gate-
way is configured with Secure Socket Layer (SSL) tools,
which are used to create a secure HTTPS connection be-
tween the gateway and the server. From the gateway point,
one can forward secure communications to the server over
the Internet using the configured secure socket layer.

The gateway acts as an intermediary with ample re-
sources to support these security measures and secure data
before sending it over the Internet. Data sent from the IoT
device will be sent to the gateway using protocols such as
CoAP and HTTP and sent across the Internet using HTTPS
(HTTP over TLS) to the web server. In the proposed secu-
rity mechanism, the payload of the packets is formatted as
a JSON object and encrypted using AES 128-bit or 256-
bit symmetric encryption. This data object will exist inside
the transmission payload, while the packet header informa-
tion such as source and destination address remains unen-
crypted, as demonstrated in Figure 4.

The JSON object is not readable by the gateway or any
other intermediary entity other than the intended destina-
tion. Similarly, if the server sends a command back to the
device, the data object is encrypted using the pre-shared
symmetric key and is forwarded to the device for decryp-
tion. Security is applied at the Data Link Layer in the
form of hardware-based AES encryption secured with a
PSK. Only authorized devices should be in possession of

138 Informatica 40 (2016) 133–143 J. King et al.

Figure 4: The utilized packet format ,which represents the packet header, the packet payload, and the encrypted part of
the packet. The packet formats in the physical layer, the data link layer, and the network layer are represented.

the PSK. The second layer of security is applied only to the
contents of the data object. Addressing and source infor-
mation remain unencrypted in this layer. The data object
is encrypted with a symmetric key, which has only been
shared with the server, so that no intermediaries will be
able to decrypt the data.

3.3 Web server security

The messages being transmitted to the server are encrypted
with the server’s public key, which is installed in the gate-
way. Only the server can decrypt messages using its cor-
responding private key. The private key is located on the
server and is not shared with any other devices. The de-
tailed flowchart of the proposed security mechanism with
all sequential processes that are mapped to the three IoT
system components is shown in Figure 5.

Once the HTTPS packets are received by the server, they
are decrypted using the private key. The encrypted data
object can then be decrypted using the symmetric secret
key from the originating device, in this case, our class-0
IoT device. If the key is only present on one IoT device and
the server, it can be used to authenticate data received from
either party. If the key is shared with multiple devices, the
devices are authenticated as part of a group. This scenario
maintains the confidentiality of IoT data whenever it passes
over a public network.

3.4 Advanced encryption standard

Advanced Encryption Standard (AES) is one such symmet-
ric standard, which operates at fast speeds and requires
fewer resources than DTLS, making it very suitable for
Class-0 devices [14]. AES can be easily implemented and
optimized on hardware. AES inputs data as 16-byte (128-
bit) blocks that are then encrypted using a cryptographic
key that is either 128 bits, 192 bits, or 256 bits in size [28].
The larger the key size, the greater the security and resource
requirement for the device to encrypt and decrypt. Sym-
metric encryption can be applied at different layers of the
communication stack such as the data link layer (e.g., wire-
less transmissions) and to specific objects of data within a
message such as sensor readings. AES is suitable for the
needs of Class-0 IoT devices in terms of the encryption
speed and the required resources.

Symmetric cryptography involves encrypting data with
a single encryption key, which is shared between multiple
devices. Any device that possesses the key can decrypt data
that have been encrypted with the same key. When the key
is shared with other devices, there is a higher risk that it
may fall into the wrong hands, and therefore, it must be
kept safe.

Currently, in the proposed solution, the IoT data are en-
crypted in the IoT device using a symmetric key. The sym-
metric key is static and is installed only on the IoT device
and the server. Thus, the gateway is not able to decrypt
the packet payload. Messages being transmitted from the

A Distributed Security Mechanism for. . . Informatica 40 (2016) 133–143 139

Figure 5: A full flowchart of the proposed security solution across the three IoT system components.

gateway to the server are encrypted with the server pub-
lic key, which is installed in the gateway. Only the server
can decrypt messages using its corresponding private key.
The private key is located on the server and is not shared
with any other device. An asymmetric key cryptography
approach is used between the gateway and the server due
to the plethora of computing capabilities.

4 Implementation flow
The distributed security mechanism has been implemented
using real-time hardware configurations. This section de-
scribes the implementation, hardware specifications and
configurations of the three IoT system components.

4.1 IoT device setup
For the hardware underlying the IoT device, an Arduino
Uno microcontroller was used with an additional Ethernet
shield added for connectivity. A wireless shield has been
used as an alternative, but for the proof of concept, the Ar-
duino wa connected directly to a wireless router via an Eth-
ernet cable. A “DHT11” temperature and humidity sensor
was connected to the Arduino. The Arduino hardware set
up is shown in Figure 6 (a). The Arduino connects to and
reads data from the sensor and then parses the data into
the JSON format before encryption. The device automati-
cally begins the sensor reading process when the device is
connected to a power source, and it continues to repeat the
process until the power is disconnected.

The temperature data are parsed as JSON and padded to
16 bytes, as this is the required block size for AES. The
data are then encrypted using an AES-128 encryption li-
brary. The encrypted output may contain special charac-
ters, which are not web-friendly or human readable; there-
fore, it is encoded using the Base64 [29] character set so

that it is easier to transmit to the remote server.
A web client has been prepared and installed on the Ar-

duino in order to establish a connection to the IoT gate-
way. Once a connection is established, the Arduino uses
a POST method to send data to the gateway via HTTP.
The encrypted data are added to the contents of the HTTP
POST before being sent. As soon as the POST message is
sent, the Arduino receives a response back from the gate-
way confirming that the POST was received, waits for a
period of time, and then restarts the processes from the be-
ginning. Naturally, the confirmation back from the gate-
way to Arduino improves the reliability of the connection
between the two terminals.

Through the formulation of the POST in the Arduino
code, the header information is coded with the destination
IP address and web service address “index.php". The en-
crypted sensor data are added to the contents of the post
through the variable “dataEncoded”. If an error is received
while attempting to connect to the gateway, the response
is read when the POST reaches the gateway. If no errors
are received, the connection is established and the packet is
sent.

Figure 7 represents a captured TCP packet after it has
been transmitted from the sensor (IoT device) and reassem-
bled by the gateway. The packet includes the header infor-
mation such as the destination and source address. It also
includes the encrypted sensor data in the POST contents
(i.e., “ZGioFzoApFk9CfV9XFQhxQ==").

4.2 IoT gateway setup

The IoT gateway was built on a Raspberry Pi (RPi) model
B. The gateway hardware is shown in Figure 6 (b). The RPi
is a microcomputer with ample resources to perform the
heavier security processes that are too resource-intensive
for the IoT device. The RPi contains a 700-MHz CPU, 512

140 Informatica 40 (2016) 133–143 J. King et al.

(a) (b)

Figure 6: The hardware set up for the implementation of the proposed security mechanism. (a)– The setup of an IoT
device using Arduino hardware and (b)– The setup of an IoT gateway with a wireless antenna (Raspberry Pi setup).

MB, and a SD card reader that acts as its storage memory.
In this case, an 8GB SD card was used for storage. The RPi
can be configured with a range of Linux-based operating
systems. The RPi connects to the wireless router through
a wireless USB adapter. The RPi was installed with a PSK
to access the wireless network that is secured with AES
256-bit symmetric encryption.

A web application running on an Apache web server was
installed on the RPi to receive and process data from the
IoT device. When a POST is received from the Arduino,
the encrypted payload (sensor data) is stripped. The gate-
way does not contain the symmetric key to decrypt data
from the Arduino; however, it forwards it to the server over
a secure connection.

The RPi (IoT gateway) connects to the server using a
SSL connection and posts the data to the server in an
HTTPS POST. For testing purposes, the security certifi-
cate was not signed by a certificate authority, and there-
fore, when the IoT gateway attempted to connect to the
server, the verification of the certificate with a trusted third
party was disabled in the code (VERIFYPEER and VER-
IFYHOST). In a real environment, this would be unsafe,
and by disabling the verification, the gateway would not be
able to ensure that the connection has not been tampered
with.

4.3 Web server setup

For testing purposes, the server was set up on a laptop
within the local area network. This server represents the
online server to which data would be transmitted. An
Apache web server was installed and configured on the
laptop. A security certificate was created, and the server
was set up to receive HTTPS connections using SSL/TLS.
As soon as the connection is established by the gateway, a
HTTPS POST will be sent to the remote server carrying the
encrypted data.

On the server side, a web service that handles the decryp-
tion process was installed. The cipher text and the symmet-

ric key are passed to the service. The cipher text is decoded
from base64 [29] into its original encrypted form. It is then
processed using a "rijndael-128" cipher, which is another
reference for AES-128. The final stage of the process is
to parse the decrypted output and upload it to a database
along with the date and the original encrypted message for
reference. A web page was also created to demonstrate the
working solution. The web page allows the user to view
the latest sensor results, which are stored in the database.

5 Performance Evaluation
The proposed security mechanism has been evaluated
based on its performance and ability to meet the outlined
requirements in Section 3 In addition, the proposed secu-
rity solution should perform in a timely manner and not be
subject to an unacceptable amount of packet loss or failure.
The solution is designed to support Class-0 devices with
respect to resource consumption and processing time.

With AES, the data are passed to the algorithm in 16-
byte blocks. If the input is larger than 16 bytes, it is divided
into subsequent blocks. If a subsequent block falls short
of the 16 bytes, padding is applied to increase the size of
the data to 16 bytes. During the test, a small single-line
JSON string was created with a temperature reading from
the sensor. The result was 12 bytes in size, and 3 bytes of
padding were added to the string before it was encrypted
and then encoded using Base64 encoding scheme.

Using cryptography requires additional resources from
the device. The performance measurements are recorded
in Table 4; they satisfy the design requirements in Section
3. The requirements may change depending on the appli-
cation of the device and the nature of its constraints. It is
assumed that a resource overhead of 0.5 KB of RAM and
0.47 KB of ROM with an additional processing time of 0.46
seconds is an acceptable burden on most Class-0 systems.
When the key size was increased to 256 bits, there was a
25% increase in processing time to 0.57 seconds and a 1%
increase in ROM usage to 0.63 KB. For most applications,

A Distributed Security Mechanism for. . . Informatica 40 (2016) 133–143 141

Figure 7: A captured packet sent from the IoT sensor. The captured packet clarifies the encrypted and not-encrypted data
from the sensor. The capturing probe is installed at a point between the device and the gateway.

the increases would be acceptable and provide stronger en-
cryption as a result.

The implemented layered security provides strong cir-
cumvention against any external attack to the IoT system.
An attacker would first need to gain access to the network
either through direct access to the gateway or with a PSK
for the network to be able to capture the data. With the
additional encryption applied to data objects, even if the
attacker had access to the network or the gateway, the at-
tacker would not be able to read the data without the cipher
key.

The memories overhead with respect to RAM and ROM
in Table 4 are very low compared to the solutions offered in
the literature. According to the implementations of two se-
curity solutions in [24], in particular, the encryption in the
Host Identity Protocol (HIP) consumes 1.7 KB of ROM,
and the encryption in the DTLS imposes an overhead of
3.3 KB of ROM and 1.5 KB of RAM. This confirms the
applicability of our proposed solution for the Class-0 IoT
devices.

At the gateway, the data are processed into HTTPS using
RSA 2048-bit and a session key and securely forwarded to
the web server. Using the network protocol analyzer tool,
we can analyze the traffic exchange between the server and
gateway. The received data are encrypted using a session
key, and hence, they are not readable by any unauthorized
user eavesdropping on traffic via active or passive traffic
collection mechanisms [30, 31].

The processing times in Table 4 were recorded on the
device (encryption time), on the gateway (object process-
ing time), and on the server (decryption time). Due to the
constrained processing power, the encryption time varies
from AES-128 to AES-256. However, the processing time
is constant on the gateway because the gateway is blind to
the message contents. The gateway translates a message
from HTTP to HTTPS and forwards it to the server.

The reported processing times are faster than what is re-
ported in the literature. For example, Doukas et al. [18]
achieved an 0.8-second overhead on the gateway compared
to 0.18 seconds for our security solution. While the pro-
cessing times in [18] are slightly slower than ours, it is
worth noticing that they used a larger data size of “Less
than 100 KB", whereas the message size used in this re-
search is limited to 24 bytes.

6 Conclusions
Internet of Things (IoT) is a promising paradigm in wire-
less communications that offers a capability to connect,
collect, and send data over the Internet. IoT keeps expand-
ing with broad deployment demands in many fields such
as home appliance, marketing, and healthcare. Despite the
research attentions that IoT has received, the security, and
hence, privacy issue in Class-0 devices is still a gap. This
research has presented a distributed security mechanism for
constrained Class-0 IoT devices. The design principle be-
hind the proposed solution is to delegate the low resource
consuming operations to the IoT device, and keep the high
resource consuming processes at the IoT gateway side. In
addition to the native wireless security, a layered security
scheme has been offered by performing a asymmetric en-
cryption to the data objects at the device level. The im-
plementation of the distributed security mechanism has in-
cluded the IoT device, the IoT gateway, and the server side.
A complete laboratory setup for IoT infrastructure has been
developed for the implementation and the evaluation pur-
poses. Our experimental works have proven the security
level of the solution, the suitability of the security mecha-
nism to the Class-0 devices. In the worst case, with AES-
256, the encryption process consumes memory overhead of
0.5 KB of RAM, 0.63 KB of ROM, 0.57 second encryption
time on the device, and 0.18 second on the gateway. The
future work focuses on the distribution and management of
the encryption key, bring into attention additional security
aspects such as data integrity and availability for improving
the overall system’s performance and circumvention.

References
[1] Kramp, T., van Kranenburg, R., Lange, S.: Introduc-

tion to the internet of things. In: Bassi, A., Bauer, M.,
Fiedler, M., Kramp, T., van Kranenburg, R., Lange,
S., Meissner, S. (eds.) Enabling Things to Talk, pp.
1–10. Springer Berlin Heidelberg (2013)

[2] Medaglia, C.M., Serbanati, A.: An overview of pri-
vacy and security issues in the internet of things. In:
Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.)
The Internet of Things, pp. 389–395. Springer New
York (2010)

142 Informatica 40 (2016) 133–143 J. King et al.

Table 4: The memory overhead (RAM and ROM) and the processing times for the proposed distributed security mecha-
nism.

Memory consumption (KB) Processing time (Second)

RAM (Device) ROM (Device) IoT (Device) IoT (Gateway) Server

No encryption ∗ 16 0.5 – – –

AES-128 ∗∗ 0.5 0.47 0.46 0.18 0.000205

AES-256 ∗∗ 0.5 0.63 0.57 0.18 0.000404

∗Base memory is considered. ∗∗ Overhead memory is considered.

[3] Lee, G.M., Crespi, N., Choi, J., Boussard, M.: Inter-
net of things. In: Bertin, E., Crespi, N., Magedanz,
T. (eds.) Evolution of Telecommunication Services,
Lecture Notes in Computer Science, Vol. 7768, pp.
257–282. Springer Berlin Heidelberg (2013)

[4] Khan, R., Khan, S., Zaheer, R., Khan, S.: Future
internet: The internet of things architecture, possi-
ble applications and key challenges. In: 10th Interna-
tional Conference on Frontiers of Information Tech-
nology (FIT). pp. 257–260. IEEE (2012)

[5] Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S.,
Avesand, S., Boyle, D.: From Machine-to-Machine
to the Internet of Things: Introduction to a New Age
of Intelligence. Elsevier, 1st edn. (2014)

[6] Bormann, C., Ersue, M., Keranen, A.: Ter-
minology for constrained-node networks, RFC
7228, (2014), http://www.rfc-editor.org/
info/rfc7228, last access 29.01.2016

[7] Zhao, K., Ge, L.: A survey on the internet of things
security. In: 9th International Conference on Compu-
tational Intelligence and Security (CIS). pp. 663–667.
IEEE (2013)

[8] Jing, Q., Vasilakos, A., Wan, J., Lu, J., Qiu, D.: Se-
curity of the internet of things: perspectives and chal-
lenges. Wireless Networks 20(8), 2481–2501 (2014)

[9] Lack of security in internet of things devices. Net-
work Security 2014(8), 2 – (2014)

[10] Weber, R.H.: Internet of things – New security and
privacy challenges. Computer Law & Security Re-
view 26(1), 23–30 (2010)

[11] Santos, A., Macedo, J., Costa, A., Nicolau, M.J.: In-
ternet of things and smart objects for M-health Moni-
toring and control. Procedia Technology 16(0), 1351–
1360 (2014)

[12] Storey, A.: There’s nothing ‘smart’ about insecure
connected devices. Network Security 2014(7), 9–12
(2014)

[13] Raza, S., Trabalza, D., Voigt, T.: 6LoWPAN com-
pressed DTLS for CoAP. In: The 8th IEEE Interna-
tional Conference on Distributed Computing in Sen-
sor Systems (DCOSS). pp. 287–289. IEEE (2012)

[14] Kumar, S., Keoh, S., Tschofenig, H.: A hitchhiker’s
guide to the (datagram) transport layer security proto-
col for smart objects and constrained node networks
(2013), https://tools.ietf.org/html/
draft-ietf-lwig-tls-minimal-00, last
access 29.01.2016

[15] Stallings, W.: Cryptography and Network Security:
Principles and Practice. Pearson Education, NJ, USA
(2002)

[16] Paar, C., Pelzl, J.: The advanced encryption standard
(AES). In: Understanding Cryptography, pp. 87–121.
Springer Berlin Heidelberg (2010)

[17] Fathy, A., Tarrad, I., Hamed, H., Awad, A.I.: Ad-
vanced encryption standard algorithm: Issues and im-
plementation aspects. In: Hassanien, A.E., Salem,
A.B.h., Ramadan, R., Kim, T.h. (eds.) Advanced Ma-
chine Learning Technologies and Applications, Com-
munications in Computer and Information Science,
Vol. 322, pp. 516–523. Springer Berlin Heidelberg
(2012)

[18] Doukas, C., Maglogiannis, I., Koufi, V., Malamate-
niou, F., Vassilacopoulos, G.: Enabling data protec-
tion through PKI encryption in IoT m-health devices.
In: The 12th IEEE International Conference on Bioin-
formatics Bioengineering (BIBE). pp. 25–29. IEEE
(2012)

[19] Sun, X., Wang, C.: The research of security technol-
ogy in the Internet of Things. In: Jin, D., Lin, S. (eds.)
Advances in Computer Science, Intelligent System
and Environment, Advances in Intelligent and Soft
Computing, Vol. 105, pp. 113–119. Springer Berlin
Heidelberg (2011)

[20] Yang, X., Li, Z., Geng, Z., Zhang, H.: A multi-layer
security model for internet of things. In: Wang, Y.,

A Distributed Security Mechanism for. . . Informatica 40 (2016) 133–143 143

Zhang, X. (eds.) Internet of Things, Communications
in Computer and Information Science, Vol. 312, pp.
388–393. Springer Berlin Heidelberg (2012)

[21] Suo, H., Wan, J., Zou, C., Liu, J.: Security in the
internet of things: A review. In: IEEE 2012 Interna-
tional Conference on Computer Science and Electron-
ics Engineering (ICCSEE). Vol. 3, pp. 648–651. IEEE
(2012)

[22] Rescorla, E., Modadugu, N.: Datagram transport
layer security version 1.2, RFC 6347, (2012),
https://tools.ietf.org/html/rfc6347,
last access 29.01.2016

[23] Shelby, Z., Hartke, K., Bormann, C., Frank,
B.: The constrained application protocol (CoAP),
RFC7252, (2014), https://tools.ietf.org/
html/rfc7252, last access 29.01.2016

[24] Garcia-Morchon, O., Keoh, S.L., Kumar, S., Moreno-
Sanchez, P., Vidal-Meca, F., Ziegeldorf, J.H.: Se-
curing the IP-based internet of things with HIP and
DTLS. In: Proceedings of the Sixth ACM Conference
on Security and Privacy in Wireless and Mobile Net-
works. pp. 119–124. WiSec ’13, ACM (2013)

[25] Keoh, S., Kumar, S., Garcia-Morchon, O.: Se-
curing the ip-based internet of things with DTLS
(2013), https://tools.ietf.org/html/
draft-keoh-lwig-dtls-iot-02, last access
29.01.2016

[26] Vučinić, M., Tourancheau, B., Rousseau, F., Duda,
A., Damon, L., Guizzetti, R.: OSCAR: Object secu-
rity architecture for the Internet of Things. Ad Hoc
Networks 32(0), 3–16 (2015), Internet of Things se-
curity and privacy: Design methods and optimization

[27] Kolahi, S., Li, P., Argawe, M., Safdari, M.:
WPA2 security-bandwith trade-off in 802.11n peer-
peer WLAN for IPv4 and IPv6 using Windows XP
and Windows 7 operating systems. In: The 7th
IEEE Symposium on Computers and Communica-
tions (ISCC). pp. 575–579. IEEE (2012)

[28] Elfatah, A.F.A., Tarrad, I.F., Awad, A.I., Hamed,
H.F.A.: Optimized hardware implementation of the
advanced encryption standard algorithm. In: 8th
International Conference on Computer Engineering
Systems (ICCES). pp. 197–201. IEEE (2013)

[29] Coles, M., Landrum, R.: SQL CLR Cryptography. In:
Expert SQL Server 2008 Encryption, pp. 167–184.
Apress (2009)

[30] Rubio-Loyola, J., Sala, D., Ali, A.: Maximizing
packet loss monitoring accuracy for reliable trace
collections. In: 16th IEEE Workshop on Local and
Metropolitan Area Networks, LANMAN 2008. pp.
61–66. IEEE (2008)

[31] Rubio-Loyola, J., Sala, D., Ali, A.: Accurate real-
time monitoring of bottlenecks and performance of
packet trace collection. In: 33rd IEEE Conference on
Local Computer Networks, LCN 2008. pp. 884–891.
IEEE (2008)

144 Informatica 40 (2016) 133–143 J. King et al.

Informatica 40 (2016) 145–152 145

Drupal 8 Modules: Translation Management Tool and Paragraphs

Saša Nikolić
Faculty of Mathematics, Science and Information Technologies, University of Primorska
Glagoljaška 8, SI-6000 Koper, Slovenia
E-mail: nikolic.sasa09@gmail.com

Jurij Šilc
Computer Systems Department, Jožef Stefan Institute
Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: jurij.silc@ijs.si

Technical paper

Keywords: content management system, Internet, website, open source, module, Translation Management Tool, Para-
graphs

Received: September 11, 2015

As the Web has grown in the last few decades, we now have nearly one billion websites online and most
of them offer rich information, that is usually difficult to manage by normal users. In order to simplify the
process of creating and managing website content with relative ease and with an user friendly experience,
lots of content management systems were developed. These are software applications that provide capa-
bilities for multiple users with different permission levels to seamlessly create, edit, review and publish
website content. They offer a web-based graphical user interface, enabling publishers to access the content
management systems online using only a web browser. Because of good security, quality, customisability
and great support by the community of developers, open source content management systems are becom-
ing extremely popular and many of them available on the market. The most noticeable are Drupal, Joomla,
Magento and Wordpress. A lot of different surveys have been done to determine which one of them is the
best, but this question still remained unanswered. Because of our personal involvement into developing
Drupal and helping the community, this article describes a totally new version of Drupal, named Drupal 8.
Firstly, a short overview about Drupal and all its key parts is presented, followed by a chapter describing
all the new features and the current status. Two subtopics of this article will include modules that we lately
contributed to – Translation Management Tool and Paragraphs. Some of our main issues are described at
the end of each module.

Povzetek: V zadnjem desetletju smo priča bliskovitemu napredku spletnih tehnologij in posledično spletnih
strani ter aplikacij. Te so danes polne bogatih informacij, a jih je navadno težje upravljati. Za poenostavitev
kreiranja in upravljanja s podatki na spletnih straneh so bili razviti različni sistemi za upravljanje vsebin.
Danes jih je na tržišču veliko, med njimi so najbolj opazni Drupal, Joomla, Magento in Wordpress. V ses-
tavku je govor o novi različici odprtokodnega sistema za upravljanje vsebin Drupal 8, pri razvoju katerega
smo sodelovali. Najprej je na splošno predstavljen Drupal z glavnimi lastnostmi in funkcijami, nato sledi
poglavje Drupal 8, kjer so opisane novosti in posodobitve. Po kratkem poglavju o trenutnem stanju sis-
tema ter prihodnjih korakih sledi poglavje o dveh modulih, pri razvoju katerih smo sodelovali: Translation
Management Tool, za lažje prevajanje vsebin, in Paragraphs, za boljše strukturiranje vsebin. Nekaj naših
rešitev je opisanih na koncu vsakega od obeh modulov.

1 Introduction

The Internet is probably one of the most profound achieve-
ments in human history. We became so addicted to it, that
we hardly even notice it, unless it happens to be unavail-
able. With the help of great innovative technologies, the
internet has simply dropped the barriers of time and geo-
graphical distance to turn the entire world into a local com-
munity centre. In the last decade millions of people tend

to share their lives and experiences with others through
their personal blog sites. Others use the web to show off
their work, art or music. Still others found an opportu-
nity to promote their companies and be more noticeable
to a wider variety of people. Whatever the need is, there
exists a great solution that for its installation and admin-
istration does not require any programming skills. Drupal
is one of the most common solutions for building anything
from simple user blogs to fully-customizable, interactive

146 Informatica 40 (2016) 145–152 S. Nikolić and J. Šilc

and mobile-responsive websites in several languages. As-
suming that you are interested in the open source commu-
nity and in learning more about Drupal, this article briefly
describes what Drupal is and mainly, introduces you to the
new version, Drupal 8. Last, but not least, it describes two
new modules, Translation Management System and Para-
graphs, their structure and my personal contribution to in
their development. We have been an active Drupal member
for more than 7 months now and contributed to more than
80 various issues, from core to contributed modules.

2 Drupal

2.1 What is Drupal?

Drupal was developed and released in 2001 under the open
GNU General Public Licence (GPL), which means anyone
is free to download it and share it with others. It is a PHP
and MySQL-based system for managing websites and is
used by hundreds of thousands of web developers around
the world [3]. It serves as a back-end framework for more
than 2% of all websites worldwide – from personal blogs
to corporate, political and government sites, including the
official website of the White House and various UK Gov-
ernment projects [2].

The default release of Drupal, known as Drupal core,
contains only basic features, like user account registra-
tion and maintenance, menu management, taxonomy, page
layout customization and system administration. This is
enough for a simple website, a user blog or an Internet fo-
rum.

Currently, there are more than 30,000 free community-
contributed add-ons, also known as contributed modules
[4]. By adding different modules and features like ad-
vanced search, content translation, external text editors
(WYSYWIG), many different jQuery libraries, etc. users
can experience the web in totally new and different ways.

2.2 Why choose Drupal?

Here are some of the reasons why people may opt to use
Drupal: Drupal is a CMS which allows users to update their
websites without technical knowledge and ensures that it
fits any organization’s workflow. It is modular, extensible
and scalable, which means it can grow over time as user’s
needs expands. Also, the website can be customized de-
pending on the content or company features. Drupal can
be installed in multiple languages, allowing users and ad-
ministrators to view and administer the site in their own
language. From the hardware point of view, it runs on any
computing platform that supports a web server capable of
running PHP (e.g., with Apache, Nginx, LiteSpeed) and a
database to store content and configurations.

2.3 Core features
Administer: Drupal comes with various options for user
accounts and permissions. The administrator can set up
one or more roles to users, specifying with different per-
missions, what each user can and can not do.

Build: easily build websites without any programming
knowledge. It also comes with pre-defined configuration,
so that website building is much easier than before.

Collaborate: social publishing and interaction with the
content on your site can be easily controlled by the admin-
istrator.

Connect: using aggregation, feeds, search engine con-
nection capabilities and social media integration is widely
supported to help users connect with wider audience.

Creative Content: Drupal’s flexibility supports many
content types including video, text, blog, podcasts and polls
with an user-friendly web interface.

Design & Display: there are lots of themes created by
professionals and free to use, since Drupals presentation
layer allows designers to create their own interactive expe-
riences that engage users and increase traffic.

Extend with more than 16,000 available modules devel-
opers can create and adapt the site to any requirements. Ev-
eryone is encouraged to contribute modules for others to
use.

Organize & Find: many tools are available for orga-
nizing, structuring, finding and re-using website’s content.
Friendly path urls, custom lists, categorization with taxon-
omy and linking content with other content on the site are
just some of the options.

2.4 Community
The main reason, why Drupal is more popular and secure
than other open source CMS is a huge developer commu-
nity. It counts more than 1 million members and provides
support, constant development (and bug fixing), testing and
documentation. Drupal community members make Drupal
better and better every day. More than 950 people con-
tributed code and ideas to the Drupal 7 release and even
more are responsible for developing and maintaining the
so-called “contrib” modules. The main website that pro-
vides a place for groups to organize, meet and work on var-
ious projects is https://groups.drupal.org. It is
mainly based on geographic location and interest. This is
a great way to get fast support, learn more by local peo-
ple and to easily get involved. Drupal events and meet-ups
are also very frequent, which makes it easier to exchange

Drupal 8 Modules: Translation Management Tool and Paragraphs Informatica 40 (2016) 145–152 147

knowledge face to face, get ideas for new projects and mak-
ing friends along the way. IRC is another fast and effective
way of communication and interaction with other develop-
ers, mainly in use for support. Forums, mailing lists and so-
cial media are also available for sharing information about
Drupal.

3 Drupal 8
Since its creation in 2001, Drupal has grown and developed
year by year to meet new changing demands and needs of
all its global users and to achieve that, new big, forward-
looking changes needed to be made. The result is that Dru-
pal has stayed relevant to new technologies, unlike nearly
every other Open Source CMS over the years. The down-
side is that with every major release, Drupal developers
have gone through a lot of pain adjusting to this changes. In
2006, the founder of Drupal – Dries Buytaert wrote: “So
let’s capture that thought for future reference. Sweeping
changes are required to make major advances in technol-
ogy, and often times there is a lot of pain before the pay-
off.”[1]

Drupal 7 is a very popular CMS amongst users, but there
are quite some big limitations, including incomplete Entity
API, no separation between logic and presentation in the
theme layer, and so on. Contributed modules tried to solve
many of these problems, but they were mostly incomplete.
With Drupal 8, these problems were solved with a head-on
approach – through the Configuration Management Initia-
tive, Twig templating layer and a new, complete Entity API.

With more than 200 new features and improvements,
will definitely be the most significant update in Drupal his-
tory. Easier customizations of data structures, listings and
pages will be the first thing that the users will notice at the
beginning. Countless new capabilities for displaying data
on mobile devices, building APIs and adapting the web-
site to multilingual needs are also some of the other things
that will make a huge impact on the usability and diver-
sity. With a much more efficient core, easier migration
from earlier versions and inline content editing tools it will
become a cutting-edge platform that will set new standards
for other CMS. To not forget various new modules and
themes, made available by a modern Object Oriented Pro-
gramming (OOP) approach on the back end side. All those
new features can be summed up in different categories, but
the categorisation based on what affects different types of
users seems to be the most important one [7].

4 Drupal 8 development
One of the biggest challenges with Drupal, is that it is hard
for organizations of all sizes to find Drupal talent (devel-
opers, themers, site builders, etc). Drupal 7 didn’t address
this problem (e.g., using procedural programming instead
of object-oriented programming), and in fact made it a bit
worse with the introduction of even more Drupal-specific

development (e.g., excessive use of structured arrays). For
most people new to Drupal, Drupal 7 could be really com-
plex. The most effective way to address the Drupal talent
issue, as well as the complexity issue, is to update Dru-
pal with modern frameworks and platforms, so there is
less Drupal-specific knowledge to learn in order to become
proficient. Modern PHP concepts and standards, object-
oriented programming, and the Symfony framework were
adopted for that matter. While a lot of the Drupal con-
cepts (Fields, Views, Entities, Nodes) continue to exist in
Drupal 8, they are now implemented using object-oriented
programming design patterns.

The advantages and disadvantages of object-oriented
programming are well-known. The disadvantages are ver-
bosity, size, slower performance and the amount of work it
takes to write (including the design planning that goes into
it). For people that are new to object-oriented programming
the learning curve could be steep; some of the key program-
ming techniques, such as inheritance and polymorphism,
can be challenging initially. The advantages are encapsu-
lation (both to avoid tampering with internal values and to
hide implementation details), faster development thanks to
re-use, extensibility, and better maintainability. Compared
to procedural programs, object-oriented programs are eas-
ier to maintain, extend and refactor. So although a lot of
work is spent to write the code, less work is needed to
maintain it over time. For Drupal 8 this means that the
code will be more abstract, more verbose, and slower, but
also more maintainable, more modular, and more accessi-
ble to non-Drupal developers. The end goal is that Dru-
pal 8 should help attract new people to Drupal in a way
Drupal 7 did not. As an example, exactly the same hap-
pened with other projects like Symphony. Symphony 2 was
a complete refactor and re-architecture from the previous
version. People had different opinions about that. A lot of
people were alienated, yet at the same time Symfony 2 was
a big success.

The same thing has happened with the major releases of
Drupal as well, despite how much change each one brings.
Many of Drupal 8 development changes are described be-
low based on the users.

4.1 End users and clients

As mentioned, Drupal 8 is a powerful platform that requires
very little to no technical knowledge. It’s purpose is to let
content administrators use the website as they want; “get-
ting the right content to the right people in the right lan-
guage at the right time”.

Comparing Drupal to its competitors, the leading
Drupal-based company has set some priorities to fill in the
most important gaps. The biggest shortcoming in Drupal
was set to be the authoring experience. Drupal 8 expands
previous functionality by allowing users to do the follow-
ing:

– Easily create lists and image galleries using views.

148 Informatica 40 (2016) 145–152 S. Nikolić and J. Šilc

– Using WYSYWIG editor in core to create well-
structured pages and still having the option to see the
rich text format.

– Inline editing is possible by default. It works with im-
age fields, taxonomy, files, regular text, formatted text,
etc.

– Use two column layout, which makes it easier to sep-
arate the essentials on the left and meta/admin data on
the right.

– Preview the newly created content on the front end.

Since the mobile technology evolved so much lately, re-
sponsive designs are a must. Drupal 8 supports adding and
editing content from any mobile device and comes with all
built-in themes that are fully responsive. Since mobile was
also a big priority, everything from the installer to the mod-
ules page has been re-designed with mobile in mind. There
were made lots of big improvements:

– Responsive core themes.

– It comes with picture module that uses HTML5 pic-
ture element for responsive images.

– It is based on configurable breakpoints - courtesy of
the new Breakpoint module.

– The new toolbar is mobile friendly with large tap ar-
eas, and a nice vertical sidebar or app icons at the top.

– Responsive tables make sure that the most important
columns are also displayed on smaller screens.

4.2 Site builders

All new out-of-the-box features like views, configuration
management and an improved user interface (UI) make the
job of site builders a lot easier. Drupa 8 allows site builders
to:

– Attach new field types (like Entity Reference) to dif-
ferent new types of content.

– Customize the look and feel of data entry forms on
Form displays.

– Use views and customize the default front page, admin
listings, sidebar content, image galleries, slide shows,
etc. with 0 lines of code.

– Have a totally new administration experience, since
the interface got lots of attention. The elements are
redesigned for responsiveness, consistency and better
accessibility.

4.3 Designers and themers

The most noticeable update regarding the UI is the usage
of HTML5 markup for all themes and core components.
The other most talked-about change is Twig, a templating
engine that makes Drupal theming totally different in com-
parison with the older versions where template files were
used for the HTML markup and PHP variables. Twig is a
lot faster, more secure and makes the Drupal 8 markup a
lot cleaner, while the admin UI provides a more consistent
experience and is easier to use. It is also much easier to
debug and view where information is coming from. It can
be also seen as a development module for themers. Other
than that, the front end libraries are updated. Drupal 8 of-
fers the latest versions of jQuery, jQuery UI and Backbone,
which is used as a front-end library and as in core for data
modeling and state syncing.

4.4 Developers

The main goal was to make Drupal 8 developers do more,
with fewer steps and with less knowledge about the frame-
work itself. It was achieved with a totally new file-based
configuration management system, which is a mix of some
of the most modern and popular web technologies that we
can use today; RESTful web services and the use of Sym-
fony 2 framework. Developers can also benefit by the fol-
lowing updates:

– It uses the new Rest and serialization API, which
means serialized data can be outputted as JSON and
XML.

– New libraries: Assetic, Composer, PHPUnit, Guzzle,
Zend Feed Component.

– Easily track changes in configurations with version
control and update the production site cleanly.

5 Current Drupal 8 status and
future releases

The Drupal community was working hard since March,
2011 on Drupal 8 and making progress constantly. The
first ever stable version of Drupal 8 was released oh 19th
November 2015, followed by release parties all around
the globe, organized by contributors themselves. This key
milestone was achieved with the work of more than 2,300
people altogether. There have been more than 11,500 com-
mitted patches to 15 alpha releases. Semantic versioning
will follow after Drupal 8.0.0 with a regular release sched-
ule. Patch-level releases will follow monthly correspond-
ing to Drupal 7’s release windows. Minor releases are
planned to follow every six months. The corresponding
Drupal timeline is displayed in the Figure 1.

Drupal 8 Modules: Translation Management Tool and Paragraphs Informatica 40 (2016) 145–152 149

Figure 1: Drupal timeline plan for specific version releases. As seen, the plan is well defined, although there can be many
variations.

6 Modules

Users can extend and customize Drupal functionality with
contributed modules. If a module does not quite do what is
supposed to do or if there are any bugs, everyone is invited
to help the module maintainer and report and, if possible,
also fix the opened issue. I am lucky to be part of the Dru-
pal community and lately we were contributing to various
modules, but our main focus is on Translation Management
Tool and Paragraphs, which will be shortly described be-
low.

6.1 Translation management tool

The idea behind Translation Management Tool (TMGMT)
module grew-up in 2011. The plan was to build a “con-
trib” extension to support editors, publishers, translators
and project managers during their process of content trans-
lation. It uses existing language tools and data structures.
The purpose is to solve all the confusion and problems that
were arising while doing translation in Drupal. Let’s say
there were 100 “nodes” on the page and we need to trans-
late it to 5 different languages To do this, we would end up
with 500 nodes, which all contain the same content, but in
different languages. To maintain all the nodes and transla-
tions was a real struggle and it was impossible to see and
manage the status of the translations. Also, there was no
workflow - external services were not supported and the
translator had to log into the site configuration to do his job.
All this ended up in a big mess. With Translation Man-
agement Tool most of these problems are solved and the

translation with Drupal is streamlined and user-friendly.
The architecture of the module is simple. It allows trans-

lation of any kind of text elements, from content, configu-
ration and interface texts in just a few clicks. In TMGMT
these sources are named source plugins and are added to
the translation job, as seen in Figure 2. Each of the source
plugins in a job is called job item. The translation of the
job can be done by local or remote translators (also called
Translation Plugins) of different kinds and the translation
process can be totally automated. This means that external
services can be used for creating a foreign language version
of the source, but also the user himself can translate the
text via the Local Translator and save it. Also automated
translators are available. The module is based on a plugin
architecture, that allows additional sources and translation
services to be added by everyone [8].

The following services are part of the module:

– Local Translator gives the users the ability to translate
the source on their own.

– File export and import via XLIFF and HTML.

– Gengo (human) as a remote translation service
provider.

– Microsoft and Google Translate (machine) use their
machine translation APIs.

With the installation of TMGMT the functionality of the
page is extended. The user can then choose one or more
languages to translate the node to and request a transla-
tion with the corresponding button. For each of the lan-
guage chosen, a translation job is created. The user can

150 Informatica 40 (2016) 145–152 S. Nikolić and J. Šilc

Figure 2: TMGMT architecture is made out of three basic parts; Source Plugins, Jobs (as TMGMT core functionality)
and Translator Plugins.

then request a translation from the list of enabled transla-
tors. After getting the translation back, the job state can
be processed, unprocessed, active, reviewed and finished.
Translation overview offers a quick look at the list of all
jobs with all the relevant information.

Our contribution for TMGMT is very vast. We got in-
volved into this module at a very early phase, so our main
points were discussing and implementing new functionali-
ties, discovering and fixing bugs, extending web tests and
reviewing other contributor’s work – patches. We have also
done a significant part of the improvements for the interface
to reduce complexity and enhance the user experience.

One of our main topics was definitely the implementa-
tion of Gengo translator. It is a translator plugin for the
TMGMT project, this means it extends it’s functionality
by allowing the submission of translation jobs to Gengo,
which is an external translation service provider [5]. Be-
cause this was a port from an older version, lots of code
modifications needed to be made, such as syntax changes,
different remote mappings, GET, POST and PUT requests,
etc. Running the tests and checking the test errors helped
me with the tasks mentioned above.

Another important issue was regarding the stability of
the module when deleting a translator with active transla-
tion jobs or translation items assigned. This issue involved
extending the code by creating a new method called has-
Translator(). This simplifies the process of checking if
a translator has a target_id and a plugin assigned. Also
the translator class is simplified by adding a hasPlugin()
method. This resulted in a lot of code refactoring through
the whole module. TranslatorTest was extended to cover
new possible cases for deleting a translator with jobs and
job items, for example, for the jobs that are in the finished
state - should be deleted, and active state – should not be
deleted. As an addition, a success message was added after
a successful removal of a translator.

6.2 Paragraphs

The Paragraphs module is a fairy new addition to the Dru-
pal project. When it comes to content creation, it offers
a rapid and straightforward path towards improving the
quality of the website and user experience. It allows site
builders to make things clearer for the end users and to give
them more editing power while still have more control over
their misbehavior. The old way was to put all the content
in one WYSIWYG body field including images and videos.
This approach had many issues:

– Inability to add rich content (galleries, accordions,
parallax backgrounds etc.).

– Inadequate markup and/or undesirable inline styles.

– Users confusion.

– Bad-designed content (web pages).

With Paragraphs, the content is much more structured
and easier to use. Users can choose from pre-defined para-
graph types, which are independent from one another.

As a site builder, you can add an unlimited number of
paragraph types to the site - each with its own fields and
displays. In easy words, imagine Paragraph types as mini-
content types which can be created on nodes. Since they
are basic Drupal entities, it is easy to see what fields should
they be composed of and how they should look like. So
the biggest advantage of Paragraphs is the ability for a con-
tent editor to have total control over the flow of the content
using drag-and-drop sorting.

For reference, part of my contribution to this module
was providing a demo module as an example for new users
which contains four different default paragraph types; a
simple text field, a text with an image, an image gallery and
a user, which outputs user information. These are all styled
in the CSS files, so that the whole page with paragraphs is
responsive on mobiles and tablets [6].

Drupal 8 Modules: Translation Management Tool and Paragraphs Informatica 40 (2016) 145–152 151

Figure 3: Options with combining paragraph types are endless. The order is easy to set with drag-and-drop functionality.

In many ways, Paragraphs module can be compared with
Field Collection module, since it offers similar functional-
ity. With Field Collection, a site builder creates a set of
grouped fields and an editor can then add as many of those
collections to a node, one after another. The problem here
is that they all must be of the same type and there can not
be any other type of content in between them. On the other
side, with Paragraphs an editor can use more types together,
in any order, thereby creating a flow of content without re-
striction. A simple example is presented in Figure 3.

Although not being “out in the wild” for a long time,
this module became very popular among the users and is
already being used on many web sites. One of them is also
drupal.org (Easy Content Authoring page), which can
be seen in Figure 4.

We mainly contributed to this module with implement-
ing Paragraphs translation with TMGMT, so that users can
easily translate structured data. This helps translators a lot,
because they have the source in smaller bits, which are al-
ways easier to translate than bigger unstructured chunks of
texts. For better history control, revisions are implemented
so that users can easily spot the differences. For this we
needed to extend TMGMT to depend on Paragraphs and
add TMGMT specific configuration. Paragraphs needed to
support translation on entity level. This was really chal-
lenging. In regular situations it is not the entity reference
that should be set to translatable, because the wrapping
field should maintain the same set of translated paragraphs.
While translating some content, all paragraphs from the de-
fault language have to still be there and the user should
have the ability to translate them into the target language.
On save, the paragraph entities get updated with the proper
language context to persist the translation.

7 Conclusions
The article describes general information about Drupal,
and mainly talks about some of the most important new
features in Drupal 8. In the end, two of the modules that
we lately worked on are presented with a short descrip-
tion of our main contribution. With a combination of Dru-
pal 8 core features, Paragraphs and Translation Manage-

ment Tool modules we can build a powerful multilingual
website that is very easy to manage, since the content is
structured with paragraphs and good looking, because of
the flexibility of styling each item separately. And thanks
to Translation Management Tool content translation is eas-
ier but at the same time more powerful and extendable than
ever in just a few clicks. The Drupal 8 is following latest
technology trends and with this new release it should at-
tract even more site-builders and end-users. After all, the
Drupal community has been working hard to achieve all
defined goals for years.

Acknowledgment

I (S. N.) would like to thank my mentor, Assist. prof. dr.
Jurij Šilc, for his support and MD Systems, as a leading
contributor in open source, for initiating TMGMT, intro-
ducing and mentoring into Drupal, maintaining modules
like Paragraphs and porting them to Drupal 8.

References

[1] Buytaert, Dries (2006), The pain before he pay-
off, personal blog. http://buytaert.net/
the-pain-before-the-payoff, accessed
January 14, 2016.

[2] Buytaert, Dries (2010), The State of Drupal.
DrupalCon, April 19–21, 2010, San Francisco,
CA. https://archive.org/details/
Css3TheFutureIsNow, accessed January 14,
2016.

[3] Coombs, Karen (2009) Drupal Done Right, Library
Journal, vol. 34, no. 19, pp. 30–32.

[4] Drupal homepage. https://www.drupal.
org/, accessed July 2 2015.

[5] Professional Translation Services by Gengo. http:
//gengo.com, accessed January 14, 2016.

152 Informatica 40 (2016) 145–152 S. Nikolić and J. Šilc

Figure 4: Paragraphs are already used on drupal.org. Images and text can be floated left or right, full width or styled as
the user prefers.

[6] Paragraphs module on Drupal.org. https:
//www.drupal.org/project/paragraphs,
accessed January 14, 2016.

[7] Patel, Savan K., Rathod, V. R., Prajapati, Jinga B.
(2011) Perforance Analysis of Content Management
Systems - Joomla, Drupal and Wordpress, Interna-
tional Journal of Computer Applications, vol. 21, no.
4, pp. 39–43.

[8] Translation Management Tool module on Dru-
pal.org. http://www.drupal.org/project/
tmgmt, accessed January 14, 2016.

Informatica 40 (2016) 153–154 153

Authentication and Key Agreement Protocol for Ad Hoc Networks Based on
the Internet of Things Paradigm

Muhamed Turkanović
University of Maribor, Faculty of Electrical Engineering and Computer Science, 2000 Maribor, Slovenia
CEI-Systems(.eu), Valvasorjeva ulica 10, 2000 Maribor, Slovenia, www.cei-systems.eu
E-mail: muhamed.turkanovic@gmail.com, m.turkanovic@cei-systems.eu
Tel: +386 40 303 874

Thesis summary

Keywords: authentication, key agreement, ad hoc networks, wireless sensor networks, internet of things

Received: February 22, 2016

The article summarizes the key findings of the doctoral thesis written by the author. The content of the
thesis is based on the research fields of authentication and key agreement protocols (AKAP) for wireless
sensor networks, and the internet of things (IOT). They key contribution of the thesis is a novel user AKAP
for ad hoc networks, which is tailored for the IOT environment.

Povzetek: Prispevek predstavlja ključne rezultate doktorske disertacija avtorja. Vsebina disertacije temelji
na raziskovlanima področjima protokolov za overjanje in dogovor o ključu (PODK) za brezžična senzorska
omrežja in konceptu interneta stvari. Ključni prispevek disertacije je nov PODK za neinfrastrukturna
omrežja, ki je prilagojen konceptu interneta stvari.

1 Introduction

The domain of ad hoc networks has gained an additional
boost of attention in the last decade due to the increase of
interest for the Internet of Things (IOT) paradigm. In the
context of application scenarios inside IOT, security and
privacy play a pivotal role. The issue with providing se-
curity and privacy inside IOT is the resource-constrained
architecture (i.e., limited computational and communica-
tional capabilities) of key devices like sensor nodes. As a
solution the research community proposes lightweight pro-
tocols, which represent a trade-off between efficiency and
security.

This paper presents a summary of a PhD Thesis [2]
which focuses on lightweight authentication and key agree-
ment protocols (AKAP) for ad hoc networks. The first part
of the thesis reviews some existing lightweight AKAP for
wireless sensor networks (WSN). It then presents a classi-
fication of possible attacks on AKAP for WSN, based on
the analysis of existing protocols. Secondly with the help
of the classification, an analysis of two novel and promi-
nent AKAP for WSN [6, 1] was performed and the results
concluded some flaws and shortcomings. Furthermore the
first part encompasses the improvement of these schemes
[4, 5].

The second part of the thesis focuses on proposing a new
user AKAP for ad hoc networks, tailored for the IOT envi-
ronment [3].

2 Proposed protocol

Numerous AKAPs for WSN have been proposed but very
few have addressed the challenge of establishing a shared
key in a secure and lightweight manner, between a sensor
node and a user outside the WSN and from the IOT envi-
ronment. In order to fill the gap and solve the problem, we
developed a challenge-specific AKAP, which uses a rare
four-step authentication model (Fig. 1), that we believe is
the most appropriate for the mentioned scenario, where a
remote user from the IOT wants to directly connect to a
specific sensor node from a WSN.

Figure 1: User authentication model of the proposed proto-
col [3].

Even though the protocols needs to be lightweight, be-

154 Informatica 40 (2016) 153–154 M. Turkanovič

cause of the resource-constrained architecture of the sen-
sor nodes, it still has to present the best possible trade-off
between security and efficiency. The proposed protocol is
thus based only on the use of simple mathematical com-
putations as cryptographic hash functions and XOR. Fur-
thermore, in order to lower the processing burden for the
sensor node, the protocol uses the gateway node as a me-
diator for the authentication process. As a consequence,
mutual authentication between all participants had to be
implemented, since each participant has to be sure of the
authenticity of the counterpart.

The protocol needs to be safe against all known and clas-
sified attacks against general AKAP and AKAP for WSN,
thus we introduced the use of smart cards. Considering the
protocol will be in use inside the IOT environment, it had
also to be administrative- and user-friendly, thus enable dy-
namic node addition, enable the choosing and changing of
user passwords, user anonymity etc.

3 Results and evaluation
After the development of the protocol, a security and per-
formance analysis was performed. The security analysis
was based on the ad hoc security model, which used the
aforementioned classification of attacks. The results of the
evaluation show that the protocol is resilient against all cur-
rently known attacks against general AKAP and AKAP for
WSN.

The performance analysis consists of three separate eval-
uations, i.e. storage, communication and communication
evaluation. The results of theses analysis show that the pro-
tocol is efficient, lightweight and thus suitable for resource
constrained device like sensor nodes.

Furthermore, a comparison between the proposed pro-
tocol and other similar ones was performed. The results of
the comparison show that the proposed protocol guarantees
a higher level security than other protocols, while provid-
ing equal or better performance characteristics.

4 Conclusion
The paper summarizes the PhD Thesis [2], which addresses
the problem of a user AKAP inside the IOT environment.
The main contributions of the dissertation are:

– finding flaws and shortcomings in existing user AKAP
for WSN;

– presenting a novel classification of attacks on user
AKAP for WSN;

– development of improved versions of inadequate or
deficient AKAP for WSN;

– development of a novel user AKAP for heterogeneous
ad hoc WSNs based on the IOT paradigm.

The focus of further research will be the development
a generalized protocol for the purpose of a more general
use in the IOT. Moreover this protocol will not be based
on the use of smart cards. We will also use the mathemati-
cal formal proof as a tool for the security evaluation of the
proposed protocols.

References
[1] K. Das, Ashok, P. Sharma, S. Chatterjee, and K. Sing,

Jamuna, “A dynamic password-based user authenti-
cation scheme for hierarchical wireless sensor net-
works,” Journal of Network and Computer Applica-
tions, vol. 35, no. 5, p. 1646–1656, 2012.

[2] M. Turkanović, “User authentication and key agree-
ment protocols for ad hoc networks, tailored for the in-
ternet of things environment,” Ph.D. dissertation, Uni-
versity of Maribor, 2016.

[3] M. Turkanović, B. Brumen, and M. Hölbl, “A novel
user authentication and key agreement scheme for het-
erogeneous ad hoc wireless sensor networks, based
on the internet of things notion,” Ad Hoc Networks,
vol. 20, pp. 96–112, 2014.

[4] M. Turkanović and M. Hölbl, “An improved dynamic
password-based user authentication scheme for hierar-
chical wireless sensor networks,” Electronics and Elec-
trical Engineering, vol. 19, no. 6, pp. 109–116, 2013.

[5] M. Turkanović and M. Hölbl, “Notes on ’a temporal-
credential-based mutual authentication and key agree-
ment scheme for wireless sensor networks’,” Wireless
Personal Communications, vol. 77, no. 2, pp. 907–922,
2014.

[6] K. Xue, C. Ma, P. Hong, and R. Ding, “A temporal-
credential-based mutual authentication and key agree-
ment scheme for wireless sensor networks,” Journal of
Network and Computer Applications, vol. 36, no. 1, p.
316–323, 2013.

Informatica 40 (2016) 155

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 900 staff,
has 700 researchers, about 250 of whom are postgraduates,
around 500 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
“Ljubljana” has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 40 (2016)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit a manuscript to: http://www.informatica.si/Editors/
PaperUpload.asp. At least two referees outside the author’s coun-
try will examine it, and they are invited to make as many remarks
as possible from typing errors to global philosophical disagree-
ments. The chosen editor will send the author the obtained re-
views. If the paper is accepted, the editor will also send an email
to the managing editor. The executive board will inform the au-
thor that the paper has been accepted, and the author will send
the paper to the managing editor. The paper will be published
within one year of receipt of email with the text in Informat-
ica MS Word format or Informatica LATEX format and figures in
.eps format. Style and examples of papers can be obtained from
http://www.informatica.si. Opinions, news, calls for conferences,
calls for papers, etc. should be sent directly to the managing edi-
tor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than twentytwo years ago) it became truly international, although
it still remains connected to Central Europe. The basic aim of In-
formatica is to impose intellectual values (science, engineering)
in a distributed organisation.

Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees from 2008 on:

A. Abraham, S. Abraham, R. Accornero, A. Adhikari, R. Ahmad, G. Alvarez, N. Anciaux, R. Arora, I. Awan, J.
Azimi, C. Badica, Z. Balogh, S. Banerjee, G. Barbier, A. Baruzzo, B. Batagelj, T. Beaubouef, N. Beaulieu, M. ter
Beek, P. Bellavista, K. Bilal, S. Bishop, J. Bodlaj, M. Bohanec, D. Bolme, Z. Bonikowski, B. Bošković, M. Botta,
P. Brazdil, J. Brest, J. Brichau, A. Brodnik, D. Brown, I. Bruha, M. Bruynooghe, W. Buntine, D.D. Burdescu, J.
Buys, X. Cai, Y. Cai, J.C. Cano, T. Cao, J.-V. Capella-Hernández, N. Carver, M. Cavazza, R. Ceylan, A. Chebotko,
I. Chekalov, J. Chen, L.-M. Cheng, G. Chiola, Y.-C. Chiou, I. Chorbev, S.R. Choudhary, S.S.M. Chow, K.R.
Chowdhury, V. Christlein, W. Chu, L. Chung, M. Ciglarič, J.-N. Colin, V. Cortellessa, J. Cui, P. Cui, Z. Cui, D.
Cutting, A. Cuzzocrea, V. Cvjetkovic, J. Cypryjanski, L. Čehovin, D. Čerepnalkoski, I. Čosić, G. Daniele, G.
Danoy, M. Dash, S. Datt, A. Datta, M.-Y. Day, F. Debili, C.J. Debono, J. Dedič, P. Degano, A. Dekdouk, H.
Demirel, B. Demoen, S. Dendamrongvit, T. Deng, A. Derezinska, J. Dezert, G. Dias, I. Dimitrovski, S. Dobrišek,
Q. Dou, J. Doumen, E. Dovgan, B. Dragovich, D. Drajic, O. Drbohlav, M. Drole, J. Dujmović, O. Ebers, J. Eder,
S. Elaluf-Calderwood, E. Engström, U. riza Erturk, A. Farago, C. Fei, L. Feng, Y.X. Feng, B. Filipič, I. Fister, I.
Fister Jr., D. Fišer, A. Flores, V.A. Fomichov, S. Forli, A. Freitas, J. Fridrich, S. Friedman, C. Fu, X. Fu, T.
Fujimoto, G. Fung, S. Gabrielli, D. Galindo, A. Gambarara, M. Gams, M. Ganzha, J. Garbajosa, R. Gennari, G.
Georgeson, N. Gligorić, S. Goel, G.H. Gonnet, D.S. Goodsell, S. Gordillo, J. Gore, M. Grčar, M. Grgurović, D.
Grosse, Z.-H. Guan, D. Gubiani, M. Guid, C. Guo, B. Gupta, M. Gusev, M. Hahsler, Z. Haiping, A. Hameed, C.
Hamzaçebi, Q.-L. Han, H. Hanping, T. Härder, J.N. Hatzopoulos, S. Hazelhurst, K. Hempstalk, J.M.G. Hidalgo, J.
Hodgson, M. Holbl, M.P. Hong, G. Howells, M. Hu, J. Hyvärinen, D. Ienco, B. Ionescu, R. Irfan, N. Jaisankar, D.
Jakobović, K. Jassem, I. Jawhar, Y. Jia, T. Jin, I. Jureta, Ð. Juričić, S. K, S. Kalajdziski, Y. Kalantidis, B. Kaluža,
D. Kanellopoulos, R. Kapoor, D. Karapetyan, A. Kassler, D.S. Katz, A. Kaveh, S.U. Khan, M. Khattak, V.
Khomenko, E.S. Khorasani, I. Kitanovski, D. Kocev, J. Kocijan, J. Kollár, A. Kontostathis, P. Korošec, A.
Koschmider, D. Košir, J. Kovač, A. Krajnc, M. Krevs, J. Krogstie, P. Krsek, M. Kubat, M. Kukar, A. Kulis, A.P.S.
Kumar, H. Kwaśnicka, W.K. Lai, C.-S. Laih, K.-Y. Lam, N. Landwehr, J. Lanir, A. Lavrov, M. Layouni, G. Leban,
A. Lee, Y.-C. Lee, U. Legat, A. Leonardis, G. Li, G.-Z. Li, J. Li, X. Li, X. Li, Y. Li, Y. Li, S. Lian, L. Liao, C. Lim,
J.-C. Lin, H. Liu, J. Liu, P. Liu, X. Liu, X. Liu, F. Logist, S. Loskovska, H. Lu, Z. Lu, X. Luo, M. Luštrek, I.V.
Lyustig, S.A. Madani, M. Mahoney, S.U.R. Malik, Y. Marinakis, D. Marinčič, J. Marques-Silva, A. Martin, D.
Marwede, M. Matijašević, T. Matsui, L. McMillan, A. McPherson, A. McPherson, Z. Meng, M.C. Mihaescu, V.
Milea, N. Min-Allah, E. Minisci, V. Mišić, A.-H. Mogos, P. Mohapatra, D.D. Monica, A. Montanari, A. Moroni, J.
Mosegaard, M. Moškon, L. de M. Mourelle, H. Moustafa, M. Možina, M. Mrak, Y. Mu, J. Mula, D. Nagamalai,
M. Di Natale, A. Navarra, P. Navrat, N. Nedjah, R. Nejabati, W. Ng, Z. Ni, E.S. Nielsen, O. Nouali, F. Novak, B.
Novikov, P. Nurmi, D. Obrul, B. Oliboni, X. Pan, M. Pančur, W. Pang, G. Papa, M. Paprzycki, M. Paralič, B.-K.
Park, P. Patel, T.B. Pedersen, Z. Peng, R.G. Pensa, J. Perš, D. Petcu, B. Petelin, M. Petkovšek, D. Pevec, M.
Pičulin, R. Piltaver, E. Pirogova, V. Podpečan, M. Polo, V. Pomponiu, E. Popescu, D. Poshyvanyk, B. Potočnik,
R.J. Povinelli, S.R.M. Prasanna, K. Pripužić, G. Puppis, H. Qian, Y. Qian, L. Qiao, C. Qin, J. Que, J.-J.
Quisquater, C. Rafe, S. Rahimi, V. Rajkovič, D. Raković, J. Ramaekers, J. Ramon, R. Ravnik, Y. Reddy, W.
Reimche, H. Rezankova, D. Rispoli, B. Ristevski, B. Robič, J.A. Rodriguez-Aguilar, P. Rohatgi, W. Rossak, I.
Rožanc, J. Rupnik, S.B. Sadkhan, K. Saeed, M. Saeki, K.S.M. Sahari, C. Sakharwade, E. Sakkopoulos, P. Sala,
M.H. Samadzadeh, J.S. Sandhu, P. Scaglioso, V. Schau, W. Schempp, J. Seberry, A. Senanayake, M. Senobari,
T.C. Seong, S. Shamala, c. shi, Z. Shi, L. Shiguo, N. Shilov, Z.-E.H. Slimane, F. Smith, H. Sneed, P. Sokolowski,
T. Song, A. Soppera, A. Sorniotti, M. Stajdohar, L. Stanescu, D. Strnad, X. Sun, L. Šajn, R. Šenkeřík, M.R.
Šikonja, J. Šilc, I. Škrjanc, T. Štajner, B. Šter, V. Štruc, H. Takizawa, C. Talcott, N. Tomasev, D. Torkar, S.
Torrente, M. Trampuš, C. Tranoris, K. Trojacanec, M. Tschierschke, F. De Turck, J. Twycross, N. Tziritas, W.
Vanhoof, P. Vateekul, L.A. Vese, A. Visconti, B. Vlaovič, V. Vojisavljević, M. Vozalis, P. Vračar, V. Vranić, C.-H.
Wang, H. Wang, H. Wang, H. Wang, S. Wang, X.-F. Wang, X. Wang, Y. Wang, A. Wasilewska, S. Wenzel, V.
Wickramasinghe, J. Wong, S. Wrobel, K. Wrona, B. Wu, L. Xiang, Y. Xiang, D. Xiao, F. Xie, L. Xie, Z. Xing, H.
Yang, X. Yang, N.Y. Yen, C. Yong-Sheng, J.J. You, G. Yu, X. Zabulis, A. Zainal, A. Zamuda, M. Zand, Z. Zhang,
Z. Zhao, D. Zheng, J. Zheng, X. Zheng, Z.-H. Zhou, F. Zhuang, A. Zimmermann, M.J. Zuo, B. Zupan, M.
Zuqiang, B. Žalik, J. Žižka,

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Litostrojska cesta 54, 1000 Ljubljana,
Slovenia.
The subscription rate for 2016 (Volume 40) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: ABO grafika d.o.o., Ob železnici 16, 1000 Ljubljana.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Janez Perš)
Slovenian Artificial Intelligence Society (Dunja Mladenić)
Cognitive Science Society (Urban Kordeš)
Slovenian Society of Mathematicians, Physicists and Astronomers (Andrej Likar)
Automatic Control Society of Slovenia (Sašo Blažič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Vojteh Leskovšek)
ACM Slovenia (Andrej Brodnik)

Informatica is financially supported by the Slovenian research agency from the Call for co-financing of scientific
periodical publications.

Informatica is surveyed by: ACM Digital Library, Citeseer, COBISS, Compendex, Computer & Information
Systems Abstracts, Computer Database, Computer Science Index, Current Mathematical Publications, DBLP
Computer Science Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and
Language Behaviour Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt
Math

Volume 40 Number 1 March 2016 ISSN 0350-5596

Editors’ Introduction to the Special Issue on
"Engineering and Applications of Software Agents"

A. Bădică, Z. Budimac 1

AgentPlanner – Agent-based Timetabling System R. Tkaczyk, M. Ganzha,
M. Paprzycki

3

Jason Interpreter, Enterprise Edition D. Mitrović, M. Ivanović,
R.H. Bordini, C. Bădică

19

Expressing GMoDS Models into Object-Oriented
Models Using the Event-B Language

M. Brezovan, L. Stanescu,
E. Ganea

29

HTML5-based Mobile Agents for Web-of-Things J.-P. Voutilainen,
A.-L. Mattila, K. Systä,
T. Mikkonen

43

End of Special Issue / Start of normal papers

Secured Storage for Dynamic Data in Cloud V. Ponnuramu,
L. Tamilselvan

53

A Novel Video Steganography Algorithm Based on
Trailing Coefficients for H.264/AVC

Y. Zhang, M. Zhang,
X.A. Wang, K. Niu, J. Liu

63

An Ontology-Based Context Model to Manage Users
Preferences And Conflicts

S. Bourougaa,
H. Seridi-Bouchelaghem,
F. Mokhati

71

Evaluating the Dual Randomized Kaczmarz
Laplacian Linear Solver

E.G. Boman, K. Deweese,
J.R. Gilbert

95

Parameter Tuning of PI-controller with Bat
Algorithm

D. Fister, R. Šafarič,
I.Jr. Fister, I. Fister

109

PCARD Platform for mHealth Monitoring M. Depolli, V. Avbelj,
R. Trobec, J.M. Kališnik,
T. Korošec, A.P. Susič,
U. Stanič, A. Semeja

117

Modular Integrated Probabilistic Model of Software
Reliability Estimation

R.Y. Tsarev,
A.S. Chernigovskiy,
E.N. Shtarik, A.V. Shtarik,
M.S. Durmuş, I. Üstoglu

125

A Distributed Security Mechanism for
Resource-Constrained IoT Devices

J. King, A.I. Awad 133

Drupal 8 Modules: Translation Management Tool
and Paragraphs

S. Nikolić, J. Šilc 145

Authentication and Key Agreement Protocol for Ad
Hoc Networks Based on the Internet of Things
Paradigm

M. Turkanović 153

Informatica 40 (2016) Number 1, pp. 1–155

	00_1186-1613-1-PB
	01_1165-1625-1-PB
	02_1166-1626-1-PB
	03_1167-1627-1-PB
	04_1168-1628-1-PB
	05_1169-1629-1-PB
	06_1085-1643-1-PB
	07_1095-1641-1-PB
	08_770-1630-2-PB
	09_802-1638-1-PB
	10_1114-1642-1-PB
	11_1075-1632-1-PB
	12_1031-1633-1-PB
	13_1046-1634-1-PB
	14_908-1635-1-PB
	15_1147-1636-1-PB
	16_1185-1637-1-PB

