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A signiGcant weakness of rule-based production systems is large computational reguirement for 
performing matching. Time complexity of algorithms is generally stili NP-hard (non-polynomial) 
to the number of rules in a rule base. LFA is a linear-chaining algorithm for rule-based systems 
which does not require a specific conflict resolution step for chaining. However, its applications 
are stili restricted, e.g., it cannot process Rrst-order rules efficiently. 
This paper reviews the design of chaining algorithms for rule-based systems, and analyses some 
well-known chaining algorithms such as RETE and LFA. The central contribution is the design 
of a robust LFA algorithm, LFA-h, which can processes first-order logic rules. 

1 Introduction 

1.1 Rule-based systeins 

Rule-based systems (RBSs) are an important type of 
pattern-directed inference systems. They consist of 
three basic components as follows: 

1. A set of rules, which can be activated or fired by 
patterns in data. 

2. One or more data structures (data bases), which 
can be examined and modified. 

3. An interpreter or inference engine that controls 
selection and activation of the rules. 

A rule includes a left-hand side, LHS, which is re-
sponsible for examining items in the data structures, 
and a right-hand side, RHS, which is responsible for 
modifying data structures. Data examination consists 
of comparing patterns associated with the LHSs with 
elements in the data structures. The patterns may be 
defined in many ways, such as simple strings, complex 
graphs, semantic networks, tree structures, or even ar-
bitrary segments of code which are capable of inspect-
ing data elements. Data modification can involve firing 
actions to modify data, rules, or even the environment. 
Information in the data can be in the form of lists, 
trees, nets, rules, or any other useful representation. 

The organisation of rule-based systems is modu-
lar, and the characteristics of them are as follows 
[Waterman & Hayes-Roth 78]: 

- RBS modules^ separate permanent knowledge 
(rules in the rule base) from temporary knowledge 
(data in the working memory). 

- RBS modules are structurally independent. They 
facilitate incremental expansion of the system 
and massive code understanding (Modules can be 
dealt with one by one). 

— RBS modules facilitate functional independence. 
It is generally useful to distribute different func-
tions to different modules. 

- RBS modules may be processed by using a vari-
ety of control schemes, i.e. different modules may 
have different control structures. 

— RBSs separate data examination from data mod­
ification because of the separation of LHSs and 
RHSs of rules. 

— RBSs use rules with a high degree of structure, 
and are a natural knowledge representation (the 
natural "IF • • • THEN • • •" structure). 

In the light of problem-solving methods, rule-
based systems can be divided into two classes, 
namely forward-chaining systems and backward-
chaining systems. Forward-chaining systems are 
antecedent-driven, while backward-chaining systems 

^A RBS module is a bundle of mechanisms for examining 
and modifying one or more data structures. 
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are consequent-driven. Forward-chaining systems are 
commonly known as rule-based systems. 

Rule-based systems are a well-known type of system 
in which the control structure can be mapped into a 
relatively simple recognise-act paradigm. A typical in-
terpreter of a rule-based system performs the following 
operations in each 'recognise-act' cycle: 

1. Match 

Find out the rule set in the rule base whose LHSs 
are satisfied by the existing contents of the work-
ing memory. 

2. Conflict resolution 

Select one rule with a satisfied LHS; if no rule has 
a satisfied LHS then stop. 

3. Act 

Perform actions in the RHS of the selected rule 
and go to step 1. 

By using suitable interpretations of each of the 
above actions, the operation of a chaining-based in-
ference engine can be readily described as iteration 
of such actions. A forward-chaining engine regulates 
the rules of new databases, while a backwaxd-chaining 
engine controls the verification of hypothetical Infor­
mation. Another view of the inference engine is that it 
generates one or more inference nets linking the initial 
system state to a goal state [Schalkoff 90]. 

The fundamental operation of the inference engine 
is the process of matching. Partial matches or com-
plete matches often involve matching with variables 
for which a suitable unification algorithm which en-
sures that variable bindings are consistent is necessary. 
This procedure may require many tests and compar-
isons. So it is usually difficult to design a fast-chaining 
algorithm for a large rule-based system. 

There are three basic approaches to the problem of 
conflict resolution in a rule-based system as follows 
[Rich & Knight 91]: 

— Assign preference based on matched rules in the 
rule base. 

— Assign preference based on matched objects in the 
•vvorking memory. 

— Assign preference based on actions that matched 
rules -vvould perform. 

1.2 Problems with the 
'Recognize-Act' Paradigm 

For naive rule-based systems, aH but the smallest sys-
tems are computationally intractable because of the 
complexity of matching in the 3-phase cycles. The suc­
cessful match of a rule in the rule base with the work-
ing memory does not always mean that the rule will be 

fired. A rule may fail to match with the working mem-
ory in an overall problem-solving process, but it prob-
ably needs to be tested in each 3-phase cycle when the 
vvorking memory is changed. Meanwhile, some other 
rule may be successful in matching with the working 
memory from the very beginning of a problem-solving 
process, but may fail to receive enough priority to 
fire in each conflict resolution phase. When there are 
changes in the working memory, the rule needs to be 
tested again and again. It has been observed that some 
systems spend more than nine-tenths of their total run 
time performing pattern matching in large rule-based 
systems [Forgy 82]. As a result of these problems, ef-
ficiency is a major issue in large rule-based systems. 

Since rule-based systems may be expected to exhibit 
a high standard performance in Interactive domains or 
in real-time domains, many researchers have worked 
towards improving the efficiency of such systems. As 
yet, the most significant results have been the RETE 
algorithm (See Section 4.4) and other RETE-like al-
gorithms such as TREAT (See Section 4.5). These 
algorithms are match algorithms which avoid match­
ing aH rules with the vvorking memory in order to find 
appropriate rules on each 3-phase cycle so that effi-
ciency can be improved. Hovvever, the foUovving two 
problems stili exist in ali known rule-based systems 
except KEshell [Wu 93a]: 

1. Ali complete chaining algorithms are exponen-
tial in time complexity. Non-worst-case sub-
exponential algorithms are not possible for gen­
eral cases. 

2. Chaining in rule-based systems is a much more 
complicated process than testing the satisfiabil-
ity of individual propositional formulae. It is not 
possible to know in advance precisely hovv many 
3-phase "match — conflict resolution — act" cy-
cles are needed for each problem solving task. 

In KEshell, a new algorithm called LFA (See Sec­
tion 4.6) has been designed. LFA is a linear forward-
chaining algorithm for rule-based systems. The most 
significant advantages of LFA are that its time com-
plexity is 0{n) vvhere n is the number of rules in the 
rule base, and that it does not need an independent 
conflict resolution step. By using a two-level "rule 
schema + rule body" structure (See Section 3.2.2), 
knowledge representation in KEshell can explicitly ex-
press numeric computation and inexact calculus in the 
same way as inference rules in rule bodies. As long 
as knovvledge representation has an applicable exten-
sion, and processing measures show further improve-
ments, LFA should achieve a vvider range of applica-
tions. Hovvever, its knovvledge representation cannot 
represent first-order logic rules efRciently. This is a 
significant restriction for applications. 

The research objective of this paper is to relax the 
above mentioned limitation of LFA so that it can effi-
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ciently process first-order logic rules. We will present 
the design of a robust LFA algorithm, LFA+, based on 
LFA [Wu 93a], which has the following components: 

— Extended knovvledge representation for first-order 
logic rules, which includes specific representations 
of recursive rules and rules with negative condi-
tion elements. 

— Sorting measures, for ordering the knowledge in a 
knowledge base. 

— Linear forward chaining. 

The paper is organised as follows. Section 2 intro-
duces expert system principles and some concepts of 
the first-order logic language, and explains one def-
inition for describing the LFA-I- algorithm. In Sec­
tion 3, knowledge representation issues are addressed, 
and two languages for rule-based systems — 0PS5 and 
rule schema + rule body are described and compared. 
Section 4 discusses algorithm design issues and tech-
niques, and analyses the RETE, TREAT and LFA al-
gorithms. In Section 5, knowledge representation mea­
sures, sorting strategies, the chaining procedure and 
analyses of the LFA-I- algorithm are presented in de-
tail. Finally, Section 6 outlines conclusions and future 
research. Definitions are listed in teh Appendix. 

2 Background in Expert 
Systems and First Order 
Logic 

2.1 Exper t systems 

An "expert system" is a computer program which ušes 
knowledge and inference procedures to solve problems 
that are difficult enough to require human expertise 
for their solutions [Raeth 90]. Expert system technol-
ogy aims at improving qualitative factors and can pro-
vide expert-level performance to complex problems. A 
typical expert system consists mainly of the following 
parts: 

— A working memory/data base, which stores the 
evidence and intermediate results of problems 
during the chaining process. 

— A knowledge base (KB) or knowledge source. 

— An inference/chaining engine for solving users' 
problems by applying the knowledge encoded in 
the knowledge base. 

— An explanation engine or tracing engine for telling 
the users how the solutions were obtained. 

— A knowledge acquisition engine for acquiring 
knowledge or modifying the knowledge base when 
necessary. 

- A knowledge base management subsystem that 
detects inconsistencies in the KB. 

Their relationships are shown in Figure 1. 
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Figure 1: An expert system strucrure 

Conventional software programs are designed to 
control computers algorithmicaJly and teli the com-
puters exactly what to do in problem-solving. These 
programs are usually procedurah Once a program sys-
tem has been encoded, it is difiicult to change the sys-
tem design. On the other hand, expert systems excel 
at encoding knowledge declaratively, and they can be 
modified flexibly because of the separations of knowl-
edge from expert system shells and knowledge from 
data, and their modular structures. Purthermore, ex-
pert systems have the following features [Pedersen 89]: 

— They use symbols to encode the world which can 
be used in varied ways. 

— Most expert systems support uncertainty repre­
sentation. 

— Expert systems can handle unknown cases of a 
problem by applying the knowledge in the knowl-
edge base. 

— They can explain their reasoning. 

— They can make multiple conclusions. 

— They can tailor conclusions. 

2.2 Language of first-order logic 

A first-order language is identified by a triple 
<V,F,P>: 

— V is a set of variables. 
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- F is a set of functors, each of which has an arity. - they are identical, or 

— P is a set of predicate symbols, each of which has 
an arity. 

The terms (See the definition below) of the language 
are built from variables and functions (Constants are 
viewed as functors of arity 0), while predicates are built 
from terms and predicate symbols (Propositions are 
viewed as predicate symbols of arity 0). 

Definition: A term is defined inductively as follows: 

— A variable is a term. 

— A constant is a term. 

— If f is an n-ary function symbol and i i , • • •, i« are 
terms, then f(ii,- • • ,tn) is a term. 

Interpretation 

Truth value interpretation of a first-order logic lan­
guage is a triple <D,F,R>: 

— D is the domain. 

— F is a mapping from functions of domain elements 
to the domain. 

— R is a mapping from predicates of domain ele­
ments to truth values. 

Horn clauses are a subset of first-order logic lan-
guages, but the subset is powerful enough to encode 
Turing machines. A Horn clause has the following 
form: 

p(t) :- qi{ti), q2{t2), •••, gn{tn)-
where p and qi, q2, • • •, qn sse predicate letters, n > 
O, and aH variables which occur in the terms t, ti, t2, 
• • •, tn are universally quantified at the front of the 
clause (implicitly). If n is O then the clause is referred 
to as a fact, otherwise, it is called a rule. 

The atom p(t) is referred to as the head of the clause, 
and gi(ii), 92(*2); • • •) 9n(^n) as the body of the clause. 
The terms t,ti,t2, ••-,*« niay be arbitrary terms, and 
hence may contain variables and/or functions. 

A logic program is a set of Horn clauses. However, 
it is often useful to consider sub-classes of this class 
of programs in rule-based systems. One type of these 
programs is a Datalog program, in which terms are 
only allowed to be either variables or constants. 

2.3 Unification and Match 

Unification 

Unification is the basis of the ušes of logical inference 
in artificial intelligence. It is a method of finding such 
variable bindings for two predicates or terms that they 
can be identical [Sterling et al. 86]. 

Match 

Two terms match if [Bratko 90]: 

— the variables in both terms can be instantiated to 
objects in such a way that after the substitution 
of variables by these objects the terms become 
identical. 

The following is an extended definition, partial 
match, for describing LFA-H (See Section 5.2). 

Definition — Partial match 

Given a premise factor, p-factor, of one rule schema 
and a conclusion factor, c-factor, of another rule 
schema, partial match of p-factor with c-factor, writ-
ten as partial-match(p-factor,c-factor), has the follow-
ing meanings: 

— If p-factor is a variable then c-factor is the same 
variable. 

— If p-factor is a proposition p or not(p) then c-
factor is p or not(p). 

— If p-/actoris a predicate p(- • •) or not(p(- • •)) then 
c-factor is p(---) or not(p(- • •)). 

3 Knowledge representation 

3.1 Introduction 

In order to solve complex problems encountered in Al, 
a considerable amount of knowledge, as well as some 
mechanisms for raanipulating knowledge, are neces-
sary. Barr and Feigenbaum identify four types of 
knowledge as follows [Miranker 87]: 

— Objects, i.e. nouns and adjectives that describe 
them. 

— Events: Object interaction. 

— Performance: How to do something, also known 
as procedur al knowledge. 

— Meta-knowledge: Knowledge about knowledge. 

Knowledge plays two roles in Al programs as follows: 

— It may define the search space and the criteria for 
determining a solution to a problem. 

— It may improve the efficiency of a reasoning pro­
cedure by informing an inference procedure of the 
best places to look for a solution. 

Knowledge representation occurs at two levels 
[Rich & Knight 91]: 

— Data level, at which facts are described. 

— Symbol level, in which representations of objects 
at the data level are defined in terms of symbols 
that can be manipulated by programs, such as 
PROLOG rules. 
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Knowledge representation and search are the two 
main themes of Al problem solving but they are not 
independent issues. If a particular. search method is 
applied, and a method of knowledge representation 
may represent the problem more easily and it more ef-
ficiently supports the operations required by the search 
strategy, a particular problem may be more easily 
solved. For a particular problem, different combina-
tions of knowledge representation methods and search 
may yield more or less effective means for solving the 
problem. The next section will focus on representing 
knowledge by using rules. 

3.2 Knowledge representations for 
rule-based systems 

The use of rules for encoding knowledge is a particu-
larly important issue because rule-based reasoning sys-
tems have played a very important role in Al evolution 
from a purely laboratory science into a commercially 
šignificant one. This section outlines two representa­
tion methods namely 0PS5 and "rule schema -I- rule 
body", which have been applied in some rule-based 
systems. 

3.2.1 OPS5 

0PS5 [Forgy 82] is a rule-based system language. An 
0PS5 rule comprises the following: 

1. Symbol P. 

2. Rule name. 

3. Left-hand side (LHS). 

4. Symbol ->• 

5. Right-hand side (RHS). 

AH of these are enclosed in parentheses. 
A typical LHS structure is as follows: { <object> 

(computer fName <name> tprice <cost>)}. This 
structure is used,rto-.describe computer objects; it in-
cludes computer name and priče. 

RHS structure is similar to.LHS structure, but con-
tains an action, e.g. 'modify' before <money> (See 
below) . 

The t is the 0PS5 operator that distinguishes at-
tributes from values. 

A variable is a symbol beginning with the character 
'< ' and ending with the character '> ' , e.g. <object>. 

The predicates in 0PS5 include = , < > , <, >, <= , 
> = . A predicate is placed between an attribute and a 
value. 

The following is a typical rule from 
[Brownston et al. 86]: 

(P have-enough-money-to-buy-computer 
{ <object> (computer fname <name> 

tprice <cost>)} 
{ <money> (saving-account ^balance 

{<balance> > <cost> })} 

(modify <money> fbaJance 
(computer <balance> - <cost>))) 

where the meanings are apparent. 

3.2.2 Rule schema -)- rule b o d y 

"Rule schema -1- rule body"[Wu 93a] is a 2-level 
method of knowledge representation. A rule schema is 
used to describe the hierarchy among factors or nodes 
in a reasoning network. A rule body consists of com-
puting rules and/or inference rules and is used to ex-
press specific evaluation methods for factors and/or 
certainty factors in corresponding rule schemata. 

A rule schema has the general form: 
IF El,E2,..,En THEN A, 
where El , E2, ..., En is a conjunction (AND) of ali 
premise factors and A is a predicate or variable called 
a conclusion factor. 

Each rule schema has a corresponding rule body. 
In a rule body, there are one or more inference rules 
such as production rules and/or computing rules for 
computation. 

A rule schema with its corresponding rule body is 
called a rule set. A rule set is an independent knowk 
edge unit in the "rule schema -f- rule body" represen­
tation and can be described in Backus Naur form as 
follows: 
< r u l e s e t > := < r u l e se t number><rule 

schema><rule body> 
< r u l e se t nimiber> := < i n t e g e r > 
< r u l e scheina> := ' I F ' <preinise 

f ac to r s> 'THEN' <conclusion f a c t o r > 
<preinise f a c t o r s > := <premise f a c t o r > 

{ ' , ' <premise f a c t o r s > } 
<premise f a c t o r > := < f a c t o r > 
<conclusion f ac to r> := < f a c t o r > 
< f a c t o r > := < log ic 

asser t ion> |<vai r iable naine> 
< log ic a s s e r t i o n > := < p r e d i c a t e ( o b j e c t ) > 
< r u l e body> := C<C-ru le> |<I - ru le>) 

{<ru le body>} 
<C-rule> : = ( < f a c t o r > | 

( C F ' ( ' < f a c t o r > ' ) ' ) ) ' = ' 
<assignment expression> 

<assignment expression> := 
<va lue> |<a lgebra ic express ion> 

< I - r u l e > := ' I F ' <antecedents> 'THEN' 
<concliision> 

<antecedents> := <antecedeii t> {'and' 
<antecedents>} 

<antecedent> := ( < f a c t o r > | 
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C F ' ( ' < f a c t o r > ' ) ' ) ) 
< r e l a t i o n a l symbol> 
<assignment expression> 

< r e l a t i o n a l s3nnbol> : = 

<conclusion> := <C-ru le> 
<value> := < i n t e g e r > | 

<rea l> |<symbol ic value>| 
<probabi l i ty> |<f i izzy value> 

The terms <variable>, <predicate(object)->, 
<algebraic expression> and different kinds of values 
above have the standard interpretations. 

3.3 Comparison between OPS5 rules 
and "rule schema + rule body" 
representation rules 

There are a number of advantages with the "rule 
schema + rule body" representation [Wu 93a]. Firstly, 
rule schemata in a knowledge base provide a way of de-
scribing meta-knowledge about concrete rules in rule 
bodies which facilitate sorting rule sets in a rule base. 
Secondly, it expresses computing rule sets in the same 
form as inference rule sets. Purther, it provides natural 
"IF-THEN" expertise expression in two-level struc-
tures, and also provides flexible processing of inexact 
reasoning in rule bodies, and so forth. 

However, the negative aspect of these advantages is 
that "rule schema + rule body" representation is not 
so powerful as 0PS5 rules. For example, it cannot 
efEciently represent first-order logic rules. 

4 Design of rule-based system 
algorithms 

Usually an algorithm refers to a method of solving 
a well-specified computational problem for a system. 
With the development of rule-based systems, efficiency 
has been a major consideration up to this stage. A 
rule-based algorithm is considered more efficient than 
others if its cost for per working memory change is 
lower. This section addresses some measures for im-
proving the efHciency of rule-based system algorithms 
and analyses some good algorithms [Fang & Wu 94]. 

4.1 The knowledge 

For the purpose of obtaining efficiency, three types 
of knowledge or state Information may be incorpo-
rated into a rule-based system algorithm as follows 
[McDermott et al. 78]: 

1. Condition membership, which provides knowledge 
about the possible satisfaction of each individual 

condition element. An algorithm that ušes condi­
tion membership can ignore further processing of 
those rules which are not active, i.e. those rules 
that one or more positive condition elements are 
not partially satisfied. 

2. Memory support, which provides knowledge about 
which working meraory elements individually par-
tially satisfy each individual condition element. 
Associated with each condition element in rule-
based systems is a memory which indicates pre-
cisely which subset of working memory elements 
partially match the condition element. 

3. Condition relationship, which provides knowledge 
about the interaction of condition elements within 
a rule, and partial satisfaction of rules. The pro­
cess for condition relationship is similar to that 
of maintaining the results of intermediate joins in 
database systems. 

Two further types of knowledge can be identified as 
follows: 

4. Conflict set support, which provides knowledge 
about which rule has consistent variable bindings be-
tween its condition elements. The conflict set is re-
tained across each 3-phase cycle, and the contents of 
the conflict set are used to limit search in a rule-based 
system during the chaining process [Miranker 87]. 

5. Premise-conclusion relationship, which provides 
knowledge about which premise factor of a rule schema 
is the conclusion factor of another rule schema or which 
premise factor of a rule schema partially matches (See 
the definition in Section 2.3) with the conclusion factor 
of another rule schema. This knowledge is used to 
arrange rule sets in the rule base into order [Wu 93a]. 

4.2 ]VIatching techniques 

In each 3-phase cycle, matching is a crucial step. 
This section introduces four techniques for matching, 
namely indexing, filtering, and decision tree and deci-
sion table methods. 

4.2.1 Indexing 

In the matching process, the current state can be 
used as an index for immediate selection of match­
ing rules, provided that the rule preconditions are 
stated as exact descriptions of the current state 
[Rich & Knight 91]. The simplest form of indexing 
for rule-based systems is that the interpreter begins 
the match process by extracting one or more features 
from each working memory element and ušes these fea­
tures to hash into the rule coUection. This obtains a 
set of rules that might have satisfied LHSs. A more 
efficient form of indexing adds memory to the process. 
For example, one scheme involves storing a count with 
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each condition element. The counts are ali set to zero 
when the system starts the execution. When a data 
element enters the working memory, ali condition el­
ements matching the data element have their counts 
increased by one. When a data element leaves the 
working memory, ali condition elements matching the 
data element have their counts decreased by one. The 
interpreter deals with those LHSs that have non-zero 
counts for ali their positive condition elements. This 
scheme has been combined into a few algorithms with 
other efficient measures [Forgy 82]. 

Assume five rule antecedents are given: 
Rl: (A(B C x)) (D x) (x F y) (E F y) --> . . , 
R2: (A(B C x)) ~(D x) (x F y) (B F y) 

~(C BO) ~ > . . . 
RS: (A(x F y)) (H x) (x F z) —> . . . 
R4: (A(B F 0)) (B F y) (Z C B)> ~ > . . . 
R5: (A(x B)) (x C B)} —> . . . 

where x, y and z are variables, and capital letters 
represent propositions. An Identification table which 
plots these feature values v.s. the set of condition ele­
ments is constructed in Figure 2. 

4.2.2 Filtering 

Filtering is a method which ušes a filter namely a 
body of code that ušes the knowledge sources (KSs) 
introduced in the last section to reduce the number 
of rules tested by a rule-based system. If a filter con-
tains enough Information, a significant number of rules 
can be excluded from consideration. A filter admits to 
further testing of any subset of rules that may be un-
satisfied by its KSs. 

Filters usually are in the form of discrimination nets 
of which the famous RETE and TREAT algorithms 
are the best examples. RETE incorporates memory-
support and condition-relationship; whereas TREAT 
takes one more knowledge source into account— con-
flict set support (See Section 4.4). RETE and TREAT 
will be further analysed in the following sections. 

4.2.3 The decision tree method 

The decision tree method compiles the set of condition 
elements which are defined in the form of lists into a 
near-optimal decision tree [Malik 81]. Firstly, it re-
stricts a segment variable (e.g. @), which represents 
list fragments of an undefined length, to the tail of a 
sublist, and assumes that any datum in the working 
memory necessarily matches some condition elements 
of rules. And it treats two kinds of element features: 
those which compute the length of a list or a sublist, 
and those which extract an atom from some specified 
position. These tasks are done by the internal nodes 
of the tree. A leaf of the tree is a pointer that points 
to a stack which contains aH data that match the cor-
responding condition elements. However, sometimes 
there exist overlapping cases in which some leaves con-
tain more than one condition element. These consid-
erations lead to an algorithm. It starts by selecting an 
'efficient' feature which is defined everywhere as root 
of the tree from the discriminating feature table (built 
from condition element features). In the table '-' and 
'@' denote undefined values and variable feature values 
respectively. And then it recursively lets each branch 
have a label which corresponds to a subtable of the 
Identification table. The recursion stops if some sub­
table has an empty set. An example from [Malik 81] 
is as follows: 
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Figure 2: An Identification Table 

After non-discriminating features (e.g. |2| with O 
values) are deleted from the table, a discriminating 
decision tree can be built in Figure 3. 
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Figure 3: A Discriminating Decision Tree 

At the beginning of each "match - conflict resolution 
- act " cycle, the interpreter traverses the tree with 
each modified datum in the working memory, comput-
ing a feature value at each tree node and selecting the 
branch corresponding to the value. So a leaf contain-
ing the condition element can be reached. Character-
istic of the decision tree method is that it avoids the 
redundant computations. 
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This method is suited to rule-based systems where 
condition elements of rules are represented in the form 
of lists. Taking into account the tree optimisation 
possibilities, the potential performance of the method 
seems to be promising. 

4.2.4 The decision table method 

This method is based on the table knowledge repre-
sentation in [Colomb 89], and it is mainly suited to 
propositional rule-based systems. The transformation 
of the rule set in a rule base to a table representation 
involves a transformation algorithm which eliminates 
aH rows in the table which are inconsistent and ali 
rows which are subsumed by other rows. Its chaining 
procedure can be described as in Figure 4. 

input (condition) Table Processor output (conclusion) 

Figure 4: The chaining procedure of the decision table 
method 

A table consists of rows which can be viewed as as-
signments of values to corresponding variables. A sim-
ple example of a table is as follows: 

i t - h a s - t w o - l e g s , f l y , i t - i s - a - b i r d 
i t - h a s - f o u r - l e g s , i t - i s - a n - a n i m a l 
When the input is it-has-two-legs and fly, the first 

row in the table will fire, and the output of the ta­
ble processor (i.e. conclusion) will be it-is-a-bird; sim-
ilarly, when the input is it-has-f our-legs, the second 
row will fire, and the output of the table processor 
will be it-is-an-animal. Usually, rows in the decision 
table have interpretations as consequents such as the 
čase of Garvan ESI system. 

Because of the replacement of intermediate asser-
tions with expressions which imply them and the nega-
tion processing in the transformation procedure, the 
size of a knowledge table may be explosively large. 
In order to sol ve this problem, a few algorithms 
have been designed for reducing ambiguity and redun-
dancy in [Colomb & Chung 90]. These algorithms can 
greatly reduce the response time of a system. In ad-
dition, an unambiguous table can be further trans-
formed into a decision tree by ID3-like algorithms 
[Quinlan 86, Wu 93b]. A decision tree executes a num-
ber of nodes logarithmic in the number of rows in the 
decision table. Therefore, the decision table method 
can process large propositional rule-based systems ef-
ficiently. 

4.3 Conflict resolution 
The output from the matching process, and the input 
to the conflict resolution, is a set referred to as con­
flict set. AH rules in which LHSs have been satisfied by 

working memory elements can be identified by conflict 
set elements, which are termed instantiations. An in-
stantiation is an ordered pair of a rule name and a list 
of working memory elements matching the condition 
elements of the rule. It is the job of conflict resolution 
to find an instantiation which will be executed in the 
act phase of a cycle. 

A conflict-resolution strategy is a coordinated set 
of principles for making selections among competing 
instantiations. A rule-based system's performance de-
pends on its conflict-resolution strategy for both sensi-
tivity and stability [Brownston et al. 86]. Sensitivity 
is the fast degree by which a system responds to the dy-
namically changing demands of its environment, while 
stability is its continuity of behavour. The following 
principles can be applied for any conflicrt resoluiton 
strategy [Brovvnston et al. 86]: 

— Refraction 

Refraction prevents rules from firing on the same 
data more than once. The intention is to avoid 
the trivial form of infinite looping which might 
occur when a rule does not change the working 
memory contents. 

— Data ordering 

Data ordering which orders data by recency or 
activation is a basic principle of conflict resolu­
tion and a povverful way of adding sensitivity to 
a conflict-resolution strategy. It gives preference 
to rules that match those elements most recently 
added to working memory or that are strongly re-
lated to recently-added data. This principle is 
usually combined with other principles to nar-
row down the selection of one instantiation to fire 
next. 

— Specificity ordering 

The specificity principle gives preference to rules 
that are more specific according to some stan­
dard which can be measured in a variety of ways. 
For example, one specificity principle depends on 
a specificity function that is correlated with the 
complexity degree of rule condition elements. 

— Rule ordering 

Rule ordering (vvhich tends to be less sensitive) 
provides static ordering of a rule set independent 
of the way in which rules are instantiated by data. 
The ordering may be computed by using some rule 
feature/features. Either total or partial ordering 
can be given by a relation on rules. If total rule or­
dering has been provided, the rules can be stored 
in the order and scanned linearly until a match­
ing one is found. LFA [Wu 93a] is a successful 
example of using the rule ordering strategy. 
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— Arbitrary choice and parallel selection 

None of the above principles can guarantee that 
only a single instantiation will remain in the con-
flict set. If single firing is required for each cy-
cle, an arbitrary decision referred to as arbitrary 
choice ordering can be made after ali conflict-
resolution principles have been applied; however, 
in some systems especially parallel systems, aH the 
remained instantiations can be fired in one cycle, 
which is called parallelism in firing. 

The following are two alternative conflict-resolution 
strategies for 0PS5 systems — LEX and MEA 
[Forgy 81]: 

LEX 
The LEX conflict-resolution strategy includes four 

steps which are applied in order to find an instantia­
tion: 

LEX. It places extra emphasis on the recency of a 
working memory element matching the first condition 
element of a rule. If no single instantiation dominates, 
then the remaining set is passed through the same se-
quence of orderings as in LEX. 

4.4 R E T E 

The RETE match algorithm [Forgy 82] is an algorithm 
for computing the conflict set. It improves match­
ing efficiency by incorporating memory-support and 
condition-relationship to avoid iterating computations 
over the working memory and the rule base; its con-
crete measure is using a sorting network (Subparts of 
which can be shared) which is compiled from the con­
dition element patterns of rules to test features of data 
elements, and to store Information. The structural 
form of the sorting network is given in Figure 5. 

1. Discard from the conflict set those instantiations 
that have already fired. If there are no instantia­
tions that have not fired, conflict resolution fails 
and no instantiation is selected. 

2. This step partially orders the remaining instanti­
ations in the conflict set on the basis of recency of 
working memory elements by using the following 
algorithm to compare pairs of instantiations: 
Compare the most recent elements from two in­
stantiations. If one element is more recent than 
the other, the instantiation containing that ele­
ment dominates. If the two elements are equally 
recent, compare the second most recent element 
from the instantiations. Continue in this way un-
til either one element of one instantiation is found 
to more recent than the corresponding element 
in the other instantiation, or no element remains 
for one instantiation. If one instantiation is ex-
hausted before the other, the other dominates. If 
the two instantiations are exhausted at the same 
time, neither dominates. 

3. If no one instantiation in particular dominates aH 
others under the previous step, this principle is 
necessary for comparing the dominant instantia­
tions on the basis of the specificity of the LHSs 
of the rules. Count the number of tests (for con-
stants and variables) that have to be made in find-
ing an instantiation for the LHS. The LHSs that 
require more tests dominate. 

4. If no single instantiation dominates after the pre­
vious step, make an arbitrary selection of one in­
stantiation as the dominant instantiation. 

MEA 

The MEA strategy differs from that of LEX in that 
another step has been added after the first step in 

inua-elemem feature 
tcstnodes 

inler-elonem feaiurc 
tesinodcs 

^ 

Figure 5: The Structural Form of RETE's Sorting Net-
works 

RETE deals with two types of element features 
i.e. intra-element features and inter-element features. 
Intra-element features are the features that involve one 
working memory element. For example, the class of an 
element must be 'Expression'; the value of an 'OP' at­
tribute must be '-t-'. However, inter-element features 
result from having a variable occur in more than one 
pattern. For instance, the value of an attribute of an 
element must be equal to the value of an attribute of 
another element. 

As shown in Figure 5, when the pattern compiler 
processes an LHS, it builds a chain of intra-element 
feature test nodes, which are one-input, for each con­
dition element pattern of the LHS based on the intra-
element features which are required by the condition 



338 Informatica 22 (1998) 329-349 X. Wu et al. 

element pattern. And then it builds inter-element fea­
ture test nodes for testing the inter-element features of 
the LHS. The inter-element feature test nodes are two-
input and left-associative [Ho & Marshall 92]. Finally 
it builds a terminal node to represent the production 
rule. 

The match procedure is as follows: The root node 
receives a token, which is state Information (The tags 
'H-' and ' - ' in a token indicate how the state Informa­
tion is to be changed), and then passes the copy of 
the token to ali its successors i.e. the intra-element 
feature test nodes. A '+' token that has satisfied the 
intra-element feature tests is added to the alpha mem-
ory. A ' - ' token that has satisfied the intra-element 
feature tests has a corresponding '+ ' token that al-
ready presents in the alpha memory. The correspond­
ing '-I-' token is removed. Once a token updates an 
alpha memory, it continues to go through the network 
and the next node is an inter-element feature test node. 
Inter-element feature test nodes store the first token 
and wait until the second one arrives, and then com-
pare them. If they find that the variables between the 
two tokens are bound consistently, they join the two 
tokens into a bigger one. The bigger token is stored 
in the beta memory, and then sent to another inter-
element feature test node for other consistent tests of 
variable bindings (if possible). If ali the variable bind-
ings are consistent for an LHS, the final token is sent 
to the terminal node. The terminal node receives the 
token, and adds the rule instantiation ( Which is an 
ordered pair of the form <rule, list of data elements 
matched by the LHS of the rule>) of the LHS to the 
conflict set. 

Over the naive matching algorithms, advantages of 
the RETE match algorithm can be summarised as fol-
lows: 

- It does not need the interpretive step by using the 
sorting network. 

- Sufficient state is maintained so that it can avoid 
many iterated computations. 

- The subparts of the network for similar condition 
element patterns can be shared. 

There are also some disadvantages inherent to the 
RETE match algorithm: 

- It is just a matching algorithm. 

- Time complexity of RETE is NP-hard to the num-
ber of rules in the rule base. 

- The removal of data elements performs such oper-
ations for adding the data elements that the dele-
tions of working memory elements are expensive. 

- It is inefficient when most of the data changes in 
each cycle, because in that čase RETE needs to 

maintain its state betvveen cycles i.e. it cannot 
efficiently process non-redundant rule-based sys-
tems. 

4.5 T R E A T 
The TREAT match algorithm [Miranker 87] is a 
RETE-like algorithm. It not only makes use of con­
dition membership and memory support knowledge 
sources, but also combines them with a new source 
of information, conflict set support. Its significant fea­
tures are that (1) in some cases it performs much bet-
ter than the RETE algorithm, and (2) it can be used 
in parallel systems. 

The TREAT algorithm constructs a sorting network 
from the condition patterns of the rule set. But no sub-
part of the network can be shared by more than one 
condition pattern. Furthermore, it adopts the follow-
ing measures; 

— Conflict Set Support 

TREAT retains the conflict set across system cycles 
and ušes its contexts to reduce the number of com-
parisons required to find consistent variable bindings 
[Miranker 87]. As a result, it reduces the computa­
tions between beta memories that the RETE algo­
rithm needs. 

— Handling Negated Condition Elements 

When a data element which partially matches a pos-
itive condition element is added into the working mem-
ory, the conflict set remains the same, except that the 
addition of the working element element results in new 
instantiations. If a rule is active (See Condition sup­
port) and the new instantiations contain the new work-
ing memory element, then the instantiations are added 
into the conflict set. 

When a working memory element which partially 
matches a negative condition element is deleted, no 
new rules will be instantiated. In that čase, the in­
stantiations that contain the removed working mem-
ory element will be invalidated and are removed from 
the conflict set. 

When a rule flring adds a working memory element 
that partially matches a negated condition element, 
there may be some rule instantiations that are inval­
idated and will have to be removed from the conflict 
set. In this čase, the invalidated instantiations will not 
contain the working memory element. To find the in­
stantiations vvhich must be removed from the conflict 
set, the negated condition element which is partially 
matched is temporarily transformed to be positive to 
form a new rule. The vvorking memory element is used 
as a seed to build instantiations of this new rule. Then 
the new instantiations are compared with the conflict 
set. If any instantiation exists in the conflict set, then 
remove them. 
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When a working memory element is removed and it 
partiaJly matches a negated condition element, if there 
is no other similar data element whose variable bind-
ings are consistent with those of the removed one in 
the working memory, it may cause some rule instanti-
ations to enter the conflict set. 

— Memorp Support 

The alpha memories forming the memory support 
part of the TREAT match algorithm are the same as 
those of the RETE match algorithm. Information re-
lated to each condition element is stored in arrays in-
dexed by CE-num's (condition element numbers). Ali 
the condition elements in a rule-based system are num-
bered with CE-num's. The alpha memories are par-
titioned into old-mem, new-delete-mem and nevj-add-
mem as three separate vectors. The addition and dele-
tion of a working memory element are different from 
those of the RETE match algorithm. This can be seen 
from the algorithm illustration below. 

— Condition Support 

Associated with each rule is a rule-active property. 
A rule is active if each of its positive condition ele­
ments is partially matched by some working memory 
elements. The rule-active property of a rule is affected 
by updating the contents of the old-mem for the rule. 

The advantages of the TREAT algorithm are as fol-
lows: 

— The deletion of elements is simpler than in RETE. 

— Inactive rules are ignored. 

— It can handle both temporally redundant and 
non-redundant rule-based systems. 

— It can be easily implemented in parallel rule-based 
systems. 

However, TREAT also has some disadvantages: 

— No computing results can be shared by condition 
patterns or rules. 

— The time complexity for matching is stili NP-hard 
as RETE. 

— It is also a matching algorithm. 

4.6 LFA 
/ Unlike RETE-like algorithms, the LFA algorithm 

[Wu 93a] is a linear forward-chaining algorithm. It 
adopts a 2-level "rule schema -I- rule body" knowledge 
representation outlined in Section 3.2.2. The major 
features of the LFA algorithm are that chaining is car-
ried out in 2-phase "match-act" cycles instead of the 
3-phase "match - conflict resolution - act" cyčles, and 

it can choose one rule set in each cycle without any 
specific conflict resolution. 

The following outlines the concrete measures that 
the LFA algorithm has adopted: 

- "Rule Schema -/- Rule Body" 

"Rule schema -I- rule body" represents knowledge 
in two levels. Rule schemata describe the hierarchy 
among factors (include premise factors and conclusion 
factors) or nodes in a reasoning network. Rule bod-
ies, which consist of computing rules and/or inference 
rules, are used to express specific computing methods 
for the factors and/or certainty factors in their corre-
sponding rule schemas. Thiš 2-level structure facili-
tates sorting the knowledge base and avoids matching 
ali the rules in a knowledge base vî ith the working 
memory when some piece of data is not available. 

- Sorting the Knoviledge Base [Wu 93a] 

At the end of knowledge acquisition or knowledge 
modification, the knowledge base is sorted or compiled 
into a partial order: If rule schema N is if factor-1, 
factor-2, ..., factor-n, then factor, then ali the schemas 
with factor-1, factor-2, ..., factor-n as their conclusion 
factors have rule-set numbers smaller than N. 

Other sorting measures are as follows: 

1. Processing dead cycles. 
A cycle like if A then B, if B then C, and if C 
then yl in a domain reasoning network is called a 
dead cycle if none of A, B, and C is a leaf node 
in the domain reasoning network and there is no 
other rule schema whose conclusion factor is one 
of them. A dead cycle cannot be numbered and 
has to be changed to a live cycle or removed. Fig­
ure 6 is an example of dead cycles. 

2. Renumbering schemata. 
Renumber aH rule schemata which have aU of 
their premise factors being leaf nodes in the do­
main reasoning network. For any factor F, if ali 
schemata with it as their conclusion factor have 
been renumbered, it is treated as a leaf node for 
further renumbering. If ali rule schemata in a 
knowledge base have been renumbered then stop. 

3. Resolving live cycles. 
A cycle like if A then B, if B then A, and if C then 
A is called a live cycle and A is called a live node 
in the live cycle if C is not involved in any dead 
cycle (Figure 7 shows a live cycle). A live cycle 
can be resolved by treating one of its live nodes 
as a leaf node for further renumbering. Resolve 
ali live cycles and goto 2. 
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A l i 

Figure 6: A dead cycle 

aiid 

A l A2 

Figure 7: A live cyde 

— Linear Forward Chaining 

After knowledge compilation, chaining is performed 
as follows: 

FOR the f i r s t TO the l a s t renumbered 
schema in the knowledge base 

DO 
IF the re e x i s t da ta in the working 

memory for each of the 
condit ion f ac to r s of the schema 

THEN f i r e the corresponding 
r u l e body of the schema. 

ENDFOR. 

Advantages of the LFA algorithm: 

— Time complexity is 0{n) where n is the number 
of rules in a knowledge base. 

— It is a complete forward-chaining algorithm, in 
which the conflict resolution step is unnecessary. 

— NaturaJ knowledge representation. 

— Computational knowledge and uncertainty calcu-
lus axe integrated with logic inference in the 2-
level knowledge representation. 

Intermediate computing results can be shared. 
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Disadvantages of the LFA algorithm: 

— First-order rules can not be efRciently processed. 

— Its chaining is in a fixed order, and thus ali prob­
lem evidence needs to be provided at the begin-
ning of chaining in order to ensure that the infer­
ence can be accomplished. 

5 LFA+: A robust LFA 
algorithm 

For rule-based systems, LFA is the best forward-
chaining algorithm to date in terms of time complexity. 
However, as with other algorithms, it also has its own 
limitations. The significant drawback which greatly 
restricts application is that LFA cannot efficiently deal 
with first-order logic rules. Based on the original LFA 
algorithm, this section describes a robust LFA algo­
rithm — LFA+, which mainly tackles this problem 
and efficiently deals with recursive rules and negation. 

The idea to transform first-order logic rules into 
simpler domains was used before in inductive logic 
programming [Lavrac &: Dzeroski ] and in empirical 
learning in order to transform more complex expres-
sive mechanisms into e.g. attribute-value descriptions 
[Gams et al. 91]. 

5.1 Knowledge representation 
Knowledge representation adopts the basic "Rule 
Schema -I- Rule body" structure (See Section 3.2.2), 
but expressiveness is extended to include first-order 
logic rules. In addition, some other measures are pre-
sented for the following purposes: 

1. It facilitates avoiding matching ali the rules in a 
rule base with the working memory at rum time 
when some piece of data is not available. 

2. It supports ordering the knowledge. 

— Pred ica te representa t ion 

A predicate can be represented in the following form: 
<pred ica t e symbol>(ob jec t - l i s t ) . 
In the object-list, an object is a constant or a vari­

able. 

— Rule schemata representa t ion 

A rule schema takes the general form: 
IF factorl, factorž, •••, factorn THEN factor 

where factorl, factorž, •• •, factorn, factor may be 
variables for computing rules or logic assertions for 
inference rules. But any variable in logic assertions is 
replaced by the '_' notation which means "don't čare" 
in rule schemata. The factor can also be an algebraic 
function or an action defined to modify the working 
memory. 

— Negation representa t ion 

Negation representation takes the form: not(p), 
where p represents a predicate. Its meaning is defined 
as that of [Bratko 90] — If p cannot be proven to be 
TRUE, then not(p) is TRUE. 

Two constraints are given to this representation: 

1. 'not(p)' and 'p' cannot appear in two different 
rules respectively within a rule set. For example, 
for 

p(X,Y) :- s(X,Y), not(r(X)). 
p(X,Y) :- s(X,Y), r(Y). 

there are two rule sets: 

Rule schema: IF s(-,-), not(r(-)) THEN p(.,-) 
Rule body: IF s(X,Y) and not(r(X)) THEN 
P(X,Y) 

and 

Rule schema: IF s(.,.), r(.) THEN p(.,-) 
Rule body: IF s(X,Y) and r(Y) THEN p(X,Y) 
Thereby, the confused representation that 
not(r(-)) and r(.) appear in the same schema can 
be avoided, and when data do not exist for r(_), 
the matching procedure for the rule body in the 
second rule set is unnecessary at run time. 

2. 'not(p)' and 'p' may appear in the same inference 
rule in a rule set, but only the 'p' is included in the 
corresponding premise factors of the rule schema. 
For instance, the rule set for 

p(X,Y,Z) :- s(X,Y,Z), not(r(X,Y)), r(Y,Z). 

is 

Rule schema: IF s(_,-,-), r(.,-) THEN p(-,-,-) 
Rule body: IF s(X,Y,Z) and not(r(X,Y)) and 
r(Y,Z) THEN p(X,Y,Z) 

This knowledge representation can be described in 
extended Backus. Naur form as follows: 
< r u l e s e t > := < r u l e se t number><rule 

scliema><rule body> 
< r u l e set number> := < i n t e g e r > 
< r u l e schema> := ' I F ' <premise 

f ac to r s> 'THEN' <conclusion f a c t o r > 
<premise f ac to r s> := <premise 

f ac to r> {' , '<premise f a c t o r s > } 
<premise f ac to r> := < f a c t o r > 
<concliision f ac to r> := < f a c t o r > 
< fac to r> := < log ic 

a s s e r t i o n > | < v a r i a b l e > | < a lgebra ic 
f unct ion> | <ac t ion> 

< log ic a s s e r t i o n > := 
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< p r e d i c a t e > | ( n o t ' ( ' < p r e d i c a t e > ' ) ' ) 
<p red i ca t e> := <pred ica te 

symbol> { ' ( ' < o b j e c t - l i s t > ' ) ' } 
< o b j e c t - l i s t > := < o b j e c t > { ' , ' 

< o b j e c t - l i s t > } 
<ob jec t> := < c o n s t a n t > | < v a r i a b l e > | ' _ ' 
<a lgeb ra i c funct ion> := 

(f unc to r ' ( ' < v a r i a b l e - l i s t > ' ) ' ) 
< v a r i a b l e - l i s t > ;= <va r i ab l e> 

{' , ' < v a r i a b l e - l i s t > } 
< r u l e body> := ( < C - r u l e > | < I - r u l e > ) 

{<ru le body>} 
<C-ru le> := ( < f a c t o r > | 

( C F ' ( ' < f a c t o r > ' ) ' ) ) ' = ' 
<va lue> |<a lgeb ra i c expression> 
< I - r u l e > := ' I F ' <antecedents> 'THEN' 

<conclus ion> 
<antecedents> := <antecedent> {'and' 

<an tecedents>} 
<antecedent> :=<logic 

a s s e r t i o n > | < r e l a t i o n expression> 
< r e l a t i o n expression> := 

(<f a c t o r > | (CF' ( ' <f a c t o r > ' ) ' ) | 
<va lue> | 
< a l g e b r a i c expression>) 
< r e l a t i o n symbol> 
(<fac to r> | (CF ' ( ' < f a c t o r > ' ) ' ) | < v a l u e > | 
<a lgeb ra i c express ion>) 

<value> := < i n t e g e r > 
| < r e a l > | 
<symbolic value> | 
<probability>|<fuzzy value> 

<relation symbol> := 
' > ' | ' < ' | ' = ' | ' < > ' | ' > = ' ! ' < = " 

<conclus ion> := 
< l o g i c a s s e r t i o n > | < a c t i o n ) > | < C - r u l e > 

— Recursive rule representa t ion 

In the above form, the further specific representation 
for recursive rules may be described as follows: 
< I - r u l e > := < I - r u l e - l > < I - r u l e - 2 > 
< I - r u l e - l > := ' I F ' <antecedeiits 1> 'THEN' 
<conclusion 1> { < I - r u l e - l > } 
< I - r u l 6 - 2 > := ' I F ' <antecedents 2> 'and ' 
<antecedent 2> 'THEN' 

<conclusion 2> { < I - r u l e - 2 > } 
Here, <conclusion 1>, <antecedent 2> and 

<conclusion 2> have the same predicate symbol. 
In rule schemata, if <antecedents 1> and 

<antecedents 2> become the same, and so do 
<conclusion 1>, <antecedent 2> and <conclusion 
2>, and there is only one rule for <I-rule-l>, then 
<I-rule-l> and <I-rule-2> can be put into one rule 
set, and the rule schema is as follows: 

IF <antecedents 1> THEN <conclusion 1> 
Otherwise they have to be broken into different rule 
sets, but these rule sets as a whole take part in the 
numbering process. Their schemata together are re-
ferred to as a recursive schema set. 
For example, the rule set for 
ancestor(X,Y) : - fatlier(X,Y) . 
ancestor(X,Y) : - fa ther (X,Z) , 

čincestor(Z,Y) . 
ancestor(X,Y) : - fa ther (Z ,Y) , 

ancestor(X,Z). 
is as follows: 
ru l e schema: 
IF fatherC-,-) THEN ancestor(_,_) 
ru l e body: 
IF father(X,Y) THEN ancestor(X,Y) 
IF father(X,Z) and ancestor(Z,Y) THEN 
ancestor(X,Y) 
IF father(Z,Y) and ancestor(X,Z) THEN 
ancestor(X,Y) 
However, the rule sets for 
parent(X,Y) 
parent(X,Y) 
parent(X,Y) 
parent(X,Y) 

parent(X,Z) 
are 

- inother(X,Y). 
- fa ther(X,Y). 
- s i s t e r ( Z , Y ) , parent (X,Z) . 
- b ro the r (Z ,y ) , 

r u l e schema: 
IF motherC-,-) THEN parent( . ,_) 
ru l e body: 
IF mother(X,Y) THEN parent(X,Y) 
ru l e schema: 
IF father(_,_) THEN parent ( . ,_) 
r u l e body : 
IF father(X,Y) THEN parent(X,Y) 
r u l e schema: 
IF s i s t e r ( _ , _ ) , parent(_,_) THEN 

parent(_,_) 
ru l e body: 
IF s i s te r (Z ,Y) and parent(X,Z) THEN 

parent(X,Y) 
and 
ru l e schema: 
IF brother ( . ,_) , parent(_,_) THEN 

parent(_,_) 
ru l e body: 
IF brother(Z,Y) and parent(X,Z) THEN 

parent(X,Y) 
As long as the <object> is defined as follows: 

<ob jec t> ;= <object 
f unct ion> | < va r i ab le> | ' _' 

<object funct ion> := <objec t functor> 
{' ( ' < v a r i a b l e l i s t > ' ) ' } 
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clearly, this knowledge representation can represent 
any Horn clause rules. 

5.2 The LFA+ algorithm 
This algorithm consists of two procedures namely 
sorting the knowledge in a knowledge base and 
linear-forward chaining. 

• Sorting knowledge in a knowledge base 
This procedure aims at placing rule sets in the rule 

base in order. The order of the rule sets is the order of 
the rule schemata. AH measures adopted are described 
as follows: 

— Processing of negations 

Some schemata may have been separated due to 
the constraints of negation representation. These 
schemata together are called a schema set. In this 
čase, the schema set as a whole takes part in the num-
bering process (See next step). Inside the schema set, 
aH schemata take the order of the rule-body rules in 
situations that it is unnecessary to distinguish not (p) 
and p and in the order aH rule-body rules can be put 
into a rule set. 

— Schema numbering 

If rule schema #N is 
IF factorl, factorS, • ••, factom THEN factor 
then aH schemata whose conclusion factors partially 
match (See Section 2.3) with any of the factorl, 
factorž, • • •, factom have rule set numbers smaller 
than N. This process puts the schemata into partial 
order. 

— Processing of live cycles 

A cycle such as "IF al THEN bi , IF b2 THEN a2, 
and IF c THEN a3", in which a l , a2 and a3 partiany 
match with each other, and bi partially matches with 
b2, is referred to as a live cycle and al , a2 and a3 
become a live node in the live cycle if c is not in-
volved in any dead cycles (e.g. a live cycle in Figure 
8). Schemata in a live cycle can be numbered by start-
ing from one of the live nodes of the live cycle. 

— Processing of dead cycles 

A cycle such as "IF al THEN bi , IF b2 THEN cl, 
and IF c2 THEN a2", in which a2 partially matches 
with al, b i partially matches with b2 and cl partially 
matches with c2, is referred to as a dead cycle if none 
of a l , a2, b i , b2, cl and c2 can be instantiated (Such 
as in Figure 9). A dead cycle cannot be numbered — 
it has to be changed into a live cycle or removed. 

alOC^ 

a8(_0 a9UJ 

and/ \ and 

a 2 ( _ ^ a 3 ( _ ^ a 4 C ^ not(a5C_0) 

a l C ^ 

Figure 8: A live cycle 

a8(^_) 

a2(^^ , a3(_J 

alU-) 
Figure 9: A dead cycle 
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— Processing of parallel schema set 

If some schemata have the same conclusion factor (A 
negation schema set is treated as one schema) and are 
not in vol ved in any dead cycles or any live cycles, then 
aH these schemata together are referred to as a parallel 
schema set. A parallel schema set as a whole takes 
part in the numbering process, but inside the parallel 
schema set, the order of the schemata is arbitrary. 

— Rule schema renumbering 

Renumbering the schemata in a knowledge base un-
til they are ali in order. If they are already in order 
then stop. 

• Linear-forward-chaining 
After sorting knowledge in the knowledge base, the 

LFA+ algorithm performs the following process: 
Loop: from the f i r s t t o the l a s t schema do 
If da ta e x i s t in the working meinory for each 
of the premise f ac to r s (But for n o t ( p ) , p 
may or may not e x i s t ) in the schema, then 
f i r e the corresponding r u l e body of the 
schema 

Endloop 

5.3 Advantages and disadvantages 
The time complexity of the LFA+ algorithm is also 
0{n), where n is the number of rules in the rule base, 
as the original LFA algorithm. Yet, with the original 
LFA algorithm, the robust LFA+ algorithm has the 
following advantages: 

— It can deal with first-order logic rules. 

— Recursive inference rules can be efficiently pro-
cessed. 

— It facilitates coping with rules that include nega­
tive condition elements. 

However, the LFA-I- algorithm also has some disad­
vantages in common with other algorithms: 

— It cannot meet the dynamic requirements to the 
knowledge base during inference. 

— Its chaining is in a fixed order and thus ali problem 
evidence needs to be provided at the beginning of 
chaining in order to ensure that the inference can 
be accomplished. 

5.4 A n exaniple 

Suppose the following Prolog rules are given: 

sibling(X,Y) : - brother(X,Y). (1) 
sibling(X,Y) : - s i s t e r (X ,Y) . (2) 
sibling(X,Y) : - brother(Y,X) . (3) 
sibling(X,Y) : - s i s t e r (Y ,X) . (4) 
parent(X,Y) : - fa ther(X,Y). (5) 
parent(X,Y) : - mother(X,Y). (6) 
ancestor(X,Y) : - parent(X,Y). (7) 
parent(X,Y) : -

b l ing(Z,Y) , parent(X,Z) . (8) 
ancestor(X,Y) : -

parent(Z,Y) ,ances tor(X,Z) . (9) 
sibling(X,Y) : -

b ro ther (Z ,Y) , s ib l ing(X,Z) , 
X \== Y. (10) 

sibling(X,Y) : -
s i s t e r ( Z , Y ) , s i b l i n g ( X , Z ) , 
X \== Y. (11) 

sibling(X,Y) : -
b ro ther (Y,Z) , s ib l ing(X,Z) , 
X \== Y. (12) 

sibling(X,Y) : -
s i s t e r (Y ,Z) , s ib l ing (X,Z) 
X \==Y. (13) 

Based on the knowledge representation method of 
LFA H-, their corresponding rule schemata can be rep-
resented as foUovvs: 

IF b ro ther (_ ,_ ) THEN s i b l i n g ( _ , _ ) ( 1 ' ) 
IF s i s t e r ( _ , _ ) THEN s i b l i n g ( _ , _ ) ( 2 ' ) 
IF b ro ther (_ ,_ ) THEN s i b l i n g ( _ , _ ) (3 ' ) 
IF s i s t e r ( _ , _ ) THEN s i b l i n g ( _ , _ ) ( 4 ' ) 
IF f a the r (_ ,_ ) THEN paren t (_ ,_ ) ( 5 ' ) 
IF mother(_,_) THEN paren t (_ ,_ ) ( 6 ' ) 
IF parent (_ ,_) THEN ances tor (_ ,_) ( 7 ' ) 
IF s i b l i n g ( _ , _ ) , p a r e n t ( _ , _ ) 

THEN paren t (_ ,_ ) ( 8 ' ) 
IF paxent(_,_) ,čLncestor(_,_) 

THEN ances tor (_ ,_) ( 9 ' ) 
IF b r o t h e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l i ng (_ ,_ ) (10 ' ) 
IF s i s t e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l i ng (_ ,_ ) (11 ' ) 
IF b r o t h e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l ing (_ ,_ ) (12 ' ) 
IF s i s t e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l ing (_ ,_ ) (13 ' ) 

As shown in (10'), (IV), (12'), and (13'), variables 
in relational expressions of variables (X \ = = Y) are 
not represented in schemata, because they are deter-
mined by the same variables in corresponding predi-
cates. Since (1') and (3'), (2') and (4'), (10') and (12'), 
and (11') and (13') are the same respectively, they can 
be combined. So they become the following: 

IF bro ther (_ ,_ ) THEN s ib l i ng (_ ,_ ) (1") 
IF s i s t e r ( _ , _ ) THEN s ib l i ng (_ ,_ ) (2") 
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IF f a the r (_ ,_ ) THEN parent (_ ,_) 
IF mother(_,_) THEN parent (_ ,_) 
IF pa ren t (_ ,_ ) THEN ances tor (_ ,_) (5") 
IF s i b l i n g ( _ , _ ) , p a r e n t ( _ , _ ) 

THEN paren t (_ ,_ ) 
IF pa ren t (_ ,_ ) , ances to r (_ ,_ ) 

THEN ances tor (_ ,_) 
IF b r o t h e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l i ng (_ ,_ ) 
IF s i s t e r ( _ , _ ) , s i b l i n g ( _ , _ ) 

THEN s ib l i ng (_ ,_ ) 

(3") 
(4") 

(6") 

(7") 

(8") 

(9") 

Apparently, (1") and (2") are a parallel schema set, 
so are (3") and (4"). (1"), (2"), (8") and (9") form a 
kind of recursive schema set, so do (3"), (4") and (6"); 
(5") and (7") form another kind of recursive schema 
set, they can be combined. Based on the schema num-
bering measures of LFA+, these schemata can be put 
into the following order: 

1 IF brother(_,_) THEN sibling(_,_) 
2 IF sister(_,_) THEN sibling(_,_) 
3 IF brotlier(_,_) ,sibling(_,_) 

THEN sibling(_,_) 
4 IF sister(_,_),sibling(_,_) 

THEN sibling(_,_) 
5 IF IF fat]ier(_,_) THEN parent(_,_) 
6 IF mother(_,_) THEN parent(_,_) 
7 IF sibling(_,_),parent(_,_) 

THEN parent(_,_) 

8 IF paren t (_ ,_ ) THEN ances tor(_ ,_) 

where No. 8 is the combination of (5") and (7"). 

Finally, the ordered'rule sets are as follows: 

1 IF b ro the r (_ ,_ ) THEN s ib l ing (_ ,_ ) 
IF brother(X,Y) THEN sibling(X,Y) 
IF brother(X,Y) THEN sibling(Y,X) 

2 IF s i s t e r ( _ , _ ) THEN s ib l ing (_ ,_ ) 
IF s is ter (X,Y) THEN sibling(X,Y) 
IF s is ter (X,Y) THEN sibling(Y,X) 

3 IF b r o t h e r ( _ , _ ) , s i b l i n g ( _ , _ ) 
THEN s ib l i ng (_ ,_ ) 

IF brother(Z,Y) and sibling(X,Z) and 
X \== Y THEN sibling(X,Y) 

IF brother(Y,Z) and sibling(X,Z) 
and X \== Y THEN sibling(X,Y) 

4 IF s i s t e r ( _ , _ ) , s i b l i n g ( _ , _ ) 
THEN s ib l i ng (_ ,_ ) 

IF s i s t e r (Z ,Y) and sibl ing(X,Z) 
THEN sibling(X,Y) 

IF s i s t e r (Y ,Z) and sibl ing(X,Z) 
THEN sibling(X,Y) 

5 IF f a the r (_ ,_ ) THEN parent (_ ,_) 
IF father(X,Y) THEN parent(X,Y) 

6 IF mother(_,_) THEN parent (_ ,_) 
IF mother(X,Y) THEN parent(X,Y) 

7 IF sibling(_,_),parent(_,_) 

THEN parent(_,_) 
IF sibling(Z,Y) and parent(X,Z) 

THEN parent(X,Y) , 
8 IF parent(_,_) THEN ancestor(_,_) 

IF parent(X,Y) THEN ancestor(X,Y) 
IF p£irent(Z,Y) and ancestor(X,Z) 

THEN ancestor(X,Z) 

5.5 A chaining implementation of 
LFA+ 

The implementation is carried out with Sicstus Prolog 
on DEC stations. It consists of two parts namely re-
ceiving_data and chaining. Main program 'LFA+' has 
three parameters: InterpJ, LeafJile and KbJile. 

InterpJ is an interpretation file, which has the fol-
lowing contents: 

1. One or more domain value lists. For example, in 
domain([a,b,...]), the list is a value range of object 
variables; whereas in domain('~Y',[1,2,...]), the 
list is the value range of the variable '~Y' . 

2. A truth value interpretation list. E.g. 
r_map([map(ancestor(adamjohn,true)),...]). 

LeafJile includes the predicates which need to be 
provided by the users, and KbJile is a rule file which 
contains aH the rules for a problem solving. 

The following is an implementation example. For 
convenience, we keep the Prolog rules as rule bodies 
since the order of rule sets is the order of rule schemata. 
So the contents of the KbJile are as follows: 

1. 
' I F ' . b r o t h e r ( _ , _ ) . 'THEN'. s i b l i n g ( _ , _ ) . 
sibling(X,Y) : - brother(X,Y). 
sibling(X,Y) : - brother(Y,X). 

2. 
' I F ' . s i s t e r ( _ , _ ) . 'THEN'. s i b l i n g ( _ , _ ) . 
sibling(X,Y) : - s i s t e r (X ,Y) . 
sibling(X,Y) : - s i s t e r (Y ,X) . 

3 . 
' I F ' . b r o t h e r ( _ , _ ) . ' , ' . s i b l i n g ( _ , _ ) . 

'THEN'. s i b l i n g ( _ , _ ) . 
sibling(X,Y) : - brother(Z,Y) , 

s ibl ing(X,Z),X \== Y. 
sibling(X,Y) : - bro ther(Y,Z) , 

s ib l ing(X,Z) , X \== Y. 
4. 
' I F ' . s i s t e r ( _ , _ ) . ' , ' . s i b l i n g ( _ , _ ) . 

'THEN'. s i b l i n g ( _ , _ ) . 
sibling(X,Y) : - s i s t e r ( Z , Y ) , 

s ibl ing(X,Z),X \== Y. 
sibling(X,Y) : - s i s t e r ( Y , Z ) , 

sibling(X,Z),X \== Y. 
5. 
'IF'. father(_,_). 'THEN'. parent(_,_). 
parent(X,Y) :- father(X,Y). 
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'IF'. mother(_,_). 'THEN'. parent(_,_). 
parent(X,Y) :- mother(X,Y). 
7. 

'IF'. sibling(_,_). ','. parent(_,_). 
'THEN'. parent(_,_). 

parent(X,Y) :- sibling(Z,Y),parent(X,Z). 
8. 
'IF'. parent(_,_). 'THEN'. ancestor(_,_). 
ancestor(X,Y) :- parent(X,Y). 

ancestor(X,Y) :- parent(Z,Y), 
ancestor(X,Z) . 

Suppose the contents of the Leaf Jile are the follow-
ing: 

b r o t h e r ( ' ~ X l ' , ' ~ Y l ' ) . 
s i s t e r ( ' - X 2 ' , ' ~ Y 2 ' ) . 
f a t h e r ( ' ~ X 3 ' , ' ~ Y 3 ' ) . 
mother ( '~X4 ' , '~Y4 ' ) . 

and the contents of the interpretation file are as fol-
lows: 

domain([adam,eve,david,doris , j ohn,mary, 
edga r , f r ed , l ucy ,marga re t , v io l e t , 
p a t r i c k ] ) . 

r_map( [map(s i s t e r (do r i s , j ohn) , t rue ) , 
m a p ( s i s t e r ( m a r g a r e t , f r e d ) , t r u e ) , 
m a p ( s i s t e r ( l u c y , e d g a r ) , t r u e ) , 
m a p ( s i s t e r ( m a r g a r e t , v i o l e t ) , t r u e ) , 
m a p ( s i s t e r ( m a r g a r e t , p a t r i c k ) , t r u e ) , 
m a p ( s i s t e r ( m a r g a r e t , f r e d ) , t r u e ) , 
m a p ( s i s t e r ( v i o l e t , f r e d ) , t r u e ) , 
m a p ( s i s t e r ( v i o l e t , m a r g a r e t ) , t r u e ) , 
m a p ( s i s t e r ( v i o l e t , p a t r i c k ) , t r u e ) , 
m a p ( b r o t h e r ( f r e d , v i o l e t ) , t r u e ) , 
map(brother(f r ed ,pa t r i ck ) , t r i i e ) , 
m a p ( b r o t h e r ( p a t r i c k , f r e d ) , t r u e ) , 
map(bro the r (pa t r i ck ,marga re t ) , t rue ) , 
m a p ( b r o t h e r ( p a t r i c k , v i o l e t ) , t r u e ) , 
map(bro the r (edgar , lucy) , t rue ) , 
map(bro ther ( f red ,margare t ) , t rue ) , 
map(brother( john,doris) , t r i ie) , 
map( fa ther (adam,dor i s ) , t rue) , 
map(fa ther(adam,john) , t rue) , 
map( fa the r (dav id ,edgar ) , t rue ) , 
map ( fa ther (david, lucy) , t r i i e ) , 
map( fa the r ( john , f r ed ) , t rue ) , 
map( fa ther ( john ,margare t ) , t rue) , 
map(mother(eve, john) , t rue) , 
map(mother (eve ,dor i s ) , t rue) , 
map(mother (dor i s ,edgar ) , t rue) , 
map(mother (dor i s , lucy) , t rue) , 
map(mother(mary,fred) , t rue) , 
map(mother(mary,margaret) , true)]) . 

The following records the example run. 

>sicstus 

SICStus 2.1 #9: Thu Apr 21 09:39:25 +1000 

I ?-
I ?-coiisult('datalog.tex') . 
{consulting /fang/project/datalog.tex...} 
{Undefined predicates will just fail} 
yes 
I ?- 'LFA+'(interp_file,leaf_file,kb_file). 
{consulting /fang/project/interp_file...} 
-C/fang/project/interp_file consulted, 
67 msec 1632 bytes} 
Interpretation interp_file loaded. 
Can you provide a value for ~X1 (y/n/q)? 

y-
input:j ohn. 
Can you provide a value for ~Y1 (y/n/q)? 

y-

input:diris. 

Wrong value! 

Can you provide a value for ~Y1 (y/n/q)? 
y-
input:doris. 
More values for prev. variables (y/n/q)? 

y-
New value for ~X1 (y/n)? 

y-

input:fred. 
New value for ~Y1 (y/n)?n. 
More values for prev. variables (y/n/q)? 
n. 
Can you provide a value for ~X2 (y/n/q)? 
y-
input:doris. 
Can you provide a value for ~Y2 (y/n/q)? 

y-

input:john. 
More values for prev, variables (y/n/q)? 
n. 
Can you provide a value for ~X3 (y/n/q)? 

y-
input: adam. 
Can you provide a value for ~Y3 (y/n/q)? 

y-
input:j ohn. 

More values for prev. variables (y/n/q)? 

q-

chaining . . . 1: ->s ib l ing ( john ,dor i s ) -> 
s ib l i ng (do r i s , j ohn ) 2: 

->F->F 4: 5: ->parent(adam,john) 
7: ->parent(adam,doris) 

->ancestor(adam,j ohn)-> 
ancestor(adam,doris) !. 

As shown above, there are not data for rule sets 2, 
4 and 6; rules in rule set 3 are false, in which there are 
two rules in the rule body. 
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6 Conclusions and future 
research 

With the development of rule-based expert systems, 
efficiency has been a major consideration for chaining 
algorithms [Fang & Wu 94]. The naive approaches are 
to combine indexing with direct interpretation of the 
LHSs in the rule base. They are inefficient in dealing 
with large knowledge bases. 

The RETE match algorithm has made some signifi-
cant improvements. It compares a set of LHSs of rules 
with a set of data elements in the working memory 
to compute the conflict set, and does not need the in-
terpretive step. The indexing function is represented 
as a network of simple feature recognisers. This al­
gorithm can efEciently process the conflict set, since 
it does not iterate over the working memory and the 
rule base. However, the RETE match algorithm only 
incorporates memory support and condition relation-
ship knowledge sources. It stili has significant disad-
vantages. For example, deletion of working memory 
elements is expensive, and tirne complexity is NP-hard 
(non-polynomial) to the number of rules in a knowl-
edge base. 

The TREAT algorithm is a RETE-like algorithm. 
It makes use of condition membership, memory sup­
port, and conflict set support knowledge sources. The 
obvious improvement is that it can be easily adopted 
in parallel systems. However, in some cases its perfor-
mance is worse than that by using RETE. 

LFA is the best chaining algorithm up to date in 
terms of theoretical tirne complexity. By adopting rule 
ordering method, its time complexity of chaining can 
be 0{n) where n is the number of rules in a knowl-
edge ba^e. This advantage results from its knowl-
edge representation method namely the 2-level "rule 
schema -|- rule body" knowledge represntation (See 
Section 3.2.2), and using premise-conclusion knowl-
edge to compile the rule set in the knowledge base. 
However, it is difRcult to deal with first-order logic 
rules by using LFA. 

LFA-h is a robust forward-chaining algorithm. It can 
process first-order logic rules efficiently. This mainly 
benefits from its knowledge representation. LFA-I-
inherits LFA's knowledge representation method, 
namely represents knowledge in a 2-level "rule schema 
+ rule body" structure. But it has been extended to 
cover first-order logic rules (See Subsection 5.1). Based 
on this representation, LFA-l-'s sorting and chaining 
procedures for first-order logic rules can be the same 
ones of LFA for processing propositional logic rules. 
Therefore, LFA-f is a powerful linear-chaining algo­
rithm for rule-based expert systems. 

However, due to its static rule ordering method, its 
chaining is in a fixed order. So ali problem evidence 
must be provided at the beginning of chaining in order 
to ensure that the inference can be accomplished for 

problem solving. This is a restriction to its application 
in data sensitive rule-based systems which give prefer-
ences to those rules that match the most recent data 
elements added to the working memory. 

LFA-I- is well suitable to be implemented by using 
logic programming language tools. When it is im­
plemented by using imperative language tools, it has 
not provided memory support for avoiding iterating 
computations for matching working memory elements 
with condition elements when data exist for the cor-
responding rule schemata, so processing efRciency will 
decrease. 

For future research, it is important to maintain 
LFA-I-'s linear performance. In order to extend its 
application, the following two directions may be con-
sidered: 

- Combining other sorting measures with the 2-level 
"rule schema -I- rule body" knowledge representa­
tion method or modifying the "rule schema + rule 
body" structure if necessary in order that it can 
meet the requirements of data sensitive systems. 

— Introducing the memory support knowledge 
source to LFA-t-. This involves building a mech-
anism related to how to organise those memories 
and how to efRciently locate the memories. 

Also, meeting the dynamic demands of rule-based 
systems (i.e. the knowledge can be changed at run 
time) is a challenge. This is a common problem in ali 
known chaining algorithms for rule-based systems. For 
example, RETE-like algorithms do not allow knowl-
edge modification at run time either. 
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Appendix — Definitions 

Backus-Naur form 

This expression refers to a formal language for 
context-free grammars. A grammar consists of a set of 
rewrite rules, each of which has a left-hand side and a 
right-hand side, separated by the metalanguage sym-
bol ::=. The left-hand side of each rule is a nonter-
minal symbol of the grammar, while the right-hand 
side is a sequence of nonterminal and terminal sym-
bols. Nonterminal symbols are usually surrounded by 
angle brackets < and >. 

Binding 

This term refers to the association between a vari-
able and a value for the variable that holds within 
some scope, such as the scope of a rule, function call, 
or procedure invocation. 

Bound 

A variable that has been assigned a value by the 
process of binding is said to be bound to that value. 

Certainty factors (CFs) 

Certainty factors are properties associated with at-
tribute/value pairs and rules, commonly used to rep-
resent uncertainty, or likelihood. Certainty factors 
are usually automatically maintained by expert sys-
tem shells. 

Condition elements 
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The left-hand side of a rule in a rule-based system 
is sometimes expressed as a set of patterns (or tem-
plates) which are to be matched against the contents 
of the working memory; each such pattern is called a 
condition element. When a rule is instantiated, each 
condition element is found to match one element of the 
working memory. 

Conflict set 

A conflict set is a set of ali instantiations generated 
by the match process during a recognise-act cycle. The 
process of conflict resolution selects one instantiation 
from the conflict set and fires it. 

Cycle 

A cycle is a single iteration of a loop. In production 
systems, an execution consists of iterated recognise-act 
cycles. 
Domain reasoning network 

A domain reasoning network (e.g. Figure 8 in Sec-
tion 5.2) is an AND/OR tree associated with a knowl-
edge base in rule schema + rule body by the following 
analogies: 

1. Nodes in the tree correspond to factors in the 
knowledge base. 

2. A rule schema such as IF El, • • •, En THEN A in 
the knowledge base corresponds to the arcs, which 
indicate the hierarchy among factors in the tree 
(shown in Figure 10). 

Figure 10: A rule schema 

Filtering 

The exclusion of either data (data filtering) or rules 
(rule filtering) from the match process for the sake of 
efficiency is termed filtering. 
Fire 

This term means to execute the set of actions speci-
fied in the right-hand side of an instantiation of a rule. 
Forward chaining 

Forward-chaining is a problem-solving method that 
starts with initial evidence of a problem and applies in-
ference rules to generate new evidence until either one 

of the inferences satisfies a goal or no further inferences 
can be made. In forward-chaining production systems, 
the applicability of a rule is determined by matching 
the conditions specified on the left-hand side against 
the evidence currently stored in working memory. 

Ins tant ia t ion 

Instantiation refers to a pattern or formula in which 
variables have been replaced by constants. In a pro­
duction system, an instantiation is the result of suc-
cessfully matching a rule against the working memory 
contents. It can be represented as an ordered pair of 
which the first member identifies the rule that has been 
satisfied, while the second member is a list of working 
memory elements that match the condition elements 
of the rule. 

Interpreter 

The interpreter is a part of a production system that 
executes the rules. 

Match 

In a production system the match process compares 
a set of patterns from the left-hand sides of rules 
against the data in data memory to find ali possible 
ways in which the rules can be satisfied with consistent 
bindings (i.e. instantiations). 

Mixed chaining 

A search strategy which ušes both backward and 
forward chaining during a single processing of a knowl-
edge base is known as mixed chaining. 

Object 

An object is an entity in a programming system that 
is used to represent declarative knowledge and pos­
sible procedural knowledge about a physical object, 
concept, or problem-solving strategy. 
One-input node 

This term refers to a node in the RETE match al-
gorithm network associated with a test of a single at-
tribute of a condition element. It passes a token if and 
only if the attribute test is satisfied. 

P a t t e r n 

A pattern is an abstract description of a datum that 
places some constraints on the value(s) it may assume, -
but needs not specify it in complete detail. 

Temporal redundancy 

This term refers to the tendency of rule systems 
to make relatively few changes to the working mem-
ory, and hence to the conflict set, from one recognise-
act cycle to the next. The RETE algorithm exploits 
temporal redundancy so as to avoid unnecessary re-
computations of ali matches. 

Two-input node 

Two-input nodes are nodes in the RETE algorithm 
network that merge matches for a condition element 
with matches for ali preceding condition elements. 


