
Informatica 22 (1998) 329-349 329

LFA+: A Fast Chaining Algorithm for Rule-Based Systeins

Xindong Wu and Guang Fang
Department of Software Development, Monash University
900 Dandenong Road, Melbourne, VIC 3145, Australia
AND
Matjaž Gams
Jožef Štefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
xindongSinsect.sd.monash.edu.au; matj az.gamsSij s . s i

Keywords: expert systems, rule-based systems, fast chaining, conflict resolution

Edited by: Rudi Murn

Received: May 20, 1997 Revised: April 8, 1998 Accepted: July 14, 1998

A signiGcant weakness of rule-based production systems is large computational reguirement for
performing matching. Time complexity of algorithms is generally stili NP-hard (non-polynomial)
to the number of rules in a rule base. LFA is a linear-chaining algorithm for rule-based systems
which does not require a specific conflict resolution step for chaining. However, its applications
are stili restricted, e.g., it cannot process Rrst-order rules efficiently.
This paper reviews the design of chaining algorithms for rule-based systems, and analyses some
well-known chaining algorithms such as RETE and LFA. The central contribution is the design
of a robust LFA algorithm, LFA-h, which can processes first-order logic rules.

1 Introduction

1.1 Rule-based systeins

Rule-based systems (RBSs) are an important type of
pattern-directed inference systems. They consist of
three basic components as follows:

1. A set of rules, which can be activated or fired by
patterns in data.

2. One or more data structures (data bases), which
can be examined and modified.

3. An interpreter or inference engine that controls
selection and activation of the rules.

A rule includes a left-hand side, LHS, which is re-
sponsible for examining items in the data structures,
and a right-hand side, RHS, which is responsible for
modifying data structures. Data examination consists
of comparing patterns associated with the LHSs with
elements in the data structures. The patterns may be
defined in many ways, such as simple strings, complex
graphs, semantic networks, tree structures, or even ar-
bitrary segments of code which are capable of inspect-
ing data elements. Data modification can involve firing
actions to modify data, rules, or even the environment.
Information in the data can be in the form of lists,
trees, nets, rules, or any other useful representation.

The organisation of rule-based systems is modu-
lar, and the characteristics of them are as follows
[Waterman & Hayes-Roth 78]:

- RBS modules^ separate permanent knowledge
(rules in the rule base) from temporary knowledge
(data in the working memory).

- RBS modules are structurally independent. They
facilitate incremental expansion of the system
and massive code understanding (Modules can be
dealt with one by one).

— RBS modules facilitate functional independence.
It is generally useful to distribute different func-
tions to different modules.

- RBS modules may be processed by using a vari-
ety of control schemes, i.e. different modules may
have different control structures.

— RBSs separate data examination from data mod­
ification because of the separation of LHSs and
RHSs of rules.

— RBSs use rules with a high degree of structure,
and are a natural knowledge representation (the
natural "IF • • • THEN • • •" structure).

In the light of problem-solving methods, rule-
based systems can be divided into two classes,
namely forward-chaining systems and backward-
chaining systems. Forward-chaining systems are
antecedent-driven, while backward-chaining systems

^A RBS module is a bundle of mechanisms for examining
and modifying one or more data structures.

330 Informatica 22 (1998) 329-349 X. Wu et al.

are consequent-driven. Forward-chaining systems are
commonly known as rule-based systems.

Rule-based systems are a well-known type of system
in which the control structure can be mapped into a
relatively simple recognise-act paradigm. A typical in-
terpreter of a rule-based system performs the following
operations in each 'recognise-act' cycle:

1. Match

Find out the rule set in the rule base whose LHSs
are satisfied by the existing contents of the work-
ing memory.

2. Conflict resolution

Select one rule with a satisfied LHS; if no rule has
a satisfied LHS then stop.

3. Act

Perform actions in the RHS of the selected rule
and go to step 1.

By using suitable interpretations of each of the
above actions, the operation of a chaining-based in-
ference engine can be readily described as iteration
of such actions. A forward-chaining engine regulates
the rules of new databases, while a backwaxd-chaining
engine controls the verification of hypothetical Infor­
mation. Another view of the inference engine is that it
generates one or more inference nets linking the initial
system state to a goal state [Schalkoff 90].

The fundamental operation of the inference engine
is the process of matching. Partial matches or com-
plete matches often involve matching with variables
for which a suitable unification algorithm which en-
sures that variable bindings are consistent is necessary.
This procedure may require many tests and compar-
isons. So it is usually difficult to design a fast-chaining
algorithm for a large rule-based system.

There are three basic approaches to the problem of
conflict resolution in a rule-based system as follows
[Rich & Knight 91]:

— Assign preference based on matched rules in the
rule base.

— Assign preference based on matched objects in the
•vvorking memory.

— Assign preference based on actions that matched
rules -vvould perform.

1.2 Problems with the
'Recognize-Act' Paradigm

For naive rule-based systems, aH but the smallest sys-
tems are computationally intractable because of the
complexity of matching in the 3-phase cycles. The suc­
cessful match of a rule in the rule base with the work-
ing memory does not always mean that the rule will be

fired. A rule may fail to match with the working mem-
ory in an overall problem-solving process, but it prob-
ably needs to be tested in each 3-phase cycle when the
vvorking memory is changed. Meanwhile, some other
rule may be successful in matching with the working
memory from the very beginning of a problem-solving
process, but may fail to receive enough priority to
fire in each conflict resolution phase. When there are
changes in the working memory, the rule needs to be
tested again and again. It has been observed that some
systems spend more than nine-tenths of their total run
time performing pattern matching in large rule-based
systems [Forgy 82]. As a result of these problems, ef-
ficiency is a major issue in large rule-based systems.

Since rule-based systems may be expected to exhibit
a high standard performance in Interactive domains or
in real-time domains, many researchers have worked
towards improving the efficiency of such systems. As
yet, the most significant results have been the RETE
algorithm (See Section 4.4) and other RETE-like al-
gorithms such as TREAT (See Section 4.5). These
algorithms are match algorithms which avoid match­
ing aH rules with the vvorking memory in order to find
appropriate rules on each 3-phase cycle so that effi-
ciency can be improved. Hovvever, the foUovving two
problems stili exist in ali known rule-based systems
except KEshell [Wu 93a]:

1. Ali complete chaining algorithms are exponen-
tial in time complexity. Non-worst-case sub-
exponential algorithms are not possible for gen­
eral cases.

2. Chaining in rule-based systems is a much more
complicated process than testing the satisfiabil-
ity of individual propositional formulae. It is not
possible to know in advance precisely hovv many
3-phase "match — conflict resolution — act" cy-
cles are needed for each problem solving task.

In KEshell, a new algorithm called LFA (See Sec­
tion 4.6) has been designed. LFA is a linear forward-
chaining algorithm for rule-based systems. The most
significant advantages of LFA are that its time com-
plexity is 0{n) vvhere n is the number of rules in the
rule base, and that it does not need an independent
conflict resolution step. By using a two-level "rule
schema + rule body" structure (See Section 3.2.2),
knowledge representation in KEshell can explicitly ex-
press numeric computation and inexact calculus in the
same way as inference rules in rule bodies. As long
as knovvledge representation has an applicable exten-
sion, and processing measures show further improve-
ments, LFA should achieve a vvider range of applica-
tions. Hovvever, its knovvledge representation cannot
represent first-order logic rules efRciently. This is a
significant restriction for applications.

The research objective of this paper is to relax the
above mentioned limitation of LFA so that it can effi-

LFA+: A FAST CHAINING ALGORITHM POR Informatica 22 (1998) 329-349 331

ciently process first-order logic rules. We will present
the design of a robust LFA algorithm, LFA+, based on
LFA [Wu 93a], which has the following components:

— Extended knovvledge representation for first-order
logic rules, which includes specific representations
of recursive rules and rules with negative condi-
tion elements.

— Sorting measures, for ordering the knowledge in a
knowledge base.

— Linear forward chaining.

The paper is organised as follows. Section 2 intro-
duces expert system principles and some concepts of
the first-order logic language, and explains one def-
inition for describing the LFA-I- algorithm. In Sec­
tion 3, knowledge representation issues are addressed,
and two languages for rule-based systems — 0PS5 and
rule schema + rule body are described and compared.
Section 4 discusses algorithm design issues and tech-
niques, and analyses the RETE, TREAT and LFA al-
gorithms. In Section 5, knowledge representation mea­
sures, sorting strategies, the chaining procedure and
analyses of the LFA-I- algorithm are presented in de-
tail. Finally, Section 6 outlines conclusions and future
research. Definitions are listed in teh Appendix.

2 Background in Expert
Systems and First Order
Logic

2.1 Exper t systems

An "expert system" is a computer program which ušes
knowledge and inference procedures to solve problems
that are difficult enough to require human expertise
for their solutions [Raeth 90]. Expert system technol-
ogy aims at improving qualitative factors and can pro-
vide expert-level performance to complex problems. A
typical expert system consists mainly of the following
parts:

— A working memory/data base, which stores the
evidence and intermediate results of problems
during the chaining process.

— A knowledge base (KB) or knowledge source.

— An inference/chaining engine for solving users'
problems by applying the knowledge encoded in
the knowledge base.

— An explanation engine or tracing engine for telling
the users how the solutions were obtained.

— A knowledge acquisition engine for acquiring
knowledge or modifying the knowledge base when
necessary.

- A knowledge base management subsystem that
detects inconsistencies in the KB.

Their relationships are shown in Figure 1.

Domain Expert{s)

1.

'

Builder

Inter-

face

1

i

K. A. Engine

KBMS

User(s)

Inference Engine

1 t
NVorking Memory

1 t
Tracing Engine

K

B

Figure 1: An expert system strucrure

Conventional software programs are designed to
control computers algorithmicaJly and teli the com-
puters exactly what to do in problem-solving. These
programs are usually procedurah Once a program sys-
tem has been encoded, it is difiicult to change the sys-
tem design. On the other hand, expert systems excel
at encoding knowledge declaratively, and they can be
modified flexibly because of the separations of knowl-
edge from expert system shells and knowledge from
data, and their modular structures. Purthermore, ex-
pert systems have the following features [Pedersen 89]:

— They use symbols to encode the world which can
be used in varied ways.

— Most expert systems support uncertainty repre­
sentation.

— Expert systems can handle unknown cases of a
problem by applying the knowledge in the knowl-
edge base.

— They can explain their reasoning.

— They can make multiple conclusions.

— They can tailor conclusions.

2.2 Language of first-order logic

A first-order language is identified by a triple
<V,F,P>:

— V is a set of variables.

332 Informatica 22 (1998) 329-349 X. Wu et al.

- F is a set of functors, each of which has an arity. - they are identical, or

— P is a set of predicate symbols, each of which has
an arity.

The terms (See the definition below) of the language
are built from variables and functions (Constants are
viewed as functors of arity 0), while predicates are built
from terms and predicate symbols (Propositions are
viewed as predicate symbols of arity 0).

Definition: A term is defined inductively as follows:

— A variable is a term.

— A constant is a term.

— If f is an n-ary function symbol and i i , • • •, i« are
terms, then f(ii,- • • ,tn) is a term.

Interpretation

Truth value interpretation of a first-order logic lan­
guage is a triple <D,F,R>:

— D is the domain.

— F is a mapping from functions of domain elements
to the domain.

— R is a mapping from predicates of domain ele­
ments to truth values.

Horn clauses are a subset of first-order logic lan-
guages, but the subset is powerful enough to encode
Turing machines. A Horn clause has the following
form:

p(t) :- qi{ti), q2{t2), •••, gn{tn)-
where p and qi, q2, • • •, qn sse predicate letters, n >
O, and aH variables which occur in the terms t, ti, t2,
• • •, tn are universally quantified at the front of the
clause (implicitly). If n is O then the clause is referred
to as a fact, otherwise, it is called a rule.

The atom p(t) is referred to as the head of the clause,
and gi(ii), 92(*2); • • •) 9n(^n) as the body of the clause.
The terms t,ti,t2, ••-,*« niay be arbitrary terms, and
hence may contain variables and/or functions.

A logic program is a set of Horn clauses. However,
it is often useful to consider sub-classes of this class
of programs in rule-based systems. One type of these
programs is a Datalog program, in which terms are
only allowed to be either variables or constants.

2.3 Unification and Match

Unification

Unification is the basis of the ušes of logical inference
in artificial intelligence. It is a method of finding such
variable bindings for two predicates or terms that they
can be identical [Sterling et al. 86].

Match

Two terms match if [Bratko 90]:

— the variables in both terms can be instantiated to
objects in such a way that after the substitution
of variables by these objects the terms become
identical.

The following is an extended definition, partial
match, for describing LFA-H (See Section 5.2).

Definition — Partial match

Given a premise factor, p-factor, of one rule schema
and a conclusion factor, c-factor, of another rule
schema, partial match of p-factor with c-factor, writ-
ten as partial-match(p-factor,c-factor), has the follow-
ing meanings:

— If p-factor is a variable then c-factor is the same
variable.

— If p-factor is a proposition p or not(p) then c-
factor is p or not(p).

— If p-/actoris a predicate p(- • •) or not(p(- • •)) then
c-factor is p(---) or not(p(- • •)).

3 Knowledge representation

3.1 Introduction

In order to solve complex problems encountered in Al,
a considerable amount of knowledge, as well as some
mechanisms for raanipulating knowledge, are neces-
sary. Barr and Feigenbaum identify four types of
knowledge as follows [Miranker 87]:

— Objects, i.e. nouns and adjectives that describe
them.

— Events: Object interaction.

— Performance: How to do something, also known
as procedur al knowledge.

— Meta-knowledge: Knowledge about knowledge.

Knowledge plays two roles in Al programs as follows:

— It may define the search space and the criteria for
determining a solution to a problem.

— It may improve the efficiency of a reasoning pro­
cedure by informing an inference procedure of the
best places to look for a solution.

Knowledge representation occurs at two levels
[Rich & Knight 91]:

— Data level, at which facts are described.

— Symbol level, in which representations of objects
at the data level are defined in terms of symbols
that can be manipulated by programs, such as
PROLOG rules.

LFA-H: A PAST CHAINING ALGORITEM FOR .. . Informatica 22 (1998) 329-349 333

Knowledge representation and search are the two
main themes of Al problem solving but they are not
independent issues. If a particular. search method is
applied, and a method of knowledge representation
may represent the problem more easily and it more ef-
ficiently supports the operations required by the search
strategy, a particular problem may be more easily
solved. For a particular problem, different combina-
tions of knowledge representation methods and search
may yield more or less effective means for solving the
problem. The next section will focus on representing
knowledge by using rules.

3.2 Knowledge representations for
rule-based systems

The use of rules for encoding knowledge is a particu-
larly important issue because rule-based reasoning sys-
tems have played a very important role in Al evolution
from a purely laboratory science into a commercially
šignificant one. This section outlines two representa­
tion methods namely 0PS5 and "rule schema -I- rule
body", which have been applied in some rule-based
systems.

3.2.1 OPS5

0PS5 [Forgy 82] is a rule-based system language. An
0PS5 rule comprises the following:

1. Symbol P.

2. Rule name.

3. Left-hand side (LHS).

4. Symbol ->•

5. Right-hand side (RHS).

AH of these are enclosed in parentheses.
A typical LHS structure is as follows: { <object>

(computer fName <name> tprice <cost>)}. This
structure is used,rto-.describe computer objects; it in-
cludes computer name and priče.

RHS structure is similar to.LHS structure, but con-
tains an action, e.g. 'modify' before <money> (See
below) .

The t is the 0PS5 operator that distinguishes at-
tributes from values.

A variable is a symbol beginning with the character
'< ' and ending with the character '> ' , e.g. <object>.

The predicates in 0PS5 include = , < > , <, >, <= ,
> = . A predicate is placed between an attribute and a
value.

The following is a typical rule from
[Brownston et al. 86]:

(P have-enough-money-to-buy-computer
{ <object> (computer fname <name>

tprice <cost>)}
{ <money> (saving-account ^balance

{<balance> > <cost> })}

(modify <money> fbaJance
(computer <balance> - <cost>)))

where the meanings are apparent.

3.2.2 Rule schema -)- rule b o d y

"Rule schema -1- rule body"[Wu 93a] is a 2-level
method of knowledge representation. A rule schema is
used to describe the hierarchy among factors or nodes
in a reasoning network. A rule body consists of com-
puting rules and/or inference rules and is used to ex-
press specific evaluation methods for factors and/or
certainty factors in corresponding rule schemata.

A rule schema has the general form:
IF El,E2,..,En THEN A,
where El , E2, ..., En is a conjunction (AND) of ali
premise factors and A is a predicate or variable called
a conclusion factor.

Each rule schema has a corresponding rule body.
In a rule body, there are one or more inference rules
such as production rules and/or computing rules for
computation.

A rule schema with its corresponding rule body is
called a rule set. A rule set is an independent knowk
edge unit in the "rule schema -f- rule body" represen­
tation and can be described in Backus Naur form as
follows:
< r u l e s e t > := < r u l e se t number><rule

schema><rule body>
< r u l e se t nimiber> := < i n t e g e r >
< r u l e scheina> := ' I F ' <preinise

f ac to r s> 'THEN' <conclusion f a c t o r >
<preinise f a c t o r s > := <premise f a c t o r >

{ ' , ' <premise f a c t o r s > }
<premise f a c t o r > := < f a c t o r >
<conclusion f ac to r> := < f a c t o r >
< f a c t o r > := < log ic

asser t ion> |<vai r iable naine>
< log ic a s s e r t i o n > := < p r e d i c a t e (o b j e c t) >
< r u l e body> := C<C-ru le> |<I - ru le>)

{<ru le body>}
<C-rule> : = (< f a c t o r > |

(C F ' (' < f a c t o r > ') ')) ' = '
<assignment expression>

<assignment expression> :=
<va lue> |<a lgebra ic express ion>

< I - r u l e > := ' I F ' <antecedents> 'THEN'
<concliision>

<antecedents> := <antecedeii t> {'and'
<antecedents>}

<antecedent> := (< f a c t o r > |

334 Informatica 22 (1998) 329-?? X. Wu et al.

C F ' (' < f a c t o r > ') '))
< r e l a t i o n a l symbol>
<assignment expression>

< r e l a t i o n a l s3nnbol> : =

<conclusion> := <C-ru le>
<value> := < i n t e g e r > |

<rea l> |<symbol ic value>|
<probabi l i ty> |<f i izzy value>

The terms <variable>, <predicate(object)->,
<algebraic expression> and different kinds of values
above have the standard interpretations.

3.3 Comparison between OPS5 rules
and "rule schema + rule body"
representation rules

There are a number of advantages with the "rule
schema + rule body" representation [Wu 93a]. Firstly,
rule schemata in a knowledge base provide a way of de-
scribing meta-knowledge about concrete rules in rule
bodies which facilitate sorting rule sets in a rule base.
Secondly, it expresses computing rule sets in the same
form as inference rule sets. Purther, it provides natural
"IF-THEN" expertise expression in two-level struc-
tures, and also provides flexible processing of inexact
reasoning in rule bodies, and so forth.

However, the negative aspect of these advantages is
that "rule schema + rule body" representation is not
so powerful as 0PS5 rules. For example, it cannot
efEciently represent first-order logic rules.

4 Design of rule-based system
algorithms

Usually an algorithm refers to a method of solving
a well-specified computational problem for a system.
With the development of rule-based systems, efficiency
has been a major consideration up to this stage. A
rule-based algorithm is considered more efficient than
others if its cost for per working memory change is
lower. This section addresses some measures for im-
proving the efHciency of rule-based system algorithms
and analyses some good algorithms [Fang & Wu 94].

4.1 The knowledge

For the purpose of obtaining efficiency, three types
of knowledge or state Information may be incorpo-
rated into a rule-based system algorithm as follows
[McDermott et al. 78]:

1. Condition membership, which provides knowledge
about the possible satisfaction of each individual

condition element. An algorithm that ušes condi­
tion membership can ignore further processing of
those rules which are not active, i.e. those rules
that one or more positive condition elements are
not partially satisfied.

2. Memory support, which provides knowledge about
which working meraory elements individually par-
tially satisfy each individual condition element.
Associated with each condition element in rule-
based systems is a memory which indicates pre-
cisely which subset of working memory elements
partially match the condition element.

3. Condition relationship, which provides knowledge
about the interaction of condition elements within
a rule, and partial satisfaction of rules. The pro­
cess for condition relationship is similar to that
of maintaining the results of intermediate joins in
database systems.

Two further types of knowledge can be identified as
follows:

4. Conflict set support, which provides knowledge
about which rule has consistent variable bindings be-
tween its condition elements. The conflict set is re-
tained across each 3-phase cycle, and the contents of
the conflict set are used to limit search in a rule-based
system during the chaining process [Miranker 87].

5. Premise-conclusion relationship, which provides
knowledge about which premise factor of a rule schema
is the conclusion factor of another rule schema or which
premise factor of a rule schema partially matches (See
the definition in Section 2.3) with the conclusion factor
of another rule schema. This knowledge is used to
arrange rule sets in the rule base into order [Wu 93a].

4.2]VIatching techniques

In each 3-phase cycle, matching is a crucial step.
This section introduces four techniques for matching,
namely indexing, filtering, and decision tree and deci-
sion table methods.

4.2.1 Indexing

In the matching process, the current state can be
used as an index for immediate selection of match­
ing rules, provided that the rule preconditions are
stated as exact descriptions of the current state
[Rich & Knight 91]. The simplest form of indexing
for rule-based systems is that the interpreter begins
the match process by extracting one or more features
from each working memory element and ušes these fea­
tures to hash into the rule coUection. This obtains a
set of rules that might have satisfied LHSs. A more
efficient form of indexing adds memory to the process.
For example, one scheme involves storing a count with

LFA+: A FAST CHAINING ALGORITEM FOR , Informatica 22 (1998) 329-349 335

each condition element. The counts are ali set to zero
when the system starts the execution. When a data
element enters the working memory, ali condition el­
ements matching the data element have their counts
increased by one. When a data element leaves the
working memory, ali condition elements matching the
data element have their counts decreased by one. The
interpreter deals with those LHSs that have non-zero
counts for ali their positive condition elements. This
scheme has been combined into a few algorithms with
other efficient measures [Forgy 82].

Assume five rule antecedents are given:
Rl: (A(B C x)) (D x) (x F y) (E F y) --> . . ,
R2: (A(B C x)) ~(D x) (x F y) (B F y)

~(C BO) ~ > . . .
RS: (A(x F y)) (H x) (x F z) —> . . .
R4: (A(B F 0)) (B F y) (Z C B)> ~ > . . .
R5: (A(x B)) (x C B)} —> . . .

where x, y and z are variables, and capital letters
represent propositions. An Identification table which
plots these feature values v.s. the set of condition ele­
ments is constructed in Figure 2.

4.2.2 Filtering

Filtering is a method which ušes a filter namely a
body of code that ušes the knowledge sources (KSs)
introduced in the last section to reduce the number
of rules tested by a rule-based system. If a filter con-
tains enough Information, a significant number of rules
can be excluded from consideration. A filter admits to
further testing of any subset of rules that may be un-
satisfied by its KSs.

Filters usually are in the form of discrimination nets
of which the famous RETE and TREAT algorithms
are the best examples. RETE incorporates memory-
support and condition-relationship; whereas TREAT
takes one more knowledge source into account— con-
flict set support (See Section 4.4). RETE and TREAT
will be further analysed in the following sections.

4.2.3 The decision tree method

The decision tree method compiles the set of condition
elements which are defined in the form of lists into a
near-optimal decision tree [Malik 81]. Firstly, it re-
stricts a segment variable (e.g. @), which represents
list fragments of an undefined length, to the tail of a
sublist, and assumes that any datum in the working
memory necessarily matches some condition elements
of rules. And it treats two kinds of element features:
those which compute the length of a list or a sublist,
and those which extract an atom from some specified
position. These tasks are done by the internal nodes
of the tree. A leaf of the tree is a pointer that points
to a stack which contains aH data that match the cor-
responding condition elements. However, sometimes
there exist overlapping cases in which some leaves con-
tain more than one condition element. These consid-
erations lead to an algorithm. It starts by selecting an
'efficient' feature which is defined everywhere as root
of the tree from the discriminating feature table (built
from condition element features). In the table '-' and
'@' denote undefined values and variable feature values
respectively. And then it recursively lets each branch
have a label which corresponds to a subtable of the
Identification table. The recursion stops if some sub­
table has an empty set. An example from [Malik 81]
is as follows:

| b !

Ul

< i >

< 2 >

< 2 . 1>

< 2 . 2 >

(A(BCx)

2

3

A

B

C

)
(A(i

2

3

A

e

F

Fy))

(A(BF@))

2

®

A

B

F

(A(x B)

(D

r 2

2

A

&

B

2

@

D

@

l l

(BFx)

2

@

H

@

(«CB)

3

0

B

F

r ^ (CBgi)

3

0

@

C

3

0

E

F

@

0

C

B

3

0

@

F

Figure 2: An Identification Table

After non-discriminating features (e.g. |2| with O
values) are deleted from the table, a discriminating
decision tree can be built in Figure 3.

Ay^C.

(^ 2 . 2 ^ | (C B @)

D\

1 (Dx)

.^

1 {A(> B)) 1 | (A(BCx))| (^

H

r <

B/

2>

C \ ^ s .

1 (Hx) 1 |(CB@) 1 1 (xCB)

2 . l £)

y ci!c\

(A (B F @))

(A (x F y))

| (A(x

(B F x)

(X Fy)

Fy)) 1

J ^ ^ E

(E F x)

(« Fy)

F

(C B @) |

C<i>)

clse

(xFy) 1

Figure 3: A Discriminating Decision Tree

At the beginning of each "match - conflict resolution
- act " cycle, the interpreter traverses the tree with
each modified datum in the working memory, comput-
ing a feature value at each tree node and selecting the
branch corresponding to the value. So a leaf contain-
ing the condition element can be reached. Character-
istic of the decision tree method is that it avoids the
redundant computations.

336 Informatica 22 (1998) 329-349 X. Wu et al.

This method is suited to rule-based systems where
condition elements of rules are represented in the form
of lists. Taking into account the tree optimisation
possibilities, the potential performance of the method
seems to be promising.

4.2.4 The decision table method

This method is based on the table knowledge repre-
sentation in [Colomb 89], and it is mainly suited to
propositional rule-based systems. The transformation
of the rule set in a rule base to a table representation
involves a transformation algorithm which eliminates
aH rows in the table which are inconsistent and ali
rows which are subsumed by other rows. Its chaining
procedure can be described as in Figure 4.

input (condition) Table Processor output (conclusion)

Figure 4: The chaining procedure of the decision table
method

A table consists of rows which can be viewed as as-
signments of values to corresponding variables. A sim-
ple example of a table is as follows:

i t - h a s - t w o - l e g s , f l y , i t - i s - a - b i r d
i t - h a s - f o u r - l e g s , i t - i s - a n - a n i m a l
When the input is it-has-two-legs and fly, the first

row in the table will fire, and the output of the ta­
ble processor (i.e. conclusion) will be it-is-a-bird; sim-
ilarly, when the input is it-has-f our-legs, the second
row will fire, and the output of the table processor
will be it-is-an-animal. Usually, rows in the decision
table have interpretations as consequents such as the
čase of Garvan ESI system.

Because of the replacement of intermediate asser-
tions with expressions which imply them and the nega-
tion processing in the transformation procedure, the
size of a knowledge table may be explosively large.
In order to sol ve this problem, a few algorithms
have been designed for reducing ambiguity and redun-
dancy in [Colomb & Chung 90]. These algorithms can
greatly reduce the response time of a system. In ad-
dition, an unambiguous table can be further trans-
formed into a decision tree by ID3-like algorithms
[Quinlan 86, Wu 93b]. A decision tree executes a num-
ber of nodes logarithmic in the number of rows in the
decision table. Therefore, the decision table method
can process large propositional rule-based systems ef-
ficiently.

4.3 Conflict resolution
The output from the matching process, and the input
to the conflict resolution, is a set referred to as con­
flict set. AH rules in which LHSs have been satisfied by

working memory elements can be identified by conflict
set elements, which are termed instantiations. An in-
stantiation is an ordered pair of a rule name and a list
of working memory elements matching the condition
elements of the rule. It is the job of conflict resolution
to find an instantiation which will be executed in the
act phase of a cycle.

A conflict-resolution strategy is a coordinated set
of principles for making selections among competing
instantiations. A rule-based system's performance de-
pends on its conflict-resolution strategy for both sensi-
tivity and stability [Brownston et al. 86]. Sensitivity
is the fast degree by which a system responds to the dy-
namically changing demands of its environment, while
stability is its continuity of behavour. The following
principles can be applied for any conflicrt resoluiton
strategy [Brovvnston et al. 86]:

— Refraction

Refraction prevents rules from firing on the same
data more than once. The intention is to avoid
the trivial form of infinite looping which might
occur when a rule does not change the working
memory contents.

— Data ordering

Data ordering which orders data by recency or
activation is a basic principle of conflict resolu­
tion and a povverful way of adding sensitivity to
a conflict-resolution strategy. It gives preference
to rules that match those elements most recently
added to working memory or that are strongly re-
lated to recently-added data. This principle is
usually combined with other principles to nar-
row down the selection of one instantiation to fire
next.

— Specificity ordering

The specificity principle gives preference to rules
that are more specific according to some stan­
dard which can be measured in a variety of ways.
For example, one specificity principle depends on
a specificity function that is correlated with the
complexity degree of rule condition elements.

— Rule ordering

Rule ordering (vvhich tends to be less sensitive)
provides static ordering of a rule set independent
of the way in which rules are instantiated by data.
The ordering may be computed by using some rule
feature/features. Either total or partial ordering
can be given by a relation on rules. If total rule or­
dering has been provided, the rules can be stored
in the order and scanned linearly until a match­
ing one is found. LFA [Wu 93a] is a successful
example of using the rule ordering strategy.

LPA+: A FAST CHAINING ALGORITEM FOR Informatica 22 (1998) 329-349 337

— Arbitrary choice and parallel selection

None of the above principles can guarantee that
only a single instantiation will remain in the con-
flict set. If single firing is required for each cy-
cle, an arbitrary decision referred to as arbitrary
choice ordering can be made after ali conflict-
resolution principles have been applied; however,
in some systems especially parallel systems, aH the
remained instantiations can be fired in one cycle,
which is called parallelism in firing.

The following are two alternative conflict-resolution
strategies for 0PS5 systems — LEX and MEA
[Forgy 81]:

LEX
The LEX conflict-resolution strategy includes four

steps which are applied in order to find an instantia­
tion:

LEX. It places extra emphasis on the recency of a
working memory element matching the first condition
element of a rule. If no single instantiation dominates,
then the remaining set is passed through the same se-
quence of orderings as in LEX.

4.4 R E T E

The RETE match algorithm [Forgy 82] is an algorithm
for computing the conflict set. It improves match­
ing efficiency by incorporating memory-support and
condition-relationship to avoid iterating computations
over the working memory and the rule base; its con-
crete measure is using a sorting network (Subparts of
which can be shared) which is compiled from the con­
dition element patterns of rules to test features of data
elements, and to store Information. The structural
form of the sorting network is given in Figure 5.

1. Discard from the conflict set those instantiations
that have already fired. If there are no instantia­
tions that have not fired, conflict resolution fails
and no instantiation is selected.

2. This step partially orders the remaining instanti­
ations in the conflict set on the basis of recency of
working memory elements by using the following
algorithm to compare pairs of instantiations:
Compare the most recent elements from two in­
stantiations. If one element is more recent than
the other, the instantiation containing that ele­
ment dominates. If the two elements are equally
recent, compare the second most recent element
from the instantiations. Continue in this way un-
til either one element of one instantiation is found
to more recent than the corresponding element
in the other instantiation, or no element remains
for one instantiation. If one instantiation is ex-
hausted before the other, the other dominates. If
the two instantiations are exhausted at the same
time, neither dominates.

3. If no one instantiation in particular dominates aH
others under the previous step, this principle is
necessary for comparing the dominant instantia­
tions on the basis of the specificity of the LHSs
of the rules. Count the number of tests (for con-
stants and variables) that have to be made in find-
ing an instantiation for the LHS. The LHSs that
require more tests dominate.

4. If no single instantiation dominates after the pre­
vious step, make an arbitrary selection of one in­
stantiation as the dominant instantiation.

MEA

The MEA strategy differs from that of LEX in that
another step has been added after the first step in

inua-elemem feature
tcstnodes

inler-elonem feaiurc
tesinodcs

^

Figure 5: The Structural Form of RETE's Sorting Net-
works

RETE deals with two types of element features
i.e. intra-element features and inter-element features.
Intra-element features are the features that involve one
working memory element. For example, the class of an
element must be 'Expression'; the value of an 'OP' at­
tribute must be '-t-'. However, inter-element features
result from having a variable occur in more than one
pattern. For instance, the value of an attribute of an
element must be equal to the value of an attribute of
another element.

As shown in Figure 5, when the pattern compiler
processes an LHS, it builds a chain of intra-element
feature test nodes, which are one-input, for each con­
dition element pattern of the LHS based on the intra-
element features which are required by the condition

338 Informatica 22 (1998) 329-349 X. Wu et al.

element pattern. And then it builds inter-element fea­
ture test nodes for testing the inter-element features of
the LHS. The inter-element feature test nodes are two-
input and left-associative [Ho & Marshall 92]. Finally
it builds a terminal node to represent the production
rule.

The match procedure is as follows: The root node
receives a token, which is state Information (The tags
'H-' and ' - ' in a token indicate how the state Informa­
tion is to be changed), and then passes the copy of
the token to ali its successors i.e. the intra-element
feature test nodes. A '+' token that has satisfied the
intra-element feature tests is added to the alpha mem-
ory. A ' - ' token that has satisfied the intra-element
feature tests has a corresponding '+ ' token that al-
ready presents in the alpha memory. The correspond­
ing '-I-' token is removed. Once a token updates an
alpha memory, it continues to go through the network
and the next node is an inter-element feature test node.
Inter-element feature test nodes store the first token
and wait until the second one arrives, and then com-
pare them. If they find that the variables between the
two tokens are bound consistently, they join the two
tokens into a bigger one. The bigger token is stored
in the beta memory, and then sent to another inter-
element feature test node for other consistent tests of
variable bindings (if possible). If ali the variable bind-
ings are consistent for an LHS, the final token is sent
to the terminal node. The terminal node receives the
token, and adds the rule instantiation (Which is an
ordered pair of the form <rule, list of data elements
matched by the LHS of the rule>) of the LHS to the
conflict set.

Over the naive matching algorithms, advantages of
the RETE match algorithm can be summarised as fol-
lows:

- It does not need the interpretive step by using the
sorting network.

- Sufficient state is maintained so that it can avoid
many iterated computations.

- The subparts of the network for similar condition
element patterns can be shared.

There are also some disadvantages inherent to the
RETE match algorithm:

- It is just a matching algorithm.

- Time complexity of RETE is NP-hard to the num-
ber of rules in the rule base.

- The removal of data elements performs such oper-
ations for adding the data elements that the dele-
tions of working memory elements are expensive.

- It is inefficient when most of the data changes in
each cycle, because in that čase RETE needs to

maintain its state betvveen cycles i.e. it cannot
efficiently process non-redundant rule-based sys-
tems.

4.5 T R E A T
The TREAT match algorithm [Miranker 87] is a
RETE-like algorithm. It not only makes use of con­
dition membership and memory support knowledge
sources, but also combines them with a new source
of information, conflict set support. Its significant fea­
tures are that (1) in some cases it performs much bet-
ter than the RETE algorithm, and (2) it can be used
in parallel systems.

The TREAT algorithm constructs a sorting network
from the condition patterns of the rule set. But no sub-
part of the network can be shared by more than one
condition pattern. Furthermore, it adopts the follow-
ing measures;

— Conflict Set Support

TREAT retains the conflict set across system cycles
and ušes its contexts to reduce the number of com-
parisons required to find consistent variable bindings
[Miranker 87]. As a result, it reduces the computa­
tions between beta memories that the RETE algo­
rithm needs.

— Handling Negated Condition Elements

When a data element which partially matches a pos-
itive condition element is added into the working mem-
ory, the conflict set remains the same, except that the
addition of the working element element results in new
instantiations. If a rule is active (See Condition sup­
port) and the new instantiations contain the new work-
ing memory element, then the instantiations are added
into the conflict set.

When a working memory element which partially
matches a negative condition element is deleted, no
new rules will be instantiated. In that čase, the in­
stantiations that contain the removed working mem-
ory element will be invalidated and are removed from
the conflict set.

When a rule flring adds a working memory element
that partially matches a negated condition element,
there may be some rule instantiations that are inval­
idated and will have to be removed from the conflict
set. In this čase, the invalidated instantiations will not
contain the working memory element. To find the in­
stantiations vvhich must be removed from the conflict
set, the negated condition element which is partially
matched is temporarily transformed to be positive to
form a new rule. The vvorking memory element is used
as a seed to build instantiations of this new rule. Then
the new instantiations are compared with the conflict
set. If any instantiation exists in the conflict set, then
remove them.

LFA+: A FAST CHAINING ALGORITHM POR Informatica 22 (1998) 329-349 339

When a working memory element is removed and it
partiaJly matches a negated condition element, if there
is no other similar data element whose variable bind-
ings are consistent with those of the removed one in
the working memory, it may cause some rule instanti-
ations to enter the conflict set.

— Memorp Support

The alpha memories forming the memory support
part of the TREAT match algorithm are the same as
those of the RETE match algorithm. Information re-
lated to each condition element is stored in arrays in-
dexed by CE-num's (condition element numbers). Ali
the condition elements in a rule-based system are num-
bered with CE-num's. The alpha memories are par-
titioned into old-mem, new-delete-mem and nevj-add-
mem as three separate vectors. The addition and dele-
tion of a working memory element are different from
those of the RETE match algorithm. This can be seen
from the algorithm illustration below.

— Condition Support

Associated with each rule is a rule-active property.
A rule is active if each of its positive condition ele­
ments is partially matched by some working memory
elements. The rule-active property of a rule is affected
by updating the contents of the old-mem for the rule.

The advantages of the TREAT algorithm are as fol-
lows:

— The deletion of elements is simpler than in RETE.

— Inactive rules are ignored.

— It can handle both temporally redundant and
non-redundant rule-based systems.

— It can be easily implemented in parallel rule-based
systems.

However, TREAT also has some disadvantages:

— No computing results can be shared by condition
patterns or rules.

— The time complexity for matching is stili NP-hard
as RETE.

— It is also a matching algorithm.

4.6 LFA
/ Unlike RETE-like algorithms, the LFA algorithm

[Wu 93a] is a linear forward-chaining algorithm. It
adopts a 2-level "rule schema -I- rule body" knowledge
representation outlined in Section 3.2.2. The major
features of the LFA algorithm are that chaining is car-
ried out in 2-phase "match-act" cycles instead of the
3-phase "match - conflict resolution - act" cyčles, and

it can choose one rule set in each cycle without any
specific conflict resolution.

The following outlines the concrete measures that
the LFA algorithm has adopted:

- "Rule Schema -/- Rule Body"

"Rule schema -I- rule body" represents knowledge
in two levels. Rule schemata describe the hierarchy
among factors (include premise factors and conclusion
factors) or nodes in a reasoning network. Rule bod-
ies, which consist of computing rules and/or inference
rules, are used to express specific computing methods
for the factors and/or certainty factors in their corre-
sponding rule schemas. Thiš 2-level structure facili-
tates sorting the knowledge base and avoids matching
ali the rules in a knowledge base vî ith the working
memory when some piece of data is not available.

- Sorting the Knoviledge Base [Wu 93a]

At the end of knowledge acquisition or knowledge
modification, the knowledge base is sorted or compiled
into a partial order: If rule schema N is if factor-1,
factor-2, ..., factor-n, then factor, then ali the schemas
with factor-1, factor-2, ..., factor-n as their conclusion
factors have rule-set numbers smaller than N.

Other sorting measures are as follows:

1. Processing dead cycles.
A cycle like if A then B, if B then C, and if C
then yl in a domain reasoning network is called a
dead cycle if none of A, B, and C is a leaf node
in the domain reasoning network and there is no
other rule schema whose conclusion factor is one
of them. A dead cycle cannot be numbered and
has to be changed to a live cycle or removed. Fig­
ure 6 is an example of dead cycles.

2. Renumbering schemata.
Renumber aH rule schemata which have aU of
their premise factors being leaf nodes in the do­
main reasoning network. For any factor F, if ali
schemata with it as their conclusion factor have
been renumbered, it is treated as a leaf node for
further renumbering. If ali rule schemata in a
knowledge base have been renumbered then stop.

3. Resolving live cycles.
A cycle like if A then B, if B then A, and if C then
A is called a live cycle and A is called a live node
in the live cycle if C is not involved in any dead
cycle (Figure 7 shows a live cycle). A live cycle
can be resolved by treating one of its live nodes
as a leaf node for further renumbering. Resolve
ali live cycles and goto 2.

340 Informatica 22 (1998) 329-349 X. Wu et al.

A l i

Figure 6: A dead cycle

aiid

A l A2

Figure 7: A live cyde

— Linear Forward Chaining

After knowledge compilation, chaining is performed
as follows:

FOR the f i r s t TO the l a s t renumbered
schema in the knowledge base

DO
IF the re e x i s t da ta in the working

memory for each of the
condit ion f ac to r s of the schema

THEN f i r e the corresponding
r u l e body of the schema.

ENDFOR.

Advantages of the LFA algorithm:

— Time complexity is 0{n) where n is the number
of rules in a knowledge base.

— It is a complete forward-chaining algorithm, in
which the conflict resolution step is unnecessary.

— NaturaJ knowledge representation.

— Computational knowledge and uncertainty calcu-
lus axe integrated with logic inference in the 2-
level knowledge representation.

Intermediate computing results can be shared.

LFA+: A FAST CHAINING ALGORITEM POR . Informatica 22 (1998) 329-349 341

Disadvantages of the LFA algorithm:

— First-order rules can not be efRciently processed.

— Its chaining is in a fixed order, and thus ali prob­
lem evidence needs to be provided at the begin-
ning of chaining in order to ensure that the infer­
ence can be accomplished.

5 LFA+: A robust LFA
algorithm

For rule-based systems, LFA is the best forward-
chaining algorithm to date in terms of time complexity.
However, as with other algorithms, it also has its own
limitations. The significant drawback which greatly
restricts application is that LFA cannot efficiently deal
with first-order logic rules. Based on the original LFA
algorithm, this section describes a robust LFA algo­
rithm — LFA+, which mainly tackles this problem
and efficiently deals with recursive rules and negation.

The idea to transform first-order logic rules into
simpler domains was used before in inductive logic
programming [Lavrac &: Dzeroski] and in empirical
learning in order to transform more complex expres-
sive mechanisms into e.g. attribute-value descriptions
[Gams et al. 91].

5.1 Knowledge representation
Knowledge representation adopts the basic "Rule
Schema -I- Rule body" structure (See Section 3.2.2),
but expressiveness is extended to include first-order
logic rules. In addition, some other measures are pre-
sented for the following purposes:

1. It facilitates avoiding matching ali the rules in a
rule base with the working memory at rum time
when some piece of data is not available.

2. It supports ordering the knowledge.

— Pred ica te representa t ion

A predicate can be represented in the following form:
<pred ica t e symbol>(ob jec t - l i s t) .
In the object-list, an object is a constant or a vari­

able.

— Rule schemata representa t ion

A rule schema takes the general form:
IF factorl, factorž, •••, factorn THEN factor

where factorl, factorž, •• •, factorn, factor may be
variables for computing rules or logic assertions for
inference rules. But any variable in logic assertions is
replaced by the '_' notation which means "don't čare"
in rule schemata. The factor can also be an algebraic
function or an action defined to modify the working
memory.

— Negation representa t ion

Negation representation takes the form: not(p),
where p represents a predicate. Its meaning is defined
as that of [Bratko 90] — If p cannot be proven to be
TRUE, then not(p) is TRUE.

Two constraints are given to this representation:

1. 'not(p)' and 'p' cannot appear in two different
rules respectively within a rule set. For example,
for

p(X,Y) :- s(X,Y), not(r(X)).
p(X,Y) :- s(X,Y), r(Y).

there are two rule sets:

Rule schema: IF s(-,-), not(r(-)) THEN p(.,-)
Rule body: IF s(X,Y) and not(r(X)) THEN
P(X,Y)

and

Rule schema: IF s(.,.), r(.) THEN p(.,-)
Rule body: IF s(X,Y) and r(Y) THEN p(X,Y)
Thereby, the confused representation that
not(r(-)) and r(.) appear in the same schema can
be avoided, and when data do not exist for r(_),
the matching procedure for the rule body in the
second rule set is unnecessary at run time.

2. 'not(p)' and 'p' may appear in the same inference
rule in a rule set, but only the 'p' is included in the
corresponding premise factors of the rule schema.
For instance, the rule set for

p(X,Y,Z) :- s(X,Y,Z), not(r(X,Y)), r(Y,Z).

is

Rule schema: IF s(_,-,-), r(.,-) THEN p(-,-,-)
Rule body: IF s(X,Y,Z) and not(r(X,Y)) and
r(Y,Z) THEN p(X,Y,Z)

This knowledge representation can be described in
extended Backus. Naur form as follows:
< r u l e s e t > := < r u l e se t number><rule

scliema><rule body>
< r u l e set number> := < i n t e g e r >
< r u l e schema> := ' I F ' <premise

f ac to r s> 'THEN' <conclusion f a c t o r >
<premise f ac to r s> := <premise

f ac to r> {' , '<premise f a c t o r s > }
<premise f ac to r> := < f a c t o r >
<concliision f ac to r> := < f a c t o r >
< fac to r> := < log ic

a s s e r t i o n > | < v a r i a b l e > | < a lgebra ic
f unct ion> | <ac t ion>

< log ic a s s e r t i o n > :=

342 Informatica 22 (1998) 329-349 X. Wu et al.

< p r e d i c a t e > | (n o t ' (' < p r e d i c a t e > ') ')
<p red i ca t e> := <pred ica te

symbol> { ' (' < o b j e c t - l i s t > ') ' }
< o b j e c t - l i s t > := < o b j e c t > { ' , '

< o b j e c t - l i s t > }
<ob jec t> := < c o n s t a n t > | < v a r i a b l e > | ' _ '
<a lgeb ra i c funct ion> :=

(f unc to r ' (' < v a r i a b l e - l i s t > ') ')
< v a r i a b l e - l i s t > ;= <va r i ab l e>

{' , ' < v a r i a b l e - l i s t > }
< r u l e body> := (< C - r u l e > | < I - r u l e >)

{<ru le body>}
<C-ru le> := (< f a c t o r > |

(C F ' (' < f a c t o r > ') ')) ' = '
<va lue> |<a lgeb ra i c expression>
< I - r u l e > := ' I F ' <antecedents> 'THEN'

<conclus ion>
<antecedents> := <antecedent> {'and'

<an tecedents>}
<antecedent> :=<logic

a s s e r t i o n > | < r e l a t i o n expression>
< r e l a t i o n expression> :=

(<f a c t o r > | (CF' (' <f a c t o r > ') ') |
<va lue> |
< a l g e b r a i c expression>)
< r e l a t i o n symbol>
(<fac to r> | (CF ' (' < f a c t o r > ') ') | < v a l u e > |
<a lgeb ra i c express ion>)

<value> := < i n t e g e r >
| < r e a l > |
<symbolic value> |
<probability>|<fuzzy value>

<relation symbol> :=
' > ' | ' < ' | ' = ' | ' < > ' | ' > = ' ! ' < = "

<conclus ion> :=
< l o g i c a s s e r t i o n > | < a c t i o n) > | < C - r u l e >

— Recursive rule representa t ion

In the above form, the further specific representation
for recursive rules may be described as follows:
< I - r u l e > := < I - r u l e - l > < I - r u l e - 2 >
< I - r u l e - l > := ' I F ' <antecedeiits 1> 'THEN'
<conclusion 1> { < I - r u l e - l > }
< I - r u l 6 - 2 > := ' I F ' <antecedents 2> 'and '
<antecedent 2> 'THEN'

<conclusion 2> { < I - r u l e - 2 > }
Here, <conclusion 1>, <antecedent 2> and

<conclusion 2> have the same predicate symbol.
In rule schemata, if <antecedents 1> and

<antecedents 2> become the same, and so do
<conclusion 1>, <antecedent 2> and <conclusion
2>, and there is only one rule for <I-rule-l>, then
<I-rule-l> and <I-rule-2> can be put into one rule
set, and the rule schema is as follows:

IF <antecedents 1> THEN <conclusion 1>
Otherwise they have to be broken into different rule
sets, but these rule sets as a whole take part in the
numbering process. Their schemata together are re-
ferred to as a recursive schema set.
For example, the rule set for
ancestor(X,Y) : - fatlier(X,Y) .
ancestor(X,Y) : - fa ther (X,Z) ,

čincestor(Z,Y) .
ancestor(X,Y) : - fa ther (Z ,Y) ,

ancestor(X,Z).
is as follows:
ru l e schema:
IF fatherC-,-) THEN ancestor(_,_)
ru l e body:
IF father(X,Y) THEN ancestor(X,Y)
IF father(X,Z) and ancestor(Z,Y) THEN
ancestor(X,Y)
IF father(Z,Y) and ancestor(X,Z) THEN
ancestor(X,Y)
However, the rule sets for
parent(X,Y)
parent(X,Y)
parent(X,Y)
parent(X,Y)

parent(X,Z)
are

- inother(X,Y).
- fa ther(X,Y).
- s i s t e r (Z , Y) , parent (X,Z) .
- b ro the r (Z ,y) ,

r u l e schema:
IF motherC-,-) THEN parent(. ,_)
ru l e body:
IF mother(X,Y) THEN parent(X,Y)
ru l e schema:
IF father(_,_) THEN parent (. ,_)
r u l e body :
IF father(X,Y) THEN parent(X,Y)
r u l e schema:
IF s i s t e r (_ , _) , parent(_,_) THEN

parent(_,_)
ru l e body:
IF s i s te r (Z ,Y) and parent(X,Z) THEN

parent(X,Y)
and
ru l e schema:
IF brother (. ,_) , parent(_,_) THEN

parent(_,_)
ru l e body:
IF brother(Z,Y) and parent(X,Z) THEN

parent(X,Y)
As long as the <object> is defined as follows:

<ob jec t> ;= <object
f unct ion> | < va r i ab le> | ' _'

<object funct ion> := <objec t functor>
{' (' < v a r i a b l e l i s t > ') ' }

LFA+: A FAST CHAINING ALGORITEM FOR ... Informatica 22 (1998) 329-349 343

clearly, this knowledge representation can represent
any Horn clause rules.

5.2 The LFA+ algorithm
This algorithm consists of two procedures namely
sorting the knowledge in a knowledge base and
linear-forward chaining.

• Sorting knowledge in a knowledge base
This procedure aims at placing rule sets in the rule

base in order. The order of the rule sets is the order of
the rule schemata. AH measures adopted are described
as follows:

— Processing of negations

Some schemata may have been separated due to
the constraints of negation representation. These
schemata together are called a schema set. In this
čase, the schema set as a whole takes part in the num-
bering process (See next step). Inside the schema set,
aH schemata take the order of the rule-body rules in
situations that it is unnecessary to distinguish not (p)
and p and in the order aH rule-body rules can be put
into a rule set.

— Schema numbering

If rule schema #N is
IF factorl, factorS, • ••, factom THEN factor
then aH schemata whose conclusion factors partially
match (See Section 2.3) with any of the factorl,
factorž, • • •, factom have rule set numbers smaller
than N. This process puts the schemata into partial
order.

— Processing of live cycles

A cycle such as "IF al THEN bi , IF b2 THEN a2,
and IF c THEN a3", in which a l , a2 and a3 partiany
match with each other, and bi partially matches with
b2, is referred to as a live cycle and al , a2 and a3
become a live node in the live cycle if c is not in-
volved in any dead cycles (e.g. a live cycle in Figure
8). Schemata in a live cycle can be numbered by start-
ing from one of the live nodes of the live cycle.

— Processing of dead cycles

A cycle such as "IF al THEN bi , IF b2 THEN cl,
and IF c2 THEN a2", in which a2 partially matches
with al, b i partially matches with b2 and cl partially
matches with c2, is referred to as a dead cycle if none
of a l , a2, b i , b2, cl and c2 can be instantiated (Such
as in Figure 9). A dead cycle cannot be numbered —
it has to be changed into a live cycle or removed.

alOC^

a8(_0 a9UJ

and/ \ and

a 2 (_ ^ a 3 (_ ^ a 4 C ^ not(a5C_0)

a l C ^

Figure 8: A live cycle

a8(^_)

a2(^^ , a3(_J

alU-)
Figure 9: A dead cycle

344 Informatica 22 (1998) 329-349 X. Wu et al.

— Processing of parallel schema set

If some schemata have the same conclusion factor (A
negation schema set is treated as one schema) and are
not in vol ved in any dead cycles or any live cycles, then
aH these schemata together are referred to as a parallel
schema set. A parallel schema set as a whole takes
part in the numbering process, but inside the parallel
schema set, the order of the schemata is arbitrary.

— Rule schema renumbering

Renumbering the schemata in a knowledge base un-
til they are ali in order. If they are already in order
then stop.

• Linear-forward-chaining
After sorting knowledge in the knowledge base, the

LFA+ algorithm performs the following process:
Loop: from the f i r s t t o the l a s t schema do
If da ta e x i s t in the working meinory for each
of the premise f ac to r s (But for n o t (p) , p
may or may not e x i s t) in the schema, then
f i r e the corresponding r u l e body of the
schema

Endloop

5.3 Advantages and disadvantages
The time complexity of the LFA+ algorithm is also
0{n), where n is the number of rules in the rule base,
as the original LFA algorithm. Yet, with the original
LFA algorithm, the robust LFA+ algorithm has the
following advantages:

— It can deal with first-order logic rules.

— Recursive inference rules can be efficiently pro-
cessed.

— It facilitates coping with rules that include nega­
tive condition elements.

However, the LFA-I- algorithm also has some disad­
vantages in common with other algorithms:

— It cannot meet the dynamic requirements to the
knowledge base during inference.

— Its chaining is in a fixed order and thus ali problem
evidence needs to be provided at the beginning of
chaining in order to ensure that the inference can
be accomplished.

5.4 A n exaniple

Suppose the following Prolog rules are given:

sibling(X,Y) : - brother(X,Y). (1)
sibling(X,Y) : - s i s t e r (X ,Y) . (2)
sibling(X,Y) : - brother(Y,X) . (3)
sibling(X,Y) : - s i s t e r (Y ,X) . (4)
parent(X,Y) : - fa ther(X,Y). (5)
parent(X,Y) : - mother(X,Y). (6)
ancestor(X,Y) : - parent(X,Y). (7)
parent(X,Y) : -

b l ing(Z,Y) , parent(X,Z) . (8)
ancestor(X,Y) : -

parent(Z,Y) ,ances tor(X,Z) . (9)
sibling(X,Y) : -

b ro ther (Z ,Y) , s ib l ing(X,Z) ,
X \== Y. (10)

sibling(X,Y) : -
s i s t e r (Z , Y) , s i b l i n g (X , Z) ,
X \== Y. (11)

sibling(X,Y) : -
b ro ther (Y,Z) , s ib l ing(X,Z) ,
X \== Y. (12)

sibling(X,Y) : -
s i s t e r (Y ,Z) , s ib l ing (X,Z)
X \==Y. (13)

Based on the knowledge representation method of
LFA H-, their corresponding rule schemata can be rep-
resented as foUovvs:

IF b ro ther (_ ,_) THEN s i b l i n g (_ , _) (1 ')
IF s i s t e r (_ , _) THEN s i b l i n g (_ , _) (2 ')
IF b ro ther (_ ,_) THEN s i b l i n g (_ , _) (3 ')
IF s i s t e r (_ , _) THEN s i b l i n g (_ , _) (4 ')
IF f a the r (_ ,_) THEN paren t (_ ,_) (5 ')
IF mother(_,_) THEN paren t (_ ,_) (6 ')
IF parent (_ ,_) THEN ances tor (_ ,_) (7 ')
IF s i b l i n g (_ , _) , p a r e n t (_ , _)

THEN paren t (_ ,_) (8 ')
IF paxent(_,_) ,čLncestor(_,_)

THEN ances tor (_ ,_) (9 ')
IF b r o t h e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l i ng (_ ,_) (10 ')
IF s i s t e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l i ng (_ ,_) (11 ')
IF b r o t h e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l ing (_ ,_) (12 ')
IF s i s t e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l ing (_ ,_) (13 ')

As shown in (10'), (IV), (12'), and (13'), variables
in relational expressions of variables (X \ = = Y) are
not represented in schemata, because they are deter-
mined by the same variables in corresponding predi-
cates. Since (1') and (3'), (2') and (4'), (10') and (12'),
and (11') and (13') are the same respectively, they can
be combined. So they become the following:

IF bro ther (_ ,_) THEN s ib l i ng (_ ,_) (1")
IF s i s t e r (_ , _) THEN s ib l i ng (_ ,_) (2")

LFA+: A FAST CHAINING ALGORITEM POR Informatica 22 (1998) 329-349 345

IF f a the r (_ ,_) THEN parent (_ ,_)
IF mother(_,_) THEN parent (_ ,_)
IF pa ren t (_ ,_) THEN ances tor (_ ,_) (5")
IF s i b l i n g (_ , _) , p a r e n t (_ , _)

THEN paren t (_ ,_)
IF pa ren t (_ ,_) , ances to r (_ ,_)

THEN ances tor (_ ,_)
IF b r o t h e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l i ng (_ ,_)
IF s i s t e r (_ , _) , s i b l i n g (_ , _)

THEN s ib l i ng (_ ,_)

(3")
(4")

(6")

(7")

(8")

(9")

Apparently, (1") and (2") are a parallel schema set,
so are (3") and (4"). (1"), (2"), (8") and (9") form a
kind of recursive schema set, so do (3"), (4") and (6");
(5") and (7") form another kind of recursive schema
set, they can be combined. Based on the schema num-
bering measures of LFA+, these schemata can be put
into the following order:

1 IF brother(_,_) THEN sibling(_,_)
2 IF sister(_,_) THEN sibling(_,_)
3 IF brotlier(_,_) ,sibling(_,_)

THEN sibling(_,_)
4 IF sister(_,_),sibling(_,_)

THEN sibling(_,_)
5 IF IF fat]ier(_,_) THEN parent(_,_)
6 IF mother(_,_) THEN parent(_,_)
7 IF sibling(_,_),parent(_,_)

THEN parent(_,_)

8 IF paren t (_ ,_) THEN ances tor(_ ,_)

where No. 8 is the combination of (5") and (7").

Finally, the ordered'rule sets are as follows:

1 IF b ro the r (_ ,_) THEN s ib l ing (_ ,_)
IF brother(X,Y) THEN sibling(X,Y)
IF brother(X,Y) THEN sibling(Y,X)

2 IF s i s t e r (_ , _) THEN s ib l ing (_ ,_)
IF s is ter (X,Y) THEN sibling(X,Y)
IF s is ter (X,Y) THEN sibling(Y,X)

3 IF b r o t h e r (_ , _) , s i b l i n g (_ , _)
THEN s ib l i ng (_ ,_)

IF brother(Z,Y) and sibling(X,Z) and
X \== Y THEN sibling(X,Y)

IF brother(Y,Z) and sibling(X,Z)
and X \== Y THEN sibling(X,Y)

4 IF s i s t e r (_ , _) , s i b l i n g (_ , _)
THEN s ib l i ng (_ ,_)

IF s i s t e r (Z ,Y) and sibl ing(X,Z)
THEN sibling(X,Y)

IF s i s t e r (Y ,Z) and sibl ing(X,Z)
THEN sibling(X,Y)

5 IF f a the r (_ ,_) THEN parent (_ ,_)
IF father(X,Y) THEN parent(X,Y)

6 IF mother(_,_) THEN parent (_ ,_)
IF mother(X,Y) THEN parent(X,Y)

7 IF sibling(_,_),parent(_,_)

THEN parent(_,_)
IF sibling(Z,Y) and parent(X,Z)

THEN parent(X,Y) ,
8 IF parent(_,_) THEN ancestor(_,_)

IF parent(X,Y) THEN ancestor(X,Y)
IF p£irent(Z,Y) and ancestor(X,Z)

THEN ancestor(X,Z)

5.5 A chaining implementation of
LFA+

The implementation is carried out with Sicstus Prolog
on DEC stations. It consists of two parts namely re-
ceiving_data and chaining. Main program 'LFA+' has
three parameters: InterpJ, LeafJile and KbJile.

InterpJ is an interpretation file, which has the fol-
lowing contents:

1. One or more domain value lists. For example, in
domain([a,b,...]), the list is a value range of object
variables; whereas in domain('~Y',[1,2,...]), the
list is the value range of the variable '~Y' .

2. A truth value interpretation list. E.g.
r_map([map(ancestor(adamjohn,true)),...]).

LeafJile includes the predicates which need to be
provided by the users, and KbJile is a rule file which
contains aH the rules for a problem solving.

The following is an implementation example. For
convenience, we keep the Prolog rules as rule bodies
since the order of rule sets is the order of rule schemata.
So the contents of the KbJile are as follows:

1.
' I F ' . b r o t h e r (_ , _) . 'THEN'. s i b l i n g (_ , _) .
sibling(X,Y) : - brother(X,Y).
sibling(X,Y) : - brother(Y,X).

2.
' I F ' . s i s t e r (_ , _) . 'THEN'. s i b l i n g (_ , _) .
sibling(X,Y) : - s i s t e r (X ,Y) .
sibling(X,Y) : - s i s t e r (Y ,X) .

3 .
' I F ' . b r o t h e r (_ , _) . ' , ' . s i b l i n g (_ , _) .

'THEN'. s i b l i n g (_ , _) .
sibling(X,Y) : - brother(Z,Y) ,

s ibl ing(X,Z),X \== Y.
sibling(X,Y) : - bro ther(Y,Z) ,

s ib l ing(X,Z) , X \== Y.
4.
' I F ' . s i s t e r (_ , _) . ' , ' . s i b l i n g (_ , _) .

'THEN'. s i b l i n g (_ , _) .
sibling(X,Y) : - s i s t e r (Z , Y) ,

s ibl ing(X,Z),X \== Y.
sibling(X,Y) : - s i s t e r (Y , Z) ,

sibling(X,Z),X \== Y.
5.
'IF'. father(_,_). 'THEN'. parent(_,_).
parent(X,Y) :- father(X,Y).

346 Informatica 22 (1998) 329-349 X. Wu et al.

'IF'. mother(_,_). 'THEN'. parent(_,_).
parent(X,Y) :- mother(X,Y).
7.

'IF'. sibling(_,_). ','. parent(_,_).
'THEN'. parent(_,_).

parent(X,Y) :- sibling(Z,Y),parent(X,Z).
8.
'IF'. parent(_,_). 'THEN'. ancestor(_,_).
ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(Z,Y),
ancestor(X,Z) .

Suppose the contents of the Leaf Jile are the follow-
ing:

b r o t h e r (' ~ X l ' , ' ~ Y l ') .
s i s t e r (' - X 2 ' , ' ~ Y 2 ') .
f a t h e r (' ~ X 3 ' , ' ~ Y 3 ') .
mother ('~X4 ' , '~Y4 ') .

and the contents of the interpretation file are as fol-
lows:

domain([adam,eve,david,doris , j ohn,mary,
edga r , f r ed , l ucy ,marga re t , v io l e t ,
p a t r i c k]) .

r_map([map(s i s t e r (do r i s , j ohn) , t rue) ,
m a p (s i s t e r (m a r g a r e t , f r e d) , t r u e) ,
m a p (s i s t e r (l u c y , e d g a r) , t r u e) ,
m a p (s i s t e r (m a r g a r e t , v i o l e t) , t r u e) ,
m a p (s i s t e r (m a r g a r e t , p a t r i c k) , t r u e) ,
m a p (s i s t e r (m a r g a r e t , f r e d) , t r u e) ,
m a p (s i s t e r (v i o l e t , f r e d) , t r u e) ,
m a p (s i s t e r (v i o l e t , m a r g a r e t) , t r u e) ,
m a p (s i s t e r (v i o l e t , p a t r i c k) , t r u e) ,
m a p (b r o t h e r (f r e d , v i o l e t) , t r u e) ,
map(brother(f r ed ,pa t r i ck) , t r i i e) ,
m a p (b r o t h e r (p a t r i c k , f r e d) , t r u e) ,
map(bro the r (pa t r i ck ,marga re t) , t rue) ,
m a p (b r o t h e r (p a t r i c k , v i o l e t) , t r u e) ,
map(bro the r (edgar , lucy) , t rue) ,
map(bro ther (f red ,margare t) , t rue) ,
map(brother(john,doris) , t r i ie) ,
map(fa ther (adam,dor i s) , t rue) ,
map(fa ther(adam,john) , t rue) ,
map(fa the r (dav id ,edgar) , t rue) ,
map (fa ther (david, lucy) , t r i i e) ,
map(fa the r (john , f r ed) , t rue) ,
map(fa ther (john ,margare t) , t rue) ,
map(mother(eve, john) , t rue) ,
map(mother (eve ,dor i s) , t rue) ,
map(mother (dor i s ,edgar) , t rue) ,
map(mother (dor i s , lucy) , t rue) ,
map(mother(mary,fred) , t rue) ,
map(mother(mary,margaret) , true)]) .

The following records the example run.

>sicstus

SICStus 2.1 #9: Thu Apr 21 09:39:25 +1000

I ?-
I ?-coiisult('datalog.tex') .
{consulting /fang/project/datalog.tex...}
{Undefined predicates will just fail}
yes
I ?- 'LFA+'(interp_file,leaf_file,kb_file).
{consulting /fang/project/interp_file...}
-C/fang/project/interp_file consulted,
67 msec 1632 bytes}
Interpretation interp_file loaded.
Can you provide a value for ~X1 (y/n/q)?

y-
input:j ohn.
Can you provide a value for ~Y1 (y/n/q)?

y-

input:diris.

Wrong value!

Can you provide a value for ~Y1 (y/n/q)?
y-
input:doris.
More values for prev. variables (y/n/q)?

y-
New value for ~X1 (y/n)?

y-

input:fred.
New value for ~Y1 (y/n)?n.
More values for prev. variables (y/n/q)?
n.
Can you provide a value for ~X2 (y/n/q)?
y-
input:doris.
Can you provide a value for ~Y2 (y/n/q)?

y-

input:john.
More values for prev, variables (y/n/q)?
n.
Can you provide a value for ~X3 (y/n/q)?

y-
input: adam.
Can you provide a value for ~Y3 (y/n/q)?

y-
input:j ohn.

More values for prev. variables (y/n/q)?

q-

chaining . . . 1: ->s ib l ing (john ,dor i s) ->
s ib l i ng (do r i s , j ohn) 2:

->F->F 4: 5: ->parent(adam,john)
7: ->parent(adam,doris)

->ancestor(adam,j ohn)->
ancestor(adam,doris) !.

As shown above, there are not data for rule sets 2,
4 and 6; rules in rule set 3 are false, in which there are
two rules in the rule body.

LFA+: A FAST CHAINING ALGORITEM FOR ... Informatica 22 (1998) 329-349 347

6 Conclusions and future
research

With the development of rule-based expert systems,
efficiency has been a major consideration for chaining
algorithms [Fang & Wu 94]. The naive approaches are
to combine indexing with direct interpretation of the
LHSs in the rule base. They are inefficient in dealing
with large knowledge bases.

The RETE match algorithm has made some signifi-
cant improvements. It compares a set of LHSs of rules
with a set of data elements in the working memory
to compute the conflict set, and does not need the in-
terpretive step. The indexing function is represented
as a network of simple feature recognisers. This al­
gorithm can efEciently process the conflict set, since
it does not iterate over the working memory and the
rule base. However, the RETE match algorithm only
incorporates memory support and condition relation-
ship knowledge sources. It stili has significant disad-
vantages. For example, deletion of working memory
elements is expensive, and tirne complexity is NP-hard
(non-polynomial) to the number of rules in a knowl-
edge base.

The TREAT algorithm is a RETE-like algorithm.
It makes use of condition membership, memory sup­
port, and conflict set support knowledge sources. The
obvious improvement is that it can be easily adopted
in parallel systems. However, in some cases its perfor-
mance is worse than that by using RETE.

LFA is the best chaining algorithm up to date in
terms of theoretical tirne complexity. By adopting rule
ordering method, its time complexity of chaining can
be 0{n) where n is the number of rules in a knowl-
edge ba^e. This advantage results from its knowl-
edge representation method namely the 2-level "rule
schema -|- rule body" knowledge represntation (See
Section 3.2.2), and using premise-conclusion knowl-
edge to compile the rule set in the knowledge base.
However, it is difRcult to deal with first-order logic
rules by using LFA.

LFA-h is a robust forward-chaining algorithm. It can
process first-order logic rules efficiently. This mainly
benefits from its knowledge representation. LFA-I-
inherits LFA's knowledge representation method,
namely represents knowledge in a 2-level "rule schema
+ rule body" structure. But it has been extended to
cover first-order logic rules (See Subsection 5.1). Based
on this representation, LFA-l-'s sorting and chaining
procedures for first-order logic rules can be the same
ones of LFA for processing propositional logic rules.
Therefore, LFA-f is a powerful linear-chaining algo­
rithm for rule-based expert systems.

However, due to its static rule ordering method, its
chaining is in a fixed order. So ali problem evidence
must be provided at the beginning of chaining in order
to ensure that the inference can be accomplished for

problem solving. This is a restriction to its application
in data sensitive rule-based systems which give prefer-
ences to those rules that match the most recent data
elements added to the working memory.

LFA-I- is well suitable to be implemented by using
logic programming language tools. When it is im­
plemented by using imperative language tools, it has
not provided memory support for avoiding iterating
computations for matching working memory elements
with condition elements when data exist for the cor-
responding rule schemata, so processing efRciency will
decrease.

For future research, it is important to maintain
LFA-I-'s linear performance. In order to extend its
application, the following two directions may be con-
sidered:

- Combining other sorting measures with the 2-level
"rule schema -I- rule body" knowledge representa­
tion method or modifying the "rule schema + rule
body" structure if necessary in order that it can
meet the requirements of data sensitive systems.

— Introducing the memory support knowledge
source to LFA-t-. This involves building a mech-
anism related to how to organise those memories
and how to efRciently locate the memories.

Also, meeting the dynamic demands of rule-based
systems (i.e. the knowledge can be changed at run
time) is a challenge. This is a common problem in ali
known chaining algorithms for rule-based systems. For
example, RETE-like algorithms do not allow knowl-
edge modification at run time either.

References

[Avron and Edward 81] Avron Barr and Edward A.
Feigenbaum, The Handbook of Artificial Intelli-
gence, Vol. I, Heuris Tech Press, 1981

[Bratko90] Ivan Bratko, PROLOG — Program­
ming for Artificial Intelligence, Second Edition,
Addison-Wesley Publishing Company, 1990

[Brownston et al. 86] Lee Brownston, Robert Farrell,
Elaine Kant and Nancy Martin, Programming Ex-
pert Systems in 0PS5 — An Introduction to Rule-
based Programming, Addison-Wesley Publishing
Company, Inc, 1986

[Colomb 89] R. M. Colomb Representation of Propo­
sitional Expert Systems as Decision Tables, Pro-
ceedings of the Srd Australian Joint Conference
on Artificial Intelligence, 1989

[Colomb & Chung 90] R. M. Colomb and C. Y. C.
Chung Ambiguity and Redundancy Analysis of a
Propositional Expert System, Proceedings of the

348 Informatica 22 (1998) 329-349 X. Wu et al.

4th Australian Joint Conference on Artificial In-
telligence, 1990

[Fang &: Wu 94] Guang Fang and Xindong Wu,
Chaining in Rule-based Systems, Proceedings of
the 7th Australian Joint Conference on Artificial
Intelligence, 1994, 575-582

[Forgy 81] C.L. Forgy, 0PS5 User's Manual, Depart­
ment of Computer Science, Carnegie-Mellon Uni-
versity, 1981

[Forgy 82] C.L. Forgy, A fast algorithm for the many
pattem/many object pattern match problem, Ar­
tificial Intelligence, 19(1982), 17-27

[Gams et al. 91] Matjaž Gams, Matija Drobnic and
Marko Petkovsek, International Journal of Man-
Machine Studies, 34(1991),49-68

[Ho & Marshall 92] Ho Soo Lee and Marshall L Schor,
Match Algorithms for Generalised RETE Net-
•uiorks, Artificial Intelligence, 54(1992), 249-274

[Kacsuk 90] Peter Kacsuk, Ezecution Models of PRO­
LOG for Parallel Computers, Pitman, London,
1990

[Lavrac &: Dzeroski] Nada Lavrac and Sašo Dzeroski,
Inductive Logic Programming: Techniques and
Applications, Ellis Howood, (1994).

[Malik 81] Malik Ghallab, Decision Trees for Optimis-
ing Pattern-Matching Algorithms in Production
Systems, Proceedings of the 7th Inter. Joint Conf.
on Al, 1981, 310-312

[McDermott & Forgy 78] J. McDemott and C. Forgy,
Production System Conflict Resolution Strategies,
Academic Press, Inc., 1978

[McDermott et al. 78] J. Mcdermott, A. Newell and
J. Moore, The Efficiency of Certain Production
System Implementations, Academic Press, Inc.,
1978

[Miranker 87] D.P. Miranker, TREAT:^ Nem and Ef-
ficient Match Algorithm for Al Production Sys-
tems, PhD Thesis, Columbia University, 1987

[Pedersen 89] Ken PedeTsen,Expert Systems Program­
ming — Practical Technigues for Rule-based Sys-
tems, John Wiley &: Sons, Inc, 1989

[Quinlan 86] J. R. Quinlan, Induction of Decision
Trees, Machine Learning Vol 1, No. 1, 1986

[Raeth 90] Peter G. Raeth, Expert Systems —A Soft-
ware Methodology for Modem Applications, IEEE
Computer Society Press, 1990

[Rich & Knight 91] Elaine Rich and Kevin Knight,
Artificial Intelligence{InteT. Edition(2)),
McGraw-Hill Inc., 1991

[Schalkoff 90] Robert J. Schalkoff, Artificial Intelli­
gence — An Engineering Approach, McGraw-Hill
Inc. 1990

[Sterling et al. 86] Leon Sterling and Ehud Shapiro,
The Art of PROLOG — Advanced Programming
Techniques, The MIT Press, 1990

[Steven 90] Steven L. Tanimoto, The Elements of Ar­
tificial Intelligence — Using Common Lisp, Com­
puter Science Press, 1990

[Waterman & Hayes-Roth 78] D. A. Waterman and
Frederick Hayes-Roth, An Overvieiv of Pattem-
directed Inferences Systems, Academic Press Inc.,
1978

[Wu 93a] Xindong Wu, LFA: A Linear Foruiard-
chaining Algorithm for Al Production Systems,
Expert System: The Int. J. of Knowledge Engi­
neering, 10(1993), 4: 237-242

[Wu 93b] Xindong Wu, Inductive Learning: Algo­
rithms and Frontiers, Artificial Intelligence Re-
view, 7(1993), 2: 93-108

Appendix — Definitions

Backus-Naur form

This expression refers to a formal language for
context-free grammars. A grammar consists of a set of
rewrite rules, each of which has a left-hand side and a
right-hand side, separated by the metalanguage sym-
bol ::=. The left-hand side of each rule is a nonter-
minal symbol of the grammar, while the right-hand
side is a sequence of nonterminal and terminal sym-
bols. Nonterminal symbols are usually surrounded by
angle brackets < and >.

Binding

This term refers to the association between a vari-
able and a value for the variable that holds within
some scope, such as the scope of a rule, function call,
or procedure invocation.

Bound

A variable that has been assigned a value by the
process of binding is said to be bound to that value.

Certainty factors (CFs)

Certainty factors are properties associated with at-
tribute/value pairs and rules, commonly used to rep-
resent uncertainty, or likelihood. Certainty factors
are usually automatically maintained by expert sys-
tem shells.

Condition elements

LFA+: A FAST CHAINING ALGORITHM POR , Informatica 22 (1998) 329-349 349

The left-hand side of a rule in a rule-based system
is sometimes expressed as a set of patterns (or tem-
plates) which are to be matched against the contents
of the working memory; each such pattern is called a
condition element. When a rule is instantiated, each
condition element is found to match one element of the
working memory.

Conflict set

A conflict set is a set of ali instantiations generated
by the match process during a recognise-act cycle. The
process of conflict resolution selects one instantiation
from the conflict set and fires it.

Cycle

A cycle is a single iteration of a loop. In production
systems, an execution consists of iterated recognise-act
cycles.
Domain reasoning network

A domain reasoning network (e.g. Figure 8 in Sec-
tion 5.2) is an AND/OR tree associated with a knowl-
edge base in rule schema + rule body by the following
analogies:

1. Nodes in the tree correspond to factors in the
knowledge base.

2. A rule schema such as IF El, • • •, En THEN A in
the knowledge base corresponds to the arcs, which
indicate the hierarchy among factors in the tree
(shown in Figure 10).

Figure 10: A rule schema

Filtering

The exclusion of either data (data filtering) or rules
(rule filtering) from the match process for the sake of
efficiency is termed filtering.
Fire

This term means to execute the set of actions speci-
fied in the right-hand side of an instantiation of a rule.
Forward chaining

Forward-chaining is a problem-solving method that
starts with initial evidence of a problem and applies in-
ference rules to generate new evidence until either one

of the inferences satisfies a goal or no further inferences
can be made. In forward-chaining production systems,
the applicability of a rule is determined by matching
the conditions specified on the left-hand side against
the evidence currently stored in working memory.

Ins tant ia t ion

Instantiation refers to a pattern or formula in which
variables have been replaced by constants. In a pro­
duction system, an instantiation is the result of suc-
cessfully matching a rule against the working memory
contents. It can be represented as an ordered pair of
which the first member identifies the rule that has been
satisfied, while the second member is a list of working
memory elements that match the condition elements
of the rule.

Interpreter

The interpreter is a part of a production system that
executes the rules.

Match

In a production system the match process compares
a set of patterns from the left-hand sides of rules
against the data in data memory to find ali possible
ways in which the rules can be satisfied with consistent
bindings (i.e. instantiations).

Mixed chaining

A search strategy which ušes both backward and
forward chaining during a single processing of a knowl-
edge base is known as mixed chaining.

Object

An object is an entity in a programming system that
is used to represent declarative knowledge and pos­
sible procedural knowledge about a physical object,
concept, or problem-solving strategy.
One-input node

This term refers to a node in the RETE match al-
gorithm network associated with a test of a single at-
tribute of a condition element. It passes a token if and
only if the attribute test is satisfied.

P a t t e r n

A pattern is an abstract description of a datum that
places some constraints on the value(s) it may assume, -
but needs not specify it in complete detail.

Temporal redundancy

This term refers to the tendency of rule systems
to make relatively few changes to the working mem-
ory, and hence to the conflict set, from one recognise-
act cycle to the next. The RETE algorithm exploits
temporal redundancy so as to avoid unnecessary re-
computations of ali matches.

Two-input node

Two-input nodes are nodes in the RETE algorithm
network that merge matches for a condition element
with matches for ali preceding condition elements.

