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All ship-to-shore cranes hoisting mechanisms are made of a load attached to the trolley by means of a hoisting rope. In the process of 
loading and unloading the ship, the trolley moves the load along the boom from ship to shore and vice versa. During movement, the hoisting 
mechanism structure causes swinging of the load around vertical position. Load swing increases the loading/unloading time and increases 
the probability of collisions with other objects, like a nearby container, an iron construction for disposal of material (e.g. bunker), etc. Swinging 
of the load cannot be avoided, but can be radically reduced by using appropriate anti-sway systems.

The paper derives a non-linear and linearized dynamic model of the crane load based on parameters of Panamax ship-to-shore crane 
in the Port of Koper. The responses of three open-loop anti-sway systems are compared together on the aforementioned dynamic model. 
Simulation results show that all three systems reduce load swing significantly, but only the systems based on zero-vibration-derivative and 
zero-vibration-derivative-derivative methods completely satisfy the given requirements.
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0 INTRODUCTION

Permanent increase of productivity of ship-to-shore 
cranes in Port of Koper is very important in order to 
remain competitive with other North Adriatic Sea 
ports. Increasing productivity can be achieved by 
reducing trans-shipment time. One possible way to 
increase productivity is to use anti-sway systems, 
which can efficiently reduce load oscillations. A 
reduction of oscillations increases the speed of trans-
shipment and consecutively the ship-to-shore crane 
productivity.

The paper derives a dynamic mathematical model 
of the crane load with accompanying limitations. 
The three open loop anti-sway systems are compared 
together on the aforementioned dynamic model with 
parameters taken from technical specification of 
Panamax ship-to-shore crane in Port of Koper. 

The cranes do not have anti-sway system 
integrated, so the operator must wait until the load 
oscillation is completely cancelled before positioning 
the load to the desired position on the ship or on the 

truck. The maximum acceptable deviation during 
positioning the load on the trucks with the ship-to-
shore cranes in the Port of Koper is 0.1 m, which 
corresponds to angular deviation of 0.01 rad (0.57º). 

Generally, anti-sway systems are divided into 
two main groups: the open-loop and the closed-loop 
systems (see Figs. 1 and 2). The closed-loop systems 
are based on feedback information of the current load 
angular deviation, trolley position and its velocity 
(which are measured by additional sensors). The 
open-loop systems operate by applying feed-forward 
actions. They foresee error and try to eliminate it 
before it occurs [1]. 

In this paper, the open-loop systems will be tested 
on a model of Panamax ship-to-shore crane in Port of 
Koper. 

The paper consists of three sections. In the first 
section, a non-linear and linearized mathematical 
model of the ship-to-shore crane load oscillation is 
derived. In the second section, three anti-sway systems 
are presented. In the third section the performance and 

Fig. 1. Block diagram of open loop (feed-forward) anti-sway system

Fig. 2. Block diagram of closed loop anti-sway system
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time responses of all three methods are compared and 
evaluated. Conclusions are given in section four.

1 MODELING

The trolley (see Fig. 3) can travel only when an 
external force is applied through the hoisting rope. 
The force accelerates or decelerates the trolley. The 
friction force between steel wheels and the rail is very 
small compared to other forces, so it is neglected. 

The length of the hoisting rope is time-invariant 
function, since the operator does not move the trolley 
and hoist at the same time. The length of the hoisting 
rope also does not depend upon load mass. The trolley 
and the load can be considered as point masses, which 
move in two dimensions only (x-y coordinate plane).

The applied force to the trolley is managed by the 
operator. By using the joystick, the operator defines 
the desired trolley velocity. The information about the 
desired trolley velocity is sent to frequency inverter, 
which controls the speed of motors. Motors, by means 
of gears, wind or unwind the rope on the drum and 
create force on the trolley. This force is positive when 
the trolley is accelerating and negative when the 
trolley is decelerating.

The force, which accelerates or decelerates the 
trolley, is always the same in magnitude, but changes 
direction, which depends on the desired velocity. 

Fig. 3. Model of ship-to-shore crane load and trolley

During trolley acceleration the load moves away 
from the balance position clockwise. In this case 

the angular deviation Θ has a negative sign. During 
trolley deceleration, the load moves anticlockwise. In 
this case the angular deviation Θ has a positive sign 
(see Fig. 3).

In the sequel the following variables will be used:
x	 trolley horizontal position [m],
x 	 trolley velocity [m/s],
Θ	 load angular deviation [rad],
Θ 	 load angular velocity [rad/s],

l	 length of the hoisting rope [m],
M	 mass of the trolley [kg],
m	 mass of the payload [kg],
g	 gravitational acceleration [m/s2].

1.1 Mathematical Model

According to Fig. 3, the trolley position vector rv  and 
load position vector rb  are defined as:

	 r x l , lb = + −( )sin cos ,Θ Θ 	 (1)

	 �� � � �r x l , lb = +( )Θ Θ Θ Θcos sin , 	 (2)

	
r x,v = ( )0 , 	 (3)

	
�� �r x,v = ( )0 . 	 (4)

The horizontal position x is limited between –17 
and 37 m. Initial or parking position is defined as x = 
0 and Θ = 0. 

Initial coordinates of vectors rv  and rb  are:

	 r , lb0 0= −( ) , 	 (5)

	 r ,v0 0 0= ( ) . 	 (6)

The kinetic and potential energy of the load are 
described by the following expressions [1]:
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	 W mgy mglp m= = − cosΘ. 	 (8)

By using Lagrangian function [1], the second-
order non-linear model can be derived as follows:
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1.2 Linearized Model

Eqs. (9) and (10) describe nonlinear model. The 
nonlinear model could be linearized by using certain 
assumptions [1]. The first assumption is that load 
swing angle is small during trolley movement. Based 
on that assumption the expansion of sine and cosine 
functions can be done by using the first term of Taylor 
series:

	 sinΘ Θ
Θ Θ Θ

Θ,= − + − + ≈
3 5 7

3 5 7! ! !
... 	 (11)

	 cos .Θ
Θ Θ Θ

= − + − + ≈1
2 4 6

1
2 4 6

! ! !
... 	 (12)

Taking Eqs. (11) and (12) into Eqs. (9) and (10), 
we get two differential equations with two variables:

	 Θ Θ= −
+






 +











M m
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F
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x , 	 (13)

	 x m
M

g
F
M

x= 





 +Θ . 	 (14)

1.3 Validation of the Linearized Model

In order to validate the linearized model, the responses 
of linearized and non-linear model to the same input 
signal have been compared by means of simulation. 
Input signal is generated by step functions, which 
represent force on the trolley. Simulation parameters 
are given in Table 1. They correspond to the actual 
parameters of Panamax ship-to-shore crane in Port of 
Koper.

Table 1. Parameters used in simulation

Mass of the trolley M 25 t
Mass of the payload m 30 t
Length of the hoisting rope l 10 m
Max trolley velocity vv 2 m/s
Max acceleration of trolley av 0.3 m/s2

Gravitational acceleration g 9.81 m/s2

Force on the trolley Fx 20 kN

From Fig. 4 it can be seen that the trolley is 
not travelling uniformly after the force is taken 
off, since attached load is swinging with its own 
natural frequency. This causes slight acceleration 
or deceleration of the trolley (depends on angular 
deviation Θ). It can be seen that there are very small 
differences between linearized and nonlinear model. 
The assumptions in Eqs. (11) and (12) are therefore, 
due to small swing angles, correct.

Fig. 4. System response to impulse input excitation signal

2 ANTI-SWAY SYSTEM FOR SHIP-TO-SHORE CRANES

2.1 Main Working Principles

All the methods, which will be used for the reduction 
of oscillation, are generating an input signal that 
cancels its own oscillation. The simplest method 
is the so-called Zero-Vibration (ZV) Shaper that 
consists of two impulses. The first impulse, which 
starts the system oscillating, is located at time zero, 
and the second impulse is delayed by half period of 
the oscillation. The oscillation caused by the second 
impulse is out of phase with the first oscillation, 
thereby cancelling it (see Fig. 6) [2].

The input signal can be shaped with any number 
of impulses. However, the amplitudes and time 
instants should be derived from the system’s natural 
frequencies, damping ratios and the following set of 
constraints [2]:
•	 after the last impulse is applied, the oscillations 

must be cancelled (zero residual vibration 
constraints),

•	 the sum of amplitudes must be equal to one (unity 
magnitude summation constraints),
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•	 the derivative of the second-order system 
response on the Nth impulse must be zero 
(robustness constraints),

•	 time instants of impulses must be calculated so 
as to get minimum system response delay (time 
optimality constraints).

Fig. 5. System response with two impulses; first impulse generates 
oscillations, while the second impulse cancels them out

2.2 Mathematical Formulation of the Constrained 
Equations

The following equation describes the impulse response 
of the second-order underdamped system [3]:

y t A e t tt t( ) =
−


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10 0 sin , 	(15)

where A is the amplitude of the impulse, t0 is the 
impulse time, ω0 is underdamped natural frequency 
and ξ is damping ratio. The second-order system 
response on N impulses could be written as [4] and 
[5]:
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j
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	 θ ω ξj jt= −0
21 , 	 (21)

where Aamp is the multi-impulse vibration amplitude 
of the response and is obtained at the instant of the last 
impulse, tN. Bj is the coefficient which determines the 
amplitude of sine function [2].

To obtain zero vibration after the last impulse, the 
Eq. (17) must be zero. This happens when Eqs. (18) 
and (19) are independently zero. With this assumption 
the first two constrained equations are obtained:
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An additional assumption is that the summation of 
impulse amplitudes must be equal to one and the 
amplitudes should be positive values:

	 Ai
i

N

=
∑ =

1
1. 	 (24)

When the nonlinear system contains higher 
sinusoidal harmonics (as in our case), it is necessary to 
use more impulses to efficiently reduce the oscillation, 
which request more equations to be solved. In this 
case the robustness constraints are used that increase 
system accuracy (and thus stability) forcing higher 
derivatives of functions toward zero [2]:
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System stability increases by increasing the order 
(q) of derivatives.

To get minimal system response delay, the first 
impulse must be applied at time origin:
	 t1 = 0 .	 (27)

2.3 Methods for Shaping Input Signal

In this section three methods for shaping input signal 
are presented. These methods are frequently used in 
practice [6] to [9]:
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•	 Zero-Vibration Shaper (ZV)
•	 Zero-Vibration-Derivative Shaper (ZVD)
•	 Zero-Vibration-Derivative-Derivative Shaper 

(ZVDD).

The main difference between the methods is the 
number of impulses applied for shaping input signal. 
ZV method is using two, ZVD three and ZVDD four 
impulses.

The amplitudes and time instants of impulses 
can be calculated from Eqs. (17) to (27) [2]. The 
amplitudes and time instants of ZV shaper are the 
following: 

	 A
K
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The amplitudes and time instants of ZVD shaper 
are, correspondingly, the following:
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The amplitudes and time instants of ZVDD 
shaper are as follows:

	 A
K K K

t1 2 3 1
1

1 3 3
0=

+ + +
=, , 	 (35)

       A K
K K K

t2 2 3 2
0

2

3
1 3 3 1

=
+ + +

=
−

, ,π

ω ζ
	 (36)

	 A K
K K K

t3

2

2 3 3
0

2

3
1 3 3

2

1
=

+ + +
=

−
, ,π

ω ζ
	(37)

	 A K
K K K

t4

3

2 3 4
0

21 3 3
3

1
=

+ + +
=

−
, ,π

ω ζ
	 (38)

	 K e=
−

−

ζπ

ζ1 2
. 	 (39)

Table 2 shows the amplitudes and times of 
impulses using ZV, ZVD and ZVDD methods based 
on calculated system natural frequency and damping 
ratio (see Table 1)

Table 2. Amplitudes and time instants of impulses using ZV, ZVD in 
ZVDD method

Method Amplitude of impulses Time instant of impulses [s]

ZV
A1 = 0.5 t1 = 0
A2 = 0.5 t2 = 1.78

ZVD
A1 = 0.25 t1 = 0
A2 = 0.5 t2 = 1.78
A3 = 0.25 t3 = 3.56

ZVDD

A1 = 0.125 t1 = 0
A2 = 0.375 t2 = 1.78
A3 = 0.375 t3 = 3.56
A4 = 0.125 t4 = 5.34

3 SIMULATION OF TROLLEY AND LOAD MOVEMENT  
USING ANTI-SWAY SYSTEM 

This section simulates performance of different 
anti-sway systems during trolley acceleration and 
deceleration using the non-linear mathematical model 
presented in Section 1. In the simulation, ZV, ZVD 
and ZVDD shapers are used. 

The input signal in the simulation represents force 
on trolley. First, the positive impulse is applied which 
accelerates the trolley for the first 5 seconds (see 
Fig. 6). In the next 5 seconds the trolley is traveling 
uniformly without acceleration. Then, the force is 
applied in the opposite direction causing the trolley to 
uniformly decelerate until it stops.

The shaped input signals (the actual forces), when 
applying ZV, ZVD and ZVDD shapers, are shown in 
Fig. 7. Trolley positions and angles are shown in Fig. 
8.

It can be seen that anti-sway systems noticeably 
reduce load angular deviation and the amplitude of 
oscillations in the steady-state. On the the other hand, 
the anti-sway systems slightly increase settling time. 

Considering the requirement for maximum load 
angular deviation given in the Introduction, it can 
be seen that the ZV shaping method does not satisfy 
the requirements, since load angular deviation in the 
steady-state is higher than 0.01 rad.

In comparison to the ZV shaping method, the 
ZVD shaping method has better performance. The 
highest load angular deviation in the steady-state 
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is now 0.0045 rad (0.26 º). Settling time (when the 
angular deviation becomes lower than 0.01 rad) is 
achieved at 17.75 or 2.75 s after the input force stops 
acting to the trolley (Fig. 6).  

Fig. 6. Force to the trolley

a) 

b) 

c) 
Fig. 7. Shaped input force signal, a) ZV shaper, b) ZVD shaper, c) 

ZVDD shaper

a) 

b) 
Fig. 8. a) Trolley position and b) load angle with ZV, ZVD and ZVDD 

Shaper

a) 

b) 
Fig. 9. System response with ZV, ZVD and ZVDD Shaper on 

changing the length of the hoisting rope and the mass of the 
payload by 5%; a) Trolley position and b) load angle with ZV, ZVD 

and ZVDD Shaper
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The ZVDD shaping method, when compared to 
the ZV and the ZVD shaping method, gives the best 
performance, since oscillations in the steady-state 
are almost fully cancelled (angular deviation is only 
0.001rad). The settling time is now 18.5 s. This is 0.75 
s higher than when using the ZVD shaping method. 

The length of the hoisting rope and the mass 
of the payload is always known a-priori on ship-to-
shore cranes, since the length of the hoisting rope is 
measured by digital encoders, while the mass of the 
payload is measured by precise weighting cells. The 
accuracy of the measurements is 5%. Therefore, it 
is important to evaluate the robustness of anti-sway 
systems on smaller variations of parameters. The 
length of the hoisting rope and the payload mass 
has been increased by 5% while keeping the same 
parameters for ZV, ZVD and ZVDD shapers.

Trolley positions and angles are shown in Figure 
9. The angular deviation, when using ZVD shaping 
method, does not change, while it slightly increases 
for ZVDD shaping method to 0.0012 rad (0.068º). 
We could see that both methods are robust to small 
variations of the length of the hoisting rope and 
payload mass.

The simulation results show that ZV, ZVD 
and ZVDD shapers are very efficient in reducing 
oscillations in the system. The operator (on average) 
stabilises the load within 15 seconds after reaching 
the final position (separately at ship and at truck 
location). The ZVD shaping method needs 2.75 s 
for stabilisation, while ZVDD method requires 3.5 
s. Taking into account that productivity of Panamax 
ship-to-shore cranes in the Port of Koper is about 19 
containers per hour per crane, it can be calculated that 
the productivity could rise by about 2 containers per 
hour per crane.

4 CONCLUSION

Three open-loop anti-sway systems have been 
introduced. The systems could be used on Panamax 
ship-to-shore cranes in the Port of Koper to reduce 
load oscillations during trans-shipment. The efficiency 
of the systems was tested on linearized dynamic 
mathematical model with parameters taken from 
technical specification of Panamax ship-to-shore crane 

in Port of Koper. The simulation results show that all 
three methods reduce load oscillations significantly, 
but only the ZVD and the ZVDD methods completely 
satisfy the given requirements. The ZVDD method in 
comparison to the ZVD method reduces oscillations 
more efficiently, but results in a slightly slower 
response. Since ZVD realisation is simpler and faster, 
it is our preference for anti-sway systems on Panamax 
ship-to-shore cranes in Port of Koper.

The mathematical model used in the simulation 
was undamped with a fixed length of the hoisting 
rope. In our future work, the efficiency of all three 
anti-sway systems will be tested on a mathematical 
model with changing hoisting rope length and 
different damping factors.
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