RECONFIGURABLE MULTI-MICROPROCESSOR SYSTEMS INFORMATICA1/88 UDK 681.519.7 Peter Kolbezen Institut »Jožef Štefan« A communi cation mechaniam based on the exchange o-f the distri- buted topologv in-formation is di3cua«ed. A particular recon-figur— ation tBchnlque is treated to handle the exchange o-f topology in-formation and thus to maintain tho neco«Bary routing tablea. ThiB mechanism handlee thfe recon-f iguratl on dynamically. Inmos Tranaputer concepts aro introduced and applicated on tho .two- dimensional epuare interconhection otructure. "Rakon-f Igurabilni" veeprocaa.orBki siatami. Prispevek obravnava komunikacijski mehanizem, ki je zasnovan na spremembah topologije komunikacijskih poti med mikroprocesorskimi enotami sistema. Namenjen je posebni t.im. "rekon-f igurabi Ini " tehniki, ki obravna­ va spremembo in-formacije o topologiji in na ta naCin vzdrHuje potrebne razpredelnice povezav medprocesorskih komunikacij, V predlogu so vpeljani koncepti Intnosovega transputerja, kot voz- littCnega procesorja v povezovalni dvodimenzionalni kvadratni strukturi. 1. INTRODUCTION Hlghly parallel computing structures promlce to ba a major application area -for the milion- tranaistor chips that Mili be poesible in Just a -feN yeBrs, Such computing systems hava atruc- tural properties that are suitable -for VLSI implaroentatlon. The kBy attributea o-f VLSI computing atructures are - almplicity and regularity - concurrrency and communication - computation intenaiva VLSI. The choice o-f an appropriate architecture -for any alectronlc «yBtem ia very clQsely related to the implemantatipn technology. Thia is es- pecially true in VLSI. The «uporvi»ory overhaad incurrad in general-purpooe supercomputers o-ften fflakes them too SIOM and eKpensive -for reel.-time and signal and Image procasBing. Progreas in VLSI technology has lawered imple- mentation costs -for large array processors to an acceptable level. Algorithmically special- ized procesBora o-ften use di-f-ferent intercon- hection atructures. The matching o-f the struc- ture to the right algorithm has a -fundamental in-fluance on per-formance and coat o-f-fectiva- nBEE. An alternative to the design o-f a globally •ynchronoua array i a to achiava a sal-f-timed ByBtem through the use o-f aaynchronous handsha- king mschanisma eBtabllshad betMean neighboring procesBing elemants, These sel-f-timed -implemen- tatians ara commonly ro-ferred to as wavafront «rrays /8,12,21,23,25/. Th combines the Eystolic pipeli the data-floM computing con array processor may be used tached processor inter-facing host machine or as a stai eguipped Mith a global contr system conaists o-f the p interconnection nBtwork(s), inter-face unit. e wavB-front array ning principi« with cept. A wave-front either as an at- Mith a compatible nd-alone processor ol processor. Such rocBSBor array(s), a host Computer and EKploitation o-f the data-floM principle makes the oHtractiona o-f parallelism and programming •for wave-front arrays relatlvely simpler. A -fa figur to s struc overh based be U9 toler cone cauee thBy mlly dynamica able VLSI pro upport a larg tures usually ead. f^econ-flg on swltching ful for »olv ance. Fault rn in ByBtol o-f the large may hava. lly Interconn cesBor arrayB e- cl ans o-f a involve sign urabl.lity o-f lattices has ing problema tolerance i le and yia.vefr number o-f pr eted or allow an Igorithma iflcant h rray str been pro related t 3 an i mi ont arra oeessor e recon- array Such ardMare uctures ven to o fault portant ys be- iements The paper concludes Mith euggestion« as to hOM a reeofIgurable sistem may be designed Mith constructing a Mave-front array Mith the -family o-f Inmo« Tranaputers /20/. Transputer chip ia an Occam-language-based design that providea hardware aupport -for both concurrent computa- tion and communieation. It adopts the now- popular RISC architačtura. Its -featurea make it * poMerful bullding block for constructing cofKurrent procesaing netMorks. Tha trans­ puter 's linkfi »re the hardware repreaantation 18 of the channela -far proiresB comraunicatian. There is an intimate relationship between transputer channel links and the Communications protocol envisaged -for wavefront arrays. 2. ADAPTIVE SVSTEMS The' treatmented reconfigurations technique in first part oi the -first work on this topic is diseussed in connections with uniform and dense netvsiorks. It is based on Baran's hot-potato routine /2/. A correctness proof o-f a similer algorithm hn.2 also been presented by Tajibnapis One o-f the major objectives o-f the adaptive systems is to be rearrange the canfigurations to match the needs of dif-ferent appl i cat ions. A such -fleKible Recon-fIgurable Multi-micropro- caasor SyBt»mB (RMmS) should include provisions -for insertions (extensions) and deletions (re- duct i ons). In general, a node in a system becomes aware o-f the entire con-f i gurat i on either by a central network control (CNC) or as result of diatribu-- ted ej. the čase. first undergoes by each node de­ li nka and thua lith neighbouring ed in the form of V messages). The I accaunt of the at the detecting logv meeaage per links are aesum- if a link (a,b) In practice thia The topologv message contains tiMO fields rele- vant tO reconfiguration: Identification of destination node i and the shortest distance betweGn the sending node s and node i. A node generates, and may madify, a shortest distance table as shown in f-ig. 1. I )3esti- I nation n~l I Distance D(O) d(l) d(2) ... d(k) ... d(n-n I i Fig. 1 Shortest distance table at node k The entries srs inde^ed by the node identifica- tionjand the entries themselvea &ra the short­ est distance betneen the corresponing destina­ tion 'node and the local node. In this on the i nforma gurat io SKchang mai ntai logv mo cati on mechani cally. res or- changes node, made kn a f i n i t pap a>: ti on t o n th ssag of srn The une I i or n own e ti er, a commun change of th is discusse echnique ie f topologv i e necessarv o is sent on a change in handles the link, node, Kpected occu e. new or w or freo 1 to every liv me. icati on e di 6t d. A pa propose< nformat routing ly if t the con reconf i or link pati on f ree '. i ink and e node mech ribut rtiču d to ion a tabl here figur gurat and and n k , n node in th ani sm ed t lar r hand nd t es. A i s an ation ion node the ew a čase ays based opology econf i - i e t hi e hus to topo- i n d i - This dynami-"- fai1u- reverse r free Are tem in HANDLINB INBERTION OF A NEM NODE Now, j suppose that node 1 of Fig. 2 detocts a new neighbour, say node 17 in the same figure, and -the rest of the system is uniform with the configuration known and node 17 has no tiss with!any other node in the Bystem, except node 1. This ie a major change in the network. The topologv message ei!pected . For node 17, h reguired to reče orraation -froni th of nodes in the cause the ROOT n vector to node ted in the -form In practice, a new lirik does not always belong to a -first-time node joining the 3ystem. The node tnight alread/ have been taking part in the systein. On the other hand, more than one link can become 1 i ve at the same tirne. This occurs if one or more nodes join the sy3tem ali at once, with ali the adjacent links coming up si multaneously. 5. HANDLING FAILED LINKS Star leve e! depends upon the 21 Destination Via neighbouring nodes 2 4 S 13 1 infinity in-finity infinity in-finity 13 3 3 2 2 4 4 16 Fig. 4 Distance table for riode 1 o-f a 16-node ne?twork speci-fic routing mechanism being employd. In •fact, RT is arranged using the distance table. An entry rii,k) or RT indicates the neighbour node, say Xit node O 16 13 (a) Routing table (RT). Ghortest distance in-finity 1 (b) Shortest distance table (SD) Fig. filoutirig and shortesit t.--!5les at node 1 -of a 16-node network 10. DESCRIBTION DF THE RECONFIGURATION ALGO­ RITHMS A. NomenclaturB -for the recon-figuration algo­ rithms a --•- sourcE node ' n =- destination node C ~ node adjacent (neighbour) to node a d[-|j == distance between a and b via the jth neighbour o-f a (tlie superscript a is ofiiitted wtierever it is obvious) rtJ, » the first neighbour on shiortest path between a and b indicated by a neighbour of- a on tl-iat path 22 TMt, -- topologv me&sage compiled at a to be sent to b a a C <- TM[-| = send TMtj to c a V|3 ~ shortest distčince between a and C Wc = ith neighbour o-f a čl Xi = ith neighbour o-f a t = (a temporary variable) B. Algorithmc li Handlas a n«H link coming up at node a 1. (a new link detected at the local node a) Link (a,c) becomss llvei Vj : = min Idi I j I , j e m rf ! = X^ where vf = df,j, TMf : = v], (send topology meeeage). TMi' : = TMf (where Y = Xj) far j = 1,2,...,m, except -for od J 4. Ekit (update distance and rauting tables) C. Algorithem 3i Handlee arrivBd topologv messag« at noda a = 1, =-- c; 1. (detect topologv message at local node a) j TMtj arrives at a; (preparate topolc)gy tiiesEiage) (set distanca topol.ogy F i al d of topologv niessage) •Jist (TM^) : -•: 1, (set destination ficld of topologv mesviagei dest (TM;.) C! (send topologv message to neighbouring nodes) Xj <- Tfl^ ^or j - 1,2,...,m and Xj J* CJ (send available topology i n-f ormat i on to nei» neighbour) (form topologv message) = V dest (TMT) 1 • i -for- i 1,2,, ,n. (send topologv change mesaages to new neighbour-) TMV Ex i t. TMf. (update distance and routing tables) (assign new distance for (a,b) path) d|p,j : = TM§ + w2, (find new min distance (a,b) path) t^ ! = min ld|3 j I , jem (assign the shortest path) if ttj not Vjj then = Xb where tb = dg^j Vg (prepare topologv messages) dist (TMg) dest (TMb) (send topologv message to neighbours) I Xj <-• TMb for al 1 j e m •fi; Exit B. Algorithm 2i Handles link failures at node a 1. (a link failure or occupation detected at node a) link (a,c) failed or occupated; 2. (update the distance table) (save distance vector currespoding to fai1ed/occupatsd link) ti ' = di,j . (set vector dj j to infinity) d^ j : = infinity where Xj = c, and i = 1,2,3 n; j = index of the -failed ar occupated link 3. (update r-outing tables and prepare topologv messages) E. Algorithm 4i Round-rabin rauting algorithm I 1. (input a message at a) Th^ arrives I 2. (find the shortest path (c,b)) i f C = (m-1> then ! C i = O •fi!. (ne;