DERIVING PROTOCOLS FROM SERVICES IN THE FINITE

STATE MACHINE REPRESENTATION

UDK 519.713

INFORMATICA 2/88

Monika Kapus—Kolar
Inst. JoZef Stefan, Ljubljana

A method is suggested for derivation ¢f protocols from services. bazed entirely
on the finite state machine representation. The method provides several
suggestions for human intervention in the design process and thereby for a

great variety of solutions. Other benefits are
uniform treatment of synchronous and asyn-—

tions for data-~flow optimization,

parametrization, transforma—

chronous channels, a uniform apprcach to composition and decomposition of
entities and thereby a uniform approach to design of services and protocols.

Izpelijava protokolov iz servisov ob uporabi predstavitve s koncnimi avtamati.
Predstavlijena je metocda za avtomatske konstrukcijo komunikacijskih protokolov
za realizacijo podanega globalnega servisa, ki v celoti temelji na predstavitvi
8 konénimi avtomati. Metoda je zelo primerna za interaktivno dele, ki vodi v
8iroko paleto resitev. Druge dobre lastnosti metode sSo parametrizacija, trans—
formacije =za optimizacijo pretoka podatkov. enotnha obravnava sinhronih in
asinhronih kanalov in enoten pristop h kompoziciii in dekompoziciii osebkov. Ki
omogola poenctenje nadrtovanjia serviscv in protokolov.

0. Introduction

Derivation of a communication protocoel from a
given service specification is one of the most
challenging problems in the field of computer
networks. Two methoda have been proposed so
far, which we find particularly interesting,
because they provide algorithms for totally
automatic construction of a suitable protocol.
The method, proposed in [Prin}, constructs a
Petri-net type protocol specification from =
finite-atate machine service specification,
while the method of {BochGotz! is based on

‘attribute grammars. In our paper, we are propo—
" sing a method, Dbased entirely on finite state
machines, which follows the gselection / resolu-
tion principle and is therefore also suitable
for construction of protocols in a man-machine
dialogue, -

We assume that a distributed system consists of
a set of entities, communicating with each
other and the environment through a set of
reiiable two-point channels. Some ¢f the chan-
neis are unbounded FIFOs with unknown delays
{asynchreonous), while the others are synchro-
noug (the "rendez—vous' type of communication).

A glokal service, which a system should provide
to the environment, is specified by a £finite
state machine 6, with edges representing an
agynchreonous transmission or reception of a
particular message by the system on a particu-
lar external channel or a synchronous external
event. Paths, ‘leading from the starting state
of B, represent the characteristic seguences of
system actions.

A message is a tuple of parameters, posessing
explicitely or implicitely stated identifiers
and values. The crucial observation about para-
meters ig that each parameter identifier,
occurring in a specification, represents a

global system variable, which is concurrently
updated or read by the entities, ©Parameters,
exchanged in an action, are its output parame-
ters, while parameters, generating the values
of the output parameters, are the input parame-
ters of the action. If an action is not an
asynchronous transmission, the values of its
parameters can also be obtained from the envi-
ronment. G must possess the fcollowing proper-
ties: N

Property ©.1: [t must not contain two non-
terminal states 8. and 8=, such that for every
outgoing edge a in 8., - leading to a state 8,
there is also the same ocutgeoing edge in 5z, and
vice-versa (equivalent states).

Property 0.2: If in a state S,, ‘there are two
paths P: and Pz, such that the action sequence
of Pz is a permutation of the action 'sequence
of P., respecting ali causality relations of P.
(P= is equivalent to Pi), they must both lead
to the game state $S=. Path equivalence is
formalized in the section 1.

Property 0.3: If there is an edge. representing
an action., requiring a value of a particular
parameter as an input, then the edge must be.
preceded from any direction by some edge,
generating the value. :

The first step in our protoceol design method
is to convert G into another finite state
machine BGBr, which mirrors particular design
decisions abhout parallel execution of external
actions of a system, while respecting the
causality relations of G. Then the states of
Gr, requiring communication between entities,
are identified. For each such state. a proce-
dure for exchanging messages on internal chan-
nels must be provided by a designer. : Such
procedures explicitate externally invisible
transitiong of a system, which are initially
hidden in the states of 6., -as indicated in Be.

an extended version of G=. Note also that it is
execution of the internal procedures, that
entities without access to external channels
are used for. At that point it may turn out
that the taak c¢an not be solved with the
existing channels. By integrating the internal
procedures into Gc., another global system beha-
viour specification Gx is obtained. which is
data-flow optimized into Go and subsequently
used for generation of finite state machines
for individual entities.

Two algorithms will be used extensively
throughout the paper: Algorithm 0.1, which
introduces to a state machine a new path, and
Algorithm 0.2, which deletes a particular path.

Algorithm O.1: .
{create a new path P}

begin{Algorithm 0.1}
represent P by a finite set of
segments .
{not all types of the representation might be
guitable for'a particular purpose};
for every segment, which is a concatenation
of an action sequence s and an action
a and should lead from 5: to 85 do
begin
i¥ there is no state Bx, different from B:,
with a single outgeoing edge, namely
a, leading to 8Ba., or with a single
incoming path, namely &, with the
initial state B:x
then create B« as a new state;
if in Bw. there is no outgoing edge a
thet create an edge a from Sx to 8
slae .
if the edge a leads to a state, different
from S=.
then exit with error:
i¥ in 8z, there is no ocutgoing path s
than create a path & from 8: to 8«:
ol se
if the path ® leads to a state, different
from Bk,
than exit with error;
merge the equivalent states
and
end{Algorithm 0.1%.

Algorithm 0. 21

finite

{delete'a particular path, leading from 8: *to

8a}

begin{Aigorithm 0.2}
for every state 8 of the path de
bagin
i¥ in 8, there are some incoming edges. not
iying on the path. and also some, lying
on the path, ’
then
begin
create a state Bu. eguivalent to 8;
redirect the incoming edges of 8, not
lying on the path, to 8a
end;
far every edge = of the path do
if all outgocing edges of the destination
atate of @ are lying on the path
then delete w;
delete the unconnected states;
merge the saquivalent states
end{Algorithm 0.2}.

1. Converting a Global Service Specification
into an Equivalent Form with a Desired Degree
of Parallelism

Service specifications in [BochGotz] use three
types of composition (parallel, sequential and
alternative). This versatility makes it diffi-

cult to identify actions, which could be epa-
bled concurrently., as in a specification. they
might lie far apart.

In a finite state machine specification, paral-
lel composition of actions is represented by
various permutations of the actions. connecting
the same pair of states, with parameters indu-
cing no causality relationship Dbetween the
actions. The desired degree of parallelism in
a global service specification can be achieved
by repeated application of Transformation 1.1,
which increases parallelism, and Transformation
1.2, which decreases it.

The idea behind Transformation 1.1 is that if
there is a path P from a state 8: to a state
8=, the two states may also be connected by all
paths, equivalent to P. P. is equivalent to Pa.
iff there is a path P, sguch that the action
sequerces of P, and Pz can be generated from P
by zero or more applicaticns of Transformation
1.1. Transformation 1.1 generates egquivalent
paths by repeatedly selecting an action az of
the current acticon segquence and moving it
towards the start of the sequence. If in that
process a2 meets an action a,, such that ad is
a potential necessary condition for az
(Predicate 1.1), &= may not move any further.
We wuse the word "potential", because G might
negate the causality relationship between twae
actions "by providing an alternative path with
the two actions in the reverse order.

Predicate 1.1

{a: is a potential necaessary condition for a=z}
bagin{Predicate 1.1}
Predicate 1.1:=
{ay i3 a synchronous action or a reception

and

az 13 a synchronous action or a trans—
mission)

or

a: and a= are two actions on the same
channel

or

a:» generates a parameter wvalue, which is
read or redefined by aa
end{Predicate 1.1}.

Transformation it.1t If there is a path aia=,
connecting 8. and 8=, and &. is not a potential
necessary condition for aa (Predicate 1.1),
then it 1is possible to crsate (by Algorithm
0.1} a rath aza. from 8, to 8=.

To achieve the highest possible degree of
parallelism, Transformation 11.%f should be
applied as long as possible. On the other hand,
we want Ge to be a finite state machine, but if
there is a c¢ycle C and an action a, such that
it can move through the cycle for ever (as no
action of the cycle is a potential necessary
condition for it) and € contains at least two
different actions, the set of pathz, equiva-
lent to the cycle, i3 infinite and can not be
described by a finite state machine. Therefore
Transformation 1.1 must be applied under desig-
ner's control.

If ai: is not a potential necessary condition
for az, a gystem is free to execute the actions
in the reverse order, bhecause the environment
can not observe it, Transformation 1.1 adds a
path, which represents execution of the actiocns
in the reverse order, but as the environment
can not observe the existence of such a path, a
designer is also free to delete it from G by
Transformation 1.2.

Transformation 1.21 If there is a path a.a=
from 8. to Sz and a path aza: from 5. to Sz
and a= is not a potential necessary condition
for a, (Predicate 1.1), then it is possible (by

b

: .
Algorithm 0.2) to delete the path asaa.

2. Identifying States,

Which Require Internal
Coanmunication .

Some sgtates in Be might require communication
between entitiezs. In this section we introduce
Algorithm 2.2, which generates another global
system specification Be by extending G Wwith

internal communication reguirements.

Obgerving the actions, posagible in a
state 8, some of then may be enabled

necugly and some not, Simply speaking,
actions may be enabied simultaneocusly,’
are in parallel or in exclusive
The next design step is to

state 8 a set of exclusive

given
simulta~
a set of

if they
composition,
identify in each

compositiens of

parallel compositions of multisets of actions,
possible in 8, which might be selected Dby a
aystem for simultaneous enabling. RAlgorithm
2.1, if not effected dy designer's decisions,
generates a solution with the highest possible
degree of parallelism and minimal amount of
internal communication, securing complete
implementation of a. service. The algorithm

should be called systematically from Algerithm
2.2.

Algorithm 2.1:

{Al : the set of all alternatives of a given
state 8}
{Ala the set of groups of alternatives, which

may be selected for
hling in 8}

begin{hAlgorithm 2.1}
find A, the set of all actions possible in 8;
find A1, the set of all non-empty multisets
of actions in A, such that the members of
each multiset are in parallel composition
and lead to a final state or a state with an
‘outgoing edge, labeled by an action a, which
is not in parallel composition with the
members-of the multiset or must not be added
to the multiset because of a designer's

simultanecus ena-

decigion
{members of a multiset are in parallel
composition, iff they may access their

parameters simultaneously., sach permutation
of them is represented by an outgoing path
in 8. and any two prefixes of the paths with
the same multiset of actions lead to the
same state):
find Alm, the aet of all subsets of Al. which
are maximal in respect to the following
property P (for special control purposes, a
designer may also decide to cover Al with
subsets, which do poses the property P, but
are not maximal):
{a subset X of a =zet Y
to a property P, iff it has the property P,
but can not be extended by any other
members of ¥ without loosing the property!
if all members (alternatives) of a member X
of Al are enabled simultaneously, the
entities, participating in their execution,
are always able to select one of the
alternatives without any internal. communi-
cation
{the global decision is equivalent to. a
set of local decisions)
end{Algorithm 2.1},

is maximal in respect

Al in Algorithm 2.1 answers the question, which
actions may be enabled simultaneously, because
they are in parallel composition, but one has
to be careful. First, although we wish to
enable simultaneously as many actions as pos-
sible, strict application of that rule s might
lead to an incomplete implementation : rof a
service. Second, if in a state 8B, there is a
loop with all edges labeled with the same
/

7

label, it is possgible to def:na ‘an infinite Al.
whzch requires careful definition of @le .and

careful construction of paths in Algorithm 2.2.

The idea behind grouping of alternatives is
that a global decision procedure for selecting
an alternative for actual execution might to
some extent be performed as a set of local
decision procedures. Respecting the property
minimizes the amount of internal communication
and at the same time provides a golutien to
the problem that actions for further executicn
can only be discussed among entities in terms
of their a priori properties (as the only a
priori property of a reception is its channel,
it might not be possible ta d13t1ngu15h hetween
two alternatives).

If only a partial implementation of & sService
is required, Algorithm 2.1 is the most suitable
point for human intervention. Partial implemen—

tations can be generated by definition of
incomplete sets of nlternnt:ves or groups of
alternatives.

Algorithm 2.2:

bgg;n{hlgorathm 2.2y
Open:=~ [starting state ‘of Gel:
Clowed:= [];
Gc i8 just the starting state of Ge:
while not Dp!n-[] do
bagin SN
move a state 8o from Open to Closed;
find (by Algorithm 2.1) Al {Bn) and Als(Bo):
for each member Aa of Alg (8n) do
begin
if Ae is not the only member of Ala(Bs),
or special guarding is required
then add to GBe & o edge from S to a new
state 8:x
{a state is new, iff there iz no
state with the same.name neither in
Ge nor in 6o}
else 84:= Bp;

find I{Aa), the set of input qurame;ers
Of A: t :
if I(Aa) is not empty
then
begin :
for each member In of I{Am) dD \
begin
find U(In}, the set of entities,
using the value of In in execution
of Aa: P
find - K(In), the set of entities,.
knowing the value of In
and ;
create an edge Te from 8r to a new
state Sa : -
) end i
elme Sa:= By .
{create in 8a a graph Ba, répresenting
execution of As:} :
. for each outgoing path.of 8 in Ge,

representing execution of one of
members of Ag, do
create the same ocutgoing path {in 8a in Ge
{ddd as3 few new edges as rogsible
(Algorithm 0.1), but keep paths, belon-
. ging to different groups ofl .alternati-
ves, disjoint, Do not use in Ga any old
. state names, };
. find Pr(Aa), the set of all entities,
! participating in execution of Aa:

the

for each member E of Pr(As) do
select T(E). the set of all action
" sequences with a length>=0, ekecuted
by E as part of execution of Ag.' after
which E might decide to abandon execu-

tion of Aas and enter a synchronization

procedure ‘ :
{although T(E) is selected by a desig-
ner, it has some mandatory members: the

sequences, after which E has no asynch-
ronous transmission to execute in Aa);

find T. the set of all synchronization
states of Ba
{8 is a synchronization state of Ga, iff
for every entity E, the projection of a
path from Sa to 8 on the actions of E is
in T(E)};
find T, a version of T, in which every
member is replaced by itz old name (the
name of the egquivalent state in Ge):;
for each member S of Tn do
heagin
if Su iz not yet in Ge
then add Su to Bc:
if not 8~ in Closged
then add 8« to Open

end;
for each member S« of T do
begin

find its old name 8w:

¢create in Ge a vTa
end
and
end ;
terminal states of Be:= terminal states of Ge
end{Algorithm 2.2}.

edge from 8s to Sw

Each edge *» requires execution of a

parameter
distribution procedure.
Each state 8o, coming onto Open in Algorithm
2,2, regquires a global decision, what to do
next, and is therefore called a decision state.
If in Sp, there are several groups of alterna-

tives or special guarding is necessary. then So
requires execution of a decision procedure. In
Bz, decision procedures are represented as
trees of 7o edges in decision states (8Sm).

After a group has Dbeen

of alternatives Aa
selected and enabled, it starts executing.
After executing As fOr some time, control of
‘"the participating entities is gradualiy trans-
ferred to a synchronization procedure. States
of 8a, in which all the entities might enter a
synchronization procedure, are called synchro-
nization states. In Gz, synchronization proce-
dures are represented as Te edges in synchroni-
zation states (S8e). With the help of a syn-
chronization procedure, a system synchronizes
to a state 8w of Be, which corresponds to the
currently active synchronization state.

The aim of firing a synchronization procedure
after successful execution of one of the ena-
bled alternatives is distribution of the know~
ledge that the actions, guarded by the alterna—
tive, are now enabled. The aim of firing a
synchronization procedure before successfuyl
execution of any of the enabled alternatives is
resynchronization of a system, after which
another group of alternatives may be =zelected,
This might be necessary. _if the environment is
not forcing the same group of alternatives as
the system and does not coopérate promptly.

To minimize the amount of internal

_ : communica—~
tion, an entity should fire a synchronization
procedure only when it has no other action to

execute without cooperation of the environment,
but in principle, a designer might also define
some additional synchronization statez. When
entering a synchronization procedure, the
entity does not know, which of the enabled
actions have already been executed by other
entities. Therefore definition of gynchroniza-
tion states should bhe consistent, as stated in
Algorithm 2.2,

If in a decisiocn state, there are several
groups of alternatives and a syastem is trying
to execute one of them by repeatedly selecting
a group, trying for some time to execute it and
(if not successful) resynchronizing, some
actions are enabled infinitely often, but not
all the time. If the pending actions are
gynchronous, this is a degradation of fairness

72

which is due to a
external channels

particular
among the

of the system,
distribution of
entities.

3. A BGaneral Design Method for Internal Proce-
dures

The next task is to construct a finite state
machine Go by integrating into Ge the neces-—
gary internal procedures. Go should represent
the total behavicur of a system in a concise
style, similar to that of Gm.

all actions are on external channsels,
which have two end-points, but are observed
only from the side of the system, while the
actions, constituting internal procedures, are
on internal channels with Dboth end-points
within the system. An action on an asynchronous
internal c¢hannel actually consgists of two
events: transmission of a message and reception
of the message, To retain the specification
style of Ge, all actions should be represented
in Go as single events and their granularity
should not become apparent before projecting Ge

In Gp,

onto individual entities.

Let's ignore for a moment the external actions
of & system and concentrate on its internal
actions - the bprotocol. We argue that a

general purpose protocwol should be specified by
a single deterministic finite state machine P,
rapresenting the characteristic sequences of
message transmissions and synchronous events.
In that way, a designer is forced to concen-
trate entirely on inter-entity causality rela-

tions of the protocol and not to rely upon
intra-entity causality relations, which should
be treated as implemantation details. The
approach is a direct application of the ‘“empty

medium abstraction' heuristic¢, which has proved

to be useful for protecol wverification, to
protocol synthesis.

Specifications of individual entities c¢an Dbe
generated from a global protocel specification

P by Algorithm 3.1 and Transformations 1.1 and

1.2. Algorithm 3,1 projects P on one of the
entities €, so that all actions on its incoming
channels become receptions. Then Transforma-

tions 1.1 and 1.2 are applied to specifications
of individual entities to obtain the desired
degree of intra—entity paralielism. In the two
transformations, E represents a system, and the
entities, cooperating with it, represent 1its
environment .

Algorithm 3.1:

{projecting & global protocol specification P
onto an individual entity E}

begin{Algorithm 3.1}
while applicable da
begin
if there is an edge from Ba to Bz, labeled
by an action on a channel. which is not
connected to E

ar
there is an edge a from 8 to 8. and an
edge & from 8§ to 8Ba
then merge 8. and 82 into a single state:
if there are two or more a edges from Ba. to
5=
then replace them by a single a edge
end
and{Algorithm 3.1}.
Application of Transformations 1.1 &and 1.2
might result in several different sets of
individual entity specifications. But this

ambiguity of a global protocel specification P
is not a deficiency of the gpecification
method: As delays of ali asynchronous channels
are totally 1aknown., the sets can not be

distinguished by cbserving the entities for a
finite period of time, hence the ambiguity is
immaterial and any attempt to remove it (by
explicitly menticning asynchronous receptions
in the global state machine or by .specifying
the protocol by a set of local state machines)
is an overspecification and should be avoided.

The basic problem in protocol synthesis is to
avoid deadlocks, unspecified receptions and
unspecified parameters. When designing a global
protecol specification of our tyrpe, those
design errors can be avoided by respecting five
simple common sense Rules 3.1 to 3.5.

Considering only the basic gsemantics of a state
machine, each node represents an exclusive
compogition of the outgeing paths, but in
protocol]l specification, there is alsc another,
equally important type of composition - the
parallel ccomposition of actions. Parallel com—
position of actions can be described by exclu-
s3ive composition of their permutations, Dbut
this mental task is not trivial enoush to be
carried out subconsciously. A potential dead-—
lock or an unspecified reception occurg when—
ever some actions are in parailel composition
by the nature of the system architecture, but
that fact is not properly described by a state
machine, usually because a designer 1is 1ot
aware of the existence of the parallel composi-
tion.

Rules 3.1 and 3.2 define paths, which must
mandatory be specified, while Rules 3.3 to 3.3
define some mandatory properties of the speci-
fied paths. : .

Rule I.1: " If A is a subget of actions, which
are labels of the outgoing edges of a state 8,
such that every entity participates in execu-
tion of at most one member of A (an asynchro-
nous transmission has one participant, the
sender, and a synchronous action has two parti-
¢ipantsl ~ the actions are in parallel composi-
tion, then every permutation of the members of
A must be represented by an outgoing path of S,
as no entity is allowed to make any agsump-—
tiona about execution of the actions of other
entities, which it is not guarding. In the case
of parametrization, any two actions. possible
in a state 8, on different channels, which are
not both synchronous, must also be conzidered
a3 in parallel composition and chey Rule 3.1,
although the actions share a participant. This
ig to guarantsee the soundness of Rule I.5.

Rule J.23 If in a state 8, there is an outgoilng
path @:a8z and, by Rule 3.1, an outgeoing edge a=
must not be created in 8 without <creating an
outgoing path a=za:, then the path must actually

exist,
Rule 3.3 If in a state 8, there are two
outgoing paths with the same mnultiset of

actions M, such that no twa different members
of M Dpelong tc the same channel! and nc two
different synchronous members of M share both
participants, then the two paths must lead to
the same state, as no entity can communicate to
the rest of the gystem any information about
the order, in which it has executed the
actions of M.

Rule 3.4:1 Projection onto any entity must have
Property 0.3.

Rule 3.9

composgition
value of a
neither read

If two actions are
and one of them is
parameter, then the
nor redefine the value.

in parallel
generating a
other must

Formal proof of the ruleg if outside the
of the paper. Intuitively. they prevent unspe-
cified receptions, Dbecause receptions are hid-
den in transmissions. they prevent deadlocks,

Scope

73

because there is no state without trahsmissicns
and they guarantee cocordinated progress of Vall
participating entities. because any assumptions

about non—existing information exchanges are
avoided.
Returning to our original task, we point out

that the initial service specification 6 for a
gystem 8 under design should be obtained by the
sate method. 8§ should he considered as an
entity of a wider closed system W, congisting
of 6§ and the relevant entities, external to S.
A designer should first specify a ‘“protecol”
for the system W, S0 that he is forced to think
about implications of communication on the
channels. connecting entities, external te S,
on the service regquirements for 5. Then 6 can
be generated by Algorithm 3.1.

As suggested in the section 4, the method
should also be used for design of internat
procedures, introduced by Be.

4. Desigh of Parameter Distribution, Decision

Aand Synchronization Procedures

In the section 2, we have defined three tyges
of internal procedures: parameter distr1but1qn
procedures, decision procedures and synchroni-
zation procedures. The nature dof a prbtocolAzs
mainliy determined by decision procedures. while
procedures of the other two types anly pl@y an
auxiliary role. In our method, design of 1n§er—
nal procedures and their integration 1is guided
by eight basic heuristics:

Heuristic 4.1t Initially. each internal proce-—
dure should appear in the specification sgepara-
ted from the others. Message merging is subject
to the final optimization {section 3}.

procedure should

Heuristic 4.2: An internal
initially be scheduled just before its results
are necessary. Earlier subject

scheduling is
to the final optimization. .

In particular, .parameter distribution procedu-—

res are inserted in Be instead of T edges.
Decision procedures are inserted in Bz instead
of ~p trees, -So that the starting state of a
procedure 15 located at the root and its
terminal states at the leaves of a tree. For
synchrenization procedures, the simplest kind
of their integration into Gz is & bit more
complicated and will be discussed later. The

place for their integration is indicated by 1a
edges.

Heuristic 4,3: To prevent harmful re-ordering

of messages, belonging to variocus internal
procedures, during their transport, all parti-
cipants of an internal procedure must agree on
1ts termination, so that the internal procedu-
reg can be treated as atomic. Note that this
15 a general solution to the problem., described
in the section 3.3 of [(BochGotz)l. If some of
the messages are redundant., they can be deleted
in the final optimization, which might someti-—
mes result in the solution from (BochGotz].

Heuristic 4.4: The main point in design of

an
@nternal Praocedure is to determine for each of
its terminal states T the synchronization set
8y (T), the set of all entities, which must know

that the system will progress through T.
that point of design. internal procedures are
scheduled just in time, the members of a
synchronization set Sy (T} are exactly the enti-
ties, executing the actions, possible in T.
When the participants of an internal procedure
have reached an agreement on its termination
(which iz in a terminal state T), the members

of Sy(T) must know, that the execution has
terminated in T. .

As at

Heuristic 4.5t As the bagic aim of an internal
procedure i3 to lead a aystem to a particular
state, it should be designed as an exchange of
proposals about the terminal state, which the
procedure should reach. and sets of terminal
states, asuggested by wvarious participants,
should be explicitly visible in the messages,
so that the terminal state, which a path is
leading to, can be calculated as an intersec-—
tion of the sets, exchanged along the path.
Beside that, terminal states must appear. in
the messages with the same names as in Ge. If
the reguirements are too rigorous, they can be
overcome in the final optimization.

If an internal procedure is a
it must com-

Heuristic 4.6
parameter distribution procedure,
municate the necesgssary parameter values from
the members of the relevant K sets to the
members of the relevant U sets {(see Algorithm
2.2).

Heuristic 4.7: We reguire that internal proce-
dures are provided by a designer (in the spirit
of the section 3), but this is not a seriocus
drawback for the automatization of the protocol
design process, as in practice, decision pro-

cedures, and even more procedures of the other
two types, are drawn from a small set of types,
which can be pre-constructed and used with

suitable parameters, whenever necessary. An
internal procedure must respect Rules 3I.1 to
3.8, where Rule 3.4 must be checked in regard
to the rest of the system specification.

Internal procedures can not be designed in an

optional order. The algorithm is the following:

1. Determine synchronization sets of parameter
distribution procedures and dezign the procedu-
res.

2. Determine synchronization sets of
procedures and design the procedures.
3. Determine synchronization sets of synchroni-
zation procedures and design the procedures.

decision

Now we are ready to define an algorithm for
integrating into Ge a synchronization proce—
dure. Observing a graph Ga, generated by Algo-
rithm 2.2, it is not sufficient to replace by
some procedures the Te edges in ‘its synchroni-
zation states. The whole Ga. together with its

s edges, must be replaced by a graph Ga (the
starting state of Ge is the starting state of
Ga. the terminal states of Ga are those,

pointed to by Ta edges), concisely represen-
ting the action sequences of the expression:

=E€prcae (tp€rcm (B.P(8)))

The expression has the following meaning: For
each member s of a T(E}, design an internal
procedure P(s), put s and P(B) into sequential
com?osition, put the expressions, belonging to
various members of T(E), into or composition.
then put the expresgions, belenging to various
member of Pr(Az), into parallel composition.

With other words:

; each entity E, participating
in execution

of an As, executes an action
sequence 8. mandatory followed by a procedure
P(s), which distributes the knowledge of E
about N, the set of the possible terminal
states of G, as known by E after execution of
#, to the members of the union of the synchro-
niza;ion sets of those states. M is a member of
N, iff in Ba, there is a synchronization state
8. connected with M by a te edge, reachable

from the starting state of Ga by a path. whose
Projection onto E is s.
The terminal state T, to which a path of Ba

should lead, can be determined from the path by
Heuristic 4.5. The requirements of Heuristics
4.3 and 4.4 must be fulfilled on Ga as a whole.
[t turns out, that it is sufficient to fulfil

74

Heuristic 4.4 for each P(s), but for Heuristic
4,3 that might not be true. Hence, it 1s
necessary to “'blow'" each terminal state T of Ga

into a termination agreement procedure for all
entities, participating in Gs. Procedures in
all terminal states of Ge must be the same.

The principles, used in the design of Bs. lead

to another heuristic for construction of inter-
nal procedures:

The first step in design of an
ig to identify the know-
For each

Heuristic 4.8s
internal procedure
ledge, which is to be communicated.
piece of knowledge {(which might be a parameter
value or a set of suggested terminal states).
construct a procedure, which conveys the Know-
ledge from its source to itz destination. Put
all such procedures into parallel composition
and finally put the resulting procedure into
segquential composition with a termination
agreement procedure for all potential partici-
pants.

The 7result of the integration of internal
procedures into Ge ig a finite state machine,
which might have some eguivalent states, that
have to be merged. Beside that, it might be
necessary to introduce some new paths, regquired
by Rules 3.1 and 3.2. As shown in the section
S, the resulting machine G: is further optimi-
zed into Ge.

S5. Final Optimization of a 6lobal Bervice

Provider Spacification

Final optimization is performed by application
of Transformations 5.1 to 5.4. The transforma-—
tions address Rules 3.1 to 3.5, which use the
notion of an action participant. The external
actions of a system {(thogse from the initial
service specification) must be treated asa
internal actions of particular entities, which
are their only participants. The transforma-
tions may only he applied, if they do not
change the order of external actions.

Transformation S5.11 If Rules 3.3 to 3.5 are not
violated. then it is possible to introduce (by
Algorithm 0.1) a particular path and all
paths. required by Rules 3.1 and 3.2,

The transformation could be used for increasing
parallelism or for moving scheduling points of
internal procedures.

Let O be the set of out-
going edges of a state §, Identify P{D), the
get of all paths, mandatory in B by Rule 3I.1.
Suppose that a member a of O ig removed from 8.

Transformation S.2Z:

Identify P(ONa). If Rules 3.4 and 3.5 are not
violated, then it is possible to delete (by
Algorithm 0©0.2) the members of P(0) and intro-
duce to 8 (by Algorithm 0.1) the members of

F{O\a) and all paths,
3.2.

required by Rules 3.1 and

The transformation could be used for decreasing
parallelism or for deleting redundant actions.

If Rules 3,1 to 3.5 are not
violated. it is possible to apply a particular
change of edge labels and merge the resulting
equivalent states and edges.

Transformation 5.3:

The transformation could be used for decreasing
the number of message types or for the final
naming of messages.

Transformation S.41 If Rules 3.3 to 3.5 are not
violated, then it is possible to replace (by
Algorithme 0.1 and 0.2) a path between a pair
of states by another path between the same pair
of sastates and then add (by Algorithm 0.1) all

paths, reguired by Rules 3.1 and 3.2,

The transformation could be used for changing
the order of actions or for merging of actions
(messages) .

should
state

Whenever possible, -the transformations

be applied to such parts of a finite
mac¢hine, that Rules 3.1 and 3.2 do not induce
any new paths or their destination states are
determined by Rule 3.3. For instance. if an
action is executed without knowing. if it will
be necessary at all [(optimistic scheduling,.
introduced e.g. by Transformation 5S.1). the
destination state of a new path p.. which
includes an unnecessary execution of the
action. must be provided by a designer. The
suggested heuristic is to direct p:. to the same
state as p=. which consists of the same
sequence of actions as p.. except that the
unnecegsary. action is deleted.

&. Conclusions

In comparison to [BochGotz]!. which generates an
unique solution, our method erovides several
suggestions for human intervention in the
desian process and thereby for a 4areater va-

75

riety of solutions. Other benefits are para-
metrization. transformations for data~f low
optimization. uniform treatment of synchronous
and asynchronous channels. a uniform approach
to composition and decomposition of entities
and thereby a uniform approach to desian of
services and protocols. Similar conclusions can
be drawn when comparing our methed to [Prinj.

If necessary. the design process can be fully
automatized. The only condition is existence of
parametrized transport procedures and termina-—
tion agreement procedures and of scme rules,
which prevent the process from construction of
infinite machines.

References

[Prin] Prinoth.R.: "An Algorithm to Construct
Distributed Systems from State—-Machines". in
Sunghine.C.(ed.}: "Protocol Specification.
Testing. and Verificatien". pp.261-282. North-
Holland. 1982

{BochGotz] Bochman.G.v.. Gotzhein.R.: "Deriving

Protocel Specifications from Service Specifica-
tions”, Proceedings of the ACM SIGCOM Sympo-
sium. pe. 1468-156. 1986

