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In this paper the rough set theory (RST) approach to machine learning is analysed and 
its drawbacks deseribed. RST often ušes complicated formalization of rather simple 
notions and sometimes invents new notions that make the RST papers hard to read and 
understand. Some authors from the RST community tend to ignore the huge amount pf 
work done in machine learning. This may lead to reinventings and ad-hoc solutions. 

1 Introduction 

Pawlak (1982) defined the rough sets theory 
(RST) which was later used for several applica-
tions and published in a series of papers (e.g. 
Pawlak, 1984; Pawlak et al., 1986). However, 
Wong et al. (1986) compared the RST approach 
with ID3 approach (Quinlan, 1979; 1986) and 
concluded tha t the induetive learning defined by 
Pawlak is just a special čase of the ID3 approach 
and basically differs in some (unrealistic) assump-
tions. To overcome the deficiencies Wong & 
Ziarko (1986) defined the probabilistic RST which 
was later refined by Pawlak et al. (1988). The re-
defined probabilistic RST seems to eliminate some 
drawbacks of the original (discrete) RST, while 
stili containing some problematic issues. 

Later, numerous papers were published on the 
application of RST, which almost ali use the origi­
nal definition of (discrete) RST (with ali its draw-
backs). The most notable publications seem to 
be the paper (Kubat , 1991), the book by Pawlak 
(1991), and the edition of 27 papers in (Slowinski, 
1992). Kubat ends his paper with "It is a pity that 
this topic (RST) has not yet received more public-
ity ...". Maybe the more appropriate claim would 
be: "It is a pity that nobody critically analysed 
the RST and compared the performance of RST 
with well known induetive learning approaches". 

The aim of this paper is to fill this gap. 
In the next seetion the RST approach to ma­

chine learning is briefly deseribed. We deseribe 
the basic terminology and definitions to give the 
reader the impression about the RST approach, 
however, in the RST literature there are many 
more definitions and terminology which often con-
fuses the point. In seetion 3 we diseuss the de­
ficiencies of the RST approach: its formal and 
unreadable terminology, inflexible knowledge rep-
resentation, and ad-hoc solutions. Seetion 4 de-
seribes experimental comparison of performance 
of two "classical" machine learning algorithms 
with the performance of RST. In conclusion we 
analyse the "contribution" of RST to machine 
learning. 

2 Rough sets theory 

2.1 B a s i c d e f i n i t i o n s 

The (discrete) RST (Pawlak, 1982) is introduced 
through an information system which is defined 
as a 4-tuple S = < U,Q,V, f >, where U is 
a finite set of objeets, Q is a finite set of at-
tributes, V is the union of attr ibutes domains 
and f : U X Q —• F is a total funetion tha t 
assigns a value to each at t r ibute of each objeet. 
This funetion is used to define equivalence rela-
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tion called indiscernibility relation for each subset 
of attributes P C Q: 

P = {(x,y)\x,ye UkVq<=P: f(x,q) = f(y,q)} 

(1) 
In other words, objeets x and y are in the relation 
P if they have the same value for every attribute 
from P. The family of equivalence classes of rela­
tion P is denoted by P*. 

A rough set is defined as an approximation of 
set of objeets Y C U and is defined with two 
unions of equivalence classes of objeets (Pawlak, 
1982): 

PY = \J{X £ P*\X C Y) (2) 

PY = \J{X £P*\XC\Y ^ 0 } 

PY is called P-lower approximation of Y and PY 
is called P-upper approximation of Y. The P-
lower approximation therefore contains only ob­
jeets from set Y while P-upper approximation 
contains also objeets from U — Y which are "P-
indiscernible" from some objeets from Y. The 
relation between defined sets and set Y is: 

PY C Y C PY (3) 

An approximation is sometimes represented also 
in terms of three regions: 

P-positive region of set Y in S : 

POSP(Y) = PY 

P-negative region of set Y in S : 

NEGP{Y) = U-PY 

(4) 

(5) 

- P-boundary (doubtful) region of set Y in S : 

BNDP{Y) = PY-PY (6) 

P-positive and P-negative regions contain P-
equivalence classes containing objeets that ali be-
long and ali do not belong to set Y, respeetivelv. 
P-doubtful region is the union of P-equivalence 
classes each of which contains some objeets that 
belong to Y and some objeets that do not. 

Approximation of family of sets is a general-
ization of approximation of set Y. If x is defined 
as: 

X = {YuY2,...,Ym} : YiCU (7) 

then approximation of x by P is defined: 

Pj( = {Py1,RY2,...,PzYm} 
PX = {PYi,PY2,...,PYm} (8) 

If X is a classification (i.e. Yj fl Yj = 0 : Vi, j < 
m > * ¥" i) UiLi Yi = U) then measures of rough-
ness of approximation of x are defined as follows: 

— accuracy of approximation of x by P in S or 
shortly accuracy of classification x 

o / s TA-\card(PYi) n , , 

£ £ i card(PYi) 
(9) 

quality of approximation of classification ofx 
by P in S or shortly quality of classification 
X 

7 P ( X ) = 
£?= icard(fYj) 

card(U) 0 < 7P(X) < 1 

(10) 

2.2 Decis ion rules 

If classification x = {Y\, Y2,..., Ym} is defined in 
information system S = < U,Q,V,f > and a set 
of attributes P C Q induce P-equivalent classes 
X = (X\,X2,...,Xn), decision rules for set Yj 
are defined (Pawlak, 1991): 

OPj = 

{nj : (Des(Xi) =» Des(Yj))] XinYj £ 0; * = l„n} 

and decision rules for a whole system are then 
defined: 

OP(X) = {OPJ;j = l..m} = 

{r{j : (Des(Xi) => Des{Yj)); X{ D Y, ± 0 ; 

i = 1 .. n ; j = 1 .. m} (11) 

where Des(Xi) is a description of an equivalence 
class which is equivalent to the description of ali 
objeets from that class: 

Vx 6 Xi : Des(x) = 

(Pi = vh)HP2 = vh)^- • -A(Pn = vin) = Des(Xi) 
(12) 

where x € U, pk € P, Vjk e VPk. Des{Yj) rep-
resents a description of the value of an action at­
tribute (class). 

Two types of rules are defined: 
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nj is DETERMINISTIC 
Aj H Yj — Aj 

rij is NONDETERMINISTIC 

xt n Yj ± Xi 

2.3 Learning algorithm 

To generate a set of decision rules a subset P of 
attributes must be selected. Decision rules are 
generated using only attributes from P. For both 
these complex tasks the RST approach ušes (ad-
hoc) heuristics. There are some more definitions. 

Let S — (U, Q, V, f) be an information system. 

- Set of attr ibutes R C Q depends on set of 
attributes P C Q in S (denotation P —* R) 

P C R. 

— Set of attributes P C Q is independent in S 

VP' : P' C P => P' D P 

— Set of attr ibutes P C Q is dependent in S 

^ > 3P' : P' C P => P' = P ( P ' -» P ) 

— Set of attributes P C Q is reduct in S <=4> 
P is the greatest independent set in Q 

The definition of a reduct is from (Pawlak et 
al., 1986). The "greatest independent set" is in-
terpreted as locally greatest and not globally. In 
Slowinski (1992) a reduct is defined as the mini-
mal set of attr ibutes that defme the same equiva-
lence classes as original set of attributes (which is 
equivalent to the above definition). Here the word 
"minimal" is again interpreted as locally and not 
globally minimal. . 

From the above definitions we have the follow-
ing properties: 

1. If set of attributes P C Q is independent in 

S => Vp, q G P : -*(p —•<?)& -i(<7 -»• p) 

2. If set of attributes P C Q is independent in 
S_=* VP' C P : card(P'*) < card(P*), 

(P' D P ) 

3. Set of attr ibutes P C Q is dependent in S 
<=> 3P' C P : P ' is independent & P ' -+ 
P - P ' 

There may exist more than one reduct P C Q. 
Learning algorithm as defined in RST, is di-

vided into three steps: 

1. Reduction of those attributes from set Q tha t 
do not change the <5-equivalence classes. For 
such at tr ibute p holds (Q — p) —»• Q. This 
leads to independent set of attr ibutes A for 
which stands: 

Q* = A* 1Q (x) = 7A(X) 

As the number of reducts may be large one 
should need a preference criterion for search-
ing for "good reduct". In the RST literature 
typically an ad-hoc search is performed, such 
as t ry to eliminate first a t t r ibute, then second 
etc. (see e.g. Pawlak et al., 1986; Slowinski 
& Slowinski, 1990; Slowinski, 1992a; Tanaka 
et al., 1992; Grzymala-Busse, 1992). 

2. Elimination of attr ibutes from reduct A 
(which causes joining some of equivalence 
classes and therefore decreases the quality 
of classification 7) until the lowest permitted 
predefined value of 7 is reached. The search 
heuristic in each step eliminates the at t r ibute 
that maximizes 7 for remaining subset P of 
attributes. 

3. Generation of rules for each class in turn us­
ing only attributes from P . Many authors 
from the RST community use the covering 
algorithm (e.g. Wong et al., 1986; Wong 
& Ziarko, 1986). In each iteration one rule 
is generated and correctly classified training 
instances are removed. Iterations terminate 
when ali training instances are removed or 
when no more rules can be found. 

One rule is generated in a top-down man-
ner, starting with empty condition, and by 
specializing the current rule in ali possible 
ways and selecting the most promising spe-
cialization. This continues until the certain 
quality criterion is met. For deterministic 
RST, the quality criterion is the determin-
ism of the conclusion part of the rule (Wong 
et al., 1986). For probabilistic RST, the qual-
ity criterion requires that the percentage of 
the majority class is above the user defined 
threshold a > 0.5 (Wong & Ziarko, 1986). 

Classification with decision rules is straightfor-
ward. If the description of an object is equal to 
the description of the condition attr ibutes of the 
rule, the object is classified in the class repre-
sented with the value of the action at t r ibute of 
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that rude. For nondeterministic rules the diserete 
RST doesn't give any priority to classes as it as-
sumes equal distribution of classes Yj in the equiv-
alence class. That was improved in the probabiUs­
tic RST (Wong & Ziarko, 1986; Pawlak et al., 
1988) where for the conclusion part the distribu­
tion of covered training instances was used. 

Another problem is if the rule for classification 
does not exist (i.e. there is no rule with the de-
seription of condition attributes corresponding to 
the deseription of an object). In this čase the algo-
rithm searches for k closest rules that best mateh 
the object and their conclusion part is averaged 
(Krusinska et al., 1992). 

3 Drawbacks of RST 

3.1 Terminology 

Probably the most confusing thing with RST is 
its complicated formalization of rather trivial (at 
least in the context of machine learning from ex-
amples) notions. While formalization is usually 
welcome and necessary to avoid confusion, in RST 
it adds confusion with numerous new notions and 
unusual terminology that often confliets with the 
usual terminology of machine learning commu-
nity. 

The definition of boundary region BNDp, 
which is the central part of the RST, merely repre-
sents a part of the instance space where attributes 
do not suffice for diseriminating between classes. 
The whole concept of a rough set merely states 
that certain classes cannot be diseriminated from 
other classes. However, there is no information 
provided about the distribution of instances in-
side the boundary region. 

The accuracy of classification (3, defined with 
eq. (9), should not be confused with the usual 
meaning of classification accuracy. The quality of 
classification 7, defined with eq. (10), in fact rep-
resents the percentage of training objeets that can 
be correctly classified using only attributes from 
P. This is equal to the classification accuracy 
on training dat a which may of course drastically 
differ from the classification accuracy on unseen 
objeets. Therefore, 7 is poor search heuristic and 
the same holds for the quality eriterion based on 
the majority class (see step 2 and 3 of the learning 
algorithm in seetion 2.3). 

The definition of dependent and independent set 
of attributes is unusual in the context of machine 
learning. It ušes only logical dependency into 
acount which is not enough. (In)dependency is 
defined in the probability theory, however, RST 
doesn't operate with probabilities at ali. Pawlak 
et al. (1988) try to overcome this (but only for 
probabilistic RST) by defining the measure of de-
pendency in terms of entropy measure. However, 
they define that attributes (variables) X and Y 
are completely independent if 

H(Y\X) = \ogm 

where m is the number of values of attribute Y. 
It is well known that H(Y\X) < H(Y) and that 
X and Y are independent only when H(Y\X) = 
H(Y), and H(Y) is only in a very special (and 
rare) čase equal to log m. 

3.2 Knowledge representation 

The derived rules use a fixed subset of attributes 
and discard probably useful information con-
tained in other attributes. The authors of RST 
claim that sueh attributes are redundant and un-
necessary. This may be true for noise-free, com-
plete data sets with exact classification, which 
obviously is not the čase for the great majority 
of classification problems. For a certain problem 
subspace one subset of attributes may be relevant 
and for the other subspace another subset of at­
tributes may be erucial. 

On the other hand, there is no notion of the 
probability distribution and the reliability of con­
clusion parts of decision rules. Deterministic de-
cision rules, which are in fact just a special čase 
of nondeterministic rules, are supported from n 
training instances belonging to same class where 
n > 1. Obviousb/, for small values of n, the con­
clusion becomes unreliable and probability distri­
bution should be estimated using Laplace's law 
of succession and m-estimate (Cestnik, 1990). Al-
though the probabilistic RST is more flexible with 
this respect, almost ali authors use the determin­
istic RST. 

RST can deal with diserete attributes only and 
continuous attributes have to be diseretized in ad-
vance. There is no obvious way how to deal with 
incomplete data (missing values) and noisy data. 
The only straightforward solution to the problem 
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of missing values is to define the unknown value 
as an additional value of an at tr ibute, which is 
known to be unsatisfactorv (Quinlan, 1989). 

Some authors from the RST communitv use a 
preset decision tree for the knowledge represen-
tation (see e.g. Modrzejewski, 1993). A preset 
decision tree is a decision tree that has the same 
order of attributes for ali paths from the root to 
the leaf. This has an obvious disadvantage to be 
less flexible than ordinarv decision trees which are 
in turn less fiexible than decision rules (Quinlan, 
1987). 

Kubat (1991) describes an algorithm for updat-
ing lower approximation PY of concept Y and up-
per approximation PY using the fixed set of at­
tributes P. Both approximations are represented 
simplv as sets of equivalence classes of relation 
P. The equivalence classes contain objects with 
the same values for ali attributes. Equivalence 
classes are disjoint and the union of ali equiv-
alence classes is equal to the set of ali training 
instances. Theorems in the paper by Kubat are 
more or less trivial, although the awkward formal 
description is clumsv for reading and understand-
ing. They simply describe how new objects can be 
added to these sets and hov/ existing objects can 
be deleted. The only learning in this framework 
is therefore the memorization. There is no induc-
tion, no generalization and neither specialization. 
The knowledge is represented in the same way as 
it was provided to the learner, except that objects 
are grouped into the equivalence classes. Equiv-
alence classes containing objects from more than 
one class are in the boundary region BND(Y). 
Obviouslv, such framework is not very useful and, 
besides, it is drastically sensitive to noise and 
missing data. 

3.3 Ad-hoc solutions 

Instead of using well known results from the prob-
ability theory and the information theory, the 
authors from the RST community often use ad-
hoc definitions and solutions. There is plenty of 
parameters and thresholds with poor theoretical 
background. While dealing with definitions of 
straightforward notions, the RST is strictly for­
mal and rigorous. As soon as more interesting 
problems are encountered, such as finding a good 
reduct or searching for good rules, ad-hoc heuris-
tics are used. 

Such ad-hoc heuristics are described in section 
2.3 (learning algorithm) and discussed in section 
3.1 above. Note, tha t the definition of a reduct is 
ad-hoc, at least in the context of machine learn­
ing, as it is not connected to the class at t r ibute 
at ali. Having enough random attr ibutes, a huge 
number of reducts can be found tha t does not re-
flect any domain regularities at ali. Therefore, 
any definition of a "good" reduct is also ad-hoc 
and any search heuristic for finding a reduct is 
necessarily ad-hoc. 

3.4 Comparisons of R S T to other 
approaches 

Although there are many applications of RST (see 
e.g. Slowinski, 1992), there was practically no 
comparison of performance with existing machine 
learning algorithms. Babic et al. (1992) com-
pared the performance of Assistant (Cestnik et 
al., 1987) with CART (Breiman et al., 1984) on 
two medical da ta sets. They reported 74% and 
84% of classification accuracy, for each data set 
in turn, achieved by Assistant. The same authors 
(Krusinska et al., 1992) tested the performance 
of the RST learning algorithm on the same data 
sets and reported 73% and 80% of classification 
accuracy for each data set in turn They also re-
port about results, obtained by Assistant Profes-
sional package, but only when using unusual clas­
sification methods in combination with the naive 
Bayesian classifier which does not use m-estimate 
of probabilities (Cestnik et al, 1987); and these re­
sults were worse than results reported in (Babic 
et al., 1992). 

Wong et al. (1986) theoretically analysed RST 
and ID3 (Quinlan, 1979) and concluded: 

"The criterion for selecting dominant attributes 
based on the concept of rough sets is a special čase 
of the statistical method if equally probable distri-
bution of objects in the doubtful region of the ap-
prozimation space is assumed." 

The assumption of equally probable (uniform) 
distribution is far from realistic. 

Teghem & Benjelloun (1992) perforrried similar 
analysis and concluded in the self contradictory 
statements: 

"If RST certainlv is an efficient tool to analvse 
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information systems, often more simple and com-
prehensive than Quinlan's method using entropy 
notion, nevertheless the comparison suggests that 
some improvements can stili be effected in the 
rough sets approach. Further researchs are nec-
essary to investigate how the distribution of the 
objects into doubtful regions can be taken into ac-
count." 

4 Experimental comparison 

We reimplemented the RST learning algorithm 
and tested its performance on several real world 
data sets. We compared the performance with 
"classic" machine learning algorithms: Assistant 
induetive learning algorithm for generating deci-
sion trees (Cestnik et al., 1987) and the naive 
Bayesian classifier with m-estimate of probabili-
ties (Cestnik, 1990). 

The important characteristics of our implemen-
tation of RST learning algorithm are: 

— We used the RST learning algorithm, de-
seribed by Wong et al. (1986) generalized 
to probabilistic RST (Wong k Ziarko, 1986; 
Pawlak et al., 1988). We tried different val-
ues of majority class limit a. Here we present 
the best results obtained for each data set. 
This is somehow an overestimation of the 
performance of the RST learning algorithm. 

— In the čase of searching for k "closest rules" 
to the testing object, k was set to 1 and the 
distance between rules and instances was de-
fined as the number of condition attributes 
that have different value. 

— Unknown value was treated as an additional 
value of the attribute. Namely, RST does not 
provide any methodology to deal with this 
problem. 

The deseription of data sets used in our exper-
iments is provided in table 1. Besides the usual 
numeric deseription of the data (number of at­
tributes, number of classes, and number of cases) 
we provide also the class entopy and the propor-
tion of the cases from the majority class. The 
class entropy shows how simple/hard is the clas-
sification problem while the proportion of the ma-
jority class shows the "default accuracy", i.e. the 

accuracy that can be achieved with a simple clas­
sifier that classifies ali instances in the majority 
class. 

One experiment (trial) consisted of dividing the 
set of objects into 70% for learning and 30% for 
testing. We performed 10 experiments, each with 
different split, and results were averaged. The 
measured parameters were: 

- classification accuracy (the percentage of cor-
rectly classified testing instances), results are 
presented in table 2; 

- average information seore, a measure that 
eliminates influence of prior probabilities and 
is defined as follows (Kononenko & Bratko, 
1991): 

yr~-#testing instances r r 

Inf = ^—.—: tltli (13) 
#tesung instances 

where the information seore of classification 
of i-th testing instance is defined with the 
following. Let Ch be the class of i-th testing 
instance, P(Cl) the prior probability of class 
Cl and P'{Cl) the probability returned by a 
classifier. We define the information seore for 
two cases: 
The information seore is positive if the prob-
ability of the correct class given by the clas­
sifier is greater than the prior probability of 
that class. The information gain is equal to 
the prior information minus the posterior in­
formation necessary to correctly classify that 
instance: 

P'(Cli) > P{CU): 

Infi = -log2P(Cli) + log2P'{Ck) 

If the classifier decreases the prior probability 
of the correct class, the provided information 
is wrong and therefore negative. It is equal 
to the prior information minus the posterior 
information necessary to incorrectly classify 
that instance: 

P'{Cli) < P(Ck): 

Infi = 

-(-log2(l - P{CU)) + log2(l - P'{Cli))) 

Results are presented in table 3. 
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Table 1: Characteristic description of experimental data sets. 

domain name 

primary tumor 
breast cancer 
thyroid diseases 
rheumatology 
hepatitis 
lymphography 
criminology 
fresh concrete 

# attributes 

17 
10 
15 
32 
20 
19 
11 
14 

# classes 

22 
2 
4 
6 
2 
4 
4 
4 

# cases 

339 
288 
884 
355 
155 
148 
723 
254 

class entropy 

3.64bits 
0.72bits 
1.59bits 
UObits 
0.73bits 
1.23bits 
1.34bits 
1.77bits 

majority class 

25% . 
80% 
56% 
66% 
79% 
55% 
64% 
42% 

Table 2: Comparison of the classification accuracy (%) of different classifiers on various data sets. 

domain name 

primary tumor 
breast cancer 
thyroid diseases 
rheumatology 
hepatitis 
lymphography 
criminology 
fresh concrete 

Assistant 

44 
77 
73 
65 
82 
79 
61 
61 

naive Bayes 

50 
79 
72 
69 
87 
84 
61 
63 

RST 

35 
80 
61 
66 
81 
77 
63 
61 

Table 3: Comparison of the average information score (bit) of different classifiers on various data sets. 

domain name 

primary tumor 
breast cancer 
thyroid diseases 
rheumatology 
hepatitis 
lymphography 
criminology 
fresh concrete 

Assistant 

1.38 
0.07 
0.87 
0.46 
0.15 
0.67 
0.06 
0.70 

naive Bayes 

1.57 
0.18 
0.85 
0.58 
0.42 
0.83 
0.27 
0.89 

RST 

0.96 
-0.04 
0.46 
0.16 
0.12 
0.51 
0.03 
0.59 
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Ali differences in the classification accuracv (table 
2) that are less than 4 % are statisticallv insignif-
icant (confidence level is 0.99 using two-tailed t-
test). Other differences are significant. However, 
note that for breast cancer, rheumatologv, and 
criminologv, where the differences are the lowest, 
the classification accuracv is practicallv equal to 
the proportion of the majority class. For those 
data sets the information seore is a better mea-
sure. The majoritv of differences in information 
seore (table 3) are statisticallv significant (the ex-
ceptions are the differences between Assistant and 
RST in hepatitis and criminologv). 

Results of RST are poor when compared to As­
sistant and the naive Bavesian classifier with re-
spect to classification accuracv and/or informa­
tion seore. Therefore, RST did not achieve the 
performance of "classic" machine learning algo-
rithms. Besides, nowadays there exist better ma­
chine learning algorithms which usually obtain 
better performance with multistrategy learning 
(e.g. Quinlan, 1993; Brodley, 1993). In fact we 
used a multistrategy approach (in the sense of 
multiple sets of rules) in our implementation of 
RST to improve the performance of RST. How-
ever, the underlying assumptions prevented the 
RST learning algorithm to perform well. 

5 Conclusion 

Lists of references in the papers on RST contain 
plenty of self referencing while none or modest 
number of references from machine learning liter­
ature. There are some exceptions (e.g. Grzymala-
Busse, 1992), however the only purpose of refer­
encing in sueh cases is to inform about alterna­
tive approaches without any explicit comparison. 
It seems that many authors have no overview of 
the work that is going on in machine learning and 
that may be the reason for many reinventings and 
also plenty of ad-hoc solutions. 

Complicated formalization in RST adds con-
fusion with numerous new notions and unusual 
terminology that prevents global overview of the 
RST and prevents systematic analysis. This 
may be why so many authors use RST without 
analysing its basic assumptions, which are in most 
cases unrealistic. The problems with noise and 
incomplete data disable RST from providing efR-
cient solutions for complex real-world problems. 
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