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Abstract. One Weyl representation of SO(13+ 1) contains [1–7], if analysed with respect to
the charge and the spin groups of the standard model, left handed weak (SU(2)I) charged and
SU(2)II chargeless colour triplet quarks and colourless leptons, and right handed weakless
and SU(2)II charged quarks and leptons (neutrinos and electrons). In the spin-charge-family
theory [1–12] spinors carry also the family quantum numbers, explaining the origin of
families and correspondingly the masses of fermions and weak bosons and the origin of
the scalar Higgs and Yukawa couplings. I am demonstrating in this paper that all the fields
appearing in the simple starting action of the spin-charge-family theory in d = (13 + 1) with
the scalar index with respect to d = (3 + 1) and determining masses of quarks and leptons
(and correspondingly also of the weak boson fields) carry the weak and the hyper charge
required by the standard model for the scalar Higgs.

Povzetek. Ena Weylova upodobitev SO(13 + 1) vsebuje [1–7], če jo analiziramo glede
na grupe nabojev in spinov standardnega modela, levoročne kvarke z barvnim tripletnim
nabojem in brezbarvne leptone s šibkim nabojem (SU(2)I), ki nimajo naboja SU(2)II ter
desnoročne barvne triplete kvarkov in brezbarvnih leptonov, ki ne nosijo šibkega naboja,
nosijo pa naboj SU(2)II. V teoriji spinov-nabojev-družin [1–12] nosijo spinorji tudi kvantna
števila družin, kar pojasni izvor družin in tudi mase fermionov in šibkih bozonov ter izvor
Higgsovega skalarja in Yukawinih sklopitev. V tem prispevku pokažem, da nosijo vsa polja
s skalarnim indeksom glede na d = (3+ 1) s = (7, 8), ki nastopajo v enostavni začetni akciji
teorije spinov-nabojev-družin v d = (13 + 1) in določajo mase kvarkov in leptonov, s tem
pa tudi mase šibkih bozonov, šibki in hiper naboj tak, kot ju zahteva standardni model za
skalarno Higgsovo polje. Teorija tako ponudi razlago za izmerjene lastnosti Higgsovega
skalarja ter Yukawinih sklopitev.

10.1 Introduction

The standard model assumed and the LHC confirmed the existence of the Higgs
scalar - the only so far observed bosons with the charge in the fundamental
representation.

I am demonstrating in this paper that the spin-charge-family theory explains
the appearance of the scalar fields with the charges of the Higgs scalar fields. There
are, namely, in this theory, in its simple starting action in d = (13+ 1), the fields
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with the scalar index with respect to d = (3 + 1), which have the properties of
the higgs and explain masses of quarks and leptons together with the Yukawa
couplings, and correspondingly also the masses of the weak vector boson fields.

Let me add that all the scalars, that is all the gauge fields of this theory with
the space index ≥ 5, have in the starting action the corresponding charges with
respect to the scalar index in the fundamental representations: They are either
doublets with respect to the two SU(2) groups (the weak SU(2)I and the second
SU(2)II, which correspondingly result in the properties of the Higgs scalars with
respect to the weak and the hyper charge) or they are colour triplets (the properties
of these triplets are discussed in a separate paper [13]). All these scalar fields carry
the additional charges (the charges not originating in the space index - the family
charges, for example) in adjoint representations.

The referee of this paper stated that it is not at all remarkable that there are
the scalar fields which are doublets with respect to the weak charge after starting
with so many independent fields.

It is, of course, true that a large enough orthogonal group can contain any
desired subgroups. But this is not what the spin-charge-family theory proposes: It
starts with an (very simple) action for spinors and the corresponding gauge fields,
manifesting very limited properties, and it is not at all self-evident that some of
these fields manifest the desired properties in the low energy regime while all the
other spinors and vector and scalar gauge fields - unobserved in the low energy
regime - get high masses through the interaction with only one scalar condensate,
what is happening in the spin-charge-family theory.

On the contrary, it is an extremely encouraging fact that one scalar condensate
makes all the vector and the scalar gauge fields appearing in the spin-charge-family
theory, except those which are observable at the low energy regime (the gravity, the
colour vector gauge field, the weak and the hyper charge vector gauge fields, and
the eight families of quarks and leptons, decoupled into two times four families),
very massive with respect to the weak scale and correspondingly unobservable in
the low energy regime. Several scalar gauge fields, however, which when gaining
nonzero vacuum expectation values (changing in this case also their masses) cause
the electroweak break, have the weak charge equal to ±1

2
and the hyper charge

correspondingly ∓1
2

, as the scalar Higgs in the standard model, while they have
all the other quantum numbers in the adjoint representations. All the rest of the
scalar fields are colour triplets with respect to the scalar space index.

Those who are proposing unifying theories, must offer for the chosen groups
and the chosen representations of these groups also the Lagrange densities, de-
signed for those groups and representations, what calls for the theory beyond
those effective actions. I am proposing a simple starting action, out of which - after
the breaks of symmetries triggered by boundary conditions in a complicated many
body problem - manifests in the low energy regime the observable phenomena.

Let me make in this introduction make a short overview of the spin-charge-
family theory [1,2,7,6,3–5,8–12], pointing out that this theory is offering the expla-
nation for the assumptions of the standard model: For the properties of quarks and
leptons (right handed neutrinos are in this theory the regular members of a family)
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and antiquarks and antileptons, and for the existence of the gauge vector fields 1

of the charges. It is offering also the explanation for the existence of the families
of quarks and leptons and correspondingly for the scalar gauge fields, which are
responsible for masses of quarks and leptons and of weak gauge fields and for
Yukawa couplings.

There are, namely, (only) two kinds [3–5,7,16–18] of the Clifford algebra
objects (connected by the left and the right multiplication of any Clifford object):
the Dirac γa’s and the second γ̃a’s, respectively. These two Clifford algebra objects
(Eq. (9.35)) anticommute, forming the equivalent representations with respect to
each other. If using the Dirac γa’s in d = (13 + 1) to describe in d = (3 + 1) the
spin and all the charges, then γ̃a’s describe families.

All predictions of the spin-charge-family theory in the low energy regime
(after the break of the starting symmetry) follow from the simple starting ac-
tion (Eq.(10.1)) in d = (13+ 1) for spinors carrying two kinds of a spin (no charges)
and for the vielbeins and the two kinds of spin connection fields, with which
spinors interact.

Let us first tell that one Weyl representation of SO(13, 1) contains [1,2,7,6,14],
if analysed with respect to the subgroups SO(3, 1)× SU(2)I× SU(2)II × SU(3)
×U(1), all the family members, required by the standard model, with the right
handed neutrinos in addition: It contains the left handed weak (SU(2)I) charged
and SU(2)II chargeless colour triplet quarks and colourless leptons (neutrinos and
electrons), and right handed weakless and SU(2)II charged quarks and leptons,
as well as right handed weak charged and SU(2)II chargeless colour antitriplet
antiquarks and (anti)colourless antileptons, and left handed weakless and SU(2)II
charged antiquarks and antileptons. The antifermions are reachable from the
fermions by the application of the discrete symmetry operator CN PN , presented
in ref. [14].

The theory accordingly explains how and why is the weak charge connected
with the handedness determined by the spin degrees of freedom in d = (3+1). One
Weyl (one family) representation of spinors of the group SO(13, 1) is presented in
table 9.3. Each state is written as a product of nilpotents and projectors defined in
the ”technique” [4,16,18,17], short version of which can be found in appendix 9.9.
Quantum numbers of each of the family members, all are presented in table 9.3
together with the quantum numbers, are defined in Eqs. (10.8, 10.9, 10.10).

The symmetry of both kinds of groups, SO(13, 1) and S̃O(13, 1) (are assumed
to) break simultaneously, influencing family members and families of spinors, as
well as the gauge fields. After the break of symmetries from the manifoldM(13+1)

to M(7+1) × M(6), which makes all the families, except the 2
7+1
2

−1 ones deter-
mined by the group S̃O(7, 1), massive 2, carries each family member the family

1 In this sense the spin-charge-family is the Kaluza-Klein like theory [15].
2 In this paper the break of symmetries in the way that only 2

(7+1)
2

−1 families stay massless,
while all the others get high masses of the order above the unifying scale, is just assumed.
This assumption, however, is supported by several works on the toy model with the
same starting action (Eq. (10.1)) but with d = (5 + 1), ref. [20,23], while the preliminary
work on this more complex case is in progress.
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quantum numbers, belonging in S̃O(7, 1) to two times S̃U(2) × S̃U(2) groups,
originating in S̃O(3, 1) and in S̃O(4), respectively (where S̃O(n) represent the sub-
groups the generators of which are expressed by γ̃a). The families correspondingly
decouple to two times four families.

The generators of the corresponding subgroups of the family group S̃O(7, 1),
are defined in Eqs. (10.11, 10.12). To each family member of each family the
antimember corresponds, accessible from the member by the discrete symmetry
operator CN PN , which does not depend on γ̃a’s, as explained in the ref. [14,25].

Let us add that since all the charges, with the family charge included, emerge
from the spins, correspondingly all the charges are quantized.

Quarks and leptons have the ”spinor” quantum number (τ4, originating
in SO(6), Eq. (10.10)) 1

6
and −1

2
, respectively 3, with the sum of both equal to

3× 1
6
+ (−1

2
) = 0.

The spin-charge-family theory therefore predicts that there are two decoupled
groups of four families: The fourth [1,7,6,9] to the already observed three families
of quarks and leptons should (sooner or later) be measured at the LHC [11], while
the lowest of the upper four families constitute the dark matter [10].

Let me summarize this first part of the introduction with the statement: The
spin-charge-family theory is offering the explanation for the assumptions of the standard
model, having correspondingly a chance to be the right step beyond the standard
model.

This paper presents in section 10.2 that the properties of the scalar field, the
weak and the hyper charge of the scalar Higgs, which are in the standard model
just assumed to properly ”dress” the right handed members by the weak and the
hyper charge, appear in the spin-charge-family naturally, offering the explanation for
the appearance of the scalar fields, observed so far as the scalar Higgs.

In the subsection of this introductory section the simple starting action of
the spin-charge-family theory is presented, as well as all the assumptions made to
achieve that the theory manifests at low energies the observed phenomena.

In section 10.3 the resume and conclusions are presented. In the first ap-
pendix 9.9 a short review of the technique, used in this paper to manifest properties
of the spinor states, as well as the expressions for the two kinds of spin connection
fields, in terms of vielbeins and the spinor sources, are added.

In section 10.3 the resume and conclusions are presented. In appendix a short
review of the technique, used in this paper to manifest properties of the spinor
states, as well as the expressions for the two kinds of spin connection fields, in
terms of vielbeins and the spinor sources, are added.

10.1.1 The action of the spin-charge-family theory and the assumptions

Let me present the assumptions on which the theory is built, starting with the
(simple) action in d = (13+ 1):

3 In the Pati-Salam model [21] this ”spinor” quantum number is named B−L
2

quantum
number and is twice the ”spinor” quantum number, for quarks equal to 1

3
and for leptons

to −1.
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i. In the simple action [7,1] fermions ψ carry in d = (13+ 1) as the internal
degrees of freedom only two kinds of spins, no charges, and interact correspondingly with
only the two kinds of the spin connection gauge fields,ωabα and ω̃abα, and the vielbeins,
fαa.

S =

∫
ddx E Lf +∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (10.1)

Here 4 fα[afβb] = fαafβb − fαbfβa. Sab and S̃ab are generators of the groups
SO(13, 1) and S̃O(13, 1), respectively, expressible by γa and γ̃a.

ii. The manifoldM(13+1) breaks first intoM(7+1) timesM(6) (which man-
ifests as SU(3) ×U(1)), affecting both internal degrees of freedom - the one rep-
resented by γa and the one represented by γ̃a, leading to 2((7+1)/2−1) massless
families, all the rest families get heavy masses 5. Both internal degrees of free-
dom, the ordinary SO(13 + 1) one (where γa determine spins and charges of
spinors) and the S̃O(13 + 1) (where γ̃a determine family quantum numbers),
break simultaneously with the manifolds.

iii. There are additional breaks of symmetry: The manifoldM(7+1) breaks
further intoM(3+1)×M(4).

iv. There is a scalar condensate of two right handed neutrinos with the
family quantum numbers of the upper four families, bringing masses of the scale
above the unification scale, to all the vector and scalar gauge fields, which interact
with the condensate.

4 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

5 A toy model [23,24,14] was studied in d = (5 + 1) with the same action as in Eq.‘(10.1).
For a particular choice of vielbeins and for a class of spin connection fields the manifold
M5+1 breaks into M(3+1) times an almost S2, while 2((3+1)/2−1) families stay massless
and mass protected. Equivalent assumption, although not yet proved that it really works,
is made also in the case that M(13+1) breaks first into M(7+1) ×M(6). The study is in
progress.
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v. There are nonzero vacuum expectation values of the scalar fields with
the scalar indices (7, 8), which cause the electroweak break and bring masses to
the fermions and weak gauge bosons, conserving the electromagnetic and colour
charge.

Comments on the assumptions:
i.: This starting action enables to represent the standard model as the ef-

fective low energy manifestation of the spin-charge-family theory, explaining all
the standard model assumptions, with the families included. There are (before the
electroweak break all massless) observable gauge fields: gravity, colour (SU(3),
from SO(6)) octet vector gauge fields, weak (SU(2)I from SO(4)) triplet vector
gauge field and ”hyper” (U(1) from SO(6)) singlet vector gauge fields. All are
superposition of fαc ωabα. And there are (before the electroweak break all mass-
less) observable (eight rather than observed three) families of quarks and leptons.
(There are indeed two decoupled groups of four families, in the fundamental
representations of twice S̃U(2)× S̃U(2) groups, the subgroups of S̃O(3, 1)× S̃O(4).
There are correspondingly the scalar fields with the weak and the hyper charge
of the scalar Higgs and with either two kinds of the family quantum numbers
in the adjoint representations - they are two times two triplets, emerging from
the superposition of fσsω̃abσ with s ∈ (7, 8), in accordance with twice S̃U(2)×
S̃U(2) groups, the subgroups of S̃O(3, 1)× S̃O(4) - or with the quantum num-
bers (Q,Q ′, Y ′) emerging from the superposition of fσsω̃abσ. Both determine the
Yukawa couplings.) The starting action contains also the additional SU(2)II (from
SO(4)) vector gauge field and the scalar fields with the space index s ∈ (5, 6) and
t ∈ (9, 10, 11, 12), as well as the auxiliary vector gauge fields expressible with viel-
beins, which are the superposition of fµmω̃abµ. They all remain either auxiliary
or become massive after the appearance of the condensate.

ii., iii.: The assumed breaks explain why the weak and the hyper charge are
connected with the handedness of spinors, manifesting the observed properties of
the family members - the quarks and the leptons, left and right handed - and of
the observed vector gauge fields. Since the left handed members are weak charged
while the right handed are weak chargeless, the family members stay massless
and mass protected up to the electroweak break. Antiparticles are accessible from
particles by the CN and PN , as explained in refs. [14,25]. This discrete symmetry
operator does not contain γ̃a’s degrees of freedom. To each family member there
corresponds the antimember, with the same family quantum number.

iv.: It is the condensate of two right handed neutrinos with the quantum
numbers of the upper four families, which makes all the scalar gauge fields (with
the index (5, 6, 7, 8), as well as those with the index (9, . . . , 14)) and the vector
gauge fields, manifesting nonzero τ4, τ23, Q ,Y, τ̃4, τ̃23, Q̃ ,Ỹ,Ñ3R (Eqs. (10.8, 10.9,
10.10, 10.11, 10.12, 10.13)) massive [13].

v.: At the electroweak break the scalar fields with the space index s = (7, 8),
originating in ω̃abs, as well as some superposition ofωs ′s"s, those which conserve
the electromagnetic charge, get nonzero vacuum expectation values, what changes
also their masses. They determine mass matrices of twice the four families, as well
as the masses of the weak bosons. All the rest scalar fields keep masses of the
condensate scale and are correspondingly (so far) unobservable in the low energy
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regime 6. The fourth family to the observed three ones will (sooner or later) be
observed at the LHC. Its properties are under the consideration [11], while the
stable of the upper four families is the candidate for the dark matter.

The above assumptions enable that the starting action (Eq. (10.1)) manifests
effectively in d = (3+ 1) in the low energy regime by the standard model required
degrees of freedom of fermions and bosons [1,2,7,6,3–5,8–12], that is the quarks
and the leptons, left and right handed, the families of quarks and leptons and all
the known gauge fields, with (several, explaining the Yukawa couplings) scalar
fields included.

To see this let us rewrite formally the action for the Weyl spinor of (Eq.(10.1))
as follows

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} ,

p0s = ps −
1

2
Ss
′s"ωs ′s"s −

1

2
S̃abω̃abs ,

p0t = pt −
1

2
St
′t"ωt ′t"t −

1

2
S̃abω̃abt , (10.2)

where m ∈ (0, 1, 2, 3), s ∈ 7, 8, (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab) run
within (0, 1, 2, 3) and (5, 6, 7, 8), t ∈ (5, 6, 9, . . . , 13, 14).

The first line of Eq. (10.2) determines the kinematics and dynamics of spinor
fields in d = (3+ 1), coupled to the vector gauge fields. The generators τAi of the
charge groups are expressible in terms of Sab through the complex coefficients
cAiab, as presented in Eqs. (10.9, 10.10, 10.13)

τAi =
∑
a,b

cAiab S
ab , (10.3)

and the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (10.4)

The corresponding vector gauge fields AAim are expressible with the spin connec-
tion fieldsωstm, with (s, t) either ∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 13, 14), in agreement
with the assumptions ii. and iii.. Before the electroweak break the vector gauge
fields appearing in the first line of Eq. (10.2) are all massless: ~A3m carries the colour
charge SU(3) (originating in SO(6)), ~A1m carries the weak charge SU(2)I (SU(2)I
and SU(2)II are the subgroups of SO(4)) and AYm = sin ϑ2A23m + cos ϑ2A4m (Y is
defined in Eq. (10.13), τ4 in Eq. (10.10), the corresponding U(1) group originates
in SO(6)), A4m is defined in Eq. (10.15), if the scalar space index s is replaced by

6 Correspondingly d = (13+ 1) manifests in d = (3+ 1) spins and charges as if one would
start with d = (9 + 1) instead of with d = (13 + 1), since the plane (5, 6) and the plane in
which the vector τ4 lies, are unobservable at low energies.
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the space vector indexm, A23m is the third component of the second SU(2)II field
~A2m. The corresponding charges (~τ3, ~τ1, Y) are the conserved charges.

Before the appearance of the condensate of the two right handed neutrinos
with the quantum numbers of the upper four families (properties of the condensate
are presented in table 10.1) at the scale far about the electroweak scale, all the three
components of the field ~A2m are massless. The condensate gives the mass of the or-
der of the scale of the appearance of the condensate toAY

′

m = cos ϑ2A23m−sin ϑ2A4m,
and to all the scalar gauge fields, presented in the second and the third line of
Eq. (10.2), leading to AAis , s ∈ (5, 6, . . . , 13, 14) and ÃAit , t ∈ (5, 6, . . . , 13, 14).

Vector gauge fields AYm, ~A1m and ~A3m do not couple to the condensate (ta-
ble 10.1).

In Eqs. (10.15, 10.14) the expressions for the scalars with the scalar index (7, 8)

in terms of both kinds of the spin connection fields are presented. These scalar
fields (the second line in Eq. (10.2)) determine after the electroweak break the mass
matrices of the two decoupled groups of four families. Getting nonzero vacuum
expectation values they cause the electroweak break, changing also their own
masses. These scalar fields determine also the masses of the gauge bosons.

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 10.1. The condensate of the two right handed neutrinos νR, with the VIIIth family
quantum numbers, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The right handed neutrino has
Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1, Ñ3L = 0, Ỹ = 0, Q̃ = 0. The
family quantum numbers are presented in table 9.4, taken from the ref. [13].

Among the vector gauge fields ~A3m and ~̃A3m and the corresponding vielbeins
only one of these three vector gauge fields is the propagating one, while the rest
two are the auxiliary fields as one can learn from Eqs. (9.55, 9.56) of the second
appendix section 9.10, if taking into account that there is no spinor (fermion)
sources with the corresponding quantum numbers. Equivalently, also only one
of the three vector gauge fields ~A1m, ~̃A1m and the corresponding vielbein field is
the propagating field, the other two are the auxiliary fields, as well as only one of
the three vector gauge fields ~ANLm , ~̃ANLm and the corresponding vielbein field is the
propagating field, while ~ANRm is massive due to the interaction with the condensate
of the two right handed neutrinos through quantum numbers ~̃NR, presented in
Eqs. (10.8, 10.11).

Let me summarize this subsection: The starting action (Eq.(10.1)) of the spin-
charge-family theory manifests under the assumptions i.-v. in the low energy regime
properties of the standard model, explaining the standard model assumptions: Before
the electroweak break all the scalar gauge fields and the vector gauge fields -
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except the colour, the weak and the hyper vector fields (and the gravity), which
stay massless - are massive, due to the interaction with the scalar condensate of
the two right handed neutrinos with the family quantum numbers of the upper
four families. There are also the two decoupled massless groups of four families.

At the electroweak break the scalar gauge fields, carrying the scalar space
index and keeping the electromagnetic charge conserved and changing their own
masses, bring masses to all the fermions and all the gauge fields, except to the
gavity, electromagnetic and the colour ones.

Let me comment that in the presence of the spinor fields (as it is the con-
densate, for example) all three gauge fields - the vielbeins and the two kinds of
the spin connection fields - are in general the propagating fields. If there are no
spinors present, only one of the three fields is the propagating field, the other
two are expressible with the propagating one (as it is well known). In the second
appendix 9.10 the expressions for the spin connection fields of both kinds in terms
of the vielbeins and the spinor sources are presented, taken from the ref. [20].

The assumed breaks should occur spontaneously, determined by the starting
action and the boundary conditions. To prove that this really can happen is a
very difficult (many body) problem. Although several studies made so far, for
either a toy model in d = (5 + 1) or for the d = (13 + 1) case, support these
assumptions, yet several additional studies are needed to justify the assumptions
and to clarify further the properties of the scalar and vector gauge fields and of
the spinor families, appearing in the starting action. Also the comparison with
all the other works made on the unifying theories are needed to see to which
extend predictions of this theory coincide with the other theories in the literature,
in which sense and what one can learn out of them.

The standard model subgroups of the SO(13+ 1) and of the S̃O(13+ 1) group
and the corresponding gauge fields To calculate quantum numbers of one Weyl
representation presented in table 9.3 in terms of the generators of the standard
model groups τAi (=

∑
a,b c

Ai
ab S

ab) one must look for the coefficients cAiab
(Eq. (10.4)). The generators τAi are the generators of the charge groups. Similarly
one expresses also the spin and the family degrees of freedom.

The same coefficients cAiab determine operators which apply on spinors and
on vectors. The difference among the three kinds of operators - vectors and two
kinds of spinors - lies in Sab.

While Sab for spins of spinors is equal to

Sab =
i

4
(γa γb − γb γa) , (10.5)

and S̃ab for families of spinors is equal to

S̃ab =
i

4
(γ̃a γ̃b − γ̃b γ̃a) , (10.6)

one must take, when Sab apply on the spin connectionsωbde (= fαe ωbdα) and
ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), the
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operator

(Sab)ceAd...e...g = i(ηacδbe − η
bcδae )A

d...e...g . (10.7)

This means that the space index (e) ofωbde transforms according to the require-
ment of Eq. (10.7), and so do b, d and b̃, d̃. I used the notation b̃, d̃ to point out that
Sab and S̃ab (= S̃ãb̃) are generators of two independent groups.

One finds [1,7,6,3–5,8,12] for the generators of the spin and the charge groups,
which are the subgroups of SO(13, 1), the expressions:

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (10.8)

where the generators ~N± determine representations of the two SU(2) subgroups
of SO(3, 1), generators ~τ1 and ~τ2,

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78), (10.9)

determine representations of the SU(2)I× SU(2)II invariant subgroups of the
group SO(4), which is further the subgroup of SO(7, 1) (SO(4), SO(3, 1) are sub-
groups of SO(7, 1)), and the generators ~τ3, τ4 and τ̃4

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) ,

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) , (10.10)

determine representations of SU(3)×U(1), originating in SO(6), and of τ̃4 origi-
nating in S̃O(6).

One correspondingly finds the generators of the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (10.11)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (10.12)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4)
are the subgroups of S̃O(7, 1).
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One further finds

Y = τ4 + τ23, Y ′ = −τ4 tan2 ϑ2 + τ23, Q = τ13 + Y, Q ′ = −Y tan2 ϑ1 + τ13,

Ỹ = τ̃4 + τ̃23, Ỹ ′ = −τ̃4 tan2 ϑ̃2 + τ̃23, Q̃ = Ỹ + τ̃13, Q̃ ′ = −Ỹ tan2 ϑ̃1 + τ̃13.

(10.13)

The scalar fields, responsible [1,2,7] - after getting in the electroweak break
nonzero vacuum expectation values - for masses of the family members and of
the weak bosons, are presented in the second line of Eq. (10.2). These scalar fields
are included in the covariant derivatives as −1

2
Ss
′s"ωs ′s"s −

1
2
S̃ãb̃ω̃ãb̃s, s ∈ (7, 8),

(ã, b̃), ∈ (0̃, 1̃, . . . , 8̃), where ã, b̃ is again used to point out that (a, b) belong in
this case to the ”tilde” space.

One finds, by taking into account Eqs. (10.11, 10.12) and Eq. (10.13), for the
choice of the ω̃ãb̃s scalar gauge fields, contributing to the electroweak break, the
expressions

−
1

2
S̃ãb̃ ω̃ãb̃s = −(~̃τ1̃ ~̃A1̃s +

~̃NL̃
~̃A
ÑL̃
s + ~̃τ2̃ ~̃A2̃s +

~̃NR̃
~̃A
ÑR̃
s ) ,

~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s) ,

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s + i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s) ,

~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) ,

~̃A
ÑR̃
s = (ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) ,

(s ∈ (7, 8)) . (10.14)

Amongωabs, which contribute to the mass matrices of quarks and leptons, one
finds when using Eqs. (10.9, 10.10, 10.13), the expressions

−
1

2
Ss
′s"ωs ′s"s = −(g23 τ23A23s + g13 τ13A13s + g4 τ4A4s) ,

g13 τ13A13s + g23 τ23A23s + g4 τ4A4s = gQQAQs + gQ
′
Q ′AQ

′

s + gY
′
Y ′AY

′

s ,

A4s = −(ω9 10 s +ω11 12 s +ω13 14 s) ,

A13s = (ω56s −ω78s) , A23s = (ω56s +ω78s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs ,

AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (10.15)

Scalar fields from Eq. (10.14) couple to the family quantum numbers, while
those from Eq. (10.15) distinguish among family members. In Eq. (10.15) the
coupling constants were explicitly written to see the analogy with the gauge fields
in the standard model.

Expressions for the vector gauge fields in terms of the spin connection fields
and the vielbeins, which correspond to the colour charge (~A3m), the SU(2)II charge
(~A2m), the weak charge (SU(2)I) (~A1m) and the U(1) charge originating in SO(6)
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(~A4m), can be found by taking into account Eqs. (10.9, 10.10). Equivalently one finds
the vector gauge fields in the ”tilde” sector. One really can use just the expressions
from Eqs. (10.15, 10.14), if replacing the scalar index swith the vector indexm.

Let me summarize this subsubsection: The expressions for the operators τAi

are presented, either in terms of Sab (Eq. (10.5)) or (in this case we name them
τ̃Ai) in terms of S̃ab (Eq. (10.6)), valid also in terms of Sab (Eq. (10.7)), affecting
correspondingly spinors spin and charges quantum numbers, spinors families
quantum numbers and scalar or vector gauge fields, respectively. Also the expres-
sions for those scalar gauge fields, which contribute to the electroweak break by
getting nonzero vacuum expectation values, in terms of the corresponding spin
connection fields are presented (Eqs.(10.15, 10.14)). When the scalar index s is
replaced by the vector indexm, the expressions for the vector gauge fields in terms
of spin connection fields follow.

10.2 Scalar fields contributing to the electroweak break are
weak charge doublets

In this main part of the paper is demonstrated that all the scalar gauge fields with
the scalar index s ∈ (7, 8), which get nonzero vacuum expectation values causing
the electroweak break, carry the weak and the hyper charge as does the scalar
Higgs of the standard model.

All the scalars (the gauge fields with the scalar index with respect to d =

(3+ 1)) of the action (Eq. 10.1) contribute charges in the fundamental representa-
tions: The scalars with the space indices s ∈ (7, 8) and s ∈ (5, 6) are, with respect
to this scalar space degree of freedom, before the appearance of the condensate (ta-
ble 10.1), the weak (SU(2)I) and the second SU(2)II doublets. After the appearance
of the condensate only the weak and the hyper charge Y remain the conserved
charges, so that it is the third component of τ23, which determines the hyper
charge (Y = τ23 + τ4, Eq. (10.13)) of these scalar fields, since τ4 applied on the
scalar index of these scalar fields gives zero, according to Eqs. (10.9, 10.10, 10.7).

The scalars with the space indices s ∈ (9, 10, . . . , 13, 14) are, again with respect
to this scalar space degree of freedom, colour triplets [13]. There are no additional
scalar indices and therefore no additional corresponding scalars with respect to
the scalar indices in this theory.

The scalars, however, carry additional quantum numbers Ai, the states of
which belong to the adjoint representations with respect to either τ̃Ai or τAi.
While, to reproduce the low energy phenomena, the scalar fields of all the family
quantum numbers are allowed, only those τAi are acceptable, which conserve after
the electroweak break the electromagnetic charge. The scalar fields with nonzero
vacuum expectation values carrying nonzero weak charge also due to ~τ1 would
cause nonconservation of the electromagnetic charge (see the assumption v. and
the corresponding comments in subsection 10.1.1).

The colour triplet scalars contribute to transition from antileptons into quarks
and antiquarks into quarks and back, unless the scalar condensate of the two right
handed neutrions, presented in table 10.1, breaks matter-antimatter symmetry
[13]. This condensate breaks also the SU(2)II symmetry, leaving massless (besides



i
i

“proc14” — 2014/12/8 — 18:22 — page 175 — #189 i
i

i
i

i
i

10 The Spin-charge-family Theory Explains Why the Scalar Higgs Carries. . . 175

gravity) only the colour, weak and the hyper charge vector gauge fields. Also all
the scalar fields get masses through the interaction with the condensate.

When at the electroweak break the scalar fields with the scalar indices s ∈
(7, 8) originating either in ω̃abs or in those superposition ofωs ′s ′′s which conserve
the electromagnetic charge (Eq. (10.16)) get nonzero vacuum expectation values,
changing also their own masses, they bring masses to all the massless fermions
(spinors), breaking their mass protection, and to weak bosons.

Let us recognize, by taking into account Eq. (9.44) and table 9.3, that γ0 γs

appearing in {
∑
s=7,8 ψ̄γ

sp0s ψ} in the second line of Eq. (10.2), transform for
either s = 7 or s = 8 the right handed u-quark (uc1R ), weak chargeless, with the
hyper charge Y = 2

3
from the first line of table 9.3 to the left handed weak charged

u-quark (uc1L ) with the hyper charge 1
6

from the seventh line of the same table, or
that γ0 γs transform the right handed ν-lepton (νR), weak chargeless, with the
hyper charge Y = 0 from the 25th line of the same table 9.3 to the left handed weak
charged ν-lepton (νL) with the hyper charge −1

2
from the 31st line of the same

table.
Now is the time to prove that the scalar fields with the scalar index s ∈ (7, 8)

from the second line of Eq. (10.2) and with quantum numbers of Eq. (10.16) really
carry the weak and the hyper charge as required by the standard model. I introduce
in Eq. (10.16) common notation AAis for all these scalar fields, independently of
whether they origin inωabs - in this case they do not carry the additional weak or
hyper charge due to ~τA - or ω̃ãb̃s fields.

AAis ⊃ (AQs , A
Y
s , A

Y ′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi ⊃ (Q, Y, Y ′ = − tan2 ϑ2τ4 + τ23, ~̃τ1, ~̃NL, ~̃τ2, ~̃NR) . (10.16)

These scalars, the gauge scalar fields of the generators τAi and τ̃Ai (Eqs. (10.11,
10.12, 10.9, 10.10)), are expressible in terms of the spin connection fields (Eqs. (10.14,
10.15)).

One expects that the solutions with nonzero momentum lead to higher masses
of the fermion fields in d = (3 + 1) [23,24]. We shall correspondingly pay no
attention to the momentum ps , s ∈ (4, 8), when having in mind the lowest energy
solutions, manifesting at low energies.

Scalars, which do not get nonzero vacuum expectation values, keep masses
on the condensate scale.

Let me now, by taking into account Eqs. (10.7, 10.9), calculate properties of all
scalar fields AAis of Eq. (10.13).

To do this let us first recognize

τ
1±

=
1

2
[(S58 − S67) ∓ i (S57 + S68)] , τ13 = 1

2
(S56 − S78) ,

Y = τ23 + τ4 , Q = Y + τ13 ,

and rewrite the scalar fields AAis , which determine masses of fermions and weak
bosons in Eq. (10.2), appearing in the second line of Eq. (10.2), as follows (the
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momentum ps is left out)∑
s=(7,8),Ai

ψ̄ γs (−τAiAAis ) =

−ψ†γ0{
78

(+) τAi (AAi7 − iAAi8 )+
78

(−) (τAi (AAis + iAAi8 )ψ } ,

78

(±)= 1

2
(γ7 ± i γ8 ) , (10.17)

with the summation over Ai performed, since AAis represent the scalar fields (AQs ,
AYs , AY

′

s , Ã4̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs and ~̃ANLs ).
Application of the operators Y and τ13 on the fields (AAi7 ∓ iAAi8 ), leads after

using Eq. (10.7) for Sab and expressions for τ13 and Y (Eq. (10.17)), to

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 . (10.18)

Since Y and τ13 give zero, if applied on the upper indices (Q, Y, Y ′) of (AQs , AYs
and AY

′

s ), as one can read from Eq. (10.15), and since Y and τ13 commute with
the family quantum numbers, one sees that the scalar fields AAis (AQs , AYs , AY

′

s ,
Ã4̃s , ÃQ̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs , ~̃AÑLs ), rewritten as follows, AAi± = (AAi7 ∓ iAAi8 ) , are eigen
states of τ13 and Y having the quantum numbers of the standard model Higgs’
scalars.

Let us make the notation

AAi78
(±)

= (AAi7 ∓ iAAi8 ) , (10.19)

and let us calculate what does the operator τ1± (Eq. (10.17)) make if applied on
AAi78

(±)

. Taking into account Eqs. (10.7, 10.9) one finds that

τ1�AAi78
(±)

= (AAi5 ∓ iAAi6 ) =: AAi56
(±)

,

τ1�AAi78
(±)

= 0 . (10.20)

The scalar fieldsAAi56
(±)

are all massive fields with the masses of the condensate scale

(table 10.1), while the scalar fields AAi78
(±)

change masses at the electroweak break.

Using Eqs. (9.46, 9.44, 9.54) one finds that γ0
78

(−)AAi78
(−)

transforms the right

handed uc1R quark from the first line of table 9.3 into the leftt handed uc1L quark
from the seventh line of the same table, which can be also interpreted in the
standard model way, namely, that AAi78

(−)

”dress” uc1R giving it the weak and the hyper

charge of the left handed uc1L quark, while γ0 changes handedness. Equivalently
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happens to νR from the 25th line, which the action of γ0
78

(−) AAi78
(−)

on it transforms

into the νL from the 31th line, which again can be interpreted in the standard model
way: With the action of γ0 and the ”dressing” of AAi78

(−)

on νR, transforming it into
νL.

The action of γ0
78

(+) AAi78
(+)

transform dc1R from the third line of the same table

into dc1L from the fifth line of this table, or eR from the 27th line into the eL from the
29th line. One can use in this two cases, knowing the properties of the scalar fields
(Eq. (10.18)), again the standard model interpretation, in which the scalar fields AAi78

(+)

take care of the weak and the hyper charges of the right handed members dc1R
and eR by ”dressing” them with the appropriate weak and the hyper charges,
while γ0 changes handedness. In the standard model there is the scalar Higgs and
the Yukawa couplings, which take care of fermion and also of the weak boson
properties.

In the spin-charge-family theory there are several scalar fields, which determine
the mass matrices of the two groups of four families.

When the scalar fields (AQ78
(±)

, AY78
(±)

, AY
′

78
(±)

, ~̃A1̃78
(±)

, ~̃A
ÑL̃
78
(±)

, ~̃A2̃78
(±)

, ~̃A
ÑR̃
78

(pm)

) from

Eq. (10.16) get nonzero vacuum expectation values, they determine mass ma-
trices of family members - of quarks and leptons - of the lower (carrying the family
quantum numbers (~̃τ1, ~̃NL)) and the upper (carrying the family quantum numbers
(~̃τ2, ~̃NR)) four families, since they carry the weak and the hyper charge (Eqs. (10.9,
10.10)) which breaks the mass protection mechanism of quarks and leptons.

We clearly see that all the scalars AAi78
(±)

have the following properties:

(τ13 , Y)AAi78
(±)

= ± (
1

2
,−
1

2
)AAi78

(±)

. (10.21)

The scalars AAi78
(−)

obviously bring the right quantum numbers to the right handed

partners (uR, νR), and the scalars AAi78
(+)

give the right quantum numbers to (dR,

eR).
The scalar fields AAi78

(±)

are in the spin-charge-family theory triplets with respect to

the family quantum numbers ( ~̃NR, ~̃NL, ~̃τ2, ~̃τ1; Eqs. (10.11, 10.12)) or singlets as the
gauge fields of Q = τ13 + Y, Y = τ23 + τ4 and Y ′ = − tan2 ϑ2τ4 + τ23.

One can prove this by applying τ̃23, τ̃13, Ñ3R and Ñ3L on their eigen states. Let
us do this for ÃNLi78

(±)

and for AQ78
(±)

, taking into account Eqs. (10.11), and recognizing
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that Ã
NL±
78
(±)

= ÃNL178
(±)

∓ i ÃNL278
(±)

(Eq. (10.7)).

Ñ3L Ã
ÑL±
78
(±)

= ± Ã
ÑL±
78
(±)

, Ñ3L Ã
ÑL3
78
(±)

= 0 ,

Ã
ÑL±
78
(±)

= {(ω̃
2̃3̃
78
(±)

+ i ω̃
0̃1̃
78
(±)

) ∓ i (ω̃
3̃1̃
78
(±)

+ i ω̃
0̃2̃
78
(±)

)} ,

ÃÑL378
(±)

= (ω̃
1̃2̃
78
(±)

+ i ω̃
0̃3̃
78
(±)

)

QAQ78
(±)

= 0 ,AQ78
(±)

= ω
56
78
(±)

− (ω
9 10

78
(±)

+ω
11 12

78
(±)

+ω
13 14

78
(±)

) , (10.22)

with Q = S56 + τ4 = S56 − 1
3
(S9 10 + S11 12 + S13 14), and with τ4 defined in

Eq. (10.10)).
To masses of the lower four families only the scalar fields, which are the

gauge fields of ~̃NL and ~̃τ1 contribute. (To masses of the upper four families only
the gauge fields of ~̃NR and ~̃τ2 contribute.) The three scalar fields AQ78

(±)

, AY78
(±)

and

A478
(±)

”see” the family members quantum numbers and contribute correspondingly

to all the families.
The scalar fields, with the weak and the hyper charge in the fundamental

representations (Eq. (10.21)) and the family charges in the adjoint representations,
transform any family member of the lower four families into the same family
member belonging to one of the lower four families (while those with the family
charges of the upper four families transform any family member into the same
family member belonging to one of the upper four families).

In loop corrections all the scalar and vector gauge fields which couple to
fermions contribute.

The mass matrix of any family member, belonging to any of the two groups
of the four families, manifests - due to the S̃U(2)(L,R) × S̃U(2)(I,II) (either (L, I) or

(R, II)) structure of the scalar fields, which are the gauge fields of the ~̃NR,L and
~̃τ2,1 - the symmetry presented in Eq. (10.23) 7.

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

. (10.23)

Let us summarize this section: It is proven that all the scalar fields with the
scalar index s ∈ (7, 8), which gain nonzero vacuum expectation values and keep
the electromagnetic charge conserved, carry the weak and the hyper charge quan-
tum numbers as required by the standard model for the scalar Higgs (Eq. (10.21)):

7 Since the upper four families interact with the condensate of the two right handed
neutrinos, which carry the family quantum numbers of the upper four families, the
symmetry of the mass matrix presented in Eq. (10.23) is the symmetry of the upper four
families.
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(τ13 , Y)AAi78
(±)

= ± (1
2
,−1

2
)AAi78

(±)

. These are the only scalar fields in this theory with

the quantum numbers of Higgs’ field.
These scalar fields carry additional quantum numbers: The family quantum

numbers. The nonzero vacuum expectation values of the scalars with the space
index s =∈ (7, 8) determine on the tree level the mass matrices of the two groups
of four families. While the scalars with the family quantum numbers (~̃1, ~̃NL)
contribute to mass matrices of the lower four families, contribute those with the
family quantum numbers (~̃2, ~̃NR) to masses of the upper four families and those
with the family members quantum numbers (Q, Y, Y ′) to any of these two groups
of four families. In loop corrections in all orders the mass matrices of the two
groups of four families follow.

All the other scalar fields: AAis , s ∈ (5, 6) and AAitt ′ , (t, t
′) ∈ (9, . . . , 14) have

masses of the order of the condensate scale and contribute to matter-antimatter
asymmetry.

10.3 Conclusions

The spin-charge-family [1,2,7,6,3–5,8,12,9,10] theory, a kind of the Kaluza-Klein
theories [15] with the families introduced by the second kind of gamma operators
(γ̃a in addition to the Dirac γa), is offering the explanation for the properties of
quarks and leptons (right handed neutrinos are in this theory regular members
of each family) and antiquarks and antileptons, for the appearance of the gauge
vector fields and of the scalar Higgs and Yukawa couplings. All these are in the
standard model just assumed.

The theory offers the explanation why are the weak and hyper charges of
fermions connected with their handedness (table 9.3) and where do the scalar
fields originate (Eqs. (10.14, 10.15)).

It also explains why do the scalar fields carry the weak and the hyper charges
as assumed by the standard model (Eq. (10.18)): (τ13 , Y)AAi78

(±)

= ± (1
2
,−1

2
)AAi78

(±)

,

where τ13 denotes the third component of the weak charge, Y the hyper charge,
Ai denotes (Q, Y, Y ′) (originating in the first kind γa of the Clifford algebra objects)
and all the family quantum numbers (originating in the second kind of the Clifford
algebra objects γ̃a). While γa, through Sab, determine all the spin and the charges
of families, determine γ̃a, through S̃ab, the family quantum numbers.

The spin-charge-family therefore, starting with the simple action (Eq.(10.1)) in
d = (13+ 1) for spinors (carrying two kinds of gamma operators) and interacting
with the gravity only (with the vielbeins and the two kinds of the spin connection
fields), differs essentially from the unifying theories of Pati and Salam [21], Georgi
and Glashow [27] and other SO(10) and SU(n) theories [28], although all these
unifying theories are answering some of the open questions of the standard model
and accordingly have many things in common - among themselves and with the
spin-charge-family theory.

The spin-charge-family theory predicts two decoupled groups of four fami-
lies [7,6,9,10]: The fourth of the lower group of families will be measured at the
LHC [11] and the lowest of the upper four families constitute the dark matter [10].
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It also predicts that there will be several scalar fields observed sooner or later at
the LHC.

Besides the scalar fields with the space index s ∈ (7, 8), which by getting
non zero vacuum expectation values cause the electroweak break and take care of
massless of fermions and the weak bosons, all the other scalar fields get, through
the interaction with the scalar condensate of two right handed neutrinos with the
family quantum numbers of the upper four families, masses of the condensate
scale. There are also only weak, hyper and the colour vector gauge bosons which
stay massless up to the condensate scale, since they do not interact with the
condensate. The scalar fields with the scalar space index s =∈ (9, . . . , 14) are
colour triplets with respect to the scalar space index and cause, after interacting
with the condensate, matter-antimatter asymmetry [13].

All the scalar fields are in the fundamental representations (Eq. ([13])) with
respect to the space index. They resemble the supersymmetry particles, although
they are not, since they do not meet all the requirements for the bosonic partners
of fermions.

Starting with few assumptions, presented in the introduction 10.1 (i.- iv.), I
show that the spin-charge-family theory is not only offering the explanation for the
so far measured phenomena, with the origin of the dark matter and the scalar
fields included, but offers also the predictions for new families (the fourth to the
observed three families will be measured at the LHC, the fifth - the lowest of the
upper four families - forming baryons [10] explains the appearance of the dark
matter) and new scalar fields (there are two triplets and three singlets: AQs , AYs ,
AY

′

s , ~̃A1̃s , ~̃AÑLs , Eqs. (10.14, 10.15, 10.16), which determine properties of the four
lower families - the Higgs and the Yukawa couplings of the standard model [2,1]).
The theory might be able also to answer questions about the (ordinary, mainly
made out of the first family) matter/antimatter asymmetry, which is discussed
in a separate paper [13]. The quantum numbers of the condensate, responsible
for breaking C P symmetry, are presented in this paper (table 10.1). The same
condensate makes massive scalar and vector gauge fields which would otherwise
be as massless observed at low energies.

Although the spin-charge-family theory starts in d = (13 + 1) dimensional
space with the spin connection fields of two kinds (having the origin in γa and
in γ̃a) and with the vielbeins - all these look like having a very large number of
degrees of freedom - it leads under the assumption that there is a condensate of
two right handed neutrinos carrying the quantum numbers of the upper four
families and that there are scalar fields, which obtain nonzero vacuum expectation
values causing the electroweak break, naturally (what means that all unobserved
fields of both origins get masses without additional requirements) at the low
energy regime to the observed fermion and vector gauge boson fields.

This paper presents, by explaining that in this theory there are the scalar fields,
which carry the quantum numbers of the scalar Higgs scalars and correspondingly
offering the explanation for the appearance of the scalar Higgs and the Yukawa
couplings, a further step towards understanding the properties of quarks and
leptons and in particular of those scalar fields (section 10.2), which determine
mass matrices of quarks and leptons.
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It stays to be solved, why and how does the condensate of the two right
handed neutrinos with the family quantum numbers of the upper four families
appear and why do scalars, with the weak and the hyper charge required by the
standard model, gain non zero vacuum expectation values.
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23. D. Lukman, N.S. Mankoč Borštnik and H.B. Nielsen, New J. Phys. 13 (2011) 103027.
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