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Preface

The series of annual workshops on ”What Comes Beyond the Standard Models?”
started in 1998 with the idea of Norma and Holger for organizing a real workshop,
in which participants would spend most of the time in discussions, confronting
different approaches and ideas. Workshops take place in the picturesque town
of Bled by the lake of the same name, surrounded by beautiful mountains and
offering pleasant walks and mountaineering.
In our very open minded, friendly, cooperative, long, tough and demanding dis-
cussions several physicists and even some mathematicians have contributed. Most
of topics presented and discussed in our Bled workshops concern the proposals
how to explain physics beyond the so far accepted and experimentally confirmed
both standard models — in elementary particle physics and cosmology — in
order to understand the origin of assumptions of both standard models and be
consequently able to make predictions for future experiments. Although most of
participants are theoretical physicists, many of them with their own suggestions
how to make the next step beyond the accepted models and theories, experts
from experimental laboratories were and are very appreciated, helping a lot to
understand what do measurements really tell and which kinds of predictions can
best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very
pedagogical presentations in order to clarify the assumptions and the detailed
steps, analyzing the ideas, statements, proofs of statements and possible predic-
tions, confronting participants’ proposals with the proposals in the literature or
with proposals of the other participants, so that all possible weak points of the
proposals, those from the literature as well as our own, showed up very clearly.
The ideas therefore seem to develop in these years considerably faster than they
would without our workshops.
This year neither the cosmological nor the particle physics experiments offered
much new, as also has not happened in the last two years, which would offer new
insight into the elementary particles and fields and also into cosmological events,
although a lot of work and effort have been put in, and although there are some
indications for the existence of the fourth family to the observed three, due to the
fact that the existence of the fourth family might explain the existing experimental
data better, what is mentioned in this proceedings.
It looks like, that “nature” does not “like” to help us to better understand the
assumptions, put into the standard models, as it is written in one of contributions
to this proceedings.
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There were talks accompanied by very lively discussions about the way which
could lead to next step beyond both standard models, some of them appear in this
proceedings, the others might contribute to the next year proceedings.
Understanding the universe through the cosmological theories and theories of the
elementary fermion and boson fields, have, namely, so far never been so dependent
on common knowledge and experiments in both fields. On both fields there appear
proposals which should explain assumptions of these models. The competition,
who will have right, is open and exciting.
We are keeping expecting that new cosmological experiments will help to resolve
the origin of the dark matter. Since the results of the DAMA/LIBRA experiments,
presented in this year proceedings, can hardly be explained in some other way
than with the signal of the dark matter, it is expected that sooner or latter other
laboratories will confirm the DAMA/LIBRA results. This has not yet happened
and our discussions clarified the reasons for that.
Several contributions in this proceedings discuss proposals for the origin of the
dark matter, suggesting that they might belong to the stable neutrons of the second
group of four families, decoupled from the observed three, to the dark atoms made
of dark baryons and ordinary baryons, and to the new scalar fields, new bosons,
which manifest inside stars as a Bose-Einstein condensate. These contributions
discuss also the possibilities that some of these kinds of the dark matter candidates
were already observed by DAMA/LIBRA scattering events or if dark matter
objects decay or annihilate too strongly they discuss reasons why experiments do
not observe the corresponding gamma rays.
The experiments on the LHC and other laboratories around the world do not
so far offer the accurately enough mixing matrices for quarks and leptons, so
that it will become clear whether there is the fourth family to the observed three
and whether there are several scalar fields, which determine the higgs and the
Yukawa couplings, predicted by the spin-charge-family theory. The symmetry in
all orders of corrections of the 4×4mass matrices, determined by the scalars of this
theory, studied in the previous proceedings, limits the number of free parameters
of mass matrices, and would for accurately enough measured matrix elements
of the 3 × 3 sub-matrices of the 4 × 4 mixing matrices predict properties of the
fourth family of quarks and leptons. The fourth family with the masses close to 1
TeV for leptons and above 1 TeV for quarks is weaker coupled with the rest three
families than it is the third u-quark coupled to the rest of quarks. Calculations
show that the larger the masses of the fourth family – up to 6 TeV seems to be
allowed by experiments – the smaller the unwanted mixing elements which could
cause the flavour-changing neutral currents and the better is agreement with the
experimental data, which require, that there should be the fourth family due to
the nonunitarity of the 3× 3 so far measured mixing matrix for quarks.
The new data might answer the question, whether laws of nature are elegant (as
predicted by the spin-charge-family theory and also — up to the families — other
Kaluza-Klein-like theories and the string theories) or ”she is just using gauge
groups when needed” (what many models assume, also some presented in this
proceedings). Can the higgs scalars be guessed by smaller steps from the standard
model case, appearing as pseudo Nambu Goldstone bosons and in many other
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possibilities, or they originate in gravity in higher dimensions as also the gauge
fields do?
Is there only gravity as the interacting field, which manifests in the low energy
regime all the vector gauge fields as well as the scalar fields? Should correspond-
ingly gravity be quantizable? Is masslessness of all the bosons and fermions
essentail, while masses appear at low energy region due to interactions and break
of symmetries? Do fermions charges manifest spins in higher dimensions? What
is then the dimension of space-time? Infinite, or it emerges from zero?
Is the law of nature emerging from random mathematical structure, which then de-
velope to differentiability, diffeomorphism symmetry, locality, Lorentz invariance,
so that fermions spin in higher dimension manifests as charges at low energies?
Why and how?
The evidences obviously tell that fermion fields have half integer spin and the
charges in the fundamental representations of the so far observed groups. The
Grassmann space offer on the other side the possibility that fermions would carry
the integer spin and the charges in adjoint representations.
Shall the study of Grassmann space in confrontation with Clifford space for the
description of the internal degrees of freedom for fermions, discussed in this
proceedings, offering explanation for the second quantization of fermions, help to
better understand the “elegance of the laws of nature”?
If ”nature would make a choice” of the Grassmann instead of the Clifford algebra,
all the atoms, molecules and correspondingly all the world would look completely
different, but yet might be still possible. Why ”she made a choice” of the Clifford
algebra?
Is the working hypotheses that “all the mathematics is a part of nature” acceptable
and must be taken seriously? We need and correspondingly use so many math-
ematical concepts in order to derive a consistent theory, but in most cases still
several questions remain open.
Since, as every year also this year there has been not enough time to mature the
very discerning and innovative discussions, for which we have spent a lot of time,
into the written contributions, only two months, authors can not really polish their
contributions. Organizers hope that this is well compensated with fresh contents.
Questions and answers as well as lectures enabled by M.Yu. Khlopov via Virtual
Institute of Astroparticle Physics (viavca.in2p3.fr/site.html) of APC have in ample
discussions helped to resolve many dilemmas. Google Analytics, showing more
than 240 thousand visits to this site from 153 countries, indicates world wide
interest to the problems of physics beyond the Standard models, discussed at Bled
Workshop. At XXII Bled Workshop VIA streamning made possible to webcast
practically all the talks.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on viavca.in2p3.fr/site.html in Previous - Conferences. The three talks deliv-
ered by E. Kiritsis (Emergent gravity (from hidden sector)), Maxim Yu. Khlopov
(Conspiracy of BSM Physics and BSM Cosmology) and Norma Mankoč Borštnik
(Experimental consequences of spin-charge family theory) as well as students’
scientific debuts talk by Valery Nikulin (Inflationary limits on the size of compact
extra space) can be accessed directly at
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http://viavca.in2p3.fr/what comes beyond the standard model XXII.html
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Bled Workshops owe their success to participants who have at Bled in the heart of
Slovene Julian Alps enabled friendly and active sharing of information and ideas,
yet their success was boosted by vidoeconferences.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present personally or through the teleconferences at the Bled workshop, for
their excellent presentations and in particular for really fruitful discussions and
the good and friendly working atmosphere. We express our gratitude to MDPI
journals ”Symmetry” and ”Particles” for travel support for young and Senior
participants and our hope that this tradition will be continued and extended.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2019



i
i

“proc19” — 2019/12/9 — 11:13 — page XI — #11 i
i

i
i

i
i

1 Predgovor (Preface in Slovenian Language)

Vsakoletne delavnice z naslovom ,,Kako preseči oba standardna modela, koz-
mološkega in elektrošibkega” (”What Comes Beyond the Standard Models?”) sta
postavila leta 1998 Norma in Holger z namenom, da bi udeleženci v izčrpnih
diskusijah kritično soočali različne ideje in teorije. Delavnice domujejo v Plemljevi
hiši na Bledu ob slikovitem jezeru, kjer prijetni sprehodi in pohodi na čudovite
gore, ki kipijo nad mestom, ponujajo priložnosti in vzpodbudo za diskusije.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov.
Večina tem in vprašanj predstavljenih in diskutiranih na naših Blejskih delavnicah,
zadeva predloge za razlago pojavov onkraj obeh standadnih modelov — v fiziki
osnovnih delcev in kozmologiji — z namenom razumeti izvor predpostavk obeh
standardnih modelov, kar bi omogočilo naovedi za nove poskuse. Čeprav je večina
udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako narediti naslednji
korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli predstavniki
eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah razjas-
niti resnično sporočilo meritev in nam pomagajo razumeti kakšne napovedi so
potrebne, da jih lahko s poskusi dovolj zanesljivo preverijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji preko več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
Tako kot v preteklih dveh letih tudi to leto niso eksperimenti v kozmologiji in
fiziki osnovih fermionskih in bozonskih polj ponudili rezultatov, ki bi omogočili
nov vpogled v fiziko osnovnih delcev in polj, čeprav je bilo vanje vloženega veliko
truda in četudi razberemo iz eksperimentov, da četrta družina k že izmerjenim
trem mora biti, saj lahko s štirimi družinami lažje pojasnimo izmerjene podatke,
kar je omenjeno tudi v tem zborniku.
Zdi se, kot omenja eden od prispevkov v tem zborniku, da nam “narava no če
pomagati”, da bi bolje razumeli predpostavke v obeh standardnih modelih.
Nekatera predavanja so spremljale zelo živahne diskusije o predlogih, ki nam
lahko pomagajo razumeti privzetke obeh standardnih modelov. Nekatere od teh
razprav so v tem zborniku, druge so bodo mordna pojavile v zborniku prihodnje
delavnice.
Kozmološka spoznanja in spoznanja v teoriji osnovnih fermionskih in bozonskih
polj še nikoli doslej niso bila tako zelo povezana in soodvisna. Na obeh področjih
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‘’rastejo” novi predlogi, ki naj pojasnijo privzetke teh modelov. Tekma, kdo bo imel
prav, je odprta in razburljiva.
Priǎkujemo, da bodo novi kozmološki poskusi razkrili izvor temne snovi. Ker
rezultate poskusov DAMA/LIBRA, predstavljene v tem zborniku, težko pojas-
nimo drugače kot da gre za temno snov, je pričakovati, da bodo sčasoma tudi
poskusi v drugih laboratorijih potrdili rezultate poskusa DAMA/LIBRA. To se še
ni zgodilo, naše razprave so razjasnile razloge za to.
Kar nekaj je prispevkov v zborniku, ki obravnavajo izvor temne snovi: za delce
temne snovi predlagajo stabilne nevtrone druge skupine štirih družin, ki niso sklo-
pljene z že izmerjenimi tremi in pričakovano četrto, temne atome, ki jih sestavljajo
temni in običajni barioni ali nova skalarna polja, nove bozone, ki se znotraj zvezd
zgostijo v Bose-Einsteinov kondenzat. Avtorji v teh prispevkih obravnavajo tudi
možnost, da so v poskusu DAMA/LIBRA nekatere od teh delcev že opazili. En
prispevek obravnava možnost, da temna snov morda razpada ali se anihilira dovlj
hitro, da bi morali opaziti pri tem nastale žarke gama, pa jih zaradi absorpcije ne
opazimo.
Poskusom na pospeševalniku LHC in v drugih laboratorijih doslej ni uspelo izmer-
iti mešalnih matrik za leptone in kvarke dovolj natančno, da bi lahko ugotovili,
ali poleg izmerjenih treh družin obstaja tudi četrta družina in ali obstaja tudi več
skalarnih polj, ki določajo higgsov skalar in Yukawine sklopitve. Teorija spinov-
nabojev-družin napoveduje obstoj četrte družine in obstoj več skalarnih polj.
Simetrija masnih matrik 4× 4 v vseh redih popravkov, obravavana v prispevkih
v prejšnjih zbornikih, omeji število prostih parametrov masnih matrik. Za dovolj
natančno izmerjene matrične elemente podmatrik 3× 3 v mešalnih matrikah 4× 4
bi ta teorija lahko napovedala lastnosti četrte družine kvarkov in leptonov.
Četrta družina, ki ima mase leptonov blizu 1 TeV, mase kvarkov pa nad 1 TeV,
je šibkeje sklopljena s preostalimi tremi družinami, kot je tretji kvark u (top)
sklopljen s preostalimi kvarki. Izračuni pokažejo, da se z večanjem mas četrte
družine — poskusi dopuščajo mase do 6 TeV — zmanšujejo matrični elementi, ki
povzročajo nevtralne tokove in spremembo družinskega kvantnega števila, Hkrati
se izboljša ujemanje z eksperimentalnimi podatki, ki zahtevajo četrto družino
zaradi neunitarnosti dosedaj izmerjene mešalne matrike 3× 3 za kvarke.
Nove meritve bodo morda odgovorile na vprašanje, ali so zakoni narave elegantni
(kot to napove teorija spinov-nabojev-družin in, z izjemo družin, ostale teorije
Kaluza-Kleinovega tipa in teorije strun) ali pa samo “uporablja umeritvene grupe
po potrebi” (kot to predpostavi veliko modelov, tudi nekateri v tem zborniku). Ali
se da uganiti izvor higgsovega skalarja z metodo malih odmikov od standardnega
modela, tako, denimo, da se pojavi kot psevdobozon Nambu-Goldstoneovega tipa
(možnosti je še veliko več), ali pa izvirajo skalarji iz gravitacije v višjih dimenzijah,
tako kot tudi umeritvena polja, in tudi naboji fermionov?
Je gravitacija edino polje, s katerimi fermioni interagirajo, pri nizkih energijah pa
se manifestira kot običajna gravitacija in tudi kot poznana vektorska ter skalarno
Higgsovo polje? Se gravitacijo da kvantizirati? Ali je brezmasnost vseh bozonov
in fermionov osnovna lastnost, masam pa so pri nizkih energijah vzrok interakcije
in zlomitve simetrij? Če so fermionskim nabojem vzrok spini fermionov v višjih
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dimenzijah, kolikšna je tedaj dimenzija prostor-časa? Neskončna ali pa se pojavi iz
nič?
Se zakon narave rodi iz naključnih matematičnih struktur, ki nato v svojem razvoju
porodijo odvedlijivost, difeomorfno simetrijo, lokalnost, Lorentzovo invarianco,
zaradi česar se spin fermionov iz višjih dimenzij kaže v nižjih kot naboji? Zakaj in
kako?
Podatki kažejo, da imajo polja fermionov polštevilski spin in naboje v fundamen-
talni upodobitvi dosedaj opaženih grup. Grassmannov prostor pa ponuja možnost,
da bi imeli fermioni celoštevilski spin in naboje v adjungirani upodobitvi grupo.
Lahko primerjava Grassmannovega in Cliffordovega prostora za opis notranjih
prostostnih stopenj fermionov, obravnavana v tem zborniku, ponudi razlago
za drugo kvantizacijo fermionov in pomaga bolje razumeti “eleganco zakonov
narave”?
Če bi narava “ izbrala” za opis notranjih prostostnih stopenj Grassmannovo alge-
bro namesto Cliffordove, bi vsi atomi, molekule in posledično cel svet izgledali
poplnoma drugače. Zakaj je“izbrala” Cliffordovo algebro?
Ali je domneva, da je “vsa matematika del narave” sprejemljiva in jo je potrebno
vzeti resno? Za razvoj skladne teorije potrebujemo in zato uporabljamo veliko
različnih matematičnih konceptov, vendar ostaja veliko vprašanj odprtih.
Ker je vsako leto le malo časa od delavnice do zaključka redakcije, manj kot dva
meseca, avtorji ne morejo izpiliti prispevkov, vendar upamo, da to nadomesti
svežina prispevkov.
Četudi so k uspehu ,,Blejskih delavnic” največ prispevali udeleženci, ki so na
Bledu omogočili prijateljsko in aktivno izmenjavo mnenj v osrčju slovenskih
Julijcev, so k uspehu prispevale tudi videokonference, ki so povezale delavnice z
laboratoriji po svetu. Vprašanja in odgovori ter tudi predavanja, ki jih je v zadnjih
letih omogočil M.Yu. Khlopov preko Virtual Institute of Astroparticle Physics
(viavca.in2p3.fr/site.html, APC, Pariz), so v izčrpnih diskusijah pomagali razčistiti
marsikatero vprašanje. Na letošnji delavnici je “pretočno predvajanje” omogočilo,
da so vsa predavanja in diskusije tekle tudi preko spleta.
Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009, na
viavca.in2p3.fr/site.html v povezavi Previous - Conferences. Letošnja predavanja
na cosmoviji so prispevali:
E. Kiritsis (Emergent gravity (from hidden sector)),
Maxim Yu. Khlopov (Conspiracy of BSM Physics and BSM Cosmology),
Norma Mankoč Borštnik (Experimental consequences of spin-charge family the-
ory).
Cosmovia predstavlja prvikrat študentsko predavanje, imel ga je Valerij Nikulin
(Inflationary limits on the size of compact extra space).
http://viavca.in2p3.fr/what comes beyond the standard model XXII.html
Večino predavanj najde bralec na spletni strani delavnice na
http://bsm.fmf.uni-lj.si/.

Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem, pris-
otnim na Bledu osebno ali preko videokonferenc, za njihova predavanja in še
posebno za zelo plodne diskusije in odlično vzdušje.
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Zahvaljujemo se tudi revijam “Symmetry” in “Particles” založbe MDPI za pod-
poro pri potovalnih stroških za mlade in starejše udeležence delavnice ter upamo,
da se bo to sodelovanje lahko nadaljevalo in še razširilo.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2019
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Abstract. The first DAMA/LIBRA–phase2 model-independent results (exposure: 1.13 ton
× yr, and software energy threshold at 1 keV) have recently been released. They further
confirm — with high confidence level — the evidence already observed by DAMA/NaI and
DAMA/LIBRA–phase1 on the basis of the exploited model-independent Dark Matter (DM)
annual modulation signature. The total exposure above 2 keV of the three experiments
is 2.46 ton × yr. Here several DM candidate particles and related scenarios are analyzed
including the latest results. These analyses permit to constrain the parameters’ space of
the considered candidates in the given scenarios, restricting their values with respect to
previous analyses thanks to the increase of the exposure and to the lower energy threshold.

Povzetek. Avtorji prispevka so pred nedavnim objavili zadnje analize svojih večletnih
opazovanj temne snovi na eksperimentu DAMA/LIBRA, ki so jim dodali zadnjo fazo,
Fazo 2. Ta zadnja faza ima skupno ekspozicijo 1.13 ton × let in energijski prag 1 keV.
Avtorji zagotavljajo, da so rezultati poskusov, ki temeljijo na letni modulaciji signalov,
neodvisni od modelov, ki poskušajo razložiti izvor temne snovi in njihovo detekcijo. Skupna
ekspozicija obeh faz poskusov, Faza 1 je imela energijski prag 2 keV, je 2.46 ton × let. Zadnji
rezultati potrjujejo z visoko zanesljivostjo rezultate prejšnje faze poskusa (DAMA/NaI and
DAMA/LIBRA–Faza 1). Avtorji analizirajo ustreznost modelov glede na njihove meritve,
ter omejijo prostor parametrov obravnavanih modelov.

Keywords: Scintillation detectors, elementary particle processes, Dark Matter

? Talk presented by F. Cappella
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2 R. Bernabei et al.

1.1 Introduction

Recently the model-independent results of the first six full annual cycles measured
by DAMA/LIBRA–phase2 with a software energy threshold of 1 keV 1 [1,2] have
been released [3–7]. The model-independent evidence for the presence of DM
particles in the galactic halo is further confirmed on the basis of the exploited DM
annual modulation signature after the previous DAMA/LIBRA–phase1 [1,2,8–14]
and the former DAMA/NaI [15,16] experiments. The cumulative Confidence Level
(C.L.) is increased from the previous 9.3 σ (data from 14 independent annual cycles
for an exposure of 1.33 ton× yr) to 12.9 σ (data from 20 independent annual cycles
for an exposure of 2.46 ton × yr).

We recall that the expected DM particles differential counting rate depends
on the Earth’s velocity in the galactic frame: vE(t) = v� + v⊕cosγcosω(t − t0),
where the Sun velocity with respect to the galactic halo is v� ' v0 + 12 km/s with
v0 local velocity), and v⊕ ' 30 km/s is the Earth’s orbital velocity around the Sun
on a plane with inclination γ = 60o with respect to the galactic one. Moreover,
ω= 2π/T with T = 1 year and roughly t0 ' June 2nd (when the Earth’s speed in
the galactic halo is at maximum). Thus, the expected counting rate averaged in a
given energy interval can be conveniently worked out through a first order Taylor
expansion:

S(t) = S0 + Smcosω(t− t0), (1.1)

with the contribution from the highest order terms being less than 0.1%. The Sm
and S0 are the modulation amplitude and the un-modulated part of the expected
differential counting rate, respectively.

In the DAMA experiments the experimental observable is the modulation
amplitude, Sm, as a function of the energy, and the identification of the constant
part of the signal, S0, is not required to point out the presence of a signal in
the exploited model-independent annual modulation approach. It has several
advantages; in particular, the only background of interest is the one able to mimic
the signature, i.e. able to account for the whole observed modulation amplitude
and to simultaneously satisfy all its many specific peculiarities (see e.g. Ref. [5]).
No background of this sort has been found, see Refs. [2–13].

The modulation amplitudes, Sm, for the whole data sets: DAMA/NaI, DAMA/
LIBRA–phase1 and DAMA/LIBRA–phase2 (total exposure 2.46 ton×yr) are plot-
ted in Fig. 1.1; the data below 2 keV refer only to the DAMA/LIBRA–phase2
exposure (1.13 ton×yr). It can be inferred that positive signal is present in the (1–6)
keV energy interval, while Sm values compatible with zero are present just above
[5].

In the following the implications on some models, we already investigated
with lower exposure and higher software energy threshold in the past, are updated
by including the data of DAMA/LIBRA–phase2 [17].

1 Throughout this paper: i) keV means keV electron equivalent, where not otherwise
specified; ii) ton means metric ton (1000 kg).
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Fig. 1.1. Modulation amplitudes, Sm, for the whole data sets: DAMA/NaI, DAMA/LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.46 ton×yr) above 2 keV; below 2 keV
only the DAMA/LIBRA–phase2 exposure (1.13 ton × yr) is available and used. The energy
bin ∆E is 0.5 keV. A clear modulation is present in the lowest energy region, while Sm
values compatible with zero are present just above.

1.2 Data analysis

The corollary analyses presented in the following are model-dependent; thus, it is
important to point out at least the main topics which enter in the determination
of the results and the related uncertainties. These arguments have been already
addressed at various extents in previous corollary model-dependent analyses. The
DM candidates considered here have been previously discussed in the Ref. [17]
and references therein.

A specific phase-space distribution function (DF) in the galactic halo has to be
adopted in order to derive the allowed regions of the parameter’s space for the
considered DM particles and scenarios. A large number of possibilities is available
in literature; these models are continuously in evolution thanks to new simulations
and astrophysical observations, as the recent GAIA ones (see e.g. Refs. [18,19]
and references therein). Thus, large uncertainties in the predicted theoretical rate
are present. Here, to account at some extent for the uncertainties in halo models
and to allow direct comparisons, the same not-exhaustive set of halo models as
in previous published analyses [15,16,20], is considered; they are illustrated in
Table II of Ref. [20]. In particular, the considered classes of halo models correspond
to: (1) spherically symmetric matter density with isotropic velocity dispersion
(Class A); (2) spherically symmetric matter density with non-isotropic velocity
dispersion (Class B); (3) axisymmetric models (Class C); (4) triaxial models (Class
D); (5) moreover, in the case of axisymmetric models it is possible to include either
an halo co-rotation or an halo counter-rotation.

We also consider the physical ranges of the local velocity v0: from 170 km/s
to 270 km/s, and of the local total DM density, ρ0. For ρ0, its minimal, ρmin0 , and
its maximal, ρmax0 , values are estimated imposing essentially two astrophysical
constraints: one on the amount of non-halo components and the other on the
flatness of the rotational curve in the Galaxy. The values for ρmin0 and ρmax0 are
related to the DF and the considered v0; they are reported in Table III of Ref. [20].
The halo density ρ0 ranges from 0.17 to 0.67 GeV/cm3 for v0 = 170 km/s, while ρ0
ranges from 0.29 to 1.11 GeV/cm3 for v0 = 220 km/s, and ρ0 ranges from 0.45 to
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4 R. Bernabei et al.

1.68 GeV/cm3 for v0 = 270 km/s, depending on the halo model. Moreover, to take
into account that the considered DM candidate can be just one of the components
of the dark halo, the ξ parameter is introduced; it is defined as the fractional
amount of local density in terms of the considered DM candidate (ξ ≤ 1). Thus,
the local density of the DM particles is ρDM = ξρ0.

Finally, the DM escape velocity, vesc, from the galactic gravitational potential
is considered; actually, it is also affected by significant uncertainty. In the following
vesc = 550 km/s is adopted as often considered in literature; however, no sizable
differences are observed in the final results when vesc values ranging from 550 to
650 km/s are considered; in fact, for low-mass DM particles scattering off nuclei,
the Na contribution is dominant and has a small dependence on the tail of the
velocity distribution.

We note that the possible presence of non-virialized components, as streams in
the dark halo coming from external sources with respect to our Galaxy [21–23] or
other scenarios as e.g. that of Ref. [24–26], are not included in the present analyses.

In the interaction of DM particles in the NaI(Tl) detectors the detected energy,
Edet, is a key quantity. It is connected with the energy released by the products
of the interaction, Erel; two possibilities exist: 1) the products of the interaction
have electromagnetic nature (mainly electrons); 2) a nuclear recoil with ER kinetic
energy is produced by the DM particle scattering either off sodium or off iodine
nucleus. Since, the detectors are calibrated by using γ sources, in the first case
Edet = Erel, while in the second case a quenching factor (q.f.) for each recoiling
nucleus must be included: Edet = qNa,I × Erel. In literature there are available
a lot of measurements on the Na and I q.f.’s, that show a wide spread, since
they are a property of the specific detector and not general properties of any
NaI(Tl), particularly in the very low energy range. The same procedures previously
adopted in Refs. [27–30] are considered here, i.e. the following three instances are
accounted for:

• (QI) Na and I q.f.’s “constants” with respect to the recoil energy ER: the
adopted values are qNa = 0.3 and qI = 0.09, measured with neutron source
integrating the data over the 6.5 – 97 keV and the 22 – 330 keV recoil energy
range, respectively [31];

• (QII) quenching factors depending on ER, evaluated as in Ref. [32];
• (QIII) quenching factors with the same behavior of Ref. [32], but normalized

in order to have their mean values consistent with QI in the energy range
considered there.

Another important effect is the channeling of low energy ions along axes and
planes of the NaI(Tl) DAMA crystals. This effect can lead to a further important
deviation, in addition to the uncertainties discussed in section II of Ref. [27] and in
Ref. [28]. In fact, the channeling effect in crystals implies that a fraction of nuclear
recoils are channeled and experience much larger q.f.’s than those derived from
neutron calibration (see Refs. [33,27] for a discussion of these aspects). Anyhow, the
channeling effect in solid crystal detectors is not a well fixed issue and there could
be several uncertainties in the modeling. Because of the difficulties of experimental
measurements and of theoretical estimate of the channeling effect, in the following
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it will be either included using the procedure given in Ref. [33] or not in order to
give idea on the related uncertainty.

Finally, three discrete cases are considered in the following to cautiously
account for possible uncertainties on the quenching factors measured by DAMA
in its detectors and on the parameters used in the SI and SD nuclear form factors
[17]:

• Set A considers the mean values of the parameters of the used nuclear form
factors [15] and of the quenching factors.

• Set B adopts the same procedure as in Refs. [34,35,16], by varying (i) the mean
values of the 23Na and 127I quenching factors as measured in Ref. [31] up to +2

times the errors; (ii) the nuclear radius, rA, and the nuclear surface thickness
parameter, s, in the SI nuclear form factor from their central values down to
−20%; (iii) the b parameter in the considered SD nuclear form factor from the
given value down to −20%.

• Set C where the iodine nucleus parameters are fixed at the values of set B,
while for the sodium nucleus one considers [15]: (i) 23Na quenching factor
at qNa = 0.25; (ii) the nuclear radius, rA, and the nuclear surface thickness
parameter, s, in the SI nuclear form factor from their central values up to +20%;
(iii) the b parameter in the considered SD nuclear form factor from the given
value up to +20%.

In conclusion, model-dependent analyses through a maximum likelihood
procedure, which also takes into account the energy behavior of each detector, can
be pursued. In particular, for each considered scenario, the allowed domains in
the corresponding parameters’ space will be obtained by marginalizing over the
halo models, over halo parameters (v0 and ρ0) and over the sets A, B, C2. This
procedure shows the impact of the uncertainties in the astrophysical, nuclear and
particle physics on the model-dependent analyses. However, for simplicity the
allowed regions in the parameters’ space of each considered scenario can also be
derived by comparing – for each k-th energy bin of 1 keV – the measured DM
annual modulation amplitude, Sexpm,k ± σk 3, with the theoretical expectation in
each considered framework, Sthm,k. Of course, the Sthm,k values depend on the free
parameters of the model θ̄, such as the DM particle mass, the cross section, etc.,
on the uncertainties accounted for, on the proper accounting for the detector’s
features, and on priors.

In particular, as mentioned in previous works (as e.g. recently in Refs. [28,29]),
a cautious prior on S0,k – assuring safe and more realistic allowed regions/volumes
– can be worked out from the measured counting rate in the cumulative energy
spectrum; the latter is given by the sum of the un-modulated background contribu-
tion bk (whose existence is shown by the detailed analyses on residual radioactive
contaminations in the detectors [8]) and of the constant part of the signal S0,k.
By adopting a standard procedure, used in the past in several low background

2 In particular, each allowed domain encloses all the allowed regions obtained for each
chosen configuration of model and parameters.

3 The distributions of the measured modulation amplitudes around their mean value show
a perfect Gaussian behaviors, justifying the use of a symmetric uncertainty [9,2,11,3,5].
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fields, one can derive lower limits on bk and, thus, upper limits on S0,k (Smax0,k ).
In particular, in DAMA/LIBRA–phase2 is obtained: S0 <∼ 0.80 cpd/kg/keV in
the (1-2) keV energy interval; S0 <∼ 0.24 cpd/kg/keV in (2-3) keV, and S0 <∼ 0.12
cpd/kg/keV in (3-4) keV.

Thus, the following χ2 can be calculated for each considered model:

χ2(θ̄) =
∑
k

(
Sexpm,k − Sthm,k(θ̄)

)2
σ2k

+
∑
k ′

(
Smax0,k ′ − Sth0,k ′(θ̄)

)2
σ20,k ′

Θ
(
Sth0,k ′(θ̄) − Smax0,k ′

)
(1.2)

where the second term encodes the experimental bounds about the un-modulated
part of the signal; σ0,k ′ ' 10−3 cpd/kg/keV, Θ is the Heaviside function, and
Sth0,k ′ is the average expected signal counting rate in the k ′ energy bin. The sum in
the first term in eq. 1.2 runs here from 1 keV to 20 keV.

The χ2 defined in eq. (1.2) can be calculated in each considered framework
and is function of the model parameters θ̄. Thus, we can define:

∆χ2(θ̄) = χ2(θ̄) − χ20 (1.3)

where χ20 is the χ2 for θ̄ values corresponding to absence of signal. The ∆χ2 is used
to determine the allowed intervals of the model parameters θ̄ at 10 σ from the null
signal hypothesis.

We have verified that the QIII option for the quenching factors provides
results similar to the case of the QI option; thus, to avoid the overloading of the
figures in the following the QIII case is not considered.

1.3 Updated corollary model-dependent scenarios

1.3.1 DM particles elastically interacting with target nuclei

A lot of candidates have been proposed in theory extending the Standard Model
of particles that includes candidates for DM elastically scattering off target nuclei.

In the DM particle-nucleus elastic scattering, the differential energy distribu-
tion of the recoil nuclei can be calculated by means of the differential cross section
of the DM-nucleus elastic process [31,36,15,16,33]. The latter is given by the sum
of two contributions: the SI and the SD one.

In the purely SI case, the nuclear parameters can be decoupled from the
particle parameters and the nuclear cross sections, which are derived quantities,
are usually scaled to a defined point-like SI DM particle-nucleon cross section,
σSI. In principle, this procedure could allow – within a framework of several
other assumptions (that in turn introduce uncertainties in final evaluations) – a
model-dependent comparison among different target nuclei, otherwise impossible.
In the following, the usually considered coherent scaling law for the nuclear cross
sections is adopted:

σSI(A,Z) ∝ m2red(A,DM) [fpZ+ fn(A− Z)]
2
, (1.4)
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where σSI(A,Z) is the point-like cross section of DM particles scattering off nuclei
of mass number A and atomic number Z,mred(A,DM) is the reduced mass of the
system DM particle and nucleus, fp and fn are the effective DM particle couplings
to protons and neutrons, respectively. The case of isospin violation fp 6= fn will be
discussed in Sect. 1.3.1; now we assume fp = fn and, thus, we can write:

σSI(A,Z) =
m2red(A,DM)

m2red(1,DM)
A2σSI. (1.5)

As for nuclear SI form factors, the Helm form factor [37,38] has been adopted4

(for details on the used form factors see Ref. [15]). As described above, some
uncertainties on the nuclear radius and on the nuclear surface thickness parameters
in the Helm SI form factors have been included in the following analysis by
considering three discrete cases, labeled as set A, B, and C in Sect. 1.2.

The purely SD case is even more uncertain since the nuclear and particle
physics degrees of freedom cannot be decoupled and a dependence on the assumed
nuclear potential exists. Also in the purely SD case all the nuclear cross sections
are usually scaled to a defined point-like SD DM particle-nucleon cross section,
σSD [34,15]. The adopted scaling law for this case profits of the proportionality
of the SD nuclear cross section to the nuclear spin factor Λ2J(J + 1) and to the
squared reduced mass. To take into account the finiteness of the nucleus, a SD
nuclear form factor is also used; for details of its parametrization used in the
following see Ref. [15]. Moreover, a further parameter must be introduced; in
fact, following the notations reported in Ref. [34]: tanθ = an

ap
, where ap,n are the

effective DM-nucleon coupling strengths for SD interactions. The mixing angle θ
is defined in the [0, π) interval; in particular, θ values in the second sector account
for ap and an with different signs. Therefore, further significant uncertainties in
the evaluation of the SD interaction rate also arise from the adopted spin factor for
the single target-nucleus. In fact, the available calculated values are well different
in different models (and differently vary for each nucleus) and, in addition, at
fixed model they depend on θ [34,15].

It is worth noting that for the SD part of the interaction not only the target
nuclei should have spin different from zero (for example, this is not the case of
Ar isotopes, and most of the Ca, Ge, Te, Xe, W isotopes) to be sensitive to DM
particles with a SD component in the coupling, but also well different sensitivities
can be expected among odd-nuclei having an unpaired proton (as e.g. 23Na and
127I, and 1H, 19F, 27Al, 133Cs) and odd-nuclei having an unpaired neutron (as e.g.
the odd Xe and Te isotopes and 29Si, 43Ca, 73Ge, 183W).

Spin-Independent interaction For the purely SI scenario in the considered model
frameworks the allowed region in the plane mDM and ξσSI have been calculated
and are shown in Fig. 1.2. Of course, best fit values of cross section and DM mass
span over a large range in the considered model frameworks.

4 It should be noted that the Helm form factor is the least favorable one e.g. for iodine and
requires larger SI cross-sections for a given signal rate; in case other form factor profiles,
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Fig. 1.2. Regions – allowed at 10 σ from absence of signal – in the nucleon cross-section vs
DM particle mass plane allowed by DAMA experiments in the case of a DM candidate
elastically scattering off target nuclei and SI interaction. Three different instances for the Na
and I quenching factors have been considered: (i)QI case [(green on-line) vertically-hatched
region], (ii) with channeling effect [(blue on-line) horizontally-hatched region)] and (iii)QII
[(red on-line) cross-hatched region].

The allowed domains in Fig. 1.2 are obtained by marginalizing all the models
for each considered scenario (see Sect. 1.2); they represent the domains where the
likelihood-function values differ more than 10 σ from absence of signal. The three
different instances described above for the Na and I quenching factors have been
considered: (i) QI case, (ii) with channeling effect, and (iii) QII.

When comparing with the previous results obtained with DAMA/NaI [15]
and DAMA/LIBRA–phase1 [11] data, one can derive that: 1) the C.L. associated to
the allowed regions is improved; 2) the allowed regions are restricted (i.e. several
configurations are no more supported by the cumulative data at the given C.L.);
3) in the QI and QII cases the low and high mass regions, driven by the Na and I
nuclei, respectively, are disconnected; 4) including the channeling effect the lower
available mass is 4 GeV, instead of 2 GeV as in the previous analysis [27,2].

In conclusion, the purely SI scenario is still supported by the data both for low
and high mass candidates; the inclusion of channeling effect also offers stringent
agreement in many considered SI scenarios.

Candidates with isospin violating SI coupling To study the case of a DM candi-
date with SI isospin violating interaction, where fp 6= fn, a third parameter, namely
the ratio fn/fp, must be considered together with ξσSI andmDM. Obviously the
previous case of isospin conserving is restored whenever the ratio fn/fp = 1.

considered in the literature, would be used, the allowed parameters’ space would extend
[15].
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Fig. 1.3. Regions in the fn/fp vsmDM plane allowed by DAMA experiments in the case of
a DM candidate having isospin violating SI interaction. The Na and I quenching factors are:
QI [left (green on-line)], QII [center (red on-line)], and with channeling effect [right (blue
on-line)]. The considered halo is A0 (isothermal sphere) with the v0 and ρ0 in the range of
Table III of Ref. [20]. The three possible sets of parameters A, B and C are considered (see
Sect. 1.2). The color scales give the confidence level in units of σ from the null hypothesis.

The results of the analysis for a single halo model hypothesis described later
are reported in Fig. 1.3, where the allowed regions in the fn/fp vs mDM plane are
shown after marginalizing on ξσSI. For simplicity the halo model A0 (isothermal
sphere) with the v0 and ρ0 in the range of Table III of Ref. [20], and three choices
of the Na and I quenching factors:QI,QII, and including the channeling effect are
considered.

Typically, few considerations can be done:

• Two bands ofmDM can be recognized, as expected: one at low mass and the
other at higher mass.

• The low mass DM candidates have a good fit in correspondence of fn/fp '
−53/74 = −0.72, where the 127I contribution vanishes and the signal is mostly
due to 23Na recoils.

• Similarly, at larger mass fn/fp ' −0.72 is instead disfavored.
• The case of isospin-conserving fn/fp = 1 is well supported at different extent

both at lower and larger mass.
• When the channeling effect is included (panels on the right of Fig. 1.3), the

case of fn/fp = 1 at low mass has even a stronger support, that is higher
confidence level.

• Contrary to what was stated in Ref. [39–41] where the low mass DM can-
didates were disfavored for fn/fp = 1 by DAMA data, the inclusion of the
uncertainties related to halo models, v0 and ρ0, quenching factors, channeling
effect, nuclear form factors, etc., and correctly accounting for other aspects, can
also support low mass DM candidates either including or not the channeling
effect.

In conclusion, at present level of uncertainties the DAMA data, if interpreted
in terms of DM particle inducing nuclear recoils through SI interaction, can account
either for low and large DM particle mass and for a wide range of the ratio fn/fp,
even including the “standard” case fn/fp = 1.
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Spin-Dependent interaction The purely SD interaction, to which Na and I nuclei
are fully sensitive, can also be considered.

The complete results would be described by a 3-dimensional volume: (ξσSD,
mDM, θ). Thus, a very large number of possible configurations are available; here
for simplicity we show, as examples, the results obtained only for 4 particular
couplings, which correspond to the following values of the mixing angle θ: (i)
θ = 0 (an = 0 and ap 6= 0 or |ap| � |an|); (ii) θ = π/4 (ap = an); (iii) θ = π/2

(an 6= 0 and ap = 0 or |an| � |ap|); (iv) θ = 2.435 rad (an/ap = −0.85, pure Z0
coupling). The case ap = −an is nearly similar to the case (iv).
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Fig. 1.4. Slices of the 3-dimensional volume (ξσSD,mDM, θ) allowed at 10 σ from absence
of signal by the DAMA experiments in the case of a DM candidate elastically scattering
off target nuclei and SD interaction. Three different instances for the Na and I quenching
factors have been considered: (i)QI case [(green on-line) vertically-hatched region], (ii) with
channeling effect [(blue on-line) horizontally-hatched region)] and (iii) QII [(red on-line)
cross-hatched region].

In Fig. 1.4 slices of the 3-dimensional allowed volume (ξσSD, mDM, θ) at
10 σ from absence of signal are shown. For each configuration three regions are
depicted accounting for the quenching factors uncertainties.

Finally, Fig. 1.5 shows the allowed regions in the tanθ vs mDM plane after
marginalizing on ξσSD. For simplicity the halo model A0 (isothermal sphere) with
the v0 and ρ0 in the range of Table III of Ref. [20], and three choices of the Na and
I quenching factors: QI, QII, and including the channeling effect are considered.

In conclusion, the purely SD scenarios are in good agreement with the DAMA
results and can explain the different capability of detection among targets with
different unpaired nucleon. The large uncertainties e.g. in the spin factor also offer
additional space for compatibility among different target nuclei.

Mixed coupling framework The most general case is when both SI and SD
couplings are considered. Details of related calculations can be found in Ref.
[34,15]. In this scenario, both the uncertainties on the SI and SD frameworks
have to be accounted. The complete result is given by a 4-dimensional allowed
volume: (ξσSI, ξσSD,mDM, θ). The isospin violating SI interaction is not included
hereafter.
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Fig. 1.5. Regions in the tanθ vsmDM plane allowed by DAMA experiments in the case of
a DM candidate with SD interaction. The Na and I quenching factors are: QI [left (green
on-line)], QII [center (red on-line)], and with channeling effect [right (blue on-line)]. The
considered halo is A0 (isothermal sphere) with the v0 and ρ0 in the range of Table III of Ref.
[20]. The three possible sets of parameters A, B and C are considered (see Sect. 1.2). The
color scales give the confidence level in units of σ from the null hypothesis.
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Fig. 1.6. Slices of the 4-dimensional volume (ξσSI, ξσSD, mDM, θ) allowed by all DAMA
experiments in the case of a DM candidate with elastic scattering off target nuclei and mixed
SI and SD interaction. Three different instances for the Na and I quenching factors have
been considered: (i) QI case [(green on-line) vertically-hatched region], (ii) with channeling
effect [(blue on-line) horizontally-hatched region] and (iii) QII [(red on-line) cross-hatched
region].

Few examples of slices (ξσSI, ξσSD) at 10 σ from the null hypothesis (absence
of modulation) are shown in Fig. 1.6 for some values of θ andmDM = 10 GeV.

Obviously, the proper accounting for the complete 4-dimensional allowed
volume and the existing uncertainties and complementarity largely extend the
results and any comparison.

Finally, let us now point out that configurations with ξσSI (ξσSD) even much
lower than those shown in Fig. 1.2 (Fig. 1.4) would be possible if a small SD (SI)
contribution would be present in the interaction. This possibility is clearly pointed
out in Fig. 1.7 where some examples of regions in the plane ξσSI vs mDM are
reported. Similar plots can be obtained for the ξσSD vsmDM case (see Ref. [17]).
As it can be seen, these arguments clearly show that even a relatively small SD
(SI) contribution can drastically change the allowed region in the (mDM, ξσSI(SD))
plane; therefore, the typically shown model-dependent comparison plots between
exclusion limits at a given C.L. and regions of allowed parameter space do not hold
e.g. for mixed scenarios when comparing experiments with and without sensitivity
to the SD component of the interaction. The same happens when comparing
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Fig. 1.7. An example of the effect induced by the inclusion of a SD component different from
zero on allowed regions given in the plane ξσSI vsmDM. In this example the B1 halo model
with v0 = 170 km/s and ρ0 = 0.42 GeV/cm3, the set of parameters A and the particular
case of θ = 0 for the SD interaction have been considered. The used quenching factors are
QI (left), QII (center) and with channeling effect (right). From top to bottom the contours
refer to different SD contributions: σSD = 0 pb (solid black line), 0.02 pb, 0.04 pb, 0.05 pb,
0.06 pb and 0.08 pb. Analogous situation is found for the other model frameworks.

regions allowed by experiments whose target-nuclei have unpaired proton with
exclusion plots quoted by experiments using target-nuclei with unpaired neutron
when the SD component of the interaction would correspond either to θ ' 0 or
θ ' π.

1.3.2 DM particles with preferred electron interaction

Some extensions of the standard model provide DM candidate particles, which can
have a dominant coupling with the lepton sector of the ordinary matter. Thus, such
DM candidate particles can be directly detected only through their interaction with
electrons in the detectors of a suitable experiment, while they cannot be studied
in those experimental results where subtraction/rejection of the electromagnetic
component of the experimental counting rate is applied5. These candidates can
also offer a possible source of the 511 keV photons observed from the galactic
bulge. This scenario was already investigated by DAMA with lower exposure [42].
The analyses updated by including the new data of the first six annual cycles of
DAMA/LIBRA–phase2 with lower software energy threshold is reported in Ref.
[17]. The lower energy threshold achieved by DAMA/LIBRA–phase2 at 1 keV
prevents to find configurations for these DM candidates distant more than 10 σ
from the null hypothesis. However, allowed regions can be found when lowering
the number of required σ [17]. This is an example how to disentangle among some
scenarios, improving the sensitivity of the set-up.

5 If the electron is assumed at rest, considering the DM particle velocity, the released energy
would be of order of few eV, well below the detectable energy in any considered detector
in the field. However, the electron is bound in the atom and, even if the atom is at rest,
the electron can have non-negligible momentum, as shown in Ref. [42].
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1.3.3 Inelastic Dark Matter

Another scenario regards the inelastic DM: relic particles that cannot scatter elasti-
cally off nuclei. Following an inelastic scattering off a nucleus, the kinetic energy
of the recoiling nucleus is quenched and is the detected quantity. As discussed in
Refs. [43–45,35], the inelastic DM could arise from a massive complex scalar split
into two approximately degenerate real scalars or from a Dirac fermion split into
two approximately degenerate Majorana fermions, namely χ+ and χ−, with a δ
mass splitting. In particular, a specific model featuring a real component of the
sneutrino, in which the mass splitting naturally arises, has been given in Ref. [43].
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Fig. 1.8. Slices of the 3-dimensional volume (ξσp, δ,mDM) allowed by DAMA experiments
in the case of a DM candidate with preferred inelastic interaction. Three different instances
for the target nuclei quenching factors have been considered: (i) QI case [(green on-line)
vertically-hatched region], (ii) with channeling effect [(blue on-line) horizontally-hatched
region] and (iii) QII [(red on-line) cross-hatched region]. In the right plots the inelastic
scattering off thallium nuclei is also included; here the regions due to inelastic scattering
only off Na and I nuclei, already shown on the left, are reported in (yellow on-line) light-
filled.

The discussion of the theoretical arguments on such inelastic DM can be found
e.g. in Ref. [43], where it was shown that for the χ− inelastic scattering off target
nuclei a kinematic constraint exists which favors heavy nuclei (such as 127I) with
respect to lighter ones (such as e.g. natGe) as target-detectors media. In fact, χ−
can only inelastically scatter by transitioning to χ+ (slightly heavier state than χ−)
and this process can occur only if the χ− velocity, v, is larger than:

vthr =

√
2δ

mred(A, χ)
, (1.6)



i
i

“proc19” — 2019/12/9 — 11:13 — page 14 — #30 i
i

i
i

i
i

14 R. Bernabei et al.

where mred(A, χ) is the χ−nucleus reduced mass. This kinematic constraint be-
comes increasingly severe as the nucleus mass,mN, is decreased [43]. For example,
if δ >∼ 100 keV, a signal rate measured e.g. in Iodine will be a factor about 10 or
more higher than that measured in Ge [43]. Moreover, this model scenario implies
some characteristic features when exploiting the DM annual modulation signature
since it gives rise to an enhanced modulated component, Sm, with respect to the
un-modulated one, S0, and to largely different behaviors with energy for both S0
and Sm (both show a higher mean value) [43] with respect to elastic cases. Details
of calculation procedures can be found in Ref. [35].

Accounting for the uncertainties mentioned above, in the inelastic DM sce-
nario an allowed 3-dimensional volume in the space (ξσp, mDM, δ) is obtained.
Here, following the notation of Ref. [35], σp is a generalized SI point-like χ−nucleon
cross section andmDM is the χmass.

For simplicity, Fig. 1.8 left shows slices of such an allowed volume at 10 σ
from the null hypothesis for some values ofmDM; the different cases of quenching
factors are considered as well. It can be noted that whenmDM � mN, the expected
differential energy spectrum is trivially dependent onmDM and, in particular, it is
proportional to the ratio between ξσp andmDM. Thus, allowed regions for other
mDM � mN can be obtained from the last panel of Fig. 1.8, straightforward.

Significant enlargement of such regions should be expected when including
complete effects of model (and related experimental and theoretical parameters)
uncertainties.
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Fig. 1.9. Regions in the δ vs mDM plane allowed by DAMA experiments in the case of a
DM candidate with preferred inelastic interaction. The Na and I quenching factors are: QI
[left (green on-line)], QII [center (red on-line)], and with channeling effect [right (blue
on-line)]. The considered halo is A0 (isothermal sphere) with the v0 and ρ0 in the range of
Table III of Ref. [20]. The three possible sets of parameters A, B and C are considered (see
Sect. 1.2). The color scales give the confidence level in units of σ from the null hypothesis.

Fig. 1.9 shows the allowed regions in the δ vs mDM plane after marginalizing
on ξσp. For simplicity the halo model A0 (isothermal sphere) with the v0 and ρ0
in the range of Table III of Ref. [20], and three choices of the Na and I quenching
factors: QI, QII, and including the channeling effect are considered.

It is worth noting that in the case of Inelastic DM the thallium dopant (stable
isotopes with mass number 203 and 205, and natural abundances 29.5% and 70.5%
respectively) can also play a role as it has been described in Ref. [46], where it has
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been shown how the DM interaction on thallium nuclei would give rise to a signal
which cannot be detected with lower mass target-nuclei. This also can decouple
theoretical and experimental aspects from different experiments. The slices of the
3-dimensional volume (ξσp, δ,mDM), allowed by DAMA experiments when the
inelastic scattering off thallium nuclei is also included, have been evaluated in Fig.
1.8 right marginalizing all the considered models (see Sect. 1.2). Two instances
for the Tl quenching factor in NaI(Tl) are considered: (i) QI case with qTl = 0.075,
tentatively obtained by extrapolating the qNa and qI measured by DAMA with
neutrons [31]; (ii) QII quenching factors varying as a function of ER evaluated as
in Ref. [32]. Moreover, the thallium is assumed to be homogeneously distributed
in each crystal and among the crystals at level of 0.1% in mass (corresponding to
2.95× 1021 Tl atoms/kg). As shown in Fig. 1.8 right, new regions with ξσp >∼ 1
pb and δ >∼ 100 keV are allowed by DAMA after the inclusion of the inelastic
scattering off thallium nuclei. Such regions are not fully accessible to detectors
with target nuclei having mass lower than thallium.

In conclusion, we point out that here the analysis of the inelastic DM particle
has been limited only to SI coupling. Recently analyses of the inelastic DM candi-
date with SD coupling have been reported in Refs. [47,48]. They show that also
this scenario can be compatible with the DAMA result. This conclusion can be
further confirmed considering e.g. the effects of uncertainties in the models that in
those papers have not been included.

1.3.4 Investigation on light dark matter

Some extensions of the Standard Model provide DM candidate particles with sub-
GeV mass; in the following these candidates will be indicated as Light Dark Matter
(LDM). Several LDM candidates have been proposed in Warm DM scenarios, as
keV-scale sterile neutrino, axino, gravitino, and MeV-scale particles (for details see
Ref. [30]).

In this section the direct detection of LDM candidate particles is investigated
considering the possible inelastic scattering channels either off the electrons or off
the nuclei of the target. Firstly we note that – since the kinetic energy for LDM
particles in the galactic halo does not exceed hundreds eV – the elastic scattering of
such LDM particles both off electrons and off nuclei yields energy releases hardly
detectable by the detectors used in the field; this might prevent the exploitation of
the elastic scattering as detection approach for these candidates. Thus, the inelastic
process could be the only possible viable one for the direct detection of LDM [30].

The following process is, therefore, considered for detection: the LDM can-
didate (hereafter named νH with mass mH) interacts with the ordinary matter
target, T , with massmT . The target T can be either an atomic nucleus or an atomic
electron depending on the nature of the νH particle interaction. As result of the
interaction a lighter particle is produced (hereafter νL with massmL < mH) and
the target recoils with an energy ER, which can be detectable by suitable detectors.
The lighter particle νL is neutral and it is required that it interacts very weakly
with ordinary matter or not at all; thus, the νL particle escapes the detector. In
particular, the νL particle can also be another DM halo component (dominant or
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sub-dominant with respect to the νH one), or it can simply be a Standard Model
particle (e.g. νL can be identified with an active neutrino) [30].

Since the sub-GeV LDM wavelength (λ = h
k
> 103 fm) is much larger than

the nucleus size, the targets can be considered as point-like and the form factors
of the targets can be approximated by one. The cross section of the processes, σT ,
is generally function of the LDM velocity, v, and can be written by adopting the
approximation for the non-relativistic case [30]:

σTv ' a+ bv2 , (1.7)

where a and b are constant depending on the peculiarity of the particle interaction
with the target T . In the analysis, the cross sections σT0 = a

v0
and σTm = bv0 are

defined [30]; they are related to the a and b parameters rescaled with the DM
local velocity, v0. In particular, the σTm is responsible for the annual modulation of
the expected counting rate for LDM interactions, and in the following it will be
used as free parameter, together with mH and the mass splitting ∆ = mH −mL.
Moreover, for the case of LDM interaction on nuclei, following the prescriptions
given in Ref. [30], two different nuclear scaling laws are adopted: the coherent
(σcohm ∝ σNam /A2Na ∝ σIm/A2I ) and the incoherent (σincm ∝ σAm ∝ σIm) ones.

Interaction with atomic electrons After the interaction of νH with an electron in
the detector, the final state can have – beyond the νL particle – either a prompt
electron and an ionized atom or an excited atom plus possible X-rays/Auger
electrons. Therefore, the process produces X-rays and electrons of relatively low
energy, which are mostly contained with efficiency ' 1 in a detector of a suitable
size.

Comparing the expected modulated signal for this scenario with the experi-
mental result it is possible to determine a 10 σ C.L. allowed volume in the space
(mH, ∆, ξσem). The projection of such a region on the plane (mH, ∆) for the dark
halo models and parameters described before is reported in Fig. 1.10. The allowed
mH values and the splitting ∆ are in the intervals 40 keV <∼ mH <∼ O(GeV)6 and
1.5 keV <∼ ∆ <∼ 70 keV, respectively. It is worth noting that in such a case the decay
through the detection channel: νH → νLe

+e−, is energetically forbidden for the
given ∆ range. The configurations with mH >

∼ 511 keV (dark area in Fig. 1.10)
are instead of interest for the possible annihilation processes: νHν̄H → e+e−,
νHν̄L → e+e−, νLν̄H → e+e− and and νLν̄L → e+e− in the galactic center.

Some slices of the 3-dimensional allowed volume for various mH values
(including the mH = ∆ case, that is a massless or a very light νL particle) in the
(ξσem vs ∆) plane are reported in Ref. [17].

In conclusion, it is worthwhile to summarize that electron interacting LDM
candidates in the few-tens-keV/sub-MeV range are allowed by DAMA experi-
ments (see Fig. 1.10). This can be of interest, for example, in the models of Warm
DM particles, such as e.g. weakly sterile neutrino. Moreover, configurations with

6 For values ofmH greater than O(GeV), the definition of LDM is no longer appropriate.
Moreover, the kinetic energy of the particle would be enough for the detection in DAMA
experiments also through the elastic scattering process, as demonstrated in Ref. [42].
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Fig. 1.10. Projection of the allowed 3-dimensional volume on the plane (mH, ∆) for electron
interacting LDM. The dashed line (mH = ∆) marks the case where νL is a massless particle.
The decay through the detection channel, νH → νLe

+e−, is energetically not allowed for
the selected configurations. The configurations withmH >∼ me (dark area) are interesting
for the possible annihilation processes: νHν̄H → e+e−, νHν̄L → e+e−, νLν̄H → e+e− and
νLν̄L → e+e− in the galactic center. The three nearly vertical curves are the thresholds of
these latter processes as mentioned in Ref. [30].

mH in the MeV/sub-GeV range are also allowed; similar LDM candidates can
also be of interest for the production mechanism of the 511 keV gammas from the
galactic bulge.

Interaction with nuclei With regard to the interaction of LDM with target nuclei,
an allowed volume can be obtained in the space (mH, ∆, ξσnucleusm ). The projec-
tions of such a region on the plane (mH, ∆) are reported in Fig. 1.11 for the two
above-mentioned illustrative cases of coherent and incoherent nuclear scaling laws.
They have been obtained by marginalizing all the models for each considered sce-
nario (see Sect. 1.2) and they represent the domain where the likelihood-function
values differ more than 10 σ from the null hypothesis (absence of modulation). The
allowedmH values and the splitting ∆ are in the intervals 8 MeV <∼ mH <∼ O(GeV)
and 29 keV <∼ ∆ <∼ 150MeV, respectively (see Fig. 1.11). It is worth to note that in
such a case the decays through the diagram involved in the detection channel
(e.g. in nucleon anti-nucleon pairs or in meson(s), as νH → νLπ

0) are obviously
energetically forbidden. Moreover, there are allowed configurations that could
contribute – in principle, if suitable couplings exist – to the positron generation
in the galactic center; in fact, the decay νH → νLe

+e− is energetically allowed for
∆ > 2me (dark area in Fig. 1.11), while the annihilation processes into e+e− pairs
are energetically allowed for almost all the allowed configurations.

It is worth noting that for nuclear interacting LDM the 3-dimensional allowed
configurations are contained in two disconnected volumes, as seen e.g. in their
projections in Fig. 1.11. The one at larger ∆ atmH fixed is mostly due to interaction
on Iodine target, while the other one is mostly due to interaction on Sodium target.
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Fig. 1.11. Case of nucleus interacting LDM. Projections of allowed 3-dimensional volumes
on the plane (mH, ∆) for coherent (top) and incoherent (bottom) nuclear scaling law,
considering for the quenching factors: (i) QI case (left), (ii) with channeling effect (center),
and (iii) QII (right). The dashed lines (mH = ∆) mark the case where νL is a massless
particle. The decays through the diagram involved in the detection channel are energetically
forbidden.

Some slices of the 3-dimensional allowed volumes for various mH values
(including the mH = ∆ case, that is a massless or a very light νL particle) in the
(ξσcoh,incm vs ∆) plane are reported in Ref. [17].

Finally, it is worthwhile to summarize that LDM candidates in the MeV/sub-
GeV range are allowed by DAMA experiments (see Fig. 1.11). Also these can-
didates, such as e.g. axino, sterile neutrino, can be of interest for the positron
production in the galactic bulge.

1.3.5 Mirror Matter

Well-motivated DM candidates are represented by the so called Mirror particles.
The Mirror scenario can be introduced by considering a parallel gauge sector with
particle physics exactly identical to that of ordinary particles, coined as mirror
world. In this theory the Mirror particles belong to the hidden or shadow gauge
sector and can constitute the DM particles of the Universe. A comprehensive
discussion about Mirror Matter as DM component can be found in Refs. [28,29]. In
these two papers the annual modulation effect measured by DAMA experiments
with lower exposure has been analyzed in the framework of Asymmetric and
Symmetric Mirror Matter scenarios. The analyses updated by including the new
data of the first six annual cycles of DAMA/LIBRA–phase2 with lower software
energy threshold is reported in Ref. [17]. This new analysis restricts a significant
part of the parameters’ space of the Mirror DM scenarios.
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1.4 Conclusions

A high C.L. model-independent evidence for the presence of DM particles in
the galactic halo has been achieved by DAMA/NaI, DAMA/LIBRA–phase1 and
by the first six full annual cycles of DAMA/LIBRA–phase2 on the basis of the
exploited signature.

The corollary investigation on the nature of the DM particles is an open
problem; it always requires a large number of assumptions. In this paper several
possible scenarios [17] for DM candidates are analyzed on the basis of the long-
standing DAMA results exploiting the DM annual modulation signature.

In particular, the DAMA/LIBRA–phase2 data, collected over the first six full
annual cycles (1.13 ton × yr) with a software energy threshold down to 1 keV,
are analyzed with the DAMA/NaI and DAMA/LIBRA–phase1 data for several
scenarios, improving the confidence levels and restricting the allowed parameters’
space of the considered DM candidate particles with respect to previous analyses.

Several scenarios are compatible with the observed signal; other possibilities
are open as well. For example other scenarios as e.g. Refs. [49,50] are planned to
be analysed as well. It is also worth noting that even a suitable particle not yet
foreseen by theories may be the- or one-of-the- solutions for DM particles.

The improved results presented in this paper show how important is to
improve the capability of the experiment to effectively disentangle among the
many possible different scenarios. For such a purpose an increase of exposure in
the new lowest energy bins and the lowering of the software energy threshold
below 1 keV are important. Thus, DAMA/LIBRA–phase2 has continued its data
taking. Moreover, related R&D’s towards the so-called phase3 have been funded
and are in progress.

In conclusion, the new data have allowed significantly improving the confi-
dence levels and restricting the allowed parameters’ space for the various consid-
ered scenarios with respect to previous DAMA analyses; efforts towards further
improvements are in progress.
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Abstract. The lack of experimental evidence at the LHC for physics beyond the Standard
model (BSM) of elementary particles together with necessity of its existence to provide
solutions of internal problems of the Standard model (SM) as well as of physical nature of
the basic elements of the modern cosmology demonstrates the conspiracy of BSM physics.
Simultaneously the data of precision cosmology only tighten the constraints on the devia-
tions from the now standard ΛCDM model and thus exhibit conspiracy of the nonstandard
cosmological scenarios. We show that studying new physics in combination of its physical,
astrophysical and cosmological probes, can not only unveil the conspiracy of BSM physics
but will also inevitably reveal nonstandard features in the cosmological scenario.

Povzetek. Poskusi na pospeševalniku LHC niso ponudili doslej ničesar, kar bi prispevalo
k razumevanju izvora predpostavk standardnega modela osnovnih delcev. Tudi vedno
bolj natančne kozmološke meritve ne kažejo odstopanja od standardnega modela. Zdi se,
meni avtor, kot da se je narava ”zarotila” in vstraja na standardnem modelu in “nam noče
pokazati poti” k razumevanju privzetkov standardnega modela. Avtor v prispevku demon-
strira, kako lahko teoretične raziskave skupaj s fizikalnimi, astrofizikalnimi in kozmološkimi
meritvami pokažejo nestandardne značilnosti v kozmološkem scenariju.

Keywords: cosmology, particle physics, cosmoparticle physics, inflation, baryosyn-
thesis, dark matter, primordial black holes, antimatter, dark atoms, composite dark
matter, stable double charged particles

2.1 Introduction

The now standard description of the structure and evolution of the Universe is
based on inflationary models with baryosynthesis and dark matter/ energy. The
interpretation of the data of precision cosmology ascribes about 95% of the mod-
ern cosmological energy density to the impact of physics beyond the Standard
model (BSM) of elementary particles. BSM physics is involved in virtually all the

? E-mail: khlopov@apc.univ-paris.fr



i
i

“proc19” — 2019/12/9 — 11:13 — page 22 — #38 i
i

i
i

i
i

22 M.Yu. Khlopov

mechanisms of inflation and baryosynthesis, explaining the initial conditions of
the cosmological evolution. It makes the observed homogeneous and isotropic ex-
panding Universe, origin and structure of its inhomogeneities with their observed
baryon asymmetry an evident reflection of the BSM physics.

The problem of experimental studies of BSM physics is generally related
with necessity to address effects of a high energy scale F 1. At the energy release
E ≥ F it leads to appearance of new heavy particles with the massM ∼ F or new
interactions that manifest their full strength at these energies. If the energy is
much less, than F, only virtual effects of new physical scale are possible, which
are suppressed by some power of E/F. Therefore we can either turn to rare low
energy processes, in which new high energy physics phenomena can appear, like
proton decay, or probe at the currently available energies E the extensions of the
Standard model (SM), which involve new physics at scales F ≤ E. Probes for
supersymmetric (SUSY) models at the LHC corresponded to the latter case, but the
lack of positive evidence for existence of SUSY particles at the energy of hundreds
GeV probably moves the SUSY scale to higher energies, at which direct search of
SUSY particle production at the LHC is not possible.

The only experimentally proven evidence for new physics is the effect of
neutrino oscillations, but the physical nature of neutrino mass is still unknown.

Following [1] we characterize here the current situation as the conspiracy of the
BSM physics: there is no doubt in its existence, but all its features are hidden, since
the experimental data put only more and more stringent constraints on the new
physics effects. We discuss the physical motivation for extension of SM model and
their possible physical, astrophysical and cosmological signatures in Section 2.2.
We draw attention in the Section 2.3 that BSM physics involved in the description
of the now standard cosmological model (which we consider in Section 2.2 as
the motivation for the SM extension) should inevitably add nonstandard model
dependent features like a plethora of non-WIMP forms of dark matter, primordial
black holes or antimatter domains in the baryon asymmetrical Universe. We
express the hope in the Conclusion (Section 2.4) that revealing of specific model
dependent signatures of BSM physics can not only unveil its conspiracy, but can
also enrich the theory of structure and evolution of the Universe by nonstandard
cosmological scenarios.

2.2 Motivations for the SM extension

2.2.1 Physics of neutrino mass

The discovery of neutrino oscillations proves the existence of the nonzero mass of
neutrino. It may be considered as a manifestation of BSM physics, since neutrinos
are strictly massless in the Standard model. However, the very existence of neu-
trino mass doesn’t shed light on its physical nature and the corresponding new
physics.

Neutrino mass term relates ordinary left-handed neutrino state to some right
handed state. The latter can be ordinary right-handed antineutrino. It corresponds

1 Henceforth,if it is not otherwise specified, we use the units ~ = c = k = 1
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to Majorana mass term, in which lepton number L conservation is violated and
L changes as ∆L = 2. In the SM lepton number is conserved at the tree level and
Majorana mass term is the example of BSM physics.

Smallness of ordinary neutrino Majorana massmν relative to the Dirac mass
mD of the corresponding charged lepton is explained by ”see-saw” mechanism,
involving right handed neutrino with large Majorana mass M, so that ordinary
neutrino mass is given by

mν =
m2D
M

=
mD

M
mD � mD. (2.1)

Majorana mass term of electron neutrino leads to neutrinoless double beta decay.
In the nonrelativistic limit interaction of Majorana neutrino with nuclei is propor-
tional to spin operator acting on nuclear wave function. It leads to spin dependent
interaction of nonrelativistic Majorana neutrino with nuclei.

Another possibility is a Dirac neutrino mass term. It corresponds to transition
to a new state of sterile right handed neutrino. Such neutrino doesn’t participate
in the ordinary weak interactions, being another possible example of BSM physics,
related to the mechanism of neutrino mass generation.

In the nonrelativistic limit Dirac neutrino interaction with nuclei is spin
independent and leads to coherent scattering of low energy neutrinos in the
matter. V.Shwatsman has noted in his diploma work in late 1960s that neutrino
with massm and velocity v can scatter coherently on the piece of matter with size
l ∼ ~/(mv) and cause its acceleration. This idea, published in [2,3] was probably
the first step towards direct detection of cosmological dark matter.

It is the stable prediction of the Big Bang theory that primordial thermal
neutrino background should exist with number density

nνν̄ =
3

11
nγ, (2.2)

where nγ ≈ 400cm−3 is the the number density of CMB photons. Multiplied by
neutrino mass it gives the predicted contribution of relic massive neutrinos to the
cosmological density. Experimental constraints on the mass of electron neutrinos
(see [4] for the latest results) together with the data on the neutrino oscillations
exclude explanation of the measured dark matter density by this contribution.
However, while ordinary massive neutrinos cannot play dominant dynamical role
in the Universe, BSM physics of neutrino mass can lead to important cosmological
effects, like sterile neutrino dark matter [5].

2.2.2 Supersymmetry and the SM problems

SUSY models provide natural solution for the internal SM problems, if the SUSY
scale is in the range of several hundred GeV.

Then contribution of SUSY partners in loop diagrams of radiative effects in the
Higgs boson mass cancel the quadratic divergent contribution of the corresponding
SM particles. Renormalization group analysis of evolution of scalar field potential
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from superhigh energy scale leads to the Higgs form of this potential at lower
energy, explaining the nature of the electroweak symmetry breaking.

R-parity or some continuous symmetry provides stability of the lightest SUSY
particle. Such particle with mass of several hundred GeV has interaction cross
section at the level of weak interaction and can play the role of Weakly Interacting
Massive Particle (WIMP) candidate for dark matter.

The lack of experimental signatures for SUSY particles at the LHC as well
as of positive result of underground WIMP searches 2 implies nontrivial ways of
search for SUSY (see [11] for the latest review).

In the extreme case SUSY scale may be close to the scale of Grand Unfication
(GUT). This case implies non-SUSY solution for the problem of divergence of the
Higgs mass and origin of the electroweak symmetry (see the next subsection),
but has the advantage to unify all the four fundamental natural forces, including
gravity, in the framework of Supergravity. Starobinsky supergravity can provide
simultaneous BSM solution for dark matter in the form of superheavy gravitino
[12–14] and Starobinsky inflation [15]. This solution can be hardly probed by any
direct experimental mean and makes cosmological consequences the unique way
for its indirect test.

2.2.3 Nonsupersymmetric solutions. Composite Higgs. Multiple charged
particles

Nonsupersymmetric solution for the problem of Higgs mass divergence may be
related to the composite nature of Higgs boson [16–21]. Then this divergence is cut
at the scale, at which Higgs constituents are bound. In parallel such constituents
can form bound states with exotic charges. Such situation can take place in the
model of composite Higgs based on Walking Technicolor (WTC) [22–27].

The minimal walking technicolor model (WTC) involves two techniquarks,U
and D. They transform under the adjoint representation of a SU(2) technicolor
gauge group. Neutral techniquark-antitechniquark state is associated with the
Higgs boson. Six bosons UU, UD,DD, and their corresponding antiparticles carry
a technibaryon number. If the technibaryon number is conserved, the lightest
technibaryon should be stable.

Electric charges of UU, UD and DD are given in general by q + 1, q, and
q − 1, respectively, where q is an arbitrary real number [28–30]. To compensate
the anomalies the model includes in addition technileptons ν ′ and ζ that are
technicolor singlets. Their electric charges are in terms of q, respectively, (1−3q)/2
and (−1− 3q)/2.

Fractional value of q would correspond to stable fractionally charged tech-
niparticles. Their creation in the early Unvierse would lead to their presence in
the terrestrial matter that is severely constrained by the experimental data. On the
same reason, stable techniparticles should not have odd charge 2n+ 1. Positively

2 Though interpretation of positive result of DAMA/NaI and DAMA/LIBRA experiments
in the terms of WIMPs is not excluded [6,7], theoretical analysis [8], proving such a
possibility indicates its contradiction with the results of XENON1T [9] and PICO [10]
experiments.
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charged +(2n+ 1) stable particles are bound with electrons in anomalous isotopes
of elements with Z = 2n+ 1. Negatively charged particles with charge −(2n+ 1),
created in the early Unvierse, bind with n + 1 nuclei of primordial helium, pro-
duced in the Big Bang Nucleosynthesis, and form a +1 charged ion that binds
with electrons in atoms of anomalous hydrogen. The experimental data put severe
constraints on such anomalous isotopes.

The case of stable multiple charged particles with even value of negative
charge −2n avoids these troubles, since it forms with n nuclei of primordial
helium neutral dark atom. Their bound states with primordial helium can play
the role of dark matter and can even solve the puzzles of dark matter searches (see
[1,31–33] for the latest review).

2.2.4 Axion and axion-like models

The popular solution for the problem of strong CP violation in QCD involves
the additional U(1)PQ symmetry which provides automatic suppression of the
CP-violating θ-term [34]. Breaking of this Peccei-Quinn symmetry spontaneously
at the scale f, followed by its manifest breaking at the scale Λ � f results in
appearance of a pseudo-Nambu-Goldstone (PNG) particle, axion, a. In the axion
models the second step of breaking is generated by instanton transitions.

The mass of axion is given by [35]

ma = Cmπfπ/f, (2.3)

wheremπ and fπ ≈ mπ are the pion mass and constant, respectively. The constant
C ∼ 1 depends on the choice of the axion model. The relationship (2.3) of axion
to neutral pion makes possible to estimate the cross section of axion interactions
from the corresponding cross section of pion processes multiplied by the factor
(fπ/f)

2.
The existence of aγγ vertex leads to a two-photon decay of axion, as well as

to effects of aγ conversion [38] like axion-photon conversion in magnetic field
(see e.g. [39] for review and references). The principles of experimental search for
axion by ”light shining through walls” effects are based on such a conversion [40].

Axion couplings to nondiagonal quark and lepton transition can lead to rare
processes like K→ πa or µ→ ea. In the gauge model of family symmetry breaking
[41] the PNG particle called archion shares properties of axion with the ones of
singlet Majoron and familon, being related to the mechanism of neutrino mass
generation.

In the axion-like models the condition of Eq. (2.3) is absent and the mass of
the PNG particle may be very small.

In cosmology, in spite of a very small mass (2.3) primordial axions appear in
the ground state of Bose-Einstein condensate and, being created initially nonrela-
tivistic, represents a specific form of Cold Dark Matter.

2.2.5 BSM physics of the standard cosmology

The now Standard cosmological model involves inflation to explain the homogene-
ity and isotropy of the Universe as well as initial impulse for Big Bang expansion.
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Observed absence of antimatter objects is explained by baryosynthesis, in which
baryon asymmetry was generated in the intially baryon symmetric Universe. For-
mation and evolution of Large Scale Structure is described in the framework of the
standard ΛCDM model, assuming dominance in the modern total cosmological
density of dark energy with vacuum-like equation of state (cosmological constant
Λ in the simplest case) and dark matter dominating in the matter content of the
Universe. All these elements of the Standard Cosmological model imply BSM
physics, making the observational confirmation of this model an evidence for
existence of BSM physics.

On the other hand, the data of precision cosmology (planck15,planck18)
analysed in the terms of parameters of this standard cosmological model contin-
uously tighten the constraints on deviations of the measured parameters from
the model predictions. These measured parameters involve dark matter den-
sity ΩDMh2 = 0.120 ± 0.001, baryon density Ωbh2 = 0.0224 ± 0.0001 (where
the dimensionless constant h is the modern Hubble constant H0 in the units
of 100 km/s/Mpc), scalar spectral index ns = 0.965 ± 0.004, and optical depth
τ = 0.054± 0.007 [43]. These results are only weakly dependent on the cosmologi-
cal model and remain stable, with somewhat increased errors, in many commonly
considered extensions. Assuming theΛCDM cosmology, the inferred late-Universe
parameters were determined: the Hubble constant H0 = (67.4± 0.5) km/s/Mpc;
matter density parameterΩm = 0.315± 0.007; and matter fluctuation amplitude
σ8 = 0.811± 0.006. Combining with the results of studies of baryon acoustic oscil-
lations (BAO) by measurement of large scale distribution of galaxies [44] 3 Planck
collaboration has constrained the effective extra relativistic degrees of freedom
to be Neff = 2.99 ± 0.17, and the sum of neutrino mass was tightly constrained
to
∑
mν < 0.12. These results prove the basic ideas of inflationary model with

baryosynthesis and dark matter/energy, but cannot provide definite choice for the
corresponding BSM physics.

PLANCK collaboration has found no compelling evidence for extensions to
the ΛCDM model, but has mentioned the 3σ difference with the results of local
determination ofH0 [46]. Such a discrepancy may be a hint to a necessity to extend
the standard cosmological model.

Indeed, the conspiracy of Beyond the Standard model (BSM) Cosmology [1] is
puzzling taking into account the plethora of nontrivial cosmological consequences
of BSM particle models. Some of these nonstandard features which have probably
found their experimental evidence are discussed in the next Section 2.3.

2.3 Features of BSM cosmology

2.3.1 Plethora of dark matter candidates

Well motivated BSM models offer a plethora of dark matter candidates. In the
essence such candidates follow from the extension of the SM symmetry. If the
additional symmetry acting on new sets of particles is strict or nearly strict, the

3 Such oscillations were first discussed by A.D. Sakharov [45] and are also called Sakharov
oscillations
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lightest particles that possess this symmetry are stable or sufficiently long living to
play the role of dark matter. In addition to massive sterile neutrinos, superheavy
gravitino or invisible axion that follow respectively from solutions of the origin of
neutrino mass, Starobinsky supergravity or solution of the problem of strong CP
violation in QCD there are mirror or shadow particles, whose existence is related
to restoration of equivalence of left- and right-handed coordinate systems. Grand
Unification, string phenomenology or phenomenology of extra dimensions extend
this list by many other nontrivial candidates accompanied by a very extensive
hidden sector of new particles and fields. Such extensions naturally lead to multi-
component dark matter that can include unstable or decaying components, like it
takes place in the model of broken family gauge symmetry [41] (see e.g. [28,37,35]
for review and references).

In this large list of possibilities the model of dark atoms, in which stable
−2n charged particles are bound with n nuclei of primordial helium, is of special
interest not only owing to the minimal set of the involved new physics parameters
(their number is reduced to the mass of a hypothetical negatively charged stable
particles only), but also since it may provide a solution for controversial results of
direct dark matter searches.

The idea of this solution is that nuclear interacting dark atoms are slowed
down in the terrestrial matter and thus cannot cause significant nuclear recoil in
the underground detector. However, in the matter of these detectors dark atoms
can bind with intermediate mass nuclei with the binding energy of few keV
(see [1,31,33] for recent review and references). Since the concentration of dark
atoms in the matter of underground detectors is adjusted to their incoming cosmic
flux, energy release in such binding should experience annual modulations. It
explains positive results of DAMA/NaI and DAMA/LIBRA experiments. In a
simple rectangular wall and well approximation it was shown in [47] that a level of
about 3 keV can exist in binding of dark atoms with intermediate mass nuclei and
doesn’t exist for heavy nuclei, like xenon, explaining absence of positive results
in the corresponding detectors. If such level exists, transition to it is determined
by isospin violating electric dipole operator and its rate is proportional to the
temperature, being suppressed in cryogenic detectors [1,31,33].

The open problem of this explanation is a selfconsistent treatment of Coulomb
and nuclear interactions of dark atoms. Such treatment needs special study in
the lack of all the usual approximations of atomic physics: there are no small
parameters like small ratio of sizes of nucleus and atom and the electroweak
interaction of electronic shell. Dark atoms has strongly interacting nuclear shell
with the radius of the order or equal to the nuclear radius.

Dark atom cosmology contains such notrivial features as Warmer than Cold
Dark Matter scenario and can explain the observed excess of radiation in positron
annihilation line from the center of Galaxy as indirect effect of dark atoms (see
[1,31–33] for recent review and references). This explanation assuming electron-
positron pair production in de-excitation of dark atoms excited in collisions in
the center of Galaxy is possible only for a narrow range around 1.25 TeV of the
mass of dark atom, which is determined by its constituent with multiple negative
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charge [1,35]. It challenges search for multiple charged stable particles at the LHC
that provides complete test of such an explanation [48].

In a two-component dark atom model, a possibility to explain the observed
excess of high energy positrons by decays of +2 charged dark atom constituents
was proposed in [49]. However, any source of positrons is simultaneously the
source of gamma radiation and to avoid contradiction with the observed gamma
background the mass of the decaying +2 consituent of dark atom should be less,
than 1 TeV. Moreover, in view of the difference of propagation in the Galaxy by
gamma radiation and positrons the condition not to exceed the observed gamma
background may cause troubles for any explanation for the high energy positron
excess, involving indirect effects of dark matter [50]. In any case, the results of
searches for stable double charged particles in the ATLAS experiment at the LHC
put lower limit on the mass of such particles [51], excluding explanation of high
energy positron anomaly by decaying +2 charged constituents of dark atoms
[1,35].

2.3.2 Primordial Black holes

Strong primordial inhomogeneities are a prominent tracer of BSM physics of very
early Universe and Primordial Black Holes (PBH) are the most popular example
of this kind (see e.g. [12,52] for review and references). To form a black hole in the
homogeneously expanding Universe the expansion should stop in some region
and it corresponds to a very strong inhomogeneity [53–55]. In the universe with
equation of state

p = γε (2.4)

with numerical factor γ being in the range

0 ≤ γ ≤ 1 (2.5)

the probability of forming a black hole from fluctuations within the cosmological
horizon is given by [56]

WPBH ∝ exp
(
−

γ2

2 〈δ2〉

)
, (2.6)

where
〈
δ2
〉
� 1 is the amplitude of density fluctuations. For relativistic equation

of state (γ = 1/3) the probability (2.6) is exponentially small. It can increase,
if the amplitude of density fluctuations in the early Universe was much larger,
than in the period of galaxy formation, or the equation of state was much softer,
corresponding to matter dominated stage with γ = 0.

Therefore PBH origin may be related with early matter dominated stages,
phase transitions in the early Universe or nonflat features in the spectrum of
primordial density fluctuations. All these phenomena are not only originated from
BSM physics, but also represent strong deviation from the Standard cosmological
scenario.

PBHs with massM ≤ 1015 g evaporate by the mechanism of Hawking [57,58].
This process is the universal process of production of any type of particles with
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mass
m ≤ Tevap ≈ 1013GeV

1g
M
.

It can be the source of superweakly interacting particles, like gravitino [59] as
well as of fluxes of particles with energy much larger, than the thermal energy
of particles in the surrounding medium. It causes non equilibrium processes in
the hot Big Bang Universe, nonequilibrium cosmological nucleosynthesis [60], in
particular.

PBHs with massM ≥ 1015 g should survive to the present time and represent
a specific form of dark matter. It was noticed in [61] that taking into account PBH
formation in clusters the constraints on PBH contribution into the total density
[62] can be relaxed and even the possibility of PBH dominant dark matter is not
excluded. It would make primordial nonhomogeneities in the form of PBHs the
dominant matter content of the modern nonhomogeneities.

Mechanism of PBH cluster formation can be illustrated with the use of the
axion-like model, discussed in subsection 2.2.4, in which the first step of symmetry
breaking at scale f takes place on the inflationary stage [35,52]. Then at the second
stage of the symmetry breaking at T ∼ Λ closed massive walls are formed so that
the larger wall is accompanied by a set of smaller walls. Their collapse form a
PBH cluster, in which the range of PBH masses M is determined by the model
parameters f and Λ [35,36]

f(
mpl

Λ
)2 ≤M ≤ mpl

f
mpl(

mpl

Λ
)2 (2.7)

Here the minimal mass is determined by the condition that the width of wall
doesn’t exceed its gravitational radius, while the upper limit comes from the
condition that the wall enters horizon, before it starts to dominate within it [36].
At Λ < 100MeV(mpl/f)

1/2 the maximal mass exceeds 100Modot. Collapse of
massive walls to such black holes takes place at

t >
mpl

f

mpl

Λ2
. (2.8)

AtΛ < 1GeV and f = 1014GeV it happens at t > 0.1 s, what can lead to interesting
observable consequences.

Closed wall collapse leads to primordial gravitational wave (GW) spectrum,
estimated as peaked at [35]

ν0 = 3× 1011(Λ/f)Hz. (2.9)

Their estimated contribution to the total density can reach

ΩGW ≈ 10−4(f/mpl), (2.10)

being at f ∼ 1014 GeV ΩGW ≈ 10−9. For 1 < Λ < 108GeV the maximum of the
spectrum corresponds to

3× 10−3 < ν0 < 3× 105Hz, (2.11)
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being in the range from tens to thousands of Hz a challenge for LIGO/VIRGO
grvitational wave searches.

Predictions for Gravitational wave signals from PBH coalescence in cluster
involve study of cluster evolution, which is now under way [61].

Being in cluster, PBHs with the masses of tensM� form binaries much easier,
than in the case of their random distribution, as well as formation of such PBHs
in collapse of first stars is rather problematic. In this aspect detection of signals
from binary BH coalescence in the gravitational wave experiments [63–67] may
be considered as a positive evidence for this scenario [35]. Repeatedly detected
signals localized in the same place would provide successive support in its favor or
exclusion [35,61,68]. The existing statistics is evidently not sufficient to make any
definite conclusion on this possibility. However, repeating detection of four GW
signals in the August of 2017 noted in GWTC catalog [69] may be an interesting
hint to such a possibility [1,35].

Primordial black holes reflect strong inhomogeneity of the very early Universe.
Their production in a significant amount is not a necessary consequence of all the
models of very early Universe. However, it is just this model dependent character
provides a very sensitive probe of BSM physics and the confirmation of PBH
existence can severely tighten the class of possible realistic BSM models.

The same is true for the existence of antimatter objects in baryon asymmetric
Universe, which can reflect strong nonhomogeneity of the baryosynthesis.

2.3.3 Antimatter and Baryon Asymmetry

The baryon asymmetry of the Universe is related with the evident dominance of
matter over antimatter in the visible part of the Universe. The set of astrophysi-
cal data puts only constraints on the possible amount of macroscopic antimatter.
However severe, these constraints still don’t exclude completely the existence of
antimatter objects, which can be formed in antimatter domains in baryon asym-
metric Universe originated from the strongly nonhomogeneous baryosynthesis
[70–76] (see [36,12,75] for review and references).

If created, antimatter domains should survive in the surrounding matter to
the present time. It puts a lower limit on its size being in terms of its mass about
103Modot [72–74] that corresponds to a minimal mass of globular clusters. If
antimatter globular cluster is formed in our Galaxy, it may be the source of cosmic
ray antinuclei.

However exotic, the hypothesis on antimatter globular cluster in our Galaxy
[72] doesn’t contradict observations, if the mass of the cluster doesn’t exceed the
limit

M ≤ 105Modot. (2.12)

Indeed, globular clusters are an old population of the Galaxy being dominantly
in halo, where matter gas density is low. Their gravitational potentials are not
sufficient to hold matter, lost by stars by stellar winds or supernova explasions.
In the case of antimatter cluster, it means that there is no antimatter gas within it
and matter gas that enters the cluster annihilate only on antimatter stellar surfaces.
Taking into account low density of matter gas in halo and relatively small surface
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on which it can annihilate, one can conclude that antimatter globular cluster is
expected to be a rather faint gamma ray source. The upper limit (2.12) follows
from the condition that the antimatter lost by antimatter stars and polluting the
Galaxy doesn’t cause overproduction of gamma ray background from annihilation
with the matter gas [72–74].

It was noted in [72–74] that cosmic antihelium flux may be a profound sig-
nature for an antimatter globular cluster in our Galaxy. Symmetry in physics of
matter and antimatter would make antihelium-4 the second by abundance element
of antimatter. In addition to antihelium lost by antimatter stars its cosmic fluxes
can increase due to destruction of heavier antinuclei in their annihilation with
matter. Rough estimation of the expected antihelium flux as simply proportional
to the ratio of the mass of antimatter cluster to the total mass of the Galaxy predicts
that it should be within the reach by AMS02 experiment to 2024.

This prospect makes necessary to specify the predictions for the cosmic an-
tihelium flux in more details and such analysis can be based on our knowledge
of properties of globular clusters. However, one should take into account that
antimatter stars may have properties much different from ordinary stars with
correspondingly different observational signatures [77].

Possible detection of cosmic antihelium-3 nuclei by AMS02 experiment to-
gether with some detected events that may correspond to antihelium-4 cannot find
natural astrophysical explanation [78] and may be strong evidence for existence of
macroscopic forms of antimatter in our Galaxy.

2.4 Conclusions

Plethora of BSM physics involves, pending on the particular model, various
combinations of its physical, astophysical and cosmological signatures. Such
model dependent predictions lead to nontrivial cosmological features that can
provide potentially observable deviations from the predictions of the standard
cosmological model.

We have drawn special attention to some, at first glance exotic, predictions,
like nuclear interacting dark atoms, massive PBH clusters or antimatter stars in
our Galaxy, since they can explain the corresponding experimental anomalies,
such as the puzzles of direct dark matter searches, origin of coalescensing massive
black holes or experimental evidence for cosmic antihelium. If these explanations
are confirmed, they strongly tighten the class of viable BSM models and add the
corresponding nonstandard features to the cosmological scenario. Reminding
Ya.B.Zeldovich, we can repeat after him that ”though the probability for existence
of these phenomena seems low, the expectation value of their discovery can be
hardly overestimated”.
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Abstract. Fermions with the internal degrees of freedom described in Clifford space carry
in any dimension a half integer spin. There are two kinds of spins in Clifford space. The
spin-charge-family theory ([1–7,9,8], and the references therein), assuming even d = (13+1),
uses one kind of spins to describe in d = (3+ 1) spins and charges of quarks and leptons
and antiquarks and antileptons, while the other kind is used to describe families.
In this work the new way of second quantization, suggested by the spin-charge-family
theory, is presented. It is shown that the creation and annihilation operators of 1-fermion
states, written as products of nilpotents and projectors of an odd Clifford character, fulfill the
anticommutation relations as required in the second quantization procedure for fermions,
what means that 1-fermion states are in Clifford space already second quantized, and that
the creation operators for n-fermion second quantized vectors are products of one fermion
creation operators, operating on the empty vacuum state. There is no need in this theory
for the negative energy states fulfilled with fermions.
It is demonstrated that also in Grassmann space there exist the creation and annihilation
operators of an odd Grassmann character, generating ”fermions”, which fulfill as well the
anticommutation relations for fermions, representing correspondingly the second quantized
1-”fermion” states. However, while the internal spins determined by the generators of the
Lorentz group of the Clifford objects of both kinds are half integer, the internal spins
determined by the Grassmann objects are integer. Grassmann space offers no families.
We discuss the new second quantization procedure of the fields in both spaces. For the
Grassmann case we present the action, the basic states, the solution of the “Weyl” equation
for free massless ”fermions” and the discrete symmetry operators. A short overview of the
achievements of the spin-charge-family theory is done, and open problems of this theory
still waiting to be solved are presented. We compare the Grassmann and the Clifford case in
order to better understand to how many open questions in physics of elementary fermion
and boson fields and in cosmology the spin-charge-family theory is able to answer.

Povzetek. Cliffordova algebra ponudi v vseh dimenzijah dva neodvisna vektorska pros-
tora za opis fermionov. Teorija spinov-nabojev-družin ([1–7,9,8], in reference v teh člankih),
ki predpostavi da ima prostor-čas d ≥ (13 + 1) dimenzij, uporabi eno vrsto spina za opis
spina in nabojev karkov in leptonov in antikvarkov in antileptonov, drugo vrsto spina pa

? Talk presented by N.S. Mankoč Borštnik
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za opis družin.
Avtorica teorije spinov-nabojev-družin je dokazala, da vektorji, ki so lastni vektorji Car-
tanove podalgebre Lorentzove algebre in so produkt lihega stevila Cliffordovih operatorjev,
izpolnjujejo vse lastnosti fermionov v drugi kvantizaciji. To pomeni, da opis fermionov v
Cliffordovi algebri razloži Diracove postulate za drugo kvantizacijo fermionov. Kreacijski
in anihilacijski operatorji, ki določajo v tej drugi kvantizaciji 1-fermionska stanja, zadostijo
antikomutacijskim relacijam za drugo kvantizacijo fermionov, če jih zapišemo kot produkt
niloptentov in projektorjev lihega števila Cliffordovih operatorjev. Kreacijski operatorji za
n fermionska stanja so v tej drugi kvantizaciji produkti enofermionskih kreacijskih opera-
torjev, ki delujejo na praznem vakuumskem stanju. V tej teoriji ni potrebe po negativnih
energijskih stanjih zapolnjenih s fermioni.
Avtorja postavita zahtevo, ki ohrani le enega od obeh vektorskih prostorov, druga vrsta
operatorjev pa poveže neodvisne nerazcepne upodobitve Lorentzove algebre v tem pros-
toru in jim “ podeli“ kvantno število “družin “. Tako omogoči Cliffordova algebra opis
ne le spinov in nabojev kvarkov in leptonov in antikavarkov in antileptonov, ampak tudi
njihovih družin.

Članek pokaže, da tudi Grassmannova algebra ponudi kreacijske in anihilacijske
operatorje, ki zadoščajo antikomutacijskim relacijam za 1 fermionska stanja. Vendar so spini
teh vektorjev celoštevilski. Grassmannov prostor ne ponudi družin.
Akcija in enečbe gibanja, ko so v Cliffordovi algebri poznani, za Grassmannov algebro
pa članek predlaga akcijo in diskretne operatorje. Za obe algebri ponudi rešitve ustrezne
“Weylove” enačbe za proste “fermione” brez mase in jih komentira. Avtorja ponudita
tudi kratek pregled dosežkov teorije spinov-nabojev-družin in njenih odprtih problemov.
Primerjava Grassmannovega in Cliffordovega primera osvetli mnoga odprta vprašanja
fizike osnovnih fermionov in bozonov ter kozmologije.

Keywords: Second quantization of fermion fields in Clifford and in Grassmann
space, Spinor representations in Clifford and in Grassmannspace, Kaluza-Klein-
like theories, Discrete symmetries, Higher dimensional spaces, Beyond the stan-
dard model

3.1 Introduction

More than 50 years ago the standard model offered an elegant new step in under-
standing elementary fermion and boson fields by postulating:
i. Massless family members of coloured quarks and colouress leptons, the left
handed members as the weak charged doublets and the weak chargeless right
hand members, the left handed quarks distinguishing in the hyper charge from
the left handed leptons, each right handed member having a different hyper
charge. All fermion charges are in the fundamental representation of the corre-
sponding groups. Antifermions carry the corresponding anticharges and opposite
handedness. The existence of massless families to each family member is as well
postulated. There is no right handed neutrino, since it would carry none of the so
far observed charges, and correspondingly there is also no left handed antineu-
trino.
ii. The existence of the massless vector gauge fields to the observed charges of
quarks and leptons, carrying charges in the corresponding adjoint representations.
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iii. The existence of a massive scalar Higgs, gaining at some step of the expanding
universe the nonzero vacuum expectation value, causing masses of fermions and
heavy bosons and the Yukawa couplings. The Higgs carry a half integer weak and
hyper charge.
iv. Fermion and boson fields can be (second) quantized.

The standard model assumptions have in the literature several explanations,
mostly with many new not explained assumptions. The most successful seem to
be the grand unifying theories [12–28], if postulating in addition the family group
and the corresponding gauge scalar fields.

The spin-charge-family theory, the project of N.S.M.B. [1–7,9,8,10], is offering the
explanation for all the assumptions of the standard model, unifying not only charges,
but also charges and spins and families, explaining the appearance of families, of
the vector gauge fields, of the scalar field and the Yukawa couplings, offering the
explanation for the matter-antimatter asymmetry, making several predictions. This
theory also offers the explanation for the appearance of creation and annihilation
operators, fulfilling the anticommutation relations for fermions,which in the Dirac
theory [67] is just assumed.

The spin-charge-family theory is a kind of the Kaluza-Klein like theories [29–
36,8] due to the assumption that in d ≥ 5 (in the spin-charge-family theory d ≥
(13+1)) fermions interact with the gravity only. Correspondingly this theory shares
with the Kaluza-Klein like theories their weak points, at least: a. Not yet solved
the quantization problem of the gravitational field. b. Breaking spontaneously the
starting symmetry, which would at low energies manifest the observed almost
massless fermions [30]. Concerning this second point we proved on the toy model
of d = (5+1) that the break of symmetry can lead to (almost) massless fermions [68–
70]. It remains to study how does appear the spontaneous breaking of the starting
symmetry in d = (13+ 1), first with the appearance of the condensate of two right
handed neutrinos, Table 3.3, Ref. [4], and then when scalar fields with space index
(7, 8) obtain nonzero vacuum expectation values. (This second point is common
to all the unifying theories.)

Since in d = (3 + 1)-dimensional space — at low energies — the gauge
gravitational fields manifest as the observed vector gauge fields [5], which can be
quantized in the usual way, quantization procedure of gravity can wait to be made.
The author is in mean time trying to find out (together with the collaborators)
how far can the spin-charge-family theory — starting in d = (13+ 1)-dimensional
space with a simple and ”elegant” action, Eq. (3.1) — reproduce in d = (3 + 1)

the observed properties of quarks and leptons [3–7,9,8,10], the observed gauge
fields, the assumed scalar field, the appearance of the dark matter and of the
matter-antimatter asymmetry, as well as the other open questions, connecting
elementary fermion and boson fields and cosmology. The work done so far seems
promising.

Let us in what follows and in Subsect. 3.1.1 overview shortly the starting
assumptions and so far achievements of the spin-charge-family theory, and discuss
as well open problems.
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The recognition that there are in Grassmann space two kinds of the Clifford al-
gebra objects [2] (γa and γ̃a) enables that the spin-charge-family theory is explaining
the origin of families [47–49,1,2], Table 3.1.

The assumption made in the spin-charge-family theory that the dimension of
space is ≥ (13 + 1) enables the explanation for by the standard model assumed
spins and charges of quarks and leptons [71,72], explaining as well the miraculous
cancellation of triangle anomalies [8,9,4] in the standard model, however, without
relating handedness and charges ”by hand” as needed in SO(10) [37–39].

Since there are in SO(13+ 1) additional quantum numbers to those assumed
by the standard model, the theory predicts that right handed neutrinos and left
handed antineutrinos, carrying nonzero additional quantum numbers — τ23 and
τ4 instead of Y in the standard model (Y = (τ23 + τ4) in the spin-charge-family theory
as presented in Table 3.6 and in Eqs. (3.111, 3.112, 3.113, 3.114)) — are regular
members of families of quarks and leptons [71,72,3,9]. This prediction is common
also to SO(10) [37–39].

In the spin-charge-family theory spins and charges are described by the super-
position of Sab (= i

4
(γaγb − γbγa), Eq. (3.2)), with γa belonging to the first kind

of the Clifford algebra objects and with Smn, (m,n) = (0, 1, 2, 3), describing spins
and handedness of quarks and leptons (Eq. (3.111)), and Sst, (s, t) = (5, 6, · · · , 14),
describing their charges, Table 3.6, Eqs. (3.112, 3.113) and Refs. [2,47,49,72].

Family quantum numbers are determined by the second kind of the Clif-
ford algebra objects, by the superposition of S̃ab (= i

4
γ̃aγ̃b − γ̃bγ̃a)), Eq. (3.2),

Table 3.1 [2,48].
The vector gauge fields, assumed in the standard model as the gauge fields of

the corresponding fermion charges, are in the spin-charge-family theory explainable
as the superposition of the gauge fields of the generators of the Lorentz transfor-
mations Sst (Sstωstm, (s, t) = (5, 6, · · · , 14), Eqs. (3.1, 3.9, 3.111)), with the vector
indexm = (0, 1, 2, 3) , Eq. (3.10), Ref. [5].

In the standard model the scalar fields appear as the Higgs scalar and the
Yukawa couplings by the assumption. In the spin-charge-family theory both kinds
of the gauge fields,

∑
s ′,t ′ c

s ′t ′ ωs ′t ′s, which are the gauge fields of Sst with
(s ′, t ′) = (5, 6, 7, 8), and

∑
a,b c̃

ab ω̃abs, which are the gauge fields of S̃ab, with
(a, b) = (0, 1, · · · , 8), both with the scalar index s = (7, 8), manifesting properties
of the Higss scalar (by carrying weak and hyper charges in the ”fundamental rep-
resentation”), define masses of quarks and leptons and of heavy bosons, Eq. (3.10),
Refs. [72,9,3].
These scalar fields determine in the spin-charge-family theory masses of the two
groups of four families [51,53–56,3,9]. The lower group predicts the existence
of the fourth family of quarks and leptons, coupled to the observed three fami-
lies [51,53,56,54,70]. From the symmetry of the mass matrices predicted the 4× 4
mixing matrix of quarks [56] appear to be in better agreement with the experiments
than if only three families are assumed [40].

The lowest family of the upper four families offers the explanation for the
existence of the dark matter [54,61].

There are additional scalar fields in the spin-charge-family theory [4], having
the scalar space index t ∈ (9, 10, . . . , 14). They carry colour charges in the ”fun-
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damental” representations, cause transitions of antileptons and antiquarks into
quarks and back, enabling the decay of baryons. These scalar fields are offering in
the presence of the right handed neutrino condensate, Table 3.3, Ref. [4], which
breaks the CP symmetry, the answer to the question about the matter-antimatter
asymmetry in the universe [4].

Authors of this paper proved on the toy model of d = (5+ 1) that breaking
the symmetry in Kaluza-Klein theories can lead to massless fermions [68–70].
The authors determine as well the discrete symmetries operators in observable
dimensions d = (3+ 1) for any d, Eqs. (3.94), Ref. [65].

The breaking of the starting symmetry SO(13+ 1) is in the spin-charge-family
theory triggered by the appearance of the condensate (Table 3.3) of the right
handed neutrinos [4] and, like in the standard model, by the nonzero vacuum
expectation values of the scalar fields with the space index s = (7, 8).

In this paper it is demonstrated that the odd products of nilpotents and pro-
jectors, which are the ”egienfunctions” of the Cartan subalgebra of the Lorentz
algebra in Clifford space, and which solve the Weyl equations for free massless
fermions, fulfill together with the corresponding Hermitian conjugated annihila-
tion operators the anti-commutation relations as needed in the second quantized
fermion fields [50]. No assumption of the Dirac kind about the creation and anni-
hilation operators is needed.

The spin-charge-family theory has many common points with other unifying
theories ([12–17,29–36] and other references), and because of that and because of
the fact that by starting with the very simple action, Eq. (3.1), the theory is able
to offer explanations for so many observed phenomena, built into assumptions
of the standard model(s) of the elementary boson and fermion fields and also of
cosmology, and also in other unifying theories, it might be that it is the right next
step beyond the standard models.

The achievements of the spin-charge-family theory are discussed in more details
in Subsect. 3.1.1. There also problems waiting to be solved are presented.

Let us present a very simple starting action of the spin-charge-family theory of
N.S.M.B., in which massless fermions in d = (13+ 1)-dimensional space interact
with massless bosons, that is only with gravity — the vielbeins fαa (the gauge
fields of moments pa) and the two kinds of the spin connections (ωabα and
ω̃abα, the gauge fields of the two kinds of the Clifford algebra objects γa and γ̃a,
respectively).

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (3.1)

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα and

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c.. Here 1 fα[afβb] = fαafβb − fαbfβa.

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
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The two kinds of the Clifford algebra objects, γa and γ̃a, Eq. (3.2), anticom-
mute and determine the infinitesimal generators of the Lorentz transformations in
the internal space of fermions — Sab for SO(13, 1), arranging states into represen-
tations (Table 3.6), and S̃ab for S̃O(13, 1), arranging states into families (Table 3.1).
Eq. (3.69) relates these two internal dgrees of freedom, keeping the relations of
Eq. (3.2) unchanged.

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 ,

Sab =
i

4
(γa γb − γb γa) ,

S̃ab =
i

4
(γ̃a γ̃b − γ̃b γ̃a) . (3.2)

The generators Sab are used in the spin-charge-family theory to determine spins
and charges of spinors of any family, Table 3.6, another kind, S̃ab, determines the
family quantum numbers, Table 3.1. These two degrees of freedom are connected
by the requirement, presented in Eq. (3.69).

The scalar curvatures R and R̃ determine dynamics of the gauge fields — the
spin connections and the vielbeins — manifesting in d = (3+ 1) as all the known
vector gauge fields, as well as the scalar fields [5], which offer the explanation for
the appearance of the Higgs and the Yukawa couplings, of the ordinary matter-
antimatter asymmetry [4] and the dark matter [54], provided that the symmetry
breaks from the starting SO(13, 1) to SO(3, 1)× SU(3)×U(1).

In this paper we start to study the possibility that fermions are described in
Grassmann space, in order to better understand how far can the simple starting
action, Eq. (3.1), of the spin-charge-family theory agree with the at low energies
observed properties of fermions and bosons.

We demonstrate in this paper that besides Clifford space also Grassmann
space offers the description of the internal degrees of freedom of fermions in the
second quantized procedure. In both cases there exist the creation and annihila-
tion operators, which fulfill the anticommutation relations required for fermions,
Eqs. (3.54, 3.81). But while the internal spins determined by the generators of the
Lorentz group of the Clifford objects Sab and S̃ab — we repeat here that in the
spin-charge-family theory Sab determine the spin degrees of freedom and S̃ab the
family degrees of freedom — are half integer, the internal spin determined by Sab

(expressible with Sab + S̃ab) is integer.
Correspondingly Clifford space offers according to the spin-charge family

theory the description of spins, charges and families, all in the fundamental repre-
sentations of the subgroups of the Lorentz group SO(d− 1, 1), while Grassmann
space offers spins and charges in the adjoint representations of the subgroups

Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.



i
i

“proc19” — 2019/12/9 — 11:13 — page 42 — #58 i
i

i
i

i
i
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of the Lorentz group SO(d − 1, 1) and no family degrees of freedom. Fermions
with integer spins would lead to completely different nucleons, nuclei, atoms,
molecules, matter than the so far observed ones.

Let us make a short introduction into the Grassmann space as well.
In Grassmann space the infinitesimal generators of the Lorentz transforma-

tions Sab are expressible with anticommuting coordinates θa and their conjugate
momenta pθa = i ∂

∂θa
[2],

{θa, θb}+ = 0 , {pθa, pθb}+ = 0 , {pθa, θb}+ = i ηab ,

Sab = θapθb − θbpθa . (3.3)

Taking into account that γa and γ̃a, expressible in terms of θa and their conjugate
momenta pθa, anticommute [2],

γa = (θa − i pθa) , γ̃a = i (θa + i pθa) , (3.4)

one recognizes

Sab = Sab + S̃ab , (3.5)

from where one concludes, if taking into account Eq. (3.1), that in the Grassmann
case the covariant momenta p0α are

p0α = pα −
1

2
SabΩabα , (3.6)

with Ωabα as the only kind of the connection fields (instead of the two kinds in
the Clifford case —ωabα, which is the gauge fields of Sab and ω̃abα, which is the
gauge fields of S̃ab).

Let us point out that Eq. (3.69) relates the two anticommuting degrees of
freedom, {γa, γ̃b}+ = 0, making a choice of γa to detremine the internal degrees
of freedom in Clifford space, while keeping all the relation of Eq. (3.2) unchanged.

It follows for Sab

{Sab,Scd}− = i{Sadηbc + Sbcηad − Sacηbd − Sbdηac} ,

Sab† = ηaaηbbSab . (3.7)

The same relations are true also if Sab is replaced with either Sab or S̃ab. These
infinitesimal generators of the Lorentz group — the two kinds of the Clifford
operators and the Grassmann operators — operate as follows

{Sab, γe}− = −i (ηae γb − ηbe γa) ,

{S̃ab, γ̃e}− = −i (ηae γ̃b − ηbe γ̃a) ,

{Sab, S̃cd}− = 0 ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Sab, pθe}− = −i (ηae pθb − ηbe pθa) ,

{Mab, Ad...e...g}− = −i (ηaeAd...b...g − ηbeAd...a...g) , (3.8)
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where Mab are defined in the Clifford case by the sum of Lab plus either Sab (if
γa’s are chosen to describe the basis, otherwise S̃ab replace Sab), while in the
Grassmann case Mab is Lab + Sab (which is, Eq. (3.5), Mab= Lab + Sab + S̃ab).

In Sect. 3.2 the actions and norms for free massless fermions, with the internal
degrees of freedom described in Clifford and in Grassmann space in d-dimensional
spaces are presented. The discrete symmetry operators in d-dimensional space —
Clifford and Grassmann — and their manifestation in d = (3 + 1)-dimensional
space are presented in Subsect. 3.3.3 of Sect. 3.3. While the action and the discrete
symmetry operators in Clifford space are known from before [9,65], the action in
Grassmann space as well as the discrete symmetry operators are here assumed by
N.S.M.B..

The new way of second quantization of fermion fields in both spaces is
discussed in Sect. 3.3. We treat in both spaces only massless free particles. Sect. 3.4
presents what we learn from this work.

This work is a part of the project of both authors, which includes the fermion-
ization procedure of boson fields (or the bosonization procedure of fermion fields),
discussed in Refs. [42,43,45] for any dimension d (by the authors of this contribu-
tion, while one of them, H.B.F.N. [44], has succeeded with another author to do the
fermionization for d = (1+ 1)), and which would hopefully also help to understand
a little better the content and dynamics of our universe.

3.1.1 Comments on the achievements of the spin-charge-family theory so far
and the open questions to be solved

Let us illustrate the achievements of the spin-charge-family theory, presented in the
introduction, by adding some comments.

I. In the action, Eq. (3.1), fermions carry in d = (13+ 1) two kinds of spins
— no charges and interact with gravity only — with the vielbeins fαa and the two
kinds of the spin connection fields, the gauge fields of Sab — ωabα — and the
gauge fields of S̃ab — ω̃abα.

One can formally rewrite the fermion part of the action so that it manifests in
d = (3+ 1) the free massless fermion part (first line in Eq. (3.9)), the interaction of
fermions with the vector gauge fields (the second line in Eq. (3.9)), the interaction
of fermions with the scalar fields (the third line in Eq. (3.9)), and the rest.

Lf =
∑
m

ψ̄γmpmψ

−
∑
A,i

ψ̄ γmτAiAAim ψ+

+
∑
s=7,8

ψ̄γsp0s ψ

+
∑

t=5,6,9,...,14

ψ̄γtp0t ψ , (3.9)

with τAi =
∑
st cst

AiSst, (s, t) = (5, 6, · · · , 13, 14), which are generators of the
subgroups of SO(13, 1), determining charges of fermions, Eq. (3.112, 3.113, 3.114),
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with AAim , which are the corresponding superposition ofωstm ([4,9] and the refer-
ences therein), p0s = ps− 1

2
Ss
′s"ωs ′s"s−

1
2
S̃abω̃abs and p0t = pt− 1

2
St
′t"ωt ′t"t−

1
2
S̃abω̃abt, while m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appear-

ing in S̃ab) run within (0, 1, 2, 3) and (5, 6, 7, 8), t ∈ (5, 6, 9, . . . , 13, 14), (t ′, t") ∈
(5, 6, 7, 8) and ∈ (9, 10, . . . , 14).

I.i The spinor function ψ represents all the family members, 2
d
2
−1 = 64 for

d = 13 + 1, of all the 2
7+1
2

−1 = 8 families, including fermions and antifermions.
Tables 3.6 and 3.1 represent the creation operators for the states of one family and
the creation operators for the eight families, respectively. The rest of families are
assumed to have very large masses as discussed and proved for a toy model in
Ref. [68–70,73]. The creation operators operate on a vacuum state, Eq. (3.79).

I. A. The Clifford object γa are in the spin-charge-family theory used to
determine from the point of view of d = (3 + 1) spins and all the charges of
fermions.

I. A.i. d = (13 + 1)-dimensional space offers 2
d
2
−1 = 64 members of

SO(13, 1). In Table 3.6 the properties of quarks and leptons and antiquarks and
antileptons, forming 64 members, are presented from the point of view of sub-
groups of SO(13, 1) breaking first into SO(7, 1) × SU(3) × U(1), keeping con-
nection between handedness and the two SU(2)I,II charges, and further to —
SU(2)R×SU(2)L ×SU(2)I ×SU(2)II×SU(3)×U(1) — representing in d = (3+ 1)

the spin and handedness, the weak charge τ13 of SU(2)I, the second τ23 of SU(2)II,
the colour charge τ33 and τ38 of SU(3) and τ4 of U(1) for quarks and leptons and for
antiquarks and antileptons.
Cartan subalgebra has d

2
= 7members, the standard model assumes one commuting

operator less.
I. A.ii. Due to the additional commuting operator (the member of the Cartan

subalgebra of Sab) in the spin-charge-family theory, the neutrinos become a regular
members of quarks and leptons, with masses determined by the interaction with
the scalar fields as all the rest of family members [51,53–56,3,9] (in Eq. (3.9) the
interaction of fermions with the scalar fields is contained in the third line). This
is the case also in SO(10) theories [12–15]. The difference in the spin-charge-family
theory is, that spin and handedness are correlated with charges, while in SO(10)
this is not the case (and must be correlated by ”hand”). This fact is discussed in
details in Ref. [8].

Let us point out that colour chargeless leptons and quarks of any of the three
colours have completely the same SO(7, 1) part. Quarks and leptons distinguish
only in the SU(3)×U(1) part.

I. B. The second Clifford object γ̃a offers the explanation for the existence
of families.

I. B.i. There are twice four families of quarks and leptons in the spin-
charge-family theory ([3] and the references therein) after the appearance of the
condensate of the two right handed neutrinos, presented in Table 3.3, Ref. [4].
Since we have not really shown yet how this dynamically happens (we did this
so far only for the toy model [68–70]), this remains as an open problem. All
eight families obtain masses when the scalar gauge fields with the space index
(7,8) — third line in Eq. (3.9) — gain nonzero vacuum expectation values at the
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electroweak phase transition. Table 3.1 represents in the left column eight families
of creation operators of ûc1†R — the first member in Table 3.6 — and of chargeless
ν̂†R — the 25th member in Table 3.6. (S11 12, for example, transforms ûci†R into ν̂†R
and opposite).

I. B.ii. The eight-plets separate into two groups of four families: One group
contains doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect
to ~̃NL and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and
~̃τ1, these families are singlets with respect to ~̃NR and ~̃τ2. Mass matrices of both
groups manifest correspondingly, when the scalar fields — the gauge fields of
( ~̃NR, ~̃τ2, U(1)) and ( ~̃Nl, ~̃τ1, U(1)) — obtain nonzero vacuum expectation values.
Correspondingly both groups manifest SU(2)× SU(2)×U(1) symmetry, with the
same U(1) and two different SU(2)(L,R) × SU(2)(I,II) symmetries, Ref. [57].

To the lower four families the observed three families of quarks and leptons
contribute [51–53,55,56,58]. By the spin-charge-family theory predicted SU(2) ×
SU(2)×U(1) symmetry of mass matrices, which limits the number of free param-
eters of mass matrices, the properties of the fourth family could be predicted by
fitting free parameters to the experimental data. However, the accuracy of the so
far measured 3× 3mixing (sub)matrices are even for quarks far from the required
precision, which would enable prediction of masses of the fourth family mem-
bers [55,56]. We predict for the assumed masses of the fourth family of quarks the
corresponding matrix elements. Calculations show [56] that the larger the masses
of the fourth family — up to 6 TeV seems to be allowed by experiments [40] — the
smaller the unwanted mixing elements which could cause the flavour-changing
neutral currents and the better is agreement with the experimental data, which
require, due to the observations in Refs. [40,41], that there should be the fourth
family due to the nonunitarity of the 3 × 3 so far measured mixing matrix for
quarks and that the 4 × 4 mixing matrix elements should have the properties:
Vu1d4 > Vu1d3 , Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 . Here ui, di, i = 1, 2, 3, 4

represent u, c, t, u4 and d, s, b, d4 quarks.
The lowest of the upper four families is, as evaluated in Refs. [54,61], the

candidate, which can explain (or at least can contribute to) the appearance of the
dark matter in the universe. Comparing the results from following the fifth family
members in the expanding universe with the astrophysical observations of dark
matter and the direct measurements of the dark matter, the predicted masses of the
fifth family quarks would be 102 TeV < mq5 c

2 < 4 · 102 TeV, and the scattering
cross section σ for the fifth family neutron at least 10−6× smaller than the cross
section for the first family neutron. These values change if the fifth family neutron
is not the only source of the dark matter.

The fifth family would correspondingly manifest completely different ”nu-
clear force” than the members of the lower four families [54], leading to different
atoms and molecules, if they would success to form a matter in the expanding
universe.

II. The gauge fields — the vielbeins, fαa, and the two kinds of the spin
connection fields, ωabα and ω̃abα, of Eq. (3.1), appearing in the 2nd, 3rd and
4th lines in Eq. (3.9) — manifest in d = (3 + 1) as the vector gauge fields of ~τ3,
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û
† 1R

to
al

lt
he

m
em

be
rs

of
on

e
fa

m
ily

of
th

e
sa

m
e

co
lo

ur
.T

he
sa

m
e

ge
ne

ra
to

rs
tr

an
sf

or
m

eq
ui

va
le

nt
ly

th
e

ri
gh

th
an

de
d

ne
ut

ri
no
ν̂
† 1R

to
al

lt
he

co
lo

ur
le

ss
m

em
be

rs
of

th
e

sa
m

e
fa

m
ily

.



i
i

“proc19” — 2019/12/9 — 11:13 — page 47 — #63 i
i

i
i

i
i

3 New Way of Second Quantized Theory of Fermions. . . 47

Eq .(3.113), τ4, Eq. (3.113), ~τ1, Eq. (3.112), and ~τ2, Eq. (3.112), if the space index is
m = (0, 1, 2, 3) (2nd line in Eq. (3.9)), as well as the scalar gauge fields, if the space
index is s ≥ 5 (3rd and 4th line in Eq. (3.9)), of the same operators as in the vector
gauge fields case, Ref. [5].

Only if there are no fermion present, then both,ωabα and ω̃abα, are uniquely
expressed by vielbeins, Ref. ([9], Eq. (C9)).

ωabα = ω̃abα = −
1

2E

{
eeαebγ ∂β(Ef

γ[efβa]) + eeαeaγ ∂β(Ef
γ
[bf
βe])

− eeαe
e
γ ∂β

(
Efγ[af

β
b]

)}
−

1

d− 2

{
eaα

1

E
edγ∂β

(
Efγ[df

β
b]

)
− ebα

1

E
edγ∂β

(
Efγ[df

β
a]

)}
. (3.10)

II. A. It is proven in Ref. [5] that the vector (as well as the scalar gauge
fields) can indeed be expressed with the spin connections (rather than with the
vielbeins),

AAim =
∑
s,t

cAistω
st
m, (3.11)

demonstrating the symmetry of space with (s, t) ≥ 5, making the spin-charge-family
theory transparent and correspondingly ”elegant”, so that it is easier to recognize
that the origin of charges of the observed fermions, vector gauge fields, Higgs’s
scalar and Yukawa couplings might really be in (d− 4) space.

In the presence of the condensate, Table 3.3, of the right handed neutrinos,
all the vector gauge fields and the scalar gauge fields, which interact with the
condensate, gain masses. Only the weak (SU(2)I), the colour (SU(3)) and the
hyper (U(1), Y = τ4+τ23) gauge fields, which do not interact with the condensate,
remain massless.

II. A.i. The weak vector gauge fields ~A1m , the gauge field of SU(2)I, and ~A2m,
the gauge fields of SU(2)II, are the superposition of gauge fieldsωs ′t ′s (Ref. [9],
Eqs. (8,9,10)),

~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) . (3.12)

Taking into account Eq. (3.113) one easily finds the colour vector gauge field
expressed withωstm. ~A2m get masses by interaction with the condensate.

In Ref. [5], Eqs. (24-25), the reader can find Lagrange density for the R(d−4)

part of the gravity field R, Eq.(3.1), expressed by the vector gauge fields ~AAm.
II. B. The scalar gauge fields are the superposition of either ωs ′t ′s, with

(s ′, t ′, s) = (5, 6, · · · , 14), Ref. [5], or ω̃abs, with (a, b) = (0, 1, · · · , 8) and (s) =

(5, 6, 7, 8), Refs. [4,7,9], the fourth line in Eq. (3.9).
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Both kinds of scalar fields with s = (7, 8) contribute to the masses of the
two groups of four families. Scalar fieldsωs ′t ′s, with (s ′, t ′) = (5, 6, · · · , 14), s =
(9, 10, · · · , 14) contribute to matter-antimatter asymmetry and to proton decay [4].

II. B.i. In the spin-charge-family theory the scalar fields with the space index
s = (7, 8) carry with respect to this space index the weak charge and the hyper
charge (∓1

2
,±1

2
), respectively, independent of whether they are superposition of

ωs ′t ′s or of ω̃abs, s = (7, 8), Refs. [9,3,4].
There are twice two triplets, the superposition of ω̃abs, Eqs. (3.111, 3.112) with

Sab replaced by S̃ab, the gauge scalar fields of either the group S̃U(2)
S̃O(3,1)L

×
S̃U(2)I or of the group S̃U(2)

S̃O(3,1)R
× S̃U(2)II, the first two triplets interact-

ing with one group of four families, the second two triplets interacting with
another group of four families, both groups presented in Table 3.1. There are also
three singlets, the gauge scalar fields of = (Q,Q ′, Y ′), Eq. (3.114), which are the
superposition of ωs ′t ′s and interact with members of all the eight families of
Table 3.1 [7,9,3,4].

Let us use a common notation AAis for all the scalar fields, independently of
whether they originate in ω̃abs orωabs, s = (7, 8),

AAis ∈ (AQs , A
Q ′

s , AY
′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi ⊃ (Q, Q ′, Y ′, ~̃τ1, ~̃NL, ~̃τ
2, ~̃NR) . (3.13)

Here τAi represent the operators of the groups the gauge scalar fields of which are
AAis .

Let us rewrite the third line in Eq. (3.9) as follows, Ref. ([9], Eqs. (18-19)).∑
s=(7,8),A,i

ψ̄ γs (−τAiAAis )ψ =

∑
A,i

−ψ̄ {
78

(+) τAi (AAi7 − iAAi8 )+
78

(−) (τAi (AAi7 + iAAi8 ) }ψ ,

78

(±)= 1

2
(γ7 ± i γ8 ) , AAi78

(±)

:= (AAi7 ∓ iAAi8 ) , (3.14)

with the summation overA, i performed, sinceAAis represent the scalar fields (AQs ,
AQ

′

s , AY
′

s , Ã4̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs and ~̃AÑLs ). In the low energy regime the momentum
ps, s = (7, 8) can be neglected.

Taking into account that τ13 = 1
2
(S56−S78), Y = (τ23+τ4), τ23 = 1

2
(S56+S78),

while τ4 = −1
3
(S9 10 + S11 12 + S13 14), and SabAc = i(Aaδbc −Abδac ), one finds

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 . (3.15)

This are quantum numbers of the by the standard model assumed Higgs. These
scalar gauge fields with the space index (7, 8), gaining nonzero vacuum expecta-
tion values (by assumption as in the standard model so far), cause the electroweak
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break, breaking the weak and the hyper charge, explaining the appearance of
in the standard model assumed Higgs and the Yukawa couplings, predicting the
existence of several scalars — two triplets and three singlets, which couple to the
lower four families, making them massive and giving masses to weak bosons.

These scalar fields manifest the SU(2)×SU(2)×U(1) symmetry, which reduces
the number of free parameters in mass matrices of quarks and leptons, enabling
predictions of properties of the four families [55–57].

II. B.ii. The scalar fields with the space index s = (9, 10, · · · , 14), presented
in Table 3.2, carry triplet or antitriplet colour charges and the ”spinor” charge
equal to twice the quark or antiquark ”spinor” charge, and the fractional hyper
and electromagnetic charge.

They carry in addition the quantum numbers of the adjoint representations
originating in Sab or in S̃ab. (Although carrying the colour charge of one of the
triplet or antitriplet quantum numbers, these fields can not be interpreted as
superpartners of the quarks, since they do not have quantum numbers as required
by, let say, the N = 1 supersymmetry. The hyper charges and the electromagnetic
charges are namely not those required by the supersymmetric partners to the
family members.)

Let us have a look what do the scalar fields, appearing in the fourth line of
Eq. (3.9) and in the seventh line of Table 3.2, do when applying on the left handed
members of the Weyl representation presented on Table 3.6, containing quarks
and leptons and antiquarks and antileptons [71,72,65].

Fig. 3.1 presents the creation of proton due to the interaction of quarks and
leptons with these scalar fields. One can read on this Fig. 3.1 all the quantum
numbers of a positron (57th line of Table 3.6), an antiquark (43rd line of Table 3.6),
and a quark (9th line of Table 3.6), as well as of the scalar field A2�9 10

(+)

, seventh line

of Table 3.2, involved in the proton birth. The opposite transition at low energies
would make the proton decay.

After the appearance of the condensate of the two right handed neutrinos,
Table 3.3, the discrete symmetry CNPN is obviously broken. In the expanding
universe, fulfilling the Sakharov request for appropriate non-thermal equilibrium,
the triplet scalars from Table 3.2 have a chance to explain the matter-antimatter
asymmetry in the universe [4].

III. The spin-charge-family theory suggests two kinds of phase transitions
— two kinds of breaking symmetries: The appearance of the condensate and the
nonzero vacuum expectation values of the scalar fields with the space index
s = (7, 8).

III. A. Table 3.3 represents the properties of the condensate of the two right
handed neutrinos ν̂†R8 — Table 3.1 — of spin up and spin down, breaking the
discrete CNPN symmetry Subsect. 3.3.3, [4,65].

Due to the interaction with the condensate of Table 3.3 the gauge vector fields
of ~τ2 and τ4 become massive. The colour vector gauge fields of ~τ3, the weak vector
gauge fields of ~τ1 and the hyper vector gauge field of Y do not interact with the
condensate (the corresponding quantum numbers of the condensate are zero) and
correspondingly remain massless, the gravity in d = (3+ 1), which is the gauge
field of Smn and pm, remains massless as well.
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field prop. τ4 τ13 τ23 (τ33, τ38 ) Y Q τ̃4 τ̃13 τ̃23 Ñ3
L
Ñ3
R
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2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
2±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 ± 1 0 0

Ã23
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NL±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 ± 1 0

Ã
NL3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NR±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 ± 1

Ã
NR3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

A3i
9 10
(±©)

scalar ∓© 1
3

0 0 (± 1+ ±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
A4
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Table 3.2. Quantum numbers of the scalar gauge fields carrying the space index t =

(9, 10, · · · , 14), appearing in the fourth line of Eq. (3.9), are presented. To the colour charge
of all these scalar fields the space degrees of freedom — the space index — contribute
one of the triplets or antitriplet values. These scalars are with respect to the two SU(2)
charges, (~τ1 and ~τ2), and the two S̃U(2) charges, (~̃τ1 and ~̃τ2), triplets (that is in the adjoint
representations of the corresponding groups), and they all carry twice the ”spinor” number
(τ4) of the quarks or antiquarks. The quantum numbers of the two vector gauge fields, the
colour and the U(1)II ones, are added. These Table is taken from Ref. [4], Table I. We invite
the reader to visit Ref. [4] for more details.
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Fig. 3.1. The birth of a ”right handed proton” out of a positron ē+L , antiquark ūc̄2L and quark
(spectator) uc2R . The family quantum number can be any.

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 3.3. The condensate of the two right handed neutrinos νR, with the quantum numbers
of the VIIIth family, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The condensate carries ~τ1 = 0,
τ23 = 1, τ4 = −1 and Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0. The family quantum numbers of quarks and leptons are presented in
Table 3.1.

Due to nonzero family quantum numbers of the condensate the corresponding
scalar gauge fields become massive. The condensate gives masses to all the scalars
from Table 3.2, either because they couple to the condensate due to τ4 or τ̃4 or
τ23 or τ̃23 quantum numbers. It gives masses also to all the scalar fields with
s ∈ (5, 6, 7, 8), since they couple to the condensate due to the nonzero τ23. The
scalar fields with the quantum numbers of the upper four families couple in
addition through their family quantum numbers.

III. B. The electroweak phase transition is caused by the nonzero vacuum
expectation values of twice two triplets and three singlet scalars, giving masses to
the lower fourth families — two of twice two triplets and three singlets — and to
the upper four families — another two triplets and the same three singlets.



i
i

“proc19” — 2019/12/9 — 11:13 — page 52 — #68 i
i

i
i

i
i
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IV. Predictions of the spin-charge-family theory so far.
IV. A. The spin-charge-family theory predicts the fourth family to the ob-

served three to be observed at the LHC [53]. By predicting symmetry of mass
matrices (in all orders of loop corrections [57]) the theory enables for accurate
enough measured mixing matrices of the 3 × 3 submatrices (the sensitivity of
the fitting procedure on masses of the so far measured quarks and leptons is
much smaller [55,56]), and due to other measured properties of quarks and lep-
tons [40], to predict the properties of the 4 × 4 mixing matrices and to explain
correspondingly the origin of Higgs and Yukawa couplings. The 4 × 4 mixing
matrix elements for quarks are predicted to have the properties: Vu1d4 > Vu1d3 ,
Vu2d4 < Vu1d4 , and Vu3d4 < Vu1d4 , here ui, di, i = 1, 2, 3 represent u, c, t, u4
and d, s, b, d4 quarks.

The theory explains [58] why the fourth family has not yet been observed,
which is the main argument against the existence of four families [59,60] among
experts in high energy physics.

IV. B. The theory predicts the existence of several scalar fields — there are
two triplets and three singlets which determine masses of the lower four fami-
lies [9,7,3,6] — some of which will be observed in the near future measurements.

IV. C. The theory predicts the second group of four families, the stable
one of these four families contributing to the dark matter [54]. The nuclear force
among these baryons differs a lot from the so far observed nuclear force [54,61].

IV. D. The masses of quarks and leptons are, according to these two groups
of four families, spread from 10−3 eV to few TeV — at least 12 orders of magnitude
for the first four families — and from 100 TeV to 1013 TeV — at least 11 orders of
magnitude for the second four families, offering the explanation for the hierarchy
problem. (The mass matrices of the two groups of mass matrices are very closed
to the democratic ones [55,56]).

IV. E. The spin-charge-family theory predicts the masses of the dark matter
baryons [54].

IV. F. The spin-charge-family theory predicts the scalar fields which contribute
to the matter-antimatter asymmetry in the universe [4] and correspondingly also
to the proton decay.

V. The spin-charge-family theory has (so far) several open problems, although
it is also true that the more work is done, the more solutions of the open problems
follow.

V. A. In the spin-charge-family the vector and scalar gauge fields originate
in gravity as the two kinds of the spin connection fields and the vielbeins. In the
low energy region these vector and scalar gauge fields can be quantized in the
usual way [5]. Yet the quantization of gravity remains as an open problem when
the energies rise up to 1016 GeV and above.

V. B. The dimension of space time — 13+ 1— remains as an open problem:
Why d = (13+ 1), why not∞? (Only 0 and∞ need no explanation.) How has the
universe come to d = (13+ 1) [77]?

V. C. Breaking the symmetry with the appearance of the condensate [4],
which lead to observable properties of fermion and boson fields, explaining all the
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assumptions of the standard models, needs to be studied as a dynamical appearance
of the condensate in the expanding universe.

V. D. It should be demonstrated dynamically how do the scalar fields gain
nonzero vacuum expectation values, leading to the effective fields as assumed
for the Higgs. The demonstrations, made in Refs. [68–70] for the toy model in
d = (5+ 1) must be done also for d = (13+ 1).

V. F. The coupling constants of the gauge and scalar fields in the low energy
regime should be evaluated when starting with the simple action of Eq. (3.1) in
d = (13+ 1), with only one (or already with two) coupling constants.

V. G. There are additional open problems which we already see and either
solve, like the one treated in this paper about the internal degrees of freedom of
fermions in Clifford and Grassmann space and the new way of second quantization
procedure, which explains the usual way of second quantization, or they wait to
be solved, like the lepton number non conservation in the spin-charge-family theory.
And there are open problems which we do not see yet or which we could better
understand if learning more from all the trials to understand the evolution of the
universe and the creation of hadrons of all kinds in the literature.

3.2 Fermions in Grassmann and in Clifford space

In the literature the Clifford algebra is frequently discussed as an useful tool to
describe internal degrees of freedom of fermions [62–64]. In the spin-charge-family
theory Clifford space is used to describe all the internal degrees of fermions —
quarks and leptons with their families included [1,2,9].

In this paper we demonstrate that the Clifford algebra offers an elegant and
transparent way to better understand fermions properties: In even dimensional
spaces — we make a choice of d = 2(2n+ 1), n = 3— the creation operators of an
odd Clifford character can be defined (they are superposition of odd numbers of
the Clifford algebra objects (γa’s or γ̃a’s, Eq. (3.2)), each of them is a product of d

2

nilpotents and projectors, Eq. (3.27, 3.70) [47,48], so that they are the eigenvectors
of twice all the d

2
members of the two kinds of the Cartan subalgebras of the

Lorentz algebra — Sab and S̃ab — with the half integer eigenvalues, Eq. (3.72).
These creation operators, Eq. (3.76), and their Hermitian conjugated partners —
the annihilation operators, Eq. (3.77) — fulfill on the vacuum state, Eq. (3.79), the
anti commutation relations required for fermions, Eq. 3.81.
The superposition of these creation operators solve for a particular momentum
pa the equation of motions for free massless fermions, Eq. (3.36), determining in
d = (3+ 1) spins, handedness, charges and family quantum numbers. Again they
fulfill on the vacuum state, Eq. (3.79), together with their Hermitian conjugated
annihilation operators, the anti commutation relations required for fermions,
Eq. (3.83). Correspondingly the creation and annihilation operators are indeed defined
with the first quantized fermion fields already.

We demonstrate in this paper that there exist also in Grassmann space of
anticommuting coordinates, Eq. (3.3), the eigenvectors of the Cartan commuting
subalgebra of the Lorentz algebra Sab, Eq. (3.3, 3.21), the d

2
products of which

form creation operators, Eq. (3.51), and which fulfill together with their Hermitian
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conjugated partners the annihilation operators, Eq. (3.18), as well the anticommu-
tation relations required for fermions, Eq. (3.54). However, the eigenvalues of the
Cartan subalgebra are in this case integer.
Also in the Grassmann case the superposition of these creation operators solve for
a particular momentum pa the equation of motions for free massless fermions,
presented in Eq. (3.43), determining in d = (3+ 1) spins, handedness and charges.
There are no families in this case.

For both cases, Clifford and Grassmann, we present the proofs for the above
statements and illustrate the properties of fermions of both kinds on a few exam-
ples.

3.2.1 Actions and equation of motion in Clifford and in Grassmann space

We define in d = ((d − 1) + 1)-dimensional space states with integer spin —
in Grassmann space — and states with half integer spin — in Clifford space —
proving that norms in both spaces can be determined by the integral in Grassmann
space, Eqs. (3.32, 3.33), since the Clifford algebra objects are expressible with the
Grassmann algebra objects, Eq. (3.4) 2. When reformulating the vacuum in the
Clifford case, Eq. (3.79), half integer spinors presentation in Clifford space become
more elegant, that is easier to recognize properties of fermions.

We present as well actions in both cases, Grassmann, Eq. (3.41), and Clifford,
Eq. (3.36), leading to the equations of motion (in the Clifford case the Weyl equation
is known for a long time, in the Grassmann case it is present for the first time
by N.S.M.B.). We compare Euler-Lagrange equations in both cases to compare
properties of Grassmann ”fermions” with the Clifford fermions.

a. Fields with the integer spin in Grassmann space

A point in d-dimensional Grassmann space of anticommuting coordinates θa,
(a = 0, 1, 2, 3, 5, . . . , d), is determined by a vector {θa} = (θ0, θ1, θ2, θ3, θ5, . . . , θd).
A linear vector space over the coordinate Grassmann space has correspondingly
the dimension 2d, due to the fact that (θai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

Correspondingly are fields in Grassmann space expressible in terms of the
Grassmann algebra objects

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 , (3.16)

where |φog > is the vacuum state, here assumed to be |φog >= |1 >, so that
∂
∂θa

|φog >= 0 for any θa. The Kalb-Ramond boson fields aa1a2...ak are antisym-
metric with respect to the permutation of indexes, since the Grassmann coordinates
anticommute {θa, θb}+ = 0, Eq. (3.3).

2 Observations in this paper might help also when fermionizing boson fields or bosonizing
fermion fields [42].
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The left derivative ∂
∂θa

on vectors of the space of monomials B(θ) is defined
as follows

∂

∂θa
B(θ) =

∂B(θ)
∂θa

,{
∂

∂θa
,
∂

∂θb

}
+

B = 0 , for all B . (3.17)

The commutation relations are for pθa = i ∂
∂θa

defined in Eq. (3.3), where the
metric tensor ηab (= diag(1,−1,−1, . . . ,−1)) lowers the indexes of a vector {θa}:
θa = ηab θ

b (the same metric tensor lowers the indexes of the ordinary vector xa

of commuting coordinates).
Defining 3

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (3.18)

it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (3.19)

Making a choice for the complex properties of θa, and correspondingly of ∂
∂θa

, as
follows

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) ,

{
∂

∂θa
}∗ = (

∂

∂θ0
,
∂

∂θ1
,−

∂

∂θ2
,
∂

∂θ3
,−

∂

∂θ5
,
∂

∂θ6
, ...,−

∂

∂θd−1
,
∂

∂θd
) , (3.20)

it follows for the two Clifford algebra objects γa = (θa + ∂
∂θa

), and γ̃a = i(θa −
∂
∂θa

), Eq. (3.4), that γa is real if θa is real, and γa is imaginary if θa is imaginary,
while γ̃a is imaginary when θa is real and γ̃a is real if θa is imaginary, just as it is
required in Eq. (3.26).

Applying the operator Sab of Eq. (3.3) on the ”states” 1√
2
(θa + ηaa

ik
θb), a 6= b,

and 1√
2
(1+ i

k
θaθb), a 6= b, it follows

Sab
1√
2
(θa +

ηaa

ik
θb) = k

1√
2
(θa +

ηaa

ik
θb) ,

Sab
1√
2
(1+

i

k
θaθb) = 0 , (3.21)

k2 = ηaaηbb.
We define here the commuting objects γaG, which will be helpful when looking

for the appropriate action for Grassmann fermions, Eq. (3.41). These operators will
be needed also when looking for the definition of appropriate discrete symmetry
operators in the Grassmann case. Following the definition of the discrete symmetry

3 In Ref. [2] the definition of θa† was differently chosen. Correspondingly also the scalar
product needed a (slightly) different weight function in Eq. (3.32).
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operators in the Clifford algebra case [65] in ((d− 1) + 1) space-time and in (3+ 1)

space-time, the discrete symmetry operators (CG , TG , PG) in ((d− 1) + 1) and (CNG ,
TNG , PNG) in (3+ 1) will be defined in Subsct. 3.3.3, respectively.

γaG = (1− 2θaηaa
∂

∂θa
) = −iηaa γaγ̃a , {γaG, γ

b
G}− = 0 . (3.22)

Index a is not the Lorentz index in the usual sense. γaG are commuting operators
for all (a, b). They are real and Hermitian.

γa†G = γaG , (γaG)
∗ = γaG . (3.23)

Correspondingly it follows: γa†G γ
a
G = I, γaGγ

a
G = I. I represents the unit operator.

By introducing [2] the generators of the infinitesimal Lorentz transformations
in Grassmann space, as presented in Eq. (3.3), and making use of the Cartan subal-
gebra of commuting operators, Eq. (3.110), the basic states in Grassmann space
can be arranged into representations of the eigenstates of the Cartan subalgebra
operators, Eq. (3.21), Ref. [2,46]. All these states have integer spins (k is ±i or ±1).
The starting state in d-dimensional space, for example, with the eigenvalues of the
Cartan subalgebra equal to either i or 1 is: (θ0−θ3)(θ1+ iθ2)(θ5+ iθ6) · · · (θd−1+
iθd)|φog >, with |φog >= |1 >, Eq. (3.21). All the states of the representation,
which starts with this state, follow by the application of those Sab, which do not
belong to the Cartan subalgebra of the Lorentz algebra. S01, for example, trans-
forms this starting state into (θ0θ3+iθ1iθ2)(θ5+iθ6) · · · (θd−1+iθd)|φog >, while
(S01 − iS02) transforms this state into (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−1 +
iθd)|φog >.

b. Fields with the half integer spin in Clifford space

Let us present as well the properties of the fermion fields with the half inte-
ger spin, expressed by the Clifford algebra objects γa’s ([1,2,9,3,5,4,47] and the
references therein)

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (3.24)

where |ψoc > is the vacuum state. The Kalb-Ramond fields aa1a2...ak are again in
general boson fields, which are antisymmetric with respect to the permutation of
indexes, since the Clifford objects have the anticommutation relations, Eq. (3.2),
{γa, γb}+ = 2ηab. The linear vector space over the Clifford coordinate space has,
as in the Grassmann case, the dimension 2d, due to the fact that (γai)2 = ηaiai

for any ai ∈ (0, 1, 2, 3, 5, . . . , d).
As written in Eq. (3.4), γa are expressible in terms of the Grassmann coordi-

nates and their conjugate momenta, as γa = (θa − i pθa), and γ̃a = i (θa + i pθa),
with the anticommutation relation of Eq. (3.2), {γ, γb}+ = 2ηab = {γ̃a, γ̃b}+,
{γa, γ̃b}+ = 0. Taking into account Eqs. (3.18, 3.19, 3.4) one finds

(γa)† = γaηaa , (γ̃a)† = γ̃aηaa ,

γaγa = ηaa , γa(γa)† = I , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = I , (3.25)
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where I represents the unit operator. Making a choice for the θa properties as
presented in Eq. (3.20), it follows for the Clifford objects

{γa}∗ = (γ0, γ1,−γ2, γ3,−γ5, γ6, ...,−γd−1, γd) ,

{γ̃a}∗ = (−γ̃0,−γ̃1, γ̃2,−γ̃3, γ̃5,−γ̃6, ..., γ̃d−1,−γ̃d) , (3.26)

Applying the operators Sab and S̃ab, Eq. (3.2), on 1
2
(γa + ηaa

ik
γb) and on 1

2
(1 +

i
k
γaγb), and taking into account the relation of Eq. (3.69), one obtains

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

S̃ab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

Sab
1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb)

S̃ab
1

2
(1+

i

k
γaγb) = −

k

2

1

2
(1+

i

k
γaγb) . (3.27)

One could make a choice of γ̃a instead of γa and change correspondingly the
relations in Eqs. (3.69, 3.27).

All the three choices for the linear vector space — spanned over either the
Grassmann θa’s, or over the vector space of γa’s, or over the vector space of γ̃a’s
— have the dimension 2d. More about the meaning of these degrees of freedom in
any of theses cases can be found in Ref. [11].

Let us point out here that θa’s and ∂
∂θa

’s (each of them has 2d degrees of
freedom) are expressible with γa’s and γ̃a’s (with 2d degrees of freedom each)
and opposite. Since {γa, γ̃b}+ = 0, γa’s and γ̃a’s form independent degrees of
freedom. We should therefore allow also γ̃a’s to form the vector space.

We can express Grassmann coordinates θa and momenta pθa = i ∂
∂θa

in terms
of γa and γ̃a as well 4

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) , (3.28)

with ∂
∂θb

θa|1 >= ηab|1 >.
Requiring that the application of γ̃a’s on γa’s are determined by Eq. (3.69), the

γ̃a’s part is sacrificed [11]. The two possibilities are no longer acceptable: γa’s are
chosen to span the basis, while γ̃a’s become operators which determine the family
quantum numbers. From Eqs. (3.28, 3.69) follows that ∂

∂θb
θa = 0 and θa = γ. All

the relations of Eq. (3.2) remain valid, while the space of γ̃a’s is sacrificed and the
Grassmann space has lost ∂

∂θb
, the Hermitian conjugated partner of θa.

(Of course, we can still replace γa by γ̃a, if we change correspondingly the
vacuum state |ψoc > and relation in Eq. (3.69)).

4 In Ref. [76] the author suggested in Eq. (47) a choice of superposition of γa and γ̄a, which
resembles the choice of one of the authors (N.S.M.B.) in Ref. [2] and both authors in
Ref. [47,48] and in present article.
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The vacuum state |φog >= | 1 > must after Eq. (3.69) be transformed into
|ψoc >with the property [2,7,9]

< ψoc|γ
a|ψoc > = 0 , γ̃a|ψoc >= iγ

a|ψoc > , γ̃aγb|ψoc >= −iγbγa|ψoc > ,

γ̃aγ̃b|ψoc > |a 6=b = −γaγb|ψoc > , γ̃aγ̃b|ψoc > |a=b = ηab|ψoc > . (3.29)

This is in agreement with the requirement

γa F(γ) |ψoc >: = (a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+

aa1···ad γ
a γa1 · · ·γad ) |ψoc > ,

γ̃a F(γ) |ψoc >: = ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψoc > . (3.30)

The basic states in Clifford space can be arranged in representations, in which any
state is the eigenstate of the Cartan subalgebra operators of Eq. (3.110). The state,
for example, in d-dimensional space with the eigenvalues of S03, S12, S56, . . . , Sd−1d

and of S̃03, S̃12, S̃56, . . . , S̃d−1d equal to 1
2
(i, 1, 1, . . . , 1) is (γ0−γ3)(γ1+ iγ2)(γ5+

iγ6) · · · (γd−1 + iγd). The states of one representation follow from the starting
state by the application of Sab, which do not belong to the Cartan subalgebra
operators, while S̃ab, which operate on family quantum numbers, cause jumps
from the starting family to the new one.

Norms of vectors in Grassmann and Clifford space Let us look for the norm
of vectors in Grassmann space, B =

∑d
k=0 aa1a2...ak θ

a1θa2 . . . θak |φog >, and
in Clifford space, F =

∑d
k=0 aa1a2 . . . ak γ

a1γa2 . . . γak |ψoc >, where |φog > and
|ψoc > are the vacuum states in the Grassmann and Clifford case, respectively. In
what follows we refer to Ref. [2].

a. Norms of Grassmann vectors

Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|θ >< C|θ >, < B|θ >=< θ|B >†, by requiring

{dθa, θb}+ = 0 ,

∫
dθa = 0 ,

∫
dθaθa = 1 ,

∫
ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πdk=0(
∂

∂θk
+ θk) , (3.31)

with ∂
∂θa

θc = ηac. We shall use the weight function ω = Πdk=0(
∂
∂θk

+ θk) to
define the scalar product < B|C >

< B|C > =

∫
dd−1xddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
dd−1xb∗b1...bkcb1...bk ,

(3.32)

where, according to Eq. (3.18), it follows:

< B|θ >=
d∑
p=0

(−i)p a∗a1...app
θap ηapap · · ·pθa1 ηa1a1 .
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The vacuum state is chosen to be |φog >= |1 >, as assumed in Eq. (3.16).
The norm < B|B > is correspondingly always nonnegative. Let us notice

that the choice of the Hermitian conjugated value of θa is ∂
∂θa

((θa)† = ηaa ∂
∂θa

,
Eq. (3.18)) makes that we easily evaluate in any d the scalar product

< φog|(
∂

∂θd
∂

∂θd−1
∂

∂θd−2
· · · ∂
∂θ1

∂

∂θ0
)(θ0θ1 · · · θd−2θd−1θd)|φog >= 1

for |φog >= |1 > (without integration over coordinate space of θa’s).

b. Norms of Clifford vectors

To evaluate norms in the Clifford space for vectors of Eq. (3.24) we can use as
well Eqs. (3.31, 3.32), if expressing γa in terms of θa and pθa: < (θa − ipθa)|F >.
In this case |ψoc >= |φog >= |1 >. It follows

< F|G > =

∫
dd−1xddθa ω < F|γ >< γ|G >=

d∑
k=0

∫
dd−1xa∗a1...akbb1...bk .

(3.33)

To simplify the evaluation we use instead [3,47] in the Clifford case the vacuum
state |ψoc >, Eq. (3.79), which is the product of projectors, Eq. (3.70). It takes care of
the orthogonality of states (like if we would evaluate the integration in Grassmann
space).

Correspondingly we can write∫
ddθa ω(aa1a2...ak γ

a1γa2 . . . γak)†(aa1a2...ak γ
a1γa2 . . . γak) =

a∗a1a2...ak aa1a2...ak . (3.34)

The norm of each scalar term in the sum of F is nonnegative.

Actions in Grassmann and Clifford space We construct an action for free mass-
less fermion in which the internal degrees of freedom is described: i. in Grassmann
space, ii. in Clifford space. In the first case the internal degrees of freedom manifest
integer spins, in the second case the half integer spin.

While the action in Clifford space is well known since long [67], the action
in Grassmann space will be defined here (by N.S.M.B.). In both cases we present
an action for free massless fermions in ((d− 1) + 1) space 5. States in Grassmann
space as well as states in Clifford space will be arranged to be the eigenstates of

5 In d = (3+ 1) space masses of fermions are in the spin-charge-family theory in the Clifford
case caused by the interaction of fermions with scalar gauge fields with the space index
(7, 8), that is the vielbeins and the spin connections of two kinds — the gauge scalar fields
of Sab and of S̃ab. We expect that masses of ”fermions” appear also in the Grassmann
case due to the interaction of fermions with scalar gauge fields with the space index (7, 8),
but in this case due to the vielbeins and the spin connection of one kind only — the gauge
field of Sab
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the Cartan subalgebra — with respect to Sab in Grassmann space and with respect
to Sab and S̃ab in Clifford space, Eq. (3.110), and orthogonal and normalized with
respect to Eq. (3.31) 6.

In both spaces the requirement that states are obtained by the application
of creation operators on the vacuum state — in the Grassmann case b̂θ

k†
i on

| 1 >, Eq. (3.58), obeying together with the b̂θ
k

i the anti commutation relations
of Eq. (3.54) on the vacuum state |φog >= |1 >, and in the Clifford case b̂α†i ,
Eq.(3.76), obeying together with the b̂βi the equivalent anticommutation relations
of Eq. (3.81) on the vacuum states |ψoc >, Eq. (3.79) — reduces the number of
states, in Clifford space more than in Grassmann space. But while in Clifford
space all physically applicable states are reachable by either Sab (defining family
members quantum numbers) or by S̃ab (defining family quantum numbers), the
states in Grassmann space, belonging to different representations with respect to
the Lorentz generators, seem not to be connected.

a. Action in Clifford space

In Clifford space the action for a free massless fermion must be Lorentz
invariant

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (3.35)

pa = i ∂
∂xa

, leading to the equations of motion

γapa|ψ > = 0 , (3.36)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ > = papa|ψ >= 0 ,

(3.37)

for each of the basic states b̂α†i |ψ0c > = |ψαi >. γ0 appears in the action since we
pay attention that

Sab† γ0 = γ0 Sab , S†γ0 = γ0S−1 ,

S = e−
i
2
ωab(S

ab+Lab) . (3.38)

The Lagrange density, Eq. (3.35),

LC =
1

2
{ψ† γ0 γa p̂aψ− p̂aψ

† γ0 γaψ } , (3.39)

leads to

∂LC
∂ψ†

− p̂a
∂LC
∂p̂aψ†

= 0 = γ0γa p̂aψ ,

∂LC
∂ψ

− p̂a
∂LC
∂(p̂aψ)

= 0 = −p̂aψ
†γ0 γa . (3.40)

6 In the Clifford case the states can be orthogonalized also with respect to Eq. (3.79), while
taking into account Eq. (3.71).
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All the states, belonging to different values of the Cartan subalgebra — they differ
at least in one value of either the set of Sab or the set of S̃ab, Eq. (3.110) — are
orthogonal according to the scalar product, defined as the integral over the Grass-
mann coordinates, Eq. (3.31), for a chosen vacuum state |1 >. Correspondingly
the states generated by the creation operators, Eq. (3.76), on the vacuum state,
Eq. (3.79), are orthogonal as well.

b. Action in Grassmann space

We define here the action in Grassmann space, for which we require — simi-
larly as in the Clifford case — that the action for a free massless fermion is Lorentz
invariant

AG =

∫
ddx ddθ ω {φ†(1− 2θ0

∂

∂θ0
)
1

2
θapaφ}+ h.c. . (3.41)

We use the integral over θa coordinates with the weight functionω from Eq. (3.31,
3.32). Requiring the Lorentz invariance we add after φ† the operator γ0G (γaG
= (1− 2θa ∂

∂θa
)), which takes care of the Lorentz invariance. Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) , (3.42)

while θa, ∂
∂θa

and pa transform as Lorentz vectors. The equations of motion follow
from the action, Eq. (3.41),

1

2
γ0G (θa −

∂

∂θa
)pa |φ > = 0 ,

γ0G = (1− 2θ0
∂

∂θ0
) , (3.43)

as well as the Klein-Gordon equation, γ0G (θa − ∂
∂θa

)pa γ
0
G (θb − ∂

∂θa
)pb |φ >= 0,

leading to

{θapa,
∂

∂θb
pb}+ = papa = 0 . (3.44)

From the Lagrange density, presented in Eq. (3.41), using Eqs. (3.18, 3.19, 3.28)
(γ0G = −iηaaγaγ̃a, (θa − ∂

∂θa
) = −iγ̃a) it follows, up to the surface term,

LG = −i
1

2
φ† γ0G γ̃

a (p̂aφ)

= −i
1

4
{φ† γ0G γ̃

a p̂aφ − p̂aφ
† γ0G γ̃

aφ }. (3.45)

One correspondingly finds

∂LG
∂φ†

− p̂a
∂LG
∂p̂aφ†

= 0 =
−i

2
γ0G γ̃

a p̂aφ ,

∂LG
∂φ

− p̂a
∂LG
∂(p̂aφ)

= 0 =
i

2
p̂aφ

†γ0G γ̃
a , (3.46)
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The solutions of these equations are presented in Eq. (3.98).
We shall see that, if one identifies the creation operators in both spaces with

the products of odd numbers of either θa — in the Grassmann case — or γa — in
the Clifford case — and the annihilation operators as the Hermitian conjugated
operators of the creation operators, the creation and annihilation operators fulfill
the anticommutation relations, required for fermions. The internal parts of states
are then defined by the application of the creation operators on the vacuum state.

But while the Clifford subalgebra defines states with the half integer ”eigen-
values” of the Cartan subalgebra operators of the corresponding Lorentz algebra,
the Grassmann algebra defines states with the integer ”eigenvalues” of the Cartan
subalgebra operators of the corresponding Lorentz algebra.

3.3 Second quantization of Grassmann and Clifford vectors

It is proven in this section that solutions of the Weyl equations — following from
the Hermitian and Lorentz invariant actions for free massless fermions, using to
describe their internal degrees of freedom either Clifford space, Eqs. (3.35, 3.36),
or Grassmann space, Eq. (3.41, 3.43), — can be represented as creation operators,
operating on the appropriate vacuum state. The corresponding Hermitian con-
jugated operators, taken as their annihilation partners, fulfill together with the
creation operators, if both are of an odd either Clifford or Grassmann character,
the anticommutation relations required for fermions.

Correspondingly there is no need to assume the anticommutation relations
as done in the Dirac theory [67,74,75], since the creation and annihilation opera-
tors of an odd either Clifford or Grasmmann character by themselves fulfill the
anticommutation relations for fermions without postulating them.

Creation operators in both spaces determine the Hilbert space of n fermions
for any integer n and have all the properties of the corresponding Slater determi-
nants, if we recognize that a product of two creation operators of two different
moments in the ordinary space (pk, pl) — b̂α†i pk · b̂

β†
j pl

, applying on the vacuum
state |ψoc >, are zero if and only if i = j, α = β and pk = pl. In the Grassmann
case b̂α†i pk · b̂

β†
j pl

is replaced by b̂θ†i pk · b̂
θ†
j pl

and the vacuum |ψoc > by |ψog >.
Let us point out that fermions with the internal degrees of freedom described

in Clifford space manifests half integer spins, while ”fermions” with the internal
degrees of freedom described in Grassmann space demonstrate integer spins.

We pay attention in this paper on d = 2(2n+1)-dimensional spaces, arranging
all the vectors to be ”eigenvectors” of the Cartan subalgebra operators of Sab and
S̃ab in the Clifford case and of Sab in the Grassmann case, Eqs. (3.110, 3.2, 3.3).

In d-dimensional spaces the linear vector space, spanned over either the
Clifford coordinates γa’s or the Grassmann coordinates θa’s, has the dimension
2d. One can in both cases represent the vector space as 2d operators, which —
when applied on the vacuum state — create 2d vectors. Half of these operators
have an odd and half an even either Clifford (with respect to odd or even products
of γa’s) or Grassmann (with respect to odd or even products of θs’s) character.

In the Clifford case there are in the group of an odd Clifford character two
groups of operators: each member of one group has its Hermitian conjugated
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partner in another group. One of the two groups can be therefore chosen to repre-
sent the creation operators, the other to represent the corresponding annihilation
operators. Each of the two groups has 2d−2 members.

Each of the two Clifford odd groups, one with 2d−2 creation the other with
2d−2 annihilation operators, further divides into 2

d
2
−1 subgroups with 2

d
2
−1 mem-

bers. All the 2
d
2
−1 members of one particular subgroup are related by the operators

Sab, while S̃ab transform each member of this subgroup of particular family into
the same member of one of 2

d
2
−1 families.

In the group of the Clifford even operators there are again two groups, each
with 2

d
2
−1 · 2d2−1 operators related by either Sab or by S̃ab. Within each of the

group there are 2
d
2
−1 subgroups with 2

d
2
−1 members, related by the application

of Sab, while S̃ab transform each member of a particular subgroup into the same
member — with respect to the operators Sab — of another subgroup with again
2
d
2
−1 members.

These two groups are not related by the Hermitian conjugation as in the case
of odd Clifford objects. In each of the two groups of an even Clifford character
there are 2

d
2
−1 self adjoint operators. The rest of 2

d
2
−1 · (2d2−1 − 1) Clifford even

operators have the Hermitian conjugated partners within the same group.
γ̃aγa transform 2

d
2
−1 self adjoint operators of one Clifford even group into

2
d
2
−1 self adjoint operators of another Clifford even group, while γ̃aγa transform

the rest of this group — that is 2
d
2
−1 · (2d2−1 − 1) operators, having the Hermitian

conjugated partners within the same subgroup — into 2
d
2
−1×(2d2−1−1) operators

of another Clifford even group, having again the Hermitian conjugated partners
within the same subgroup.

Any odd Clifford member of the assumed (chosen to be) creation operators
gives, when applied on one (only one) of the even self adjoint operators of only
one of the two groups with (2

d
2
−1)2 members, a nonzero contribution, which is

the same creation operator back. It gives nonzero contribution also on one (only
one) of the rest 2

d
2
−1 · (2d2−1−1) operators of the same group to which also the self

adjoint operator belong, transforming it to one of creation operators, belonging to
another family of the creation operators. On all the others Clifford even objects
this creation operator gives zero.

The annihilation operators manifest, when applied on the Clifford even ob-
jects, equivalent properties as creation operators.

Let b̂α†i be the creation operator of an odd Clifford character, α denoting
the subgroup with a particular value of the Cartan subalgebra of S̃ab (family)
and with i denoting a particular member of a family α. To all the members of
particular α one and only one of the selfadjoint operators of an even Clifford
character corresponds, which, when any of these members applies on it, gives the
same creation operator back.

(b̂α†i )† = b̂αi , denoting the corresponding annihilation operator of an odd
Clifford character, gives zero when applied on the selfadjoint operators on which
b̂α†i gives nonzero contribution.

We choose the superposition of these selfadjoint operators to determine the
vacuum state in the Clifford case, Eq. (3.79).
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All the members of the odd Clifford character, half of them creation operators
and half of them annihilation operators, fulfill the anticommutation relations,
required for fermions. Correspondingly there are only 2

d
2
−1 · 2d2−1 creation oper-

ators, determining 2
d
2
−1 families with 2

d
2
−1 family members each, which when

applied on the superposition of selfadjoint operators of one group of Clifford even
operators, create fermion states. These creation operators determine n fermions
Hilbert space.

In the Grassmann case there are two kinds of operators, θa and ∂
∂θa

, Hermi-
tian conjugated to each other, Eqs. (3.18, 3.19). If θa represent the creation operators,
then ∂

∂θa
are the corresponding annihilation operators. Not having the Hermitian

conjugated partner with the property that when applying on |ψog >= | ! > gives
zero, the identity (I) can not belong either to creation or to annihilation operators.

In d = 2(2n+ 1)-dimensional Grassmann spaces there are correspondingly
2d − 1 creation operators. The largest two representations have together d!

d
2
!d
2
!

creation operators and the same number of annihilation operators of an odd
Grassmann character, Eq. (3.59), chosen to be eigenstates of the Cartan subalgebra,
Eq. (3.110), of Sab. All the irreducible representations of the Grassmann case are
decoupled. The application of the creation operators, which are products of d

2
θa’s,

on the identity (I) gives them back, while the annihilation operators applied on I
give zero.

The d!
d
2
!d
2
!

creation operators split into two by the generators of the Lorentz

transformations Sab unconnected groups, each with 1
2

d!
d
2
!d
2
!

members.
We introduce common notation for the Clifford and Grassmann case to sim-

plify the discussion: Let b̂α†i be the creation operator of an odd Grassmann char-
acter with α = (1, 2) denoting one of the two (by Sab unconnected) the largest
subgroups and let i denotes one of the 1

2
d!
d
2
!d
2
!

members related among them-

selves by Sab. We make a choice of the vacuum state in the Grassmann case to be
|ψoα >= | 1 >.

All members of two groups of 1
2

d!
d
2
!d
2
!

number of creation operators of an
odd Grassmann character, and their Hermitian conjugated partners, fulfill the
anticommutation relations, required for fermions.

The number of vectors in the Hilbert space of n-fermions depends for a chosen
momentum pak on the number of the creation operators, creating a particular
fermion in the Clifford case or a particular ”fermion” in the Grassmann case.

There are for each pak in the odd Clifford case 2
d
2
−1 ·2d2−1 and in the odd Grass-

mann case (for the two the largest representations) d!
d
2
!d
2
!

creation operators b̂α†i pk
of an odd character — either Clifford odd character, with α = (1, · · · , 2d2−1), i =
(1, · · · , 2d2−1), or Grassmann odd character, with α = (1, 2), i = (1, · · · , d!

d
2
!d
2
!
)),

creating the corresponding single particle states, when applied on the vacuum
states |ψo >— in the Clifford case is the vacuum state |ψoc >, the superposition
of all selfadjoint operators, on which an odd b̂αi†pk gives a nonzero contribution,
and in the Grassmann case the vacuum state is |ψog >= | 1 >.

Let the zero fermion state for any pak in either Clifford or Grassmann space, be
written as |ψo >: = |0α=1i=1p1

, 0α=1i=2p1
, 0α=1i=3p1

, . . . , 0α=1imax p1
, . . . , 0α=αmax

imax p1
, . . . , 0α=1i=1p2

,
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0α=1i=2p2
, 0α1i=3p2 , . . . , 0

α=1
imax p2

, . . . , 0α=αmax
imax pk

, · · · , · · · |ψo >, with |ψo >= (|ψoc >, | 1 >

), in the Clifford and the Grassmann case, respectively, and αmax = (2
d
2
−1, 2) and

imax = (2
d
2
−1, 1

2
d!
d
2
!d
2
!
), again in the Clifford and the Grassmann case, respectively.

Then the vector space with n fermions in the Clifford case or n ”fermions” in the
Grassmann case, for any n looks like

b̂α†i pk |ψo > = |0α=1i=1p1
, 0α=1i=2p1

, . . . , 0α=αmax
imax p1

, . . . , 1αipk · · · , |ψo >
· · ·
there are αmax · imax such 1 − fermion states for eachpk ,

b̂α†i pk b̂α†j pk |ψo > ,

· · ·
· · ·
Πα=1,αmax Πi=1,imax b̂α†i pk |ψo > , ,

· · ·
Πα=1,αmax Πi=1,imax b̂α†i pl |ψo > , ,

· · ·
there are 2αmax·imax Slater determinants of fermions for eachpk ,

· · · (3.47)

αmax = (2
d
2
−1, 2) and imax = (2

d
2
−1, 1

2
d!
d
2
!d
2
!
) in the Clifford and Grassmann case,

respectively.
One sees that

b̂α†i pk b̂β†j pl |0
α=1
i=1p1

, 0α=1i=2p1
, . . . ,

1α
′

i ′pk ′
, . . . , 0α

′′′

i ′′′=1pk ′′′
, . . . , 1α

iv

iivp
kiv
, . . . , 1β

′

j ′ pl ′
, . . . , |ψo >=

− b̂β†j pl b̂α†i pk |0
α=1
i=1p1

, 0α=1i=2p1
, . . . , 1α

′

i ′pk ′
, . . . , 0α

′′′

i ′′′=1pk ′′′
, . . . 1α

iv

iivp
kiv
, . . . ,

1β
′

j ′ pl ′
, . . . , |ψo > , (3.48)

and is zero only if any of the occupied states is the same as one (or both) of the
two states determined by b̂α†i pk or b̂β†j pl applied on |ψo >

7.

7 Each single particle state caries its own internal space, described by a creation oper-
ator with a superposition of an odd number of γai ’s, and its own coordinate space,
described by xai ’s (or pai ). The creation operators of any two pairs of particles there-
fore anti-commute. Correspondingly the two states of two particles must distinguish
in either internal space or in the coordinate space, as it follows from Eq. (3.86).
The property of the creation operators b̂α†spib̂

α ′†
s ′p ′j applying on the n-particle state

|1αsp1, 1
α ′
s ′p ′2, 1

α"
s"p"3, . . . , 0

α" ′

s" ′pi i
, . . . , 0α

iv

sivpj j
, . . . , >,presented in Eq. (3.86), can be as well

described by (superposition of) Slater determinants of single particle states. Let us add
that the vacuum state, having the sum of the spins of both kinds of operators, Sab and
S̃ab, equal to zero and therefore neutral, remains neutral also when filled with fermions
of all the spins, Sab and S̃ab.
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One fermion states are either in Clifford or in Grassmann space already second
quantized, since in both cases they fulfill the anticommutation relations required
for fermions, Eqs. (3.66, 3.87).

All together there are 22
d−2

Slater determinants for a chosen pk in the Clif-

ford case and 2
d!
d
2

!d
2

! Slater determinants for a chosen pk in the Grassmann case
(if only the two largest group of odd irreducible representations are taken into
account, if we take all odd representations into account we have 22

d−1

Slater
determinants), pk has a continuously changing value, p0 = (0,∞), −∞ ≤ pl ≤∞,
l = (1, 2, 3, 5, ·, d).

It can be concluded that there are only second quantized states, since the
anticommuting creation and annihilation operators, creating a Clifford fermion or
Grassmann ”fermion” states, determine all the properties of the n-particle Hilbert
space for any n.

We shall as well recognize that no Dirac sea is needed either in the Clifford
or in the Grassmann case, since the same Lorentz representation includes in both
cases fermions and antifermions.

We discuss in the subsections the second quantization procedure in both
spaces, Clifford and Grassmann, when dimension of the space-time is larger
than four. We demonstrate that if the dynamics manifests only in d = (3 +

1), that is when momentum is different from zero only in d = (3 + 1), pa =

(p0, p1, p2, p3, 0, 0, · · · , 0) — what happens at low energies after the break of
Lorentz symmetries in d ≥ 5— spins in d ≥ 5manifest as charges in d = (3+ 1).

While the Clifford case offers the explanation for all the properties of observ-
able fermions (after sacrificing the space of γ̃a’s), the Grassmann case, having
difficulties in describing energy within the usual second quantized procedure, as
long as the Lorentz invariance in internal space is unbroken, leads to unobserved
”fermions” with integer spins.

Let us point out that states in Grassmann space as well as states in Clifford
space are organized to be — within each of the two spaces — orthogonal and
normalized with respect to Eq. (3.31, 3.32, 3.33). All the states in each of spaces
are chosen to be eigenstates of the Cartan subalgebra — with respect to Sab in
Grassmann space, Eqs. (3.3, 3.5, 3.110), and with respect to Sab and S̃ab, Eq. (3.2),
in Clifford space, Eq. (3.110).

We pay attention in this paper almost only to spaces with d = 2(2n+ 1) 8.

3.3.1 Second quantization in Grassmann space

There are 2d states in Grassmann space, orthogonal to each other with respect to
Eqs. (3.31, 3.32). To any coordinate there exists the conjugate momentum. We pay
attentionin what follows mostly to spaces with d = 2(2n+ 1). The states, which

8 The main reason that we treat here mostly d = 2(2n + 1) spaces is that one Weyl
representation, expressed by the product of the Clifford algebra objects, manifests in
d = (1 + 3) all the observed properties of quarks and leptons, if d ≥ 2(2n + 1), n = 3,
and that the breaks of the starting symmetry down to d = (3 + 1) can lead to massless
fermions [68,69].
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contribute in the second quantization procedure and manifest anticommutation
relations required for fermions, are Grassmann odd products of eigenstates of the
Cartan subalgebra, Eq. (3.110), of the Lorentz algebra. In d = 2(2n + 1) spaces
there are two Grassmann odd irreducible representations of the Lorentz algebra
with the largest number of members, divided into two separated groups of 1

2
d!
d
2
!d
2
!

members, Eq. (3.59). (All states of one group are reachable from a starting state
by the application of Sab.) Any Grassmann odd state can be written as a creation
operator, operating on the vacuum state, while the Hermitian conjugated creation
operator is the corresponding annihilation operator. Creation and annihilation
operators of an odd Grassmann character fulfill the anticommutation relations of
Eq. (3.50, 3.54). Let us see how it works.

If b̂θ†i is a creation operator, which creates a state in the Grassmann space
when operating on a vacuum state |ψog > and b̂θi = (b̂θ†i )† is the corresponding an-
nihilation operator, then for a set of creation operators b̂θ†i and the corresponding
annihilation operators b̂θi it must be

b̂θi |φog > = 0 ,

b̂θ†i |φog > 6= 0 . (3.49)

We first pay attention on only the internal degrees of freedom of the Grassmann
”fermions”: the spin in any dimension d = 2(2n+ 1), n is a positive integer.

Choosing b̂θ†a = θa, then it follows that (b̂θ†a )† = ∂
∂θa

, Eqs. (3.18, 3.19). One
correspondingly finds

b̂θ†a = θa , b̂θa =
∂

∂θa
,

{b̂θa, b̂
θ†
b }+|φog > = δab|φog > ,

{b̂θa, b̂
θ
b}+|φog > = 0 ,

{b̂θ†a , b̂
θ†
b }+|φog > = 0 ,

b̂†θa |φog > = θa|φog > ,

b̂θa |φog > = 0 . (3.50)

The vacuum state |φog >will in this case be chosen as |φog >= | 1 >.
The number operator N̂θa = b̂θ†a b̂

θ
a has the property, due to thefirst line in

Eq. (3.49) and the second line in Eq. (3.50), that (N̂θa)2 = N̂θa, with the eigenvalue 0
or 1.

The identity I (I† = I) can not be taken as a creation operator, since its
annihilation partner does not fulfill Eq. (3.49). The identity is obviously selfadjoint
operator determining the vacuum state |φog >= | 1 >.

We can use the superposition of products of θa’s as creation operators and
the corresponding superposition of products of ∂

∂θa
’s as the corresponding anni-

hilation operators, provided that they fulfill the requirements for the creation and
annihilation operators, Eq. (3.54), with the vacuum state |φog >= |1 >. In general
they would not. Only an odd number of θa in any superposition would have the
required anticommutation properties.
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To construct creation operators it is convenient to take products of such
superposition of vectors θa and θb that each factor is the ”eigenstate” of one of
the Cartan subalgebra members of the Lorentz algebra (3.110). Let us start in
d = 2(2n + 1) with the creation operator, which is a product of d

2
”eigenstates”

of an odd Grassmann character of the Cartan subalgebra Sab 1√
2
(θa + ηaa

ik
θb) =

k 1√
2
(θa + ηaa

ik
θb), Eq. (3.21). Then the corresponding annihilation is a product of

d
2

of the corresponding factors 1√
2
( ∂
∂θa

+ ηaa

−ik
∂
∂θb

), In both cases (a, b) belong to
(0, 3), (1, 2), (5, 6), · · · , (d− 1, d).

Let us in d = 2(2n+ 1), n is a positive integer, start with the state

|φ11 > = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)b̂θ11 |1 > ,

= b̂θ1†1 |1 > , with

b̂θ1†1 : = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) . (3.51)

One finds for the eigenvalues of the Cartan subalgebra operators, Eq. (3.110), the
values (+i,+1,+1, · · ·+ 1).

The rest of states, belonging to the same Lorentz irreducible representation,
follow from the starting state by the application of the operators Scf, which do not
belong to the Cartan subalgebra operators.

One can find creation and annihilation operators for d = 4n in App. 3.5.

i. We proposed in Eq. (3.51) the starting creation operator b̂θ1†1 , the upper
index indicates one of the two groups, the lower index indicates the starting
member. By taking into account Eqs. (3.18, 3.19) the starting creation operator and
its annihilation partner are for d = 2(2n+ 1) equal to

b̂θ1†1 = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ11 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

for d = 2(2n+ 1) . (3.52)

The rest of creation operators belonging to this group (group 1) in d = 2(2n +

1) follow by the application of operators Sef. The corresponding annihilation
operators are the Hermitian conjugated partners of the corresponding of creation
operators. For d = 2(2n+ 1) one finds by the application of S01 another creation
operator and the corresponding annihilation operator as follows

b̂θ1†2 = (
1√
2
)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ12 = (
1√
2
)
d
2
−1 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) ,

in general :

b̂θ1†i ∝ Sab · · ·Sefb̂θ1†1 ,

b̂θ1i = (b̂θ1†i )† . (3.53)
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It was taken into account in the above equation that any Sac (a 6= c), which does
not belong to the Cartan subalgebra, Eq.(3.110), transforms ( 1√

2
)2(θa + iθb)(θc +

iθd) (a 6= c and a 6= d, b 6= c and b 6= d, ηaa = ηbb) into 1√
2
(θaθb + θcθd). The

states are normalized and the simplest phases are assumed. One evaluates that
either Sab or Scd, applied on (θaθb ± θcθd), gives zero. The vacuum state is in all
these cases | 1 >.

All the creation operators of an odd Grassmann character — the Grassmann
even Sac does not change the oddness of the creation operators and neither do the
Hermitian conjugation — fulfill the anticommutation relations

{b̂θki , b̂
θl†
j }+|φog > = δij δkl |φog > ,

{b̂θki , b̂
θl
j }+|φog > = 0 |φog > ,

{b̂θk†i , b̂θl†j }+|φog > = 0 |φog > ,

b̂θk†i |φog > = |φki > ,

b̂θkj |φog > = 0 |φog > ,

(k, l) = (1, 2) . (3.54)

Since there is another group of states, presented in Eq. (3.56), not reachable from
the starting state by Sab, we denote, to generalize the notation, creation operator
with b̂θk†i and the annihilationoperator with b̂θki .

It is not difficult to see that states included into one representation, which
started with b̂θ1†i |1 > as presented in Eq. (3.52) for d = (2n+1)2 have the properties,
required by Eq. (3.54) for k = 1:

i.a. In any d-dimensional space the product ∂
∂θa1

· · · ∂
∂θak

, with all different
ai (if all or some of them are equal, then this is trivially true since ( ∂

∂θa
)2 = 0), if

applied on the vacuum |1 >, is equal to zero. Correspondingly the second equation
and the fifth equation of Eq. (3.54) are fulfilled.

i.b. In any d-dimensional space the product of different θas — θa1θa2 · · · θak
with all different θa’s (ai 6= aj for all ai and aj) — applied on the vacuum | 1 >,
is different from zero. Since all the θ’s, appearing in Eqs. (3.52, 3.53), are different,
forming orthogonal and normalized states, the fourth equation of Eq. (3.54) is
fulfilled.

i.c. The third equation of Eq. (3.54) is fulfilled provided that there is
an odd number of θs in the expression for a creation operator. Then, when in
the anticommutation relation different θa’s appear (like in the case of d = 6

{θ0θ3θ5, θ1θ2θ6}+), such a contribution gives zero. When two or several equal θ’s
appear in the anticommutation relation, the contribution is zero (since (θa)2 = 0).

i.d. Also for the first equation in Eq. (3.54) it is not difficult to show that it
is fulfilled only for a particular creation operator and its Hermitian conjugated
partner: Let us show this for d = (3 + 1) and the creation operator 1√

2
(θ0 −

θ3) θ1θ2 and its Hermitian conjugate (annihilation) operator: 1√
2
{ ∂
∂θ2

∂
∂θ1

( ∂
∂θ0

−
∂
∂θ3

), 1√
2
(θ0 − θ3) θ1θ2}+. Applying ( ∂

∂θ0
− ∂

∂θ3
) on (θ0 − θ3) gives two, while

∂
∂θ2

∂
∂θ1

applied on θ1θ2 gives one.
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i.e. If we define the number operator Nθki as follows

N̂θki = b̂θk†i b̂θki , (3.55)

it follows, taking into account the third equation of Eq. (3.54), that (N̂θki )2 =

b̂θk†i b̂θki b̂
θk†
i b̂θki = N̂θki , requiring that the eigenvalue of this operator N̂θki on the

state b̂θk†i |φk
′

i ′ > is 0 or 1.

ii. There is one additional irreducible representation of creation and annihi-
lation operators in d = 2(2n+ 1), which follows from the starting state

|φ21 > = b̂θ2†01 |1 > ,

b̂θ2†01 : = (
1√
2
)
1
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) ,

for d = 2(2n+ 1) . (3.56)

This state can not be obtained from the previous group of states, presented in
Eqs. (3.52, 3.53) by the application of Sef, since each Sef changes an even number
of factors, never an odd one. All the other states of this new group of states follow
from the starting one by the application of Sef. The corresponding creation and
annihilation operators are

b̂θ2†1 = (
1√
2
)
d
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ21 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 2(2n+ 1) . (3.57)

The corresponding annihilation operators follow by the Hermitian conjugation of
the creation operators.

b̂θ2†i ∝ Sab · · ·Sefb̂θ2†1 ,

b̂θ2i = (b̂θ2†i )† . (3.58)

Also all these creation and annihilation operators fulfill the requirements for
the creation and annihilation operators, presented in Eq. (3.54), due to the same
reasons as in the first case.

It is true also in this case, as stated below Eq. (3.55), that N̂θki applied on the
state |φki > gives 0 or 1, due to the fact that (N̂θki )2 = N̂θki . Thus the basic states,
determined by the application of creation operators of Eqs. (3.53, 3.58) on the
vacuum state | 1 > have the properties required for fermions.

Let us now count the number of states in each of the two groups presented in
Eqs. (3.53, 3.58).

There are in (d = 2) two creation ((θ0 ∓ θ1, for ηab = diag(1,−1)) and
correspondingly two annihilation operators ( ∂

∂θ0
∓ ∂

∂θ1
), each belonging to its

own group with respect to the Lorentz transformation operators, both fulfilling
Eq. (3.54).
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It is not difficult to see that the number of all creation operators of an odd
Grassmann character in d = 2(2n+ 1)-dimensional space, with all γa’s included
is equal to d!

d
2
!d
2
!
.

We namely ask: In how many ways can one put on d
2

places d different
θa’s. And the answer is — the central binomial coefficient for x

d
2 1

d
2 — with all

x different. This is just d!
d
2
!d
2
!
. But we have counted all the states with an odd

Grassmann character, while we know that these states belong to two different
groups of representations with respect to the Lorentz group.

Correspondingly one concludes: There are two groups of states in d = 2(2n+ 1)

with an odd Grassmann character with all θa’s included, each of these two groups has

1

2

d!
d
2
!d
2
!

(3.59)

members.
In d = 2we have two groups with one state, which have an odd Grassmann

character, in d = 6we have two groups of 10 states, in d = 10we have two groups
of 126 states with an odd Grassmann characters. And so on. All together there are
2d−1 the states of an odd Grassmann character.

Correspondingly we have in d = 2(2n+ 1)-dimensional spaces two groups of
creation operators of the kind presented in Eqs. (3.53, 3.58), each kind with 1

2
d!
d
2
!d
2
!

members, creating states with an odd Grassmann character and the same number
of annihilation operators. Creation and annihilation operators fulfill anticommuta-
tion relations presented in Eq. (3.54).

The rest of creation operators [and the corresponding annihilation operators]
with the opposite Grassmann character than the ones studied so far — like θ0θ1

[ ∂
∂θ1

∂
∂θ0

] in d = (1 + 1) (θ0 ∓ θ3)(θ1 ± iθ2) [( ∂
∂θ1
∓ i ∂

∂θ2
)( ∂
∂θ0
∓ ∂
∂θ3

], θ0θ3θ1θ2

[ ∂
∂θ2

∂
∂θ1

∂
∂θ3

∂
∂θ0

] in d = (3 + 1), do not fulfill the anticommutation relations
required for fermions in Eq. (3.54), with b̂θ1i and b̂θ1†i replaced by b̂θki and b̂θk†i ,
k = (1, 2) and correspondingly with {b̂θki , b̂θl†j }|φog >= δkl δij|φog >, (k, l) =

(1, 2), (i, j) running from (1, . . . , 1
2

d!
d
2
!d
2
!
).

All the states |φki >, k = (1, 2), generated by the creation operators, Eqs. (3.54,
3.58), on the vacuum state |φog > (= |1 >) are the eigenstates of the Cartan
subalgebra operators and are orthogonal and normalized with respect to the norm
of Eq. (3.31)

< φki |φ
k ′

j > = δij δ
kk ′ ,

(k, k ′) = (1, 2) , (i, j) = (1, 2, . . . ,
1

2

d!
d
2
!d
2
!
) . (3.60)

All these basic states describing the internal degrees of freedom can be used to
solve Eq. (3.43) for free massless ”fermions”, with the part in ordinary space
proportional to e−ip

axa . The eigenstates of Eq. (3.43) are superposition of the basic
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states |φki >with coefficients depending on momentum pa, a = (0, 1, 2, 3, 5, . . . , d)

b̂θk†sp =
∑
i

ckspi b̂
θk†
i ,

|φksp > = b̂θk†sp |φog > ,

|φksp > =
∑
i

ckspi |φ
k
i > , (3.61)

s represents different solutions of the equations of motion, and, since they are
orthogonalized, they fulfill the relation < φksp|φk

′

s ′p ′ >= δkk ′ δss ′ δ
pp ′ , where we

assumed the discretization of momenta.
The corresponding creation operators, creating the basic states describing

free massless ”fermions” — b̂θk†sp — are superposition of creation operators b̂θk†i ,
b̂θk†sp =

∑
i c
k
spib̂

θk†
i and fulfill together with the corresponding annihilation

operators b̂θksp = (b̂θk†sp )† the relations

{b̂θksp , b̂
θk ′†
s ′p ′ }+|φog > = δkk ′ δss ′δpp ′ |φog > ,

{b̂θksp , b̂
θk ′

s ′p ′ }+|φog > = 0 |φog > ,

{b̂θk†sp , b̂
θk ′†
s ′p ′ }+|φog > = 0 |φog > ,

b̂θksp |φog > = 0 |φog > ,

b̂θk†sp |φog > = |φksp > ,

|φog > = |1 > . (3.62)

Again index k = (1, 2) in (b̂θ1sp, b̂θ1†sp ) (b̂θ2i , b̂θ†2i ) denotes creation and annihilation
operators of one of the two groups of states describing the internal space of
”fermions”, reachable by Sab, and b̂θk†sp creates the state for a particular momentum
in ordinary space pa, solving Eq. (3.43).

The number operator for a ”fermion” state |φksp > is now

N̂θksp = b̂θk†sp b̂
θk
sp ,

(N̂θksp)
2 = N̂θksp , (3.63)

with the eigenvalues 0 or 1, since the states of a chosen discretized pa are orthogo-
nal. Correspondingly each state can be occupied or empty. If |1θks1p1 , 1

θk
s2p2

, 1θks3p3 , . . . ,
0θkskpk , . . . , 0

θk
slpl

, . . . , > is a n particle state of ”fermions” (and ”antifermions”),
where 1 denotes the occupied state and 0 the unoccupied state, then it follows, for
example, due to the third line in Eq. (3.62), that

b̂θk†sipi b̂
θk†
sjpj

|1θks1p1 , 1
θk
s2p2

, 1θks3p3 , . . . , 0
θk
sipi

, . . . , 0θksjpj , . . . , >=

−b̂θk†sjpj b̂
θk†
sipi

|1θks1p1 , 1
θk
s2p2

, 1θks3p3 , . . . , 0
θk
sipi

, . . . , 0θksjpj , . . . , > . (3.64)

Any n ”fermion” state is therefore a product of n creation operators b̂θk†i pk as
presented in Eq. (3.47).

The number operator for ”fermions” in the n-particle state of Eq. (3.64) is
correspondingly

N̂θ =
∑
k,sipi

N̂θksipi (3.65)
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When coefficients ckspi depend also on coordinates xa (for free ”fermions” ckspi(x) =
ckspi · e−ipax

a

), it follows for papa = 0

b̂θk†s (x0,~x) =
∑
i

∫
dd−1p

(2π)d−1
ckspi(x) b̂

θk†
i .

{b̂θks (x0,~x), b̂θk
′†

s ′ (x0,~y)}+|ψoc > = δkk
′
δss

′
δd−1(~x− ~y) |ψoc > ,

{b̂θk†s (x0,~x), b̂θk
′†

s ′ (x0,~y)}+|ψoc > = 0 , {b̂θks (x0,~x), b̂θk
′†

s ′ (x0,~y)}+|ψoc >= 0 .

(3.66)

It is discussed in the subsection 3.3.3 how do discrete symmetry operators in
the Grassmann case take care of ”fermion” and ”antifermion” states.

Let us now take into account Eq. (3.45) with

LG =
1

4
{φ̂†γ0Gγ̃

a(p̂aφ) − (p̂aφ
†)γ0Gγ̃

aφ}.

The Euler-Lagrange equations lead to −i1
2
γ0Gγ̃

ap̂aφ = 0 and i1
2
p̂aφ

†γ0Gγ̃
a = 0.

Let us find the Hamilton function for a second quantized field: φ̂(x0,~y),
generated by one of the creation operators b̂θ†s on the vacuum state |φog >,

Πφ̂ =
∂LG
∂(p̂0φ̂)

=
1

4
φ̂†γ0Gγ̃

0 , Πφ̂† =
∂LG

∂(p̂0φ̂†)
= −

1

4
γ0Gγ̃

0φ̂ ,

HG = Πφ (p̂0φ̂) + (p̂0φ̂
†)Πφ̂† − LG ,

=
i

4

[
φ̂†γ0Gγ̃

i(p̂iφ̂) − (p̂iψ̂
†)γ0Gγ̃

iφ̂
]
,

HG =

∫
dd−1xHG . (3.67)

A vector φ̂ depends on k = (I, II) and on spins (what in d = (3+ 1) manifests as
spins and charges).

Hamilton function is obviously an odd Grassmann object and does not define
the energy of the system. However, if assuming the relation: i

2
γ0p0 φ̂

k(x0,~x) =

{φ̂k(x0,~x), HG}−, one still ends up with the equations of motion, Eq. (3.45). One
namely obtains

γ0p̂0φ̂
k(t,~x) =

{
φ̂k(t,~x) , HG

}
−
= −γ0Gγ̃

ip̂iφ̂
k(t,~x) , (3.68)

what might help to find the procedure to define the energy for the interacting
”Grassmann fermions”. One must at this point either give up with the Grassmann
”fermions” with the integer spins or find a consistent unconventional way to define
the energy, like the one suggested in Eq. (3.68).

3.3.2 Second quantization in Clifford space

In Grassmann space the requirement that products of ”eigenstates” of the Cartan
subalgebra operators form the creation and annihilation operators, obeying the re-
lations of Eq. (3.54), reduces the number of creation operators and correspondingly
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the number of states from 2d (allowed for ”eigenstates” of the Cartan subalgebra
operators) to two isolated groups of 1

2
d!
d
2
!d
2
!

creation operators. (There are no gener-

ators of the Lorentz transformations Sab that would connect both groups of states
and correspondingly there are no families.)

Let us study what happens, when, let say, γa’s are used to create the basis
and correspondingly also to create the creation and annihilation operators. Here
we briefly follow Ref. [50].

Let us point out that γa is expressible with θa and its derivative (γa =

(θa + ∂
∂θa

)), Eq. (3.4), and that we again require that creation (annihilation) oper-
ators create (annihilate) states, which are ”eigenstates” (Eq. (3.72)) of the Cartan
subalgebra operators, Eq. (3.110). Then the application of γ̃a on any Clifford al-
gebra object A(γa), (determined by γa’s), can be evaluated as follows, Eq. (3.29,
3.30),

(γ̃aA = i(−)(A)Aγa)|ψoc > , (3.69)

where (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is
an even Clifford algebra object, while |ψoc > is the vacuum state, replacing the
vacuum state in the Grassmann case |ψog >= |1 > with the one of Eq. (3.79), in
accordance with the relation of Eqs. (3.4, 3.32, 3.31), Refs. [50,10]. We could as
well make a choice of γ̃a = i(θa − ∂

∂θa
) instead of γa’s to create the basic states,

exchanging correspondingly the role of γa and γ̃a 9).
Making a choice of the Cartan subalgebra ”eigenstates” of Sab, Eq. (3.27), one

defines nilpotents
ab

(k) and projectors
ab

[k]

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k) 2 = 0 ,

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k] 2 =
ab

[k] , (3.70)

where k2 = ηaaηbb. Recognizing that the Hermitian conjugate values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (3.71)

while the corresponding ”eigenvalues” of Sab and S̃ab on nilpotents and projec-
tors, Eq. (3.27), are

Sab
ab

(k) =
k

2

ab

(k) , Sab
ab

[k]=
k

2

ab

[k] ,

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] , (3.72)

9 In the case that we would choose γ̃a’s instead of γa’s, Eq.(3.4), the role of γ̃a and γa

should be then correspondingly exchanged in Eq. (3.69).
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we find for d = 2(2n+ 1) that from the starting state made as a product of an odd
number of only nilpotents

|ψ11 > = b̂1†1 |ψoc > ,

b̂1†1 : =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) ,

b̂11 = (b̂1†1 )† =
d−1 d

(−)
d−3 d−2

(−) · · ·
35

(−)
12

(−)
01

(−i) , (3.73)

having correspondingly an odd Clifford character, all other states of the same
Lorentz representation, there are 2

d
2
−1 members, follow by the application of Scd

(which do not belong to the Cartan subalgebra) on the starting state 10, Eq. (3.110),
(Scd |ψ11 >= |ψ1i >).

b̂1†i ∝ S
ab . . . Sefb̂1†1 , |ψ1i >= S

ab..Sef|ψ11 > ,

b̂1i ∝ b̂11Sef . . . Sab , (3.74)

with Sab† = ηaaηbbSab. We make a choice of the proportionality factors so that
the corresponding states |ψ1i >= b̂

1†
i |ψoc > are normalized [50,10].

The operators S̃cd, which belong to the Cartan subalgebra of S̃ab, Eq. (3.110),
generate ”eigenstates” of the Cartan subalgebra operators (S̃03, S̃12, S̃56, · · · , S̃d−1d),
with the eigenvalues which determine the ”family” quantum numbers. There are
2
d
2
−1 families. From the starting new member with a different ”family” quantum

number the whole Lorentz representation of family members with this ”family”
quantum number follows by the application of Sef: Sab · · ·Sef S̃cd|ψ11 >= |ψαi >.
All states of one Lorentz representation of any particular ”family” quantum num-
ber have an odd Clifford character, since neither Scd nor S̃cd — both of an even
Clifford character — can change the odd character of the starting state.

Any vector |ψαi > follows from the starting vector, Eqs. (3.73), by the appli-
cation of either S̃ef, which change the family quantum number, or Sgh, which
change the family member quantum number of a particular family or with the
corresponding product of Sef and S̃ef

|ψαi > ∝ S̃ab · · · S̃ef|ψ1i >∝ S̃ab · · · S̃efSmn · · ·Spr|ψ11 > . (3.75)

Again, α denotes ”family” quantum numbers, i denotes family member quantum
number. Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃
ab · · · S̃efSmn · · ·Sprb̂1†1

∝ Smn · · ·Sprb̂1†1 S
ab · · ·Sef . (3.76)

This last expression follows due to the property of the Clifford object γ̃a and
correspondingly of S̃ab, presented in Eqs. (3.69, 3.120).

We accordingly have for an annihilation operator b̂αi (= (b̂α†i )†)

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn . (3.77)
10 The smallest number of all the generators Sac, which do not belong to the Cartan sub-

algebra, Eq. (3.110), needed to create from the starting state all the other members, is
2
d
2
−1 − 1. This is true for both even dimensional spaces – 2(2n + 1) and 4n.
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The proportionality factor ought to be chosen so that the corresponding states
|ψαi >= b̂

α†
i |ψoc > are normalized when the vacuum state |ψoc > is normalized,

< ψoc|ψoc >= 1, while all the states belonging to the physically acceptable

states, like
03

[+i]
12

[+]
56

[−]
78

[−] · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc >, must not give zero for either
d = 2(2n+ 1) or for d = 4n. We also want that states, obtained by the application
of ether Scd or S̃cd or both, are orthogonal. To make a choice of the vacuum it is
needed to know the relations of Eq. (3.116). It must be

< ψoc| · · ·
ab

(k)

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

[k ′] · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = 0 . (3.78)

We must choose the vacuum state in a way that fulfills the above requirements
as well as the requirements b̂β†i |ψoc > 6= 0 and b̂βi |ψoc >= 0 for all members i

of any family β. Since any S̃eg changes
ef

(+)
gh

(+) into
ef

[+]
gh

[+] and
ab

[+] † =
ab

[+], while
ab

(+) †
ab

(+)=
ab

[−], the vacuum state |ψoc >must be

|ψoc >=

03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n+ 1) , (3.79)

n is a positive integer. There are 2
d
2
−1 summands, since we can start with the vac-

uum state
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] |1 >, which fulfills the requirement for b̂1†1 |ψoc > 6= 0
and b̂11|ψoc >= 0, and then we must step by step replace all possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−1 d

[−] into
ab

[+] · · ·
ef

[+] and include
new terms into the vacuum state so that the last (2n + 1) summands have for
d = 2(2n+ 1) case, n is a positive integer, only one factor [−] and all the rest [+],
each [−] at different position 11.

This vacuum has all the spins, either with respect to Sab or with respect to
S̃ab, equal to zero.

The vacuum state has then the normalization factor 1/
√
2d/2−1,

while there is

2
d
2
−1 2

d
2
−1 (3.80)

11 The choice of Eq. (3.79) for the vacuum state is not unique. If one would multiply any
of summands by a number βα, where α represents the α-th family, and then multiply
each of 2

d
2
−1 members of creation operators belonging to this family b̂α†i by

√
βα and

the corresponding annihilation operator b̂αi by
√
β∗α, β∗α is the complex conjugated value

of βα, it would still be true that b̂αi b̂
β†
j = δαβδij times the corresponding summand of

the vacuum back.
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number of creation operators, defining the orthonormalized states when applying
on the vacuum state of Eqs. (3.79) and the same number of annihilation operators,
which are Hermitian conjugated to creation operators. Again, operators S̃ab con-
nect members of different families, operators Sab generate all the members of one
family.

Paying attention on only internal degrees of freedom, that is on the spin, the
creation and annihilation operators must fulfill the relations

{b̂αi , b̂
α ′†
j }+|ψoc > = δαα

′
δij|ψoc > ,

{b̂αi , b̂
α ′

j }+|ψoc > = 0 |ψoc > ,

{b̂α†i , b̂
α ′†
j }+|ψoc > = 0 |ψoc > ,

b̂αi |ψoc > = 0 |ψoc > ,

b̂α†i |ψoc > = |ψαi > , (3.81)

with (i, j) determining family members quantum numbers and (α,α ′) denoting
”family” quantum numbers.

Only Clifford odd objects fulfill the relations of Eq. (3.81), since the odd
Clifford objects anti-commute (like: {(γ0−γ3), (γ1+iγ2)}+ = 0), while the Clifford
even objects commute (like: {(1− γ0γ3), (1− iγ1γ2)}+ = 2 (1− γ0γ3)(1− iγ1γ2)).

The reader can find the detailed proofs for the above statements, for either
d = 2(2n+ 1) or d = 4n, in Refs. [50,10].

Let us again, like in the Grassmann case, Eq. (3.62), look for the creation (and
their annihilation operators) which, when applied on the vacuum state, Eq. (3.79),
solve the equation of motion, Eq. (3.36). The solution for each momentum pak , a =

(1, . . . , d), for discretized values of momenta, is a superposition of b̂α†i ,

b̂α†spk =
∑
i

cαsi(pk) b̂
α†
i , (3.82)

applied on the vacuum state, Eq. (3.79). Since b̂α†i and b̂αj fulfill the relations of
Eq. (3.81) and, if the states for two different momenta are orthogonalized, it follows

{b̂αspk , b̂
α ′†
s ′ pl

}+|ψoc > = δαα
′
δss ′ δpk pl |ψoc > ,

{b̂αspk , b̂
α ′

s ′ pl
}+|ψoc > = 0 |ψoc > ,

{b̂α†spk , b̂
α ′†
s ′ pl

}+|ψoc > = 0 |ψoc > ,

b̂αspk |ψoc > = 0 |ψoc > ,

b̂β†spk |ψoc > = |ψαspk > , (3.83)

with the vacuum state |ψoc > defined in Eq. (3.79), with s denoting the corre-
sponding solution of equations of motion and for a discretized momentum space.

The number operator of a particular solution s, a particular momentum pk
and a particular ”family” α,

N̂αspk = b̂α†spk b̂
α
spk

, (N̂αspk)
2 = N̂αspk , (3.84)
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has the eigenvalues 1 or 0.
The number of fermions in the n-particle state of Eq. (3.86) is correspondingly

N̂ =
∑
α,s,pk

N̂αspk . (3.85)

For a n fermion and antifermion state, Eqs. (3.47, 3.48) in the introduction to
Sect. 3.3, |1α=1s=1p1

, 1α=1s=2p1
, 1α=1s=3p1

, . . . , 0αspi , . . . , 0
α
sivpj

, . . . , > it follows, for exam-
ple, due to the third line in Eq. (3.83), that

b̂α
′†

s ′pi
b̂α

"†
s"pj

|1α=1s=1p1
, 1α=1s=2p1

, 1α=1s=3p1
, . . . , 0αspi , . . . , 0

α
sivpj

, . . . , >=

− b̂α
"†
s"pj

b̂α
′†

s ′pi
|1α=1s=1p1

, 1α=1s=2p1
, 1α=1s=3p1

, . . . , 0αspi , . . . , 0
α
sivpj

, . . . , > , (3.86)

where 1 denotes the occupied state and 0 the unoccupied state, and |1α=1s=1p1
>=

b̂α=1†s=1p1
|ψoc >.

Eq. (3.86, 3.47) demonstrates properties of Slater determinants. One fermion
state is obviously second quantized by construction.

Two states with n1 and n2 fermions each, defined by Âa† as n1 products
of b̂α†spi (which distinguish among themselves in at least one of the properties
(α, s, pi)) and by Âb† asn2 products of b̂β†s ′pj (which distinguish among themselves
in at least one of the properties (α ′, s ′, pj)), applying on |ψoc >, must distinguish
in either internal space or in the coordinate space, as it follows from Eq. (3.86), that
the product of Âa† and Âb† applying on |ψoc > would give a state with (n1 + n2)
fermions.

Let us add that the vacuum state, having the sum of the spins of both kinds of
operators, Sab and S̃ab, equal to zero and therefore neutral, remains neutral also
when filled with fermions of all the spins, Sab and S̃ab.

When coefficients cαsi(pk) depend also on coordinates xa (for free fermions
cαsi(pk, x) = cαsi(pk) · e−ipax

a

), it follows for papa = 0,

b̂α†s (x0,~x) =
∑
i

∫
dd−1p

(2π)d−1
cαsi(pk, x) b̂

α†
i .

{b̂αs (x
0,~x), b̂α

′†
s ′ (x0,~y)}+|ψoc > = δαα

′
δss ′ δ

d−1(~x− ~y) |ψoc > ,

{b̂α†s (x0,~x), b̂α
′†

s ′ (x0,~y)}+|ψoc > = 0 , {b̂αs (x
0,~x), b̂α

′

s ′ (x
0,~y)}+|ψoc >= 0 .

(3.87)

Let us now take into account Eq. (3.35) with

LC =
1

2
{ψ̂†γ0γa(p̂aψ) − (p̂aψ

†)γ0γaψ}.

The Euler-Lagrange equations lead to γ0γap̂aψ = 0 and −p̂aφ
†γ0γa = 0.

Let us look for the Hamilton function for fermions determined by one of the
creation operators, like ψ̂αs (x0,~x) = b̂α†s (x0,~x)]|ψoc >, which is already the second
quantized state.
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For a vector ψ̂ and ψ̂† it therefore follows

Πψ̂ =
∂LC
∂(p̂0ψ̂)

=
1

2
ψ̂† , Πψ̂† =

∂LC
∂(p̂0ψ̂†)

=
1

2
ψ̂ ,

HC = Πψ (p̂0ψ̂) + (p̂0ψ̂
†)Πψ̂† − LC ,

= −
1

2

[
ψ̂† γ0 γi (p̂iψ̂) − (p̂iψ̂

†)γ0γiψ̂
]
,

HC =

∫
dd−1xHC , (3.88)

Correspondingly one finds for a component ψ̂αs (x0,~x) [74], ~x is a vector in (d− 1)-
dimensional coordinate space,

p̂0ψ̂
α
s (x

0,~x) =
{
ψ̂αs (x

0,~x) , HC

}
−

=
{
ψ̂αs (x

0,~x) ,

∫
dd−1x ′

∑
α ′,s ′

ψ̂α
′†

s ′ (x0, ~x ′)γ0γi (p̂ ′iψ̂
α ′

s ′ (x
0, ~x ′))

}
−

=

∫
dd−1x ′

∑
α ′s ′

{
ψ̂αs (x

0,~x) , ψ̂α
′†

s ′ (x0, ~x ′)
}
+
γ0γi (p̂ ′iψ̂

α ′

s ′ (x
0, ~x ′))

= −γ0γi (p̂iψ̂
α
s (x

0,~x)) . (3.89)

(We took into account that γ0γi transforms ψ̂α
′

s ′ (x
0, ~x ′) into

∑
s ′′ c

α ′
s ′s ′′ ψ̂

α ′

s ′′(x
0, ~x ′),

which anticommute with ψ̂αs (x0,~x) (Eq. (3.87)), we also assumed that states, ob-
tained when operators operate on a vacuum state, do not contribute to the surface
term. Integrating per partes and dropping the surface term simplifies HC into
−
∫ ∑

dd−1x ′ ψ̂α
′†

s ′ (x0, ~x ′)γ0γi (p̂ ′iψ̂
α ′

s ′ (x
0, ~x ′)).) The obtained equations of mo-

tion agree with the ones from Eqs. (3.39, 3.40). Correspondingly the energy of
the n-fermion state of free massless fermions created by b̂α†s on the vacuum state
|ψoc > all with zero momentum po (solving the Weyl equation Eqs. (3.36,3.40)) is
equal to E =

∑
αs N̂

α
s p0. The current is correspondingly ĵa = ψ̂α†s γ

0γaψ̂αs .
The observed fermions — quarks and leptons — manifest their properties

obviously in d = (3+ 1). The internal space in d = (3+ 1) can therefore be used to
describe the spin and handedness of massless fermions, in the spin-charge-family
theory also families, while the internal space in d ≥ 5 can be used to describe
charges of fermions, contributing in the spin-charge-family theory as well to families.

One family representation contains in d = 2(2n + 1), n = 3, 2
d
2
−1 = 64

members, described by the creation and annihilation operators fulfilling the anti-
commutation relations of Eq. (3.81), explaining from the point of view of d = (3+1)

spins, handedness and charges of the observed quarks and leptons and antiquarks
and antileptons. Correspondingly there is no need for the negative energy ”Dirac
sea”.

We discuss below discrete symmetry operators for both cases, the Clifford
one and the Grassmann one, in d and in observable dimension d = (3 + 1). In
Subsect. 3.3.4 we present a few examples.
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3.3.3 Discrete symmetries in Grassmann space and in Clifford space in d
and in d = (3+ 1) part of the space

We have treated so far free massless fermions in Grassmann and in Clifford space.
The fermion ”nature” of states are in both spaces demonstrated by the fact that
the corresponding creation and annihilation operators fulfill the anticommuta-
tion relations of Eq. (3.62) in Grassmann case and of Eq. (3.83) in Clifford space.
Fermions — in both spaces — are in superposition of eigenstates of the Cartan
subalgebra operators of Sab in the Grassmann case, in the Clifford case they are in
superposition of the Cartan subalgebra operators of Sab as well as of S̃ab.

We distinguish in d-dimensional space two kinds of discrete symmetry C,P
and T operators with respect to the internal space in which the fermion properties
are described.

In the Clifford case we have [65]

CH =
∏
γa∈=

γa K ,

TH = γ0
∏
γa∈<

γa K Ix0 ,

P(d−1)
H = γ0 I~x ,

Ixx
a = −xa , Ix0x

a = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) . (3.90)

The product
∏
γa is meant in the ascending order in γa, K stands for complex

conjugation.
In the Grassmann case we correspondingly define

CG =
∏

γa
G
∈=γa

γaG K ,

TG = γ0G
∏

γa
G
∈<γa

γaG K Ix0 ,

P(d−1)
G = γ0G I~x , (3.91)

γaG is defined in Eq. (3.22) as γaG = (1− 2θaηaa ∂
∂θa

), while Ixxa = −xa , Ix0x
a =

(−x0,~x) , I~x~x = −~x , I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd), like in the Clifford

case. Let be noticed, that since γaG (= −iηaa γaγ̃a) is always real as we see in
Eq. (3.28) 12. Since γa is either real or imaginary, Eq. (3.22), we use in Eq. (3.91) γa

to make a choice of appropriate γaG. In what follows we shall use the notation as
in Eq. (3.91).

Let us define in the Clifford case and in the Grassmann case the operator
”emptying” 13. The operation "emptyingNH” after the charge conjugation CH in

12 If we choose a real θa, then γa is real and γ̃a imaginary, if θa is imaginary, then γa is
imaginary and γ̃a real, as is demonstrated in Eq. (3.28).

13 The operator ”emptying” empties the ”Dirac sea” of negative energies [65], although
in the spin-charge-family theory is no need for the ”Dirac sea” of negative energies, as
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the Clifford case [65,7,9] (arxiv:1312.1541) and "emptyingNG” after the charge
conjugation CG in the Grassmann case, namely transforms the positive energy
fermions into positive energy antifermions in both cases, solving Eq. (3.36) in the
Clifford case, and Eq. (3.43) in the Grassmann case.

"emptyingNH" =
∏
<γa

γa K in Clifford space ,

"emptyingNG" =
∏
<γa

γaG K in Grassmann space . (3.92)

Then the anti-particle state creation operator to the corresponding particle state
creation operator can be obtained by the application of

CH,G = "emptyingNH,NG" · CH,G (3.93)

CH and CG, with indexes H and NH denoting the Clifford case and with G and
NG denoting the Grassman case, on the creation operator for a particle state, or
opposite. Let us remind the reader that in the spin-charge-family theory, using
the Clifford algebra, the family members of each family include fermions and
antifermions — quarks and leptons and antiquarks and antileptons. This is the case
also for Grassmann fermions and antifermions, but in this casethere are instead of
families two by Sab unconnected representations.

Ref. [65] proposes in the Clifford case the following discrete symmetry opera-
tors, manifesting dynamics in d = (3+ 1)

CN =

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd ,

TN =

3∏
<γm,m=1

γm Γ (3+1) K Ix0 Ix5,x7,...,xd−1 ,

P(d−1)
N = γ0 Γ (3+1) Γ (d) I~x3 ,

CN = γ0γ5γ7 · · ·γd−1I~x3 Ix6,x8,...,xd

CNP(d−1)
N = γ0 γ2 I~x3K Ix6,x8,...,xd ,

CNP(d−1)
N = γ0 γ5 · · ·γd−1 I~x3 Ix6,x8,...,xd . (3.94)

In the Grassmann case we use the Grassmann even, Hermitian and real
operators γaG, Eq. (3.22), to determine discrete symmetries in ((d− 1) + 1) space
(as presented in Eq. (3.91)) and in d = (3+ 1) space. In (3+ 1) space we proceed —

we discussed already in the introduction of Sect. 3.3, for either Clifford or Grassmann
fermions. The operation of ”emptyingNH” after the charge conjugation CH in the Clifford
case, which transforms the state put on the top of the Clifford ”Dirac sea” into the
corresponding negative energy state, namely creates the anti-particle state to the starting
particle state, each anti-particle state, put on the top of the ”Dirac sea”, solving the Weyl
equation in the Clifford case, Eq. (3.36).



i
i

“proc19” — 2019/12/9 — 11:13 — page 82 — #98 i
i

i
i

i
i
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in analogy with the operators in the Clifford case [65] — as follows

CNG =
∏

γm
G
∈<γm

γmG K Ix6x8...xd ,

TNG = γ0G
∏

γm
G
∈=γm

γmG K Ix0Ix5x7...xd−1 ,

P(d−1)
NG = γ0G

d∏
s=5

γsGI~x ,

CNG =
∏

γs
G
∈<γs

γsG , Ix6x8...xd ,

CNGP(d−1)
NG = γ0G γ

2
G K I~x3 Ix6x8...xd ,

CNGP(d−1)
NG = γ0G

d∏
γs
G
∈=γs,s=5

γsG I~x3 Ix6x8...xd ,

CNGTNGP(d−1)
NG =

∏
γs
G
∈=γa

γaG IxK . (3.95)

3.3.4 Examples of massless fermion and antifermion states in Clifford and in
Grassmann space

Let us illustrate solutions for free fermion states, represented by the creation
operators applied on the vacuum states for the Clifford and the Grassmann case
in ((d− 1) + 1)-dimensional space, representing indeed the contribution of a one
fermion second quantized state in the Fock space of any number of fermions. We
analyze states in both cases from the point of view d = (3+ 1)-dimensional space,
with the momentum in ordinary space pa = (p0, p1, p2, p3, 0, · · · , 0), so that the
charges ”seen” in d = (3 + 1) are determined by the generators of the Lorentz
transformations in the internal space — Sst, (s, t) = (5, 6, 7, · · · , d) in the Clifford
case and Sst, (s, t) = (5, 6, 7, · · · , d) in the Grassmann case. In the Clifford case we
discuss one family in details (let be reminded that the generators Sab connect all
the members belonging to one family, while S̃ab transform a particular member
of one family into the same member of another family), commenting also on the
appearance of families (all the families are reachable by S̃ab) and present them
briefly. In the Grassmann case different representations can not be reached by the
generators of the Lorentz representations Sab. The discrete symmetry operators
are in the Clifford case presented in Eq. (3.94), and in the Grassmann case in
Eq. (3.95).

We start with examples in d = (5 + 1)-dimensional space, with charges
determined by Sst, (s, t) = (5, 6) in the Clifford case and Sst, (s, t) = (5, 6) in the
Grassmann case.

The dimension (13+1), used in the spin-charge-family theory to describe quarks
and lepton as well the gauge fields and scalar fields, offers to free fermions at
low energies additional charges, what explains observable properties of quarks
and leptons. We present the creation operators creating all the states of one family
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members in Clifford space. The family members creation operators are reachable
by Sab. All the families are reachable from the starting family by S̃ab in the case
of Clifford odd representations. In the case of the Clifford even representations
there are S̃ab and γaγ̃a, which take care of all irreducible representations.

In Ref. [50,68–70] (d = 5 + 1)-dimensional space is studied as a toy model
to manifest that the break of symmetry from the higher dimensional space to the
(3+ 1)-dimensional space can lead to massless fermions. Fermions were described
in Clifford space. Here we briefly follow these references, and Refs. [65,66], adding
new observations.

The first study of Grassmann case can be found in Ref. [46].

Clifford fermions and antifermions Let us start with the examples in the Clifford
case. To make discussions transparent let us first treat the d = (5 + 1) case. The
d = (13 + 1) case is not so easy to present in particular when also families are
treated.

Clifford case in d = (5+ 1):

In Table 3.4 the basic creation operators b̂α†
i=(ch,s) and their annihilation part-

ners b̂αi=(ch,s) in d = (5 + 1) are presented for all four (2
d
2
−1) families α =

(I, II, III, IV). Index i is devided into s, determining spin and into ch to point
out that S56 represents the charge from the point of view of d = (3 + 1), having
two values, +1

2
and −1

2
. The vacuum state, Eq. (3.79), is the sum of selfajoint

operators (
03

[−i]
12

[−] |
56

[−],
03

[+i]
12

[+] |
56

[−],
03

[+i]
12

[−] |
56

[+], and
03

[−i]
12

[+] |
56

[+]), needed that
the first, second, third and fourth family creation operators, respectively, applying
on the vacuum state, give nonzero value.

There are superposition of the basic creation operators — b̂α†
i=(ch,s) — which

solve, applied on the vacuum state, the Weyl equation Eq. (3.36). Let us make the
choice of pa = (p0, p1, p2, p3, 0, · · · , 0) to see how the spin in d = (5, 6) manifest
charges in d = (3+ 1).

pa = (p0, p1, p2, p3, 0, · · · , 0) ,
b̂α†(ch,sol)(p)|ψoc > =

∑
s

cα i=(ch,s)
(ch,sol)(p) b̂

α†
i=(ch,s)e

−ipax
a

|ψoc > ,(3.96)

where index (ch,sol), represents charges and different solutions, respectively, of
the Weyl equation for massless free fermions.

We present in Eq. (3.97) the creation operators, the superposition of the first
family members, presented in Table 3.4, which solve the Weyl equation, Eq. (3.36),
for pa = (p0, p1, p2, p3, 0, 0). The corresponding annihilation operators follow by
the Hermitian conjugation of the creation operators.

There are two fermion solutions with the charge 1
2

and two antifermion solu-
tions with the charge −1

2
, both having the positive energy. The first two creation

operators are related by the time reversal operator (TN = γ1 γ3 K Ix0 Ix5,x7,··· ,xd−1 ),
while the second two follow from the first two by the application of CNP(d−1)

N
= γ0 γ5 · · ·γd−1 I~x3 Ix6,x8,...,xd , both are presented in Eq. (3.94).
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familyα i = (ch, s) b̂
α†
ch,s

b̂α
ch,s

S03 S12 S56 Γ3+1 S̃03 S̃12 S̃56

I ( 1
2
, 1
2

)
03

(+i)
12
(+) |

56
(+) (−)

56
(−) |(−)

12
(−)

03
(−i) i

2
1
2

1
2

1 i
2

1
2

1
2

I ( 1
2
,− 1
2

)
03

[−i]
12
[−] |

56
(+) (−)

56
(−) |

12
[−]

03
[−i] − i

2
− 1
2

1
2

1 i
2

1
2

1
2

I (− 1
2
, 1
2

)
03

[−i]
12
(+) |

56
[−]

56
[−] |(−)

12
(−)

03
[−i] − i

2
1
2

− 1
2

−1 i
2

1
2

1
2

I (− 1
2
,− 1
2

)
03

(+i)
12
[−] |

56
[−]

56
[−] |

12
[−]

03
(−i) i

2
− 1
2

− 1
2

−1 i
2

1
2

1
2

II ( 1
2
, 1
2

)
03

[+i]
12
[+] |

56
(+) (−)

56
(−) |

12
[+]

03
[+i] i

2
1
2

1
2

1 − i
2

− 1
2

1
2

II ( 1
2
,− 1
2

)
03

(−i)
12
(−) |

56
(+) (−)

56
(−) |(−)

12
(+)

03
(+i) − i

2
− 1
2

1
2

1 − i
2

− 1
2

1
2

II (− 1
2
, 1
2

)
03

(−i)
12
[+] |

56
[−]

56
[−] |

12
[+]

03
(+i) − i

2
1
2

− 1
2

−1 − i
2

− 1
2

1
2

II (− 1
2
,− 1
2

)
03

[+i]
12
(−) |

56
[−]

56
[−] |(−)

12
(+)

03
[+i] i

2
− 1
2

− 1
2

−1 − i
2

− 1
2

1
2

III ( 1
2
, 1
2

)
03

[+i]
12
(+) |

56
[+]

56
[+] |(−)

12
(−)

03
[+i] i

2
1
2

1
2

1 − i
2

1
2

− 1
2

III ( 1
2
,− 1
2

)
03

(−i)
12
[−] |

56
[+]

56
[+] |

12
[−]

03
(+i) − i

2
− 1
2

1
2

1 − i
2

1
2

− 1
2

III (− 1
2
, 1
2

)
03

(−i)
12
(+) |

56
(−) (−)

56
(+) |(−)

12
(−)

03
(+i) − i

2
1
2

− 1
2

−1 − i
2

1
2

− 1
2

III (− 1
2
,− 1
2

)
03

[+i]
12
[−] |

56
(−) (−)

56
(+) |

12
[−]

03
[+i] i

2
− 1
2

− 1
2

−1 − i
2

1
2

− 1
2

IV ( 1
2
, 1
2

)
03

(+i)
12
[+] |

56
[+]

56
[+] |

12
[+]

03
(−i) i

2
1
2

1
2

1 i
2

− 1
2

− 1
2

IV ( 1
2
,− 1
2

)
03

[−i]
12
(−) |

56
[+]

56
[+] |(−)

12
(+)

03
[−] − i

2
− 1
2

1
2

1 i
2

− 1
2

− 1
2

IV (− 1
2
, 1
2

)
03

[−i]
12
[+] |

56
(−) (−)

56
(+) |

12
[+]

03
[−i] − i

2
1
2

− 1
2

−1 i
2

− 1
2

− 1
2

IV (− 1
2
,− 1
2

)
03

(+i)
12
(−) |

56
(−) (−)

56
(+) |(−)

12
(+)

03
(−i) i

2
− 1
2

− 1
2

−1 i
2

− 1
2

− 1
2

Table 3.4. The basic creation operators — b̂α†
i=(ch,s), ch (charge) and s (spin) explain the

index i— and their annihilation partners — b̂αi=(ch,s) — are presented for the d = (5 + 1)-
dimensional case. The basic creation operators are the products of nilpotents and projectors,
which are the ”eigenstates” of the Cartan subalgebra generators, (S03, S12, S56), (S̃03, S̃12,
S̃56), presented in Eq. (3.110). Operators b̂†ch,s and b̂ch,s fulfill the commutaion relations of
Eq. (3.81).

Creation operators for the fermion states in Clifford space for d = (5 + 1)

p
0

= |p
0
| ,

b̂
I1†
1
2
, 1
2

(~p) = β

 03
(+i)

12
(+) |

56
(+) +

p1 + ip2

|p0| + |p3|

03
[−i]

12
[−] |

56
(+)

 e−i(|p0|x0−~p·~x)
,

b̂
I2†
1
2
,− 1
2

(~p) = β
∗

 03
[−i]

12
[−] |

56
(+) −

p1 − ip2

|p0| + |p3|

03
(+i)

12
(+) |

56
(+)

 e−i(|p0|x0+~p·~x)
,

Creation operators for the antifermion states in Clifford space for d = (5 + 1)

p
0

= |p
0
| ,

b̂
I3†
− 1
2
, 1
2

(~p) = −β

 03
[−i]

12
(+) |

56
[−] +

p1 + ip2

|p0| + |p3|

03
(+i)

12
[−] |

56
[−]

 e−i(|p0|x0+~p·~x)
,

b̂
I4†
− 1
2
,− 1
2

(~p) = −β
∗

 03
(+i)

12
[−] |

56
[−] −

p1 − ip2

|p0| + |p3|

03
[−i]

12
(+) |

56
[−]

 e−i(|p0|x0−~p·~x)
, (3.97)

Index i=(1,2,3,4) counts the solutions, while β∗β = |p0|+|p3|

2|p0|
takes care that

the corresponding states are normalized. All the states are correspondingly or-
thogonalized. The coefficients cα i=(ch,s)

(ch,sol)(p) can be read from the solutions.
The solutions have the definite handedness and orientation of the spin with re-
spect to the momentum: b̂I1†1

2
, 1
2

defines the state with Γ (3+1) = 1 and the spin and

momentum both up, b̂I2†1
2
,− 1

2

defines the state with Γ (3+1) = 1 and with spin and

momentum both down, b̂I3†
− 1
2
, 1
2

defines the state with Γ (3+1) = −1 and the spin up
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and the momentum down, b̂I4†
− 1
2
,− 1

2

defines the state with Γ (3+1) = −1, the spin
down and the momentum up.

The same indexes — cα i=(ch,s)
(ch,sol)(p) — define the solution of the Weyl

equation also for for the rest three families presented in Table 3.4.
The phases of creation operators are in agreement with the application of

discrete symmetry operators CN · PN , and TN .
Let us point out that the scalar fields, interacting with fermions (in the spin-

charge-family theory [[4,3] and the references cited therein] the scalar fields origin
in the spin connection fields —ωabc, the gauge fields of Sab, and ω̃abc, the gauge
fields of S̃ab, appearing in Eq. (3.1) — with the space indexes c ≥ 5) can make
massless fermions massive [68,69,73,66]. In this case the creation operators (and
correspondingly the annihilation operators) start to be superposition of basic
operators of different charges ch as well :

(b̂α†sol ′(p) =
∑
ch,sol

cα,ch,solch,sol ′(p) b̂
α†
ch,sole

−ipax
a

) |ψoc > .

In this case the solutions of the corresponding equations of motion, presented
in Eq. (3.97) for massless states, become superposition of different charges and
different families.

For pm = (0, 0, 0),m = (1, 2, 3) and one massive family only [66] the creation
operators for the basic states (usually used in text books [74,75] for massive states)
are presented at Table 3.5. The creation operators, presented in Table 3.5, define

familyα b̂α†s,m S̃12

1 1√
2
(
03

(+i)
12

(+)
56

(+) + m
m+

03

[−i]
12

(+)
56

[−]) 1
2

2 1√
2
(
03

[−i]
12

[−]
56

(+) + m
m+

03

(+i)
12

[−]
56

[−]) − 1
2

Table 3.5. The basic creation operators — b̂α†s,m — for massive states, the first with spin up
and the second with spin down, are presented. b̂α†s,m e−imx

0

, s = ± 1
2

, solve the equations

of motion {p0 + γ0(
56

(+) m++
56

(−) m−)} b̂
α†
s,m e

−imx0 = 0, for the two positive energy
states, (1,2), (one with spin up and the other with spin down).m2 = m+m−,m+ = −m−,
(p0)

2 = m2, p0a = − 1
2
Scdωcda is assumed to be real [66].

orthonormal states when applied on the vacuum state and fulfill, together with
the annihilation operators, the anticommutation relations presented in Eq. (3.83).

Clifford case in d = (13+ 1):

There are 2
14
2

−1 = 64 creation operators for family members of one family, all
reachable from the starting one by Sab. They are presented in Table 3.6, analyzed
so that the internal degrees of freedom manifest in d = (3+ 1) quantum numbers
of the observed quarks and leptons. Applied on the vacuum state |ψoc > they
form in the spin-charge-family theory 64 basic states for quarks and leptons and anti-
quarks and anti-leptons for each family. In the spin-charge-family theory there are
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two times four families — 2
8
2
−1 — getting masses after the two triplet scalar

fields, the superposition of ω̃abc, (a, b) = (0, 1, · · · , 8) and three singlet scalar
fields, the superposition of ωabc, (a, b) = (5, 6) or (7, 8) or (9, · · · 14), while c =

(5, 6, 7, 8) for all these scalar fields, get nonzero vacuum expectation values at low
energies [9,3,4,6,7].

Table 3.1 represents the creation operators creating 8 families of ûc1†R and of
ν̂†R. All the family members of each of these families follow by the application of
Sab.

All the rest of families not included in these eight families get in the spin-
charge-family theory masses by the interaction with the condensate [9,3,4,6,7].

To the lower four families the three so far observed families of quarks and
leptons belong.

i ab̂
†
i

Γ(3+1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7+1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 ûc1†
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 ûc1†
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 d̂c1†
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 d̂c1†
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 d̂c1†
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 d̂c1†
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 ûc1†
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 ûc1†
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 ûc2†
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 ûc2†
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 d̂c2†
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 d̂c2†
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 d̂c2†
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 d̂c2†
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 ûc2†
L

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 ûc2†
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 ûc3†
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 ûc3†
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 d̂c3†
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 d̂c3†
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 d̂c3†
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 d̂c3†
L

03
(+i)

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 ûc3†
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Γ(3+1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7+1) = (−1) 1 , Γ(6) = (1) − 1
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†
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 ê
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Table 3.6. The left handed (Γ(13,1) = −1), multiplet of creation operators of spinors — the members of the fundamental representation of
the SO(13, 1) group, manifesting the subgroup SO(7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons —

is presented in the massless basis using the technique presented in App. 3.7. It represent the left handed (Γ(3+1) = −1, App. 3.7) weak (SU(2)I)

charged (τ13 = ± 1
2

, (~τ1 = 1
2

(S58 − S67, S57 + S68, S56 − S78)) and SU(2)II chargeless (τ23 = 0, ~τ2 = 1
2

(S58 +
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S67, S57 − S68, S56 + S78)) quarks and leptons and the right handed (Γ(3+1) = 1), weak (SU(2)I) chargeless and SU(2)II charged

(τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). The creation operators of quarks distinguish from those of

leptons only in the SU(3) × U(1) part: Quarks are triplets of three colours ( = (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)],

(~τ3 = 1
2

(S9 12 − S10 11, S9 11 + S10 12, S9 10 − S11 12, S9 14 − S10 13, S9 13 + S10 14, S11 14 − S12 13,

S11 13+S12 14, 1√
3

(S9 10+S11 12−2S13 14)), carrying the ”fermion charge” (τ4 = 1
6

, = − 1
3

(S9 10+S11 12+S13 14).

The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet of creation operators represents also the left handed weak (SU(2)I)
chargeless and SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I) charged and SU(2)II chargeless anti-quarks and
anti-leptons. Anti-quarks distinguish from anti-leptons again only in the SU(3) × U(1) part: Anti-quarks are anti-triplets, carrying the ”fermion charge”

(τ4 = − 1
6

). The anti-colourless anti-leptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the electromagnetic charge

isQ = (τ13 + Y). The creation operators of opposite charges (anti-particle creation operators) are reachable from the particle ones besides bySab also by
the application of the discrete symmetry operator CN PN , presented in Refs. [65,66]. The reader can find this Weyl representation also in Refs. [4,71,72,9] and
in the references therein.

Table 3.6 represents in the spin-charge-family theory the basic creation operators
for observed quarks and leptons and anti-quarks and anti-leptons for a particular
family. Hermitian conjugation of the creation operators of Table 3.6 generates
the corresponding annihilation operators, fulfilling together with the creation
operators anticommutation relations for fermions of Eq. (3.81).

In observable dimension d = (3 + 1) the d = (13 + 1) case differs from
d = (5+ 1) case, Table 3.5, in a much reacher offer of charges. The kinematics of
the fermion states in d = (13+1), Table 3.6, in d = (3+1) is, however, very similar
to the one of Table 3.97.

The coefficients of the superposition of the basic creation operators — b̂α†i
— which solve, applied on the vacuum state, the Weyl equation, Eq. (3.36), for
the choice of pa = (p0, p1, p2, p3, 0, · · · , 0), can be taken from Eq. (3.97). For the

positive energy solution of spin 1
2

one only has to replace
03

(+i)
12

(+)
56

(+) by ûc1†
R,1/2

with spin 1
2

and
03

[−i]
12

[−]
56

(+) by ûc1†
R,−1/2 with spin −1

2
. The coefficients, β and

p1+ip2

|p0|+|p3|
, remain the one of the case with d = (5+ 1).

The operator TN = γ1 γ3 K Ix0 Ix5,x7,··· ,xd−1 transforms this superposition of
creation operators, β (ûc1†

R,1/2
+ p1+ip2

|p0|+|p3|
ûc1†
R,−1/2) ·e

−i(p0x0−~p·~x), into β∗ (ûc1†
R,−1/2−

p1−ip2

|p0|+|p3|
ûc1†
R,1/2

) · e−i(p0x0+~p·~x).

The operator CNP(d−1)
N = γ0 γ5 γ7 · · ·γd−1 I~x3 · · · Ix6,x8,··· ,xd transforms the

positive energy solution creation operator foru quark,β (ûc1†
R,1/2

+ p1+ip2

|p0|+|p3|
ûc1†
R,−1/2)·

e−i(p
0x0−~p·~x), into the positive energy solution of anti-u quark, −β (^̄uc̄1†

L,1/2
+

p1+ip2

|p0|+|p3|
^̄uc̄1†
L,−1/2) · e

−i(p0x0+~p·~x).

One can proceed in the same way also for the ûc1†L , d̂c1†R , and all the other
quarks ci, as well as for leptons.

Spins in higher dimensional space manifest charges in d = (3+ 1), Table 3.6,
provided that the angular momentum in ordinary space at higher dimensions do
not contribute, which is supposed to be the case at low energies. All the creation
operators of any family and any family member, or the orthogonal superposition
of them, together with their Hermitian conjugate annihilation operators fulfill the
anticommutation relations of Eqs. (3.81, 3.82, 3.83).

The commuting part of the operators of Sab, Eq. (3.110), determine in d =

(3+1) the handedness (Γ (3+1)) = −4i·S03S12)), the spin (S12), the third component
of the weak SU(2) charge (τ13), the third component of the second SU(2) charge
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(τ23), the two components of the SU(3) colour charge (τ33, τ38) and the ”fermion
charge” (τ4, originating in U(1) from SO(6), which includes SU(3)× U(1)). The
hypercharge Y, which is in the standard model ”guessed” from the experimental
data, is in the spin-charge-family theory equal to (τ4 + τ23), while electromagnetic
charge Q is, like in the standard model, equal to (Y + τ13).

One representation of creation operators with 2
d
2
−1 members includes all the

left and the right handed coloured quarks and colourless leptons and left and
right handed (anti coloured) antiquarks and (anti colourless) antileptons. The right
handed neutrinos and the left handed antineutrinos, like all the other members
of one Lorentz representation, carry the additional hypercharge (the additional
superposition of τ4 and τ23) and are correspondingly not chargeless like in the
standard model.

The sum of the charges, the sum of the spins and the sum of the handedness
—properties defined with respect to d = (3 + 1) — over all the members of one
representation are equal to zero in any d, as it is the case of d = (5+ 1). However,
in the d = (13 + 1) case this is true even within quarks and leptons separately
and within antiquarks and antileptons separately. Let be repeated that this is so
since the right handed neutrinos and the left handed antineutrinos are the regular
members of one representation, as it is true for quarks and charged leptons. This
can be checked in Table 3.6. Exclusion of the right handed neutrinos and left
handed antineutrinos makes nonzero the sum of (Γ (3+1)), τ23 and τ4 over the
spinor part separately and correspondingly also over the antispinor part. The
whole representation has even in this case sums over all the quantum numbers of
spins and charges equal to zero.

Grassmann ”fermions” and ”antifermions” Let us represent creation and anni-
hilation operators in Grassmann space, like we did in the Clifford case.

In the Grassmann case the representations in d = (13 + 1) space start to be
very large and correspondingly almost uncontrollable, Eq. (3.59). We learn in the
Clifford case that at the low energy regime, when we treat the equations of motion
for free massless fermions with nonzero momentum only in d = (3+1), the higher
dimensional space contributes charges, which are reacher the larger is space, but
kinematics in d = (3+ 1) are in all such cases the same. We treat therefore only the
d = (5+ 1) case.

In Table 3.7 the basic creation operators for d = (5 + 1) case, with Grass-
mann space used to describe internal degrees of freedom of ”fermions” and
”antifermions”, are presented. ”Fermions” carry in Grassmann space integer spins
and charges in the adjoint representations.

There are two independent decuplets (unconnected by Sab).
Both decuplets [46] of creation operators are of an odd Grassmann character,

representing the second quantized n = 1 ”fermion” states, Eq. (3.54), which
belong in general to n (any n) ”fermion” states. There are, from the point of view
of d = (3+ 1) space, two triplets, one doublet and two singlets in each of the two
decouplets.

In Subsect. 3.3.3 the discrete symmetry operators in Grassmann space are
discussed, with the discrete symmetry operators for the case that ”fermions”
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I i decuplet of creation operators b̂θk†
i S03 S12 S56

1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1

2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1

4 (θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1

5 (θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1

7 (θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0

8 (θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0

9 (θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0

II i decuplet of creation operators b̂θk†
i S03 S12 S56

1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1

2 (θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1

4 (θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1

5 (θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1

7 (θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0

8 (θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0

9 (θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0

Table 3.7. Two decuplets of the basic creation operators b̂θk†i , k = (I, II), i = (1, . . . , 10), of
the orthogonal group SO(5, 1) in Grassmann space are presented. The creation operators
form ”eigenstates” of the Cartan subalgebra, Eq. (3.110), (S03,S12, S56 for SO(5, 1)) with
integer spins and charges, defining ”fermions” and ”antifermions”. The creation operators
within each decuplet are reachable from any member by (a product of) Sab’s (which do not
belong to the Cartan subalgebra). Creation operators b̂θk†i and their Hermitian conjugated
annihilation operators b̂θki fulfill the anticommutation relations for fermions, Eq. (3.62).
The product of the discrete symmetry operators CNG and P(d−1)

NG , Eq. (3.95), (CNGP(d−1)
NG

= γ0Gγ
5
G I~x3Ix6 in d = (5 + 1)) transforms, for example, b̂θI†1 into b̂θI†6 , b̂θI†2 b̂θI†5 and b̂θI†3

into b̂θI†4 , transforming ”fermions” with the charge 1 into ”antifermions” with the charge
−1.

manifest kinematics only in d = (3 + 1)-dimensional space, while the higher
dimensions contribute charges, included.

Let us notice that the Grassmann even operator CNGP(d−1)
NG , Eq. (3.95), trans-

forms the creation operator creating the positive energy particle state (pa =

(|p0|, 0, 0, |p3|, 0, 0)) with the charge 1, b̂θI†1 , into the creation operator of the anti-
particle state, b̂θI†6 , with the positive energy |p0| and with −|p3| and with the charge
−1 , for example. Correspondingly CNGP(d−1)

NG , Eq. (3.95), transforms the particle
state b̂θI†3 with the positive energy into the anti-particle state b̂θI†4 with the positive
energy. All these states belong to the same representation, the same decuplet.

In Eq. (3.98) the superposition of the creation operators of the two triplets of
the first decuplet of creation operators — (b̂θI†1 , b̂θI†2 , b̂θI†3 ) — which solve Eq. (3.43)
for free massless ”fermions” in Grassmann space, with the space function e−ipax

a

,
pa = (p0, p1, p2, p3, 0, 0), Eq. (3.66), is presented. Two indexes — (ch, s) — replace
the index i, ch represents the charge, defined by S56, and s represents the spin,
S12.
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Creation operators for "fermion" states in Grassmann space ford = (5 + 1)

p
0

= |p
0
| ,

b̂
θ1†
1, 1

(~p) = β {(
1
√
2

)
3

(θ
0

− θ
3
)(θ
1

+ iθ
2
) −

2(|p0| − |p3|)

p1 − ip2
(
1
√
2

)
2
(θ
0
θ
3

+ iθ
1
θ
2
)

−(
p1 + ip2

|p0| + |p3|
)
2

(
1
√
2

)
3

(θ
0

+ θ
3
)(θ
1

− iθ
2
)} (θ

5
+ iθ

6
)e

−i(|p0|x0−~p·~x)
,

b̂
θ2†
1,−1

(~p) = β
∗

{(
1
√
2

)
3
(θ
0

+ θ
3
)(θ
1

− iθ
2
) −

2(|p0| − |p3|)

p1 + ip2
(
1
√
2

)
2
(θ
0
θ
3

+ iθ
1
θ
2
)

−(
p1 − ip2

|p0| + |p3|
)
2

(
1
√
2

)
3
(θ
0

− θ
3
)(θ
1

+ iθ
2
)} (θ

5
+ iθ

6
) e

−i(|p0|x0+~p·~x)
,

Creation operators for "anti − fermion" states in Grassmann space ford = (5 + 1)

p
0

= |p
0
| ,

b̂
θ3†
−1, 1

(~p) = β {(
1
√
2

)
3
(θ
0

+ θ
3
)(θ
1

+ iθ
2
) −

2(|p0| − |p3|)

p1 − ip2
(
1
√
2

)
2
(θ
0
θ
3

− iθ
1
θ
2
)

−(
p1 + ip2

|p0| + |p3|
)
2

(
1
√
2

)
3
(θ
0

− θ
3
)(θ
1

− iθ
2
)} (θ

5
− iθ

6
) e

−i(|p0|x0+~p·~x)
,

b̂
θ4†
−1,−1

(~p) = β
∗

{(
1
√
2

)
3
(θ
0

− θ
3
)(θ
1

− iθ
2
) −

2(|p0| − |p3|)

p1 + ip2
(
1
√
2

)
2
(θ
0
θ
3

− iθ
1
θ
2
)

−(
p1 − ip2

|p0| + |p3|
)
2
(
1
√
2

)
3
(θ
0

+ θ
3
)(θ
1

+ iθ
2
)} (θ

5
− iθ

6
) e

−i(|p0|x0−~p·~x)
, (3.98)

Here β∗β = (|p0|+|p3|)2

2(3(p0)2−(p3)2)
. All the corresponding states are orthonormal.

The corresponding annihilation operators follow from the creation ones by
taking into account Eq. (3.18). Let us write down, as an example, the annihila-
tion operator partner to the creation operator b̂θ1†1, 1 (~p) from Eq. (3.98). Taking
into account Eq. (3.18) (saying that θa† = ηaa ∂

∂θa
= ∂
∂θa

), it follows b̂θ11, 1 (~p) =

( 1√
2
)3β∗(∂θ5−i∂θ6)

{
(∂θ1−i∂θ2)(∂θ0−∂θ3)−

2(|p|0−|p3|)
p1+ip2

√
2(∂θ3∂θ0−i∂θ2∂θ1)−

( p
1−ip2

|p0|+|p3|
)2 (∂θ1 + i∂θ2)(∂θ0 + ∂θ3)

}
ei(|p

0|x0−~p·~x).
The creation and annihilation operators fulfill the anti-commutation relations

of Eq. (3.62).
Creation operators b̂θk†ch, s(~p) e

−i(pmx
m), m = (0, · · · , 3), while p5 = 0 = p6,

generate states, which solve the equation of motion (θa− ∂
∂θa

)paφ
θk
ch, s(x

0,~x) = 0,
Eq. (3.43), 14.

Let be noticed that the second creation operator b̂θ2†1,−1 follows from the first
one — b̂θ1†1,1 — by the application of the operator TNG = γ1G γ

3
G K Ix0 Ix5,x7,··· ,xd−1 ,

Eq. (3.95).
When applying on the first two creation operators of positive charge (b̂θ1†1,1 ,

b̂θ2†1,−1), defining the ”fermion” states of positive energy, the operator CNG ·P(d−1)
NG (=

γ0Gγ
5
Gγ

7
G · · ·γ

d−1
G I~x3 Ix6,x8,··· ,xd), the third and the fourth creation operators fol-

low, defining the ”antifermion” states of negative charge and positive energy
(b̂θ†−1,1, b̂θ4†−1,−1).

Solutions of the equation of motion of the second decouplet, and correspond-
ingly the creation and annihilation operators, can be obtained in equivalent way.

14 The equation (θa − ∂
∂θa

)pa φ(θ, x) = 0 can be rewritten into −iγ̃a pa φ = 0, from where
the equation {Γ̃ (3+1) p̂0 = 2(S̃23 p̂1+ S̃31 p̂2+ S̃12 p̂3)}φ(θ, x) follows, leading to the same
solutions as presented in Eq. (3.98). Similar relation appears also in the Clifford case.
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We learned that states transform under the application of the discrete symmetry
operators (defined in the Clifford case in Eq. (3.90) and Eq. (17) in Ref. [65], or
Eq. (10) in Ref. [66], and in the Grassmann case in Eqs. (3.91, 3.95)), equivalently in
the Clifford and in the Grassmann case.

3.3.5 What do we learn from the second quantization procedure in
Grassmann and in Clifford space?

We proved that in both spaces, in Clifford space and in Grassmann space, the
corresponding creation operators and their Hermitian conjugated annihilation
operators of an odd (either Clifford or Grassmann) character fulfill the anticom-
mutation relations as required for fermions, Eqs (3.83, 3.62), if operating on an
appropriate vacuum state, representing in both spaces a n = 1 fermion space out
of n, any n, fermion Hilbert space.

No postulated creation operators are needed as in ordinary second quantization
procedure.

In Clifford space the creation operators are (after the requirement of Eq. (3.69))
products of odd numbers of γa’s, arranged into nilpotents and projectors, Eq. (3.70),
which are the ”eigenstates” of the Cartan subalgebras of Sab, Eq. (3.72), generating
spins and charges, and of S̃ab, generating families, Eqs. (3.2, 3.4). In Grassmann
space they are products of θa, arranged in ”eigenstates” of the Cartan subalgebra
of Sab, Eq. (3.5, 3.52)).

While in the Grassmann case the vacuum state is simple, |φog >= |1 >, in the
Clifford case the vacuum state is a sum of 2

d
2
−1 products of projectors, Eq. (3.79).

In 2(2n+ 1)-dimensional spaces there are in the Clifford case in one represen-
tation 2

d
2
−1 creation operators. The whole representation is reachable from the

(any) starting operator by products of Sab, while products of S̃ab transform each
of these creation operators into the creation operator of the same family member,
but belonging to another family, Eq. (3.76). There are correspondingly 2

d
2
−1 · 2d2−1

creation operators, and correspondingly the same number of states, reachable by
products of Sab’s or S̃ab’s or of both, Sab’s and S̃ab’s. Each state follows by the
corresponding creation operator on the vacuum state and it is annihilated by its
Hermitian conjugated operator, Eq.(3.71).

In 2(2n+ 1)-dimensional spaces there are in the Grassmann case (before the
requirement of Eq. (3.69)) two decoupled representations with all the θa’s included
into the representations, each with 1

2
d!
d
2
!d
2
!

creation operators, and correspondingly
with the same number of states. Each state can be obtained by the corresponding
creation operator operating on the vacuum state and any state is annihilated by the
corresponding Hermitian conjugated creation operator. While all of 2

d
2
−1 · 2d2−1

states in Clifford space of an odd character are reachable from any of Clifford
odd states by either products of Sab’s or by products of S̃ab’s or by products of
both, and states of an even Clifford character by either products of Sab’s or by
products of S̃ab’s or γ̃aγa or all of them, in Grassmann space all the irreducible
representations are decoupled — no products of Sab’s transform states of one
group into states of another groups.



i
i

“proc19” — 2019/12/9 — 11:13 — page 93 — #109 i
i

i
i

i
i

3 New Way of Second Quantized Theory of Fermions. . . 93

The creation (annihilation) operators — which are superposition of the cre-
ation (annihilation) operators defining the eigenstates of the Cartan subalgebra in
the internal space, fulfilling the relations of Eqs. (3.62, 3.83), respectively — form
the eigenstates of the equations of motion for free massless ”fermions” with integer
spins and no families in the Grassmann case, Eqs. (3.43, 3.61), and for free massless
fermions with half integer spins and families in the Clifford case, Eqs. (3.36, 3.82).

The number operators for the odd part of either Clifford or Grassmann case
have the eigenvalues 0 or 1, Eqs. (3.55, 3.84).

One can as well define in both cases the Hamilton functions, which lead to the
equations of motion in the Grassmann case, Eqs. (3.67, 3.68), and in the Clifford
case, Eqs. (3.88, 3.89). While in the Clifford case the procedure to find the Hamilton
function is the usual one, that is the known one, in the Grassmann case is not. It
remains to understand better the Hamilton function in the Grassmann case.

Comparing solutions for free massless states in a toy model with d = (5+ 1)

from the point of view of d = (3+1) (assuming that pa = (p0, p1, p2, p3, 0, · · · , 0))
for the Clifford case and for the Grassmann case, one observes several similarities.
The main differences are: i. that spins and charges are in the Clifford case half
integer while in the Grassmann case are integer, ii. that Clifford space offers, after
the assumption of Eq. (3.69), the existence of families, while Grassmann space,
before the assumption of Eq. (3.69), does not, and iii. that the requirement that
the action is Lorentz invariant leads in Clifford space to well defined Hamilton
function, while in the Grassmann case this point needs further study.

We can conclude: a. The — odd part of the — Clifford algebra presentation
of the internal degrees of freedom of fermions offers the n = 1 second quantized
fermion part of the n second quantized Hilbert space, offering the fermion creation
and annihilation operators, fulfilling the required relations, explaining therefore
the assumption of Dirac about introducing creation and annihilation operators in
the second quantized fields.

b. The spin-charge-family theory of N.S.M.B., assuming d ≥ (13+1)-dimensional
space and the Clifford algebra to explain internal degrees of freedom of fermions,
enables to justify the assumption of the usual second quantized procedure. The
group theory alone, without connecting the internal degrees of freedom with the
Clifford objects for explaining spins, charges, and families, can not do that.

c. Table 3.6 demonstrates that any family contains all the fermions and an-
tifermions, what in the spin-charge-family theory means all the quarks and the
antiquarks and leptons and anileptons, left and right handed. No Dirac sea of
negative energy states is needed to explain the existence of antifermions. Corre-
spondingly the vacuum state is simple, of an even Clifford character, with the sum
of all the quantum numbers over the family members equal to zero.

d. The sum of all the quantum numbers within one family representation, but
also separately within fermions and separately within antifermions within the
same representation, is zero. Also the sum over family quantum numbers is zero.

e. In the Clifford case the operator CNP(d−1)
N , Eq. (3.94), transforms the

fermion state into the anti-fermion state.
In the Grassmann case it is the operator CNGP(d−1)

NG , which transforms the
Grassmann ”fermion” into the ”antifermion”.
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3.4 Conclusions

We have learned in the present study that both Clifford and Grassmann space
offer 1-fermion second quantized part of vector space, with creation and annihi-
lation operators — defined as an odd products of either Clifford or Grassmann
eigenstates of the corresponding Cartan subalgebra operators in even dimensional
space, Eq. (3.110) — fulfilling the desired anticommutation relations for fermions,
Eqs. (3.62, 3.83). The corresponding number operators have the eigenvalues 0
or 1 in both cases. The fact that states, solving equations of motions, fulfill the
desired anticommutation relations for second quantized fermions explains the
second quantization postulates of Dirac.

Grassmann coordinates and Clifford coordinates offer the same degrees of
freedom: Two times 2d each. θa’s and their Hermitian conjugated partners ∂

∂θa
are

expressible with the two kinds of Clifford coordinates, γa’s and γ̃a’s — defining
two independent spaces — and opposite. The vacuum states ought to be changed
from | 1 >in the Grassmann case to the one presented in Eq. (3.79) for either γa’s
or γ̃a’s. The Grassmann states carry integer spins, while Clifford states carry in
both spaces half integer spins.

The requirement of Eq. (3.69) breaks the equivalence of both kinds of the
Clifford coordinates and opens the possibility for the appearance of families.
Clifford space, defined by the two kinds of objects, narrow now to only one of the
two, determined by γa’s, while γ̃a’s take care of families. Correspondingly also in
Grassmann space there remain only θa’s, becoming γa’s, while their Hermitian
conjugated partners ∂

∂θa
no longer exist. Consequently, after the requirement of

Eq. (3.69), the possibility of having integer spins ”fermions” no longer exists.
The 1-fermion second quantized vector space has for a chosen momentum pak

in the Clifford case (after the requirement of Eq. (3.69)) 2
d
2
−1 · 2d2−1 members (that

is 2
d
2
−1 families, each family having 2

d
2
−1 members), and in the Grassmann case

(before the requirement of Eq. (3.69)), when all θa’s contribute in forming a state,
d!
d
2
!d
2
!

members in two decoupled representations.
In both spaces the members of one representation include fermions and

antifermions and correspondingly there is no need for the Dirac sea of negative
energies filled by fermions.

In both cases the creation and annihilation operators of different momentum
pa and the same internal part represent different creation operators.

The n (any n) second quantized vector space of fermions (or ”fermions” in the
Grassmann case) follows in both cases as products of n creation operators defining
each one fermion states when applying on the corresponding vacuum state (in the
Clifford case on |ψoc >, Eq. (3.79), in the Grassmann case |ψog >= | 1 >), if the
creation operators distinguish at least either in one of the quantum numbers of
the corresponding Cartan subalgebra or in momentum pak .

But while in the Clifford case states carry spin and charges from the point
of view of d = (3 + 1) in the fundamental representations of the Lorentz group
carrying therefore half integer spins, states in the Grassmann case are in adjoint
representations of the Lorentz group, carrying therefore integer spins.
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We present in this paper as well the action (Eq. (3.41, 3.42)), describing free
massless ”fermions” with the internal degrees of freedom describable in Grass-
mann space. The action leads to the equations of motion (Eq. (3.43)), analogous
to the Weyl equation in Clifford space (Eq. (3.36)), fulfilling as well the Klein-
Gordon equation (Eq. (3.44)). We also present the discrete symmetry operators in
the Grassmann case.

Since the Clifford objects γa and γ̃a are expressible with the Grassmann
coordinates θa and their conjugate moments ∂

∂θa
— γa = (θa + ∂

∂θa
), γ̃a =

i(θa − ∂
∂θa

), Eq. (3.4) — either basic states in Grassmann space, Eq. (3.16), or
basic states in Clifford space, Eq. (3.73), can be normalized with the same integral,
Eq. (3.31, 3.32, 3.33).

To understand better the difference in the description of the fermion internal
degrees of freedom either with Clifford algebra (after the requirement of Eq. (3.69))
or with Grassmann algebra (before the requirement of Eq. (3.69)), let us replace
in the starting action of the spin-charge-family theory, Eq. (3.1), using the Clifford
algebra (after the requirement of Eq. (3.69)) to describe fermion degrees of freedom,
the covariant momentum p0a = fαa p0α, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα,

with p0α = pα − 1
2

SabΩabα, where Sab = Sab + S̃ab, Eq. (3.5), andΩabα are the
spin connection gauge fields of Sab (which are the generators of the Lorentz trans-
formations in Grassmann space), while fαa p0α replaces the ordinary momentum
when massless objects start to interact with the gravitational field through the
vielbeins and the spin connections. Let us add that it follows, if varying the action
with respect to either ωabα or ω̃abα when no fermions are present, that both
spin connections are uniquely determined by the vielbeins ([9,3,5] and references
therein) and correspondingly in this particular caseΩabα = ωabα = ω̃abα.

The present study was stimulated by one of the author in order to better
understand whether and to which extend the spin-charge-family theory offers the
next step to both standard models — the one of the fermion and boson fields and the
cosmological one. Correspondingly we present in Subsect. 3.1.1 of the introductory
Sect. 3.1, the achievements so far of the spin-charge-family theory as well as the
open problems of this theory, both suggested by the referees.

In shortly, the spin-charge-family theory (using Clifford objects to describe
the internal space of fermions) offers, while starting with the simple action in
d ≥ (13 + 1) with fermions interacting with gravity only (the vielbeins and the
two kinds of the spin connection fields, the gauge fields of moments and the
generators of the Lorentz transformations Sab and S̃ab, respectively), Eq. (3.1), the
explanation for all the assumptions of the standard model — for quarks and leptons,
antiquarks and antileptons, for fermion families, for the vector gauge fields, for
the scalar Higgs and Yukawa couplings — explaining also the phenomena like the
existence of the dark matter [54], of the matter-antimatter asymmetry [4], offering
correspondingly the next step beyond both standard models — cosmological
one and the one of the elementary fields, Sect. 3.1.1. This theory predicts the
fourth family to the observed three, Sect. 3.1.1, and the new scalar fields, some of
those which explains the properties of the observed Higgs and Yukawa couplings,
Sect. 3.1.1, and which will be observed at the LHC and other experiments in the
future. This theory predicts also the existence of the stable fifth family, manifesting
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the dark matter and with the ”new nuclear” force among the hadrons of these
much heavier families, Sect. 3.1.1.

To these achievements the present study adds the recognition that the creation
operators for one fermion states are in Clifford space already second quantized,
and that the creation operators for any n fermion second quantized vectors are
products of one fermion creation operators, operating on the empty vacuum state.
The spin-charge-family theory namely describes all the internal degrees of freedom
of fermions in Clifford space — spins and charges.

There is in this theory no need for the existence of the negative energy states
filled with fermions.

The most severe among the open problems of the spin-charge-family theory is
the quantization of gravity gauge fields, although the spin-charge-family theory is
explaining the phenomena in the low energy regime where all the vector and scalar
gauge fields can be quantized in the known procedure. There are also other open
problems, some of them needing only time to be solved, presented in Sect. 3.1.1.

The second quantization of ”fermions” with the internal degrees of freedom
described in Grassmann space might help to understand better the properties of
scalars and vectors in the spin-charge-family theory.

Let us conclude with a question: Could ”fermions” with integer spins and
charges in adjoint representations be an acceptable possibility and no requirement
of Eq. (3.69) needed?

3.5 APPENDIX: Creation and annihilation operators in
Grassmann and Clifford space for d = 4n

We discuss in Subsect. 3.3 mainly cases with d = 2(2n+ 1), since if assuming no
conserved charges in the fundamental theory with fermions, which carry only
spins and interact with only the gravity — as the spin-charge-family theory assumes
— the dimensions 4n, n is positive integer, as well as all odd dimensions, are
excluded under the requirement of mass protection [77].

Let us nevertheless add in this appendix comments on the second quantiza-
tion procedure in d = 4n spaces.

i. Grassmann space
In Eq. (3.51) we define in Grassmann space a possible starting creation op-

erator for d = 2(2n + 1) spaces. In d = 4n we correspondingly start with the
state

|φ11 > = bθ1†1 |1 > ,

bθ1†1 = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

(3.99)

generated by the creation operator bθ1†1 , which is, as it ought to be — like in the
d = 2(2n+1) case — of an odd Grassmann character to fulfill the anticommutation
relations for fermions, Eq. (3.62). Again the rest of states, belonging to the same
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Lorentz representation, follow from the starting state by the application of the
operators Scf, which do not belong to the Cartan subalgebra operators. Their
annihilation partners follow by Hermitian conjugation.

One finds therefore for the (chosen) starting creation and the corresponding
annihilation operator

b̂θ1†1 = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

b̂θ11 = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

d = 4n . (3.100)

The application of S01, for example, generates

b̂θ1†2 = (
1√
2
)
d
2
−2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

b̂θ12 = (
1√
2
)
d
2
−2 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

(3.101)

There is the additional group of creation and annihilation operators in d = 4n,
which follows from the starting creation operator b̂θ2†1

b̂θ2†1 = (
1√
2
)
d
2
−1(θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

b̂θ21 = (b̂θ2†1 )† = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 4n . (3.102)

All the rest of creation operators follow from the starting creation operator of each
of the two groups by the (left) application of products of Sab

b̂θk†i ∝ Sab · · ·Sefb̂θk†1 ,

b̂θki = (b̂θ2†i )† , k = 1, 2 . (3.103)

Only creation and annihilation operators with an odd Grassmann character, fulfill,
applied on the vacuum state |1 >, the anticommutation relations required for fermions,
Eq. (3.54).

i. Clifford space
In Eq. (3.73) we define in Clifford space a possible starting creation operator

for d = 2(2n+ 1) spaces. In d = 4nwe correspondingly start with the state with
an odd number of nilpotents and with one projector

|ψ11 > = b̂1†1 |ψoc > ,

b̂1†1 : =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

b̂11 = (b̂1†1 )† =
d−1 d

[+]
d−3 d−2

(−) · · ·
35

(−)
12

(−)
01

(−i) (3.104)
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All the other creation operators, creating all the members of the representation of
this particular family, are obtainable by the application of products of Sab on this
creation operator from the left hand side. There are 2

d
2
−1 members of each family.

All the other families follows from the starting one by the application of products
of S̃ab. There are 2

d
2
−1 families with 2

d
2
−1 members each.

A general creation operator in d = 4n follows by the application of Sab

and S̃ab on the starting creation operator of Eq. (3.104) and the corresponding
annihilation operator is its Hermitian conjugated value.

Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃
ab · · · S̃efSmn · · ·Sprb̂1†1

∝ Smn · · ·Sprb̂1†1 S
ab · · ·Sef ,

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn ,
d = 4n . (3.105)

These creation and annihilation operators — again of an odd Clifford character in
4n— fulfill the anticommutation relations of Eq. (3.83), if applied on the vacuum
state of Eq. (3.79),

|ψoc > =
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |1 > ,
d = 4n, (3.106)

n is a positive integer. There are 2
d
2
−1 summands, since we step by step replace

all possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] into
ab

[+] · · ·
ef

[+] and include new terms into the vacuum state so that the last 2n + 1

summand has for d = 4n also the factor
d−1 d

[+] in the starting term
03

[−i]
12

[−]
35

[−]

· · ·
d−3 d−2

[−]
d−1 d

[+] changed into
d−1 d

[−] . The vacuum state has then the normalization
factor 1/

√
2d/2−1.

3.6 APPENDIX: Lorentz algebra and representations in
Grassmann and Clifford space

The Lorentz transformations of vector components θa, γa, or γ̃a — usable for
the description of the internal degrees of freedom of fermion fields obeying
in the second quantization the anticommutation relations for fermions — and
of vector components xa, which are real (ordinary) commuting coordinates,
θ ′a = Λab θ

b, γ ′a = Λab γ
b, γ̃ ′a = Λab γ̃

b and xa = Λab x
b, leave forms

aa1a2...ai θ
a1θa2 . . . θai , aa1a2...ai γ

a1γa2 . . . γai , aa1a2...ai γ̃
a1 γ̃a2 . . . γ̃ai

and ba1a2...ai x
a1xa2 . . . xai , i = (1, . . . , d), invariant.

While ba1a2...ai (= ηa1b1ηa2b2 . . . ηaibi b
b1b2...bi) is a symmetric tensor

field, aa1a2...ai (= ηa1b1ηa2b2 . . . ηaibi a
b1b2...bi ) are antisymmetric Kalb-Ramond

fields.
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The requirements: x
′a x

′bηab = xc xdηcd, θ ′aθ ′bεab = θcθdεcd, γ ′aγ ′bεab =

γcγdεcd and γ̃ ′aγ̃ ′bεab = γ̃cγ̃dεcd lead to ΛabΛcd ηac = ηbd. Here ηab (in our
case ηab = diag(1,−1,−1, . . . ,−1)) is the metric tensor lowering the indexes of
vectors ({xa} = ηabxb, {θa} = ηab θb, {γa} = ηab γb and {γ̃a} = ηab γ̃b) and εab
is the antisymmetric tensor. An infinitesimal Lorentz transformation for the case
with detΛ = 1,Λ00 ≥ 0 can be written asΛab = δab+ω

a
b, whereωab+ωba = 0.

In Eqs. (3.4, 3.8) the commutation relations among the above objects are
presented.

3.6.1 Lorentz properties of basic vectors

What follows is taken from Ref. [2] and Ref. [9], Appendix B.
Let us first repeat some properties of the anticommuting Grassmann and

Clifford coordinates, taking into account Eqs. (3.3,3.4). An infinitesimal Lorentz
transformation of the proper ortochronous Lorentz group is then

δθc = −
i

2
ωabSabθc = ωcaθa ,

δγc = −
i

2
ωabS

abγc = ωcaγ
a ,

δγ̃c = −
i

2
ωabS̃

abγ̃c = ωcaγ̃
a ,

δxc = −
i

2
ωabL

abxc = ωcax
a , (3.107)

whereωab are parameters of a transformation and γa and γ̃a are expressible by
θa and ∂

∂θa
in Eqs. (3.3,3.4).

Let us write the operator of finite Lorentz transformations as follows

S = e−
i
2
ωab(Sab+Lab) , (3.108)

Sab have to be replaced by Sab and S̃ab in the Clifford case. We see that the
Grassmann θa and the ordinary xa coordinates and the Clifford objects γa and γ̃a

transform as vectors

θ ′c = e−
i
2
ωab(Sab+Lab) θc e

i
2
ωab(Sab+Lab)

= θc −
i

2
ωab{Sab, θc}− + · · · = θc +ωcaθa + · · · = Λcaθa ,

x ′c = Λcax
a , γ ′c = Λcaγ

a , γ̃ ′c = Λcaγ̃
a . (3.109)

Correspondingly one finds that compositions like γapa and γ̃apa, here pa are
pxa (= i ∂

∂xa
), transform as scalars (remaining invariants), while Sabωabc and

S̃ab ω̃abc transform as vectors. Objects like R = 1
2
fα[afβb] (ωabα,β−ωcaαω

c
bβ)

and R̃ = 1
2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) from Eq. (3.1) transform with respect

to the Lorentz transformations as scalars.
Making a choice of the Cartan subalgebra set of the algebra Sab, Sab and S̃ab,

Eqs. (3.2, 3.5, 3.7),

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (3.110)
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100 N.S. Mankoč Borštnik and H.B.F. Nielsen

one can arrange the basic vectors so that they are eigenstates of the Cartan sub-
algebra, belonging to representations of Sab, or of Sab and S̃ab, with ab from
Eq (3.110).

3.7 APPENDIX: Technique to generate spinor representations
in terms of Clifford algebra objects

Here we briefly repeat the main points of the technique for generating spinor
representations from Clifford algebra objects, following Ref. [2,47]. We advise the
reader to look for details and proofs in these references. No requirements for the
second quantization is taken into account.

We assume the objects γa, Eq. (3.4), which fulfill the Clifford algebra relations
of Eq. (3.2), {γa, γb}+ = I · 2ηab , for a, b ∈ {0, 1, 2, 3, 5, · · · , d} , for any d, even or
odd. I is the unit element in the Clifford algebra, while {γa, γb}± = γaγb ± γbγa.

The “Hermiticity” property for γa’s and γ̃a’s, Eq. (3.25), follows from Eq. (3.18),
γa† = ηaaγa γ̃a† = ηaaγ̃a , leading to γa†γa = I, γ̃a†γ̃a = I.

The Clifford algebra objects Sab close the Lie algebra of the Lorentz group
{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac), Eq. (3.7). One finds from
Eq.(3.25) that (Sab)† = ηaaηbbSab and that {Sab, Sac}+ = 1

2
ηaaηbc.

Recognizing that two Clifford algebra objects (Sab, Scd) with all indexes
different commute, we select (out of many possibilities) the Cartan subalgebra set
of the algebra of the Lorentz group of Eq. (3.110)

Let us present the operators of subgroups of the SO(13+ 1) group

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (3.111)

~τ1 :=
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 :=
1

2
(S58 + S67, S57 − S68, S56 + S78) , (3.112)

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 : = −
1

3
(S9 10 + S11 12 + S13 14) .

(3.113)

Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q := τ13 + Y , Q ′ := −Y tan2 ϑ1 + τ13 .

(3.114)

The equivalent expressions for the group S̃O(13, 1) follows from the above one, if
replacing Sab by S̃ab.
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To make the technique simple, we introduce the graphic representation, [47],
Eq. (3.70),

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

where k2 = ηaaηbb. One can easily check by taking into account the Clifford
algebra relation (Eqs. (3.4, 3.18)) and the definition of Sab (Eq. (3.2)) that if one

multiplies from the left hand side by Sab the Clifford algebra objects
ab

(k) and
ab

[k], it

follows that, Eq. (3.72), Sab
ab

(k)= 1
2
k
ab

(k), Sab
ab

[k]= 1
2
k
ab

[k]. This means that
ab

(k) and
ab

[k] acting from the left hand side on the vacuum state |ψoc〉), Eqs. (3.79, 3.106) for
d = 2(2n+ 1) and d = 4n respectively, are eigenvectors of Sab.

We further find

γa
ab

(k) = ηaa
ab

[−k],

γb
ab

(k) = −ik
ab

[−k],

γa
ab

[k] =
ab

(−k),

γb
ab

[k] = −ikηaa
ab

(−k) . (3.115)

It follows that Sac
ab

(k)
cd

(k)= − i
2
ηaaηcc

ab

[−k]
cd

[−k], Sac
ab

[k]
cd

[k]= i
2

ab

(−k)
cd

(−k), Sac
ab

(k)
cd

[k]=

− i
2
ηaa

ab

[−k]
cd

(−k), Sac
ab

[k]
cd

(k)= i
2
ηcc

ab

(−k)
cd

[−k].
It is useful to deduce the following relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(3.116)

We recognize in the first equation of the first row and the first equation of the
second row the demonstration of the nilpotent and the projector character of the

Clifford algebra objects
ab

(k) and
ab

[k], respectively.
Whenever the Clifford algebra objects apply from the left hand side, they always

transform
ab

(k) to
ab

[−k], never to
ab

[k], and similarly
ab

[k] to
ab

(−k), never to
ab

(k).
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We define in Eq. (3.79, 3.106) the vacuum state |ψoc > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (3.117)

Taking the above equations into account it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd. (We advise
the reader to see Ref. [2,47] in particular for d odd.)

For d even, we simply set the starting state as a product of d/2, let us say,

only nilpotents
ab

(k) for d = 2(2n + 1), Eq. (3.73), or nilpotents and one projector,
Eq. (3.104), for d = 4n, one for each Sab of the Cartan subalgebra elements
(Eq. (3.110)), applying it on the vacuum state, Eqs. (3.79, 3.106). Then the generators
Sab, which do not belong to the Cartan subalgebra, applied to the starting state
from the left hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[−kd−1 d−2] |ψoc > ,

ford = 2(2n+ 1) , n = positive integer . (3.118)

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

ford = 4n , n = positive integer . (3.119)

3.7.1 Technique to generate ”families” of spinor representations in terms of
Clifford algebra objects

We found in this paper that for d even there are 2d/2−1 ”family members” and
2d/2−1 ”families” of spinors, which can be second quantized. (The reader is ad-
vised to see also Refs. [2,71,47,48,72,9].) We shall here pay attention on only even
d.

One Weyl representation forms a left ideal with respect to the multiplication
with the Clifford algebra objects. We proved in Refs. ([9,48], and the references
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therein) that there is the application of the Clifford algebra object from the right
hand side, which generates ”families” of spinors.

Right multiplication with the Clifford algebra objects namely transforms
the state with the quantum numbers of one ”family member” belonging to one
”family” into the state of the same ”family member” (into the same state with
respect to the generators Sab when the multiplication from the left hand side is
performed) of another ”family”.

We defined in Ref.[2,48] the Clifford algebra objects γ̃a’s as operations which
operate formally from the left hand side (as γa’s do) on any Clifford algebra object
A as follows, Eq. (3.69),

γ̃aA = i(−)(A)Aγa , (3.120)

with (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is an
even Clifford algebra object.

Then it follows, in accordance with Eq. (3.4), that γ̃a obey the same Clifford
algebra relation as γa.

(γ̃aγ̃b + γ̃bγ̃a)A = −ii((−)(A))2A(γaγb + γbγa) = I · 2.ηabA (3.121)

and that γ̃a and γa anticommute

(γ̃aγb + γbγ̃a)A = i(−)(A)(−γbAγa + γbAγa) = 0 . (3.122)

We may write

{γ̃a, γb}+ = 0, while {γ̃a, γ̃b}+ = I · 2ηab . (3.123)

One accordingly finds

γ̃a
ab

(k): = −i
ab

(k) γa = −iηaa
ab

[k] ,

γ̃b
ab

(k): = −i
ab

(k) γb = −k
ab

[k] ,

γ̃a
ab

[k]: = i
ab

[k] γa = i
ab

(k) ,

γ̃b
ab

[k]: = i
ab

[k] γb = −kηaa
ab

(k) . (3.124)

If we define, Eq. (3.2),

S̃ab =
i

4
[γ̃a, γ̃b] =

i

4
{γ̃a, γ̃b}− =

1

4
(γ̃aγ̃b − γ̃bγ̃a) , (3.125)

it follows

S̃abA = A
1

4
(γbγa − γaγb) , (3.126)

manifesting accordingly that S̃ab fulfill the Lorentz algebra relation as Sab do.
Taking into account Eq. (3.69), we further find

{S̃ab, Sab}− = 0 , {S̃ab, γc}− = 0 , {Sab, γ̃c}− = 0 . (3.127)
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One also finds

{S̃ab, Γ }− = 0 , {γ̃a, Γ }− = 0 , {S̃ab, Γ̃ }− = 0 , for d even ,

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa) , if d = 2n ,

Γ̃ (d) : = (i)d/2
∏
a

(
√
ηaaγ̃a) , if d = 2n , (3.128)

where handedness Γ ({Γ, Sab}− = 0) is a Casimir of the Lorentz group, which
means that in d even transformation of one ”family” into another with either S̃ab

or γ̃a leaves handedness Γ unchanged.
We advise the reader to read [2] where the two kinds of Clifford algebra

objects follow as two different superpositions of a Grassmann coordinate and its
conjugate momentum.

Below some useful relations [71,72] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (3.129)

S̃ab
ab

(k) =
k

2

ab

(k) ,

S̃ab
ab

[k] = −
k

2

ab

[k] ,

S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k] ,

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k) ,

S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k) ,

S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] . (3.130)

We transform the state of one ”family” to the state of another ”family” by
the application of S̃ac (formally from the left hand side) on a state of the first
”family” for a chosen a, c. To transform all the states of one ”family” into states
of another ”family”, we apply S̃ac to each state of the starting ”family”. It is,
of course, sufficient to apply S̃ac to only one state of a ”family” and then use
generators of the Lorentz group (Sab) to generate all the states of one Dirac spinor
d-dimensional space.

One must notice that nilpotents
ab

(k) and projectors
ab

[k] are ”eigenvectors”not
only of the Cartan subalgebra Sab but also of S̃ab. Accordingly only S̃ac, which
do not carry the Cartan subalgebra indices, cause the transition from one ”family”
to another ”family”.
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47. N.S. Mankoč Borštnik, H.B.F. Nielsen, J. of Math. Phys. 43, 5782 (2002) [arXiv:hep-
th/0111257].
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61. N.S. Mankoč Borštnik, M. Rosina, ”Are superheavy stable quark clusters viable candi-
dates for the dark matter?”, International Journal of Modern Physics D (IJMPD) 24 (No.
13) (2015) 1545003.

62. D. Hestenes, G. Sobcyk, ”Clifford algebra to geometric calculus”, Reidel 1984.
63. P. Lounesto, P. Clifford algebras and spinors, Cambridge Univ. Press.2001.
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Abstract. Both algebras, Clifford and Grassmann, offer the second quantized fermions [1–
3] without postulating the second quantization conditions of Dirac [13]. But while fermions
with the internal degrees of freedom described by the Clifford algebras manifest the half
integer spins — in agreement with the observed properties of quarks and leptons and
antiquarks and antileptons — the Grassmann ”fermions” manifest integer spins. In Part
I properties of the second quantized integer spins ”fermions” in Grassmann space are
presented. In Part II the conditions are discussed under which the Clifford algebra offers
the appearance of families of the second quantized fermions.

Povzetek. Avtorja sta v članku [3] pokazala, da ponudita obe algebri — Cliffordova in
Grassmannova — razlago za Diracove postulate druge kvantizacije fermionov [1–3], saj
imajo vektorji v obeh prostorih vse lastnosti, ki jih zahteva Diracov pogoj za drugo kvanti-
zacijo [13]. Clanek razloži v prvem delu tega prispevka drugo kvantizacijo v Grassman-
novem prostoru. Pri tem opisu nosijo“fermioni” celoštevilčni spin in naboje, kadar je
prostor šest razsežen ali več, v adjungirani upodobitvi. Avtorja demonstrirata lastnosti
teh “fermionov” na primeru šest razsežnega prostora. Spin v peti in šesti dimenziji (se po
zlomitvi simetrije) “vidi” v (3 + 1)-razsežnem prostoru kot naboj “fermiona”. V drugem
delu obravnavata lastnosti fermionov s polštevilčnimi spini v Cliffordovi algebri.

Keywords: Second quantization of fermion fields in Clifford and in Grassmann
space, Spinor representations in Clifford and in Grassmann space, Kaluza-Klein-
like theories, Higher dimensional spaces, Beyond the standard model

4.1 Introduction

It is demonstrated in this paper how does the Grassmann algebra — in Part I —
and the two kinds of the Clifford algebras — in Part II — take care of the second
quantization of fermions without postulating anticommutation relations [13].

? Talk presented by N.S. Mankoč Borštnik
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In d-dimensional Grassmann space of anticommuting coordinates θa’s, i =
(0, 1, 2, 3, 5, · · · , d), there are 2d operators (”vectors”), which are superposition of
products of θa. One can arrange them into irreducible representations with respect
to the Lorentz group. There are as well derivatives with respect to θa’s, ∂

∂θa
’s,

which are Hermitian conjugated to θa’s [3], (θa† = ηaa ∂
∂θa

, ηab = diag{1, −1,
−1, · · · , −1}, which again form 2d operators (”vectors”). Grassmann space offers
correspondingly 2 · 2d degrees of freedom.

There are two kinds of the Clifford operators (”vectors”), which are expressible
with θa and ∂

∂θa
— γa = (θa + ∂

∂θa
), γ̃a = i (θa − ∂

∂θa
) [2,4,5]. Each of these two

kinds of the Clifford algebra objects has 2d operators (”vectors”), together again
2 · 2d degrees of freedom. The Grassmann and each of the two Clifford algebras
split into odd and even part with respect to the odd and even number of θa’s,
∂
∂θa

’s, γa’s, γ̃a’s. There is the odd algebra in all three cases which fulfills the
second quantized anticommutation relations without postulating them [13].

We present in Sect. 4.2 properties of the Grassmann odd anticommuting alge-
bra and even commuting algebra of the corresponding creation and annihilation
operators representing the second quantized ”fermion” fields, manifesting in the
Grassmann case an integer spin, and offering in d-dimensional space, d > (3+ 1),
the description of the corresponding charges in adjoint representations. We follow
in this paper to some extent the Ref. [3].

In Part II we present in equivalent section properties of the two kinds of
the Clifford algebras and discuss conditions under which operators of the two
Clifford algebras demonstrate the anticommutation relations required for the
second quantized fermion fields, this way with the half integer spin, offering
in d-dimensional space, d ≥ (3 + 1), the description of charges, as well as the
appearance of families of fermions [3], both needed to describe the properties of
the observed quarks and leptons and antiquarks and antileptons, explaining the
appearance of families.

In Sect. 4.3 we comment what we have learned from the second quantized
”fermion” fields with integer spin when internal degrees of freedom is described in
Grassmann space and compare these recognitions with the recognitions, which the
Clifford algebra is offering, discussions on which appears in Part II. We discuss as
well a possible action for such an integer spin ”fermions” and the corresponding
equations of motion, both taken from [3], which are needed that the theory would
have any prediction power.

The Clifford algebra offers in even d-dimensional spaces, d ≥ (13 + 1) in-
deed, the description of the internal degrees of freedom for the second quantized
fermions with the half integer spins, explaining all the assumptions of the standard
model: The appearance of charges of the observed quarks and leptons and their
families, as well as the appearance of the dark matter, of the matter/antimatter
asymmetry, offering several predictions [1,2,6–12].

4.2 Second quantized ”fermions” in Grassmann space

In Grassmann d-dimensional space there are d anticommuting operators θai ,
{θa, θb}+ = 0, a = (0, 1, 2, 3, 5, .., d), and d anticommuting derivatives with respect
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to θa, ∂
∂θa

, { ∂
∂θa

, ∂
∂θb

}+ = 0, offering together 2 · 2d operators, the half of which
are superposition of products of θa and another half corresponding superposition
of ∂
∂θa

.

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (4.1)

Defining [3]

(θa)† = ηaa
∂

∂θa
,

it follows

(
∂

∂θa
)† = ηaaθa , (4.2)

The signature ηab = diag{1,−1,−1, · · · ,−1} is assumed.
One can arrange products of θa into 2d irreducible representations with

respect to the Lorentz group with the generators [2]

Sab = i (θa
∂

∂θb
− θb

∂

∂θa
) , (Sab)† = ηaaηabSab . (4.3)

Half of the representations have an odd Grassmann character, those which are
superposition of odd products of θa and half have an even Grassmann character,
those which are superposition of even products of θa.

Since Sab do not change the character of operators (”vectors”), that is the odd-
ness and evenness of operators, all the members of one irreducible representation
have the same Grassmann character. Different representations, either even or odd,
are not reachable by Sab.

The Hermitian conjugated 2d representations are reachable, due to Eq. (4.2),
from the 2d representations of θa’s.

It is useful to make a choice of the Cartan subalgebra of the commuting
operators of the Lorentz algebra. We make the ordinary choice

S03,S12,S56, · · · ,Sd−1 d , (4.4)

and choose the irreducible representations of the Lorentz group to be the ”eigen-
vectors” of the Cartan subalgebra.

Sab
1√
2
(θa +

ηaa

ik
θb) = k

1√
2
(θa +

ηaa

ik
θb) ,

Sab
1√
2
(1+

i

k
θaθb) = 0 . (4.5)

Let us point out that the Grassmann ”vectors” have an integer spin. Making a
choice of ηaa = 1,−1,−1, . . . ,−1, the eigenvectors of S03, 1√

2
(θ0 ∓ θ3), have

k = ±i, respectively, all the others have k = ±1.
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”Vectors” are normalized, up to a phase, in accordance with Eq. (4.21) of
App. 4.4. Lorentz transformations change the Cartan subalgebra, correspondingly
also the ”eigenvectors” of the Cartan subalgebra change, since the choice of the
Cartan subalgebra depends on the Lorentz frame.

The Hermitian conjugated representations of (odd and even) products of θa

are obtainable according to Eq. (4.2).

1√
2
(θa +

ηaa

ik
θb)† = ηaa

1√
2
(
∂

∂θa
+
ηaa

i(−k)

∂

∂θb
) ,

1√
2
(1+

i

k
θaθb)† =

1√
2
(1+

i

k

∂

∂θa

∂

∂θb
) . (4.6)

4.2.1 Properties of Grassmann ”vectors”

2d−1 odd and 2d−1 even Grassmann operators, which are superposition of odd
and even products of θa’s are well separated from their 2d−1 odd and 2d−1

even Hermitian conjugated operators, which are superposition of odd and even
products of ∂

∂θa
’s, Eq. (4.6) 1.

To make discussions concrete let us start with illustrating properties of the
representations in Grassmann space in d = (5+ 1)-dimensional space. Table 4.1
represents two decuplets, which are ”egenvectors” of the Cartan subalgbra (S03,
S12, S5,6), Eq. (4.4), of the Lorentz algebra Sab. The two decouplets represent two
Grassmann odd irreducible representations of SO(5, 1).

One can read on the same table, from the first to the third and from the fourth
to the sixth line of both decuplets, two Grassmann even triplet representations
of SO(3, 1), if paying attention on the ”eigenvectors” of S03 and S12 alone, while
the ”eigenvactor” of S56 has, as a ”spectator”, the ”eigenvalue” either +1 (the first
triplet in both decouplets) or −1 (the second triplet in both decuplets). Each of the
two decuplets contains also one fourplet ((7th, 8th, 9th, 10th) lines in each of the
two decuplets (Table II in Ref. [2])).

Paying attention on the eigenvectors of S03 alone one recognizes as well even
and odd representations of SO(1, 1): θ0θ3 (Table II in Ref. [2] includes instead
1± θ0θ3) and θ0 ± θ3, respectively.

The Hermitian conjugated ”vectors” follow by using Eq. (4.6) and is for the
first ”vector” of Table 4.1 equal to (−)2( 1√

2
)3( ∂

∂θ5
− i ∂

∂θ6
) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

).
One correspondingly finds that when ( 1√

2
)3( ∂

∂θ5
− i ∂

∂θ6
) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

)
applies on ( 1√

2
)3(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) the result is identity. Application

of ( 1√
2
)3( ∂

∂θ5
− i ∂

∂θ6
) ( ∂
∂θ1

− i ∂
∂θ2

) ( ∂
∂θ0

+ ∂
∂θ3

) on all the rest of ”vectors” of the
decuplet I as well as on all the ”vectors” of the decuplet II gives zero. ”Vectors”
are orthonormalized with respect to Eq. (4.21). Let us notice that ∂

∂θa
on a ”state”

1 Relations among operators and their Hermitian conjugated partners in both kinds of
the Clifford algebra objects are more complicated than in the Grassmann case. In the
Grassmann case Hermitian conjugated operators follow by taking into account Eq. (4.2).
In the Clifford case 1

2
(γa + ηaa

i k
γb)† is proportional to 1

2
(γa + ηaa

i (−k)
γb), while 1√

2
(1 +

i
k
γaγb) are self adjoint. This is the case also for representations in the sector of γ̃a’s.
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I i decuplet of "eigenvectors" S03 S12 S56 Γ(5+1) Γ(3+1)

1 1√
2

(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1 1 1

2 1√
2

(θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1 1 1

3 1√
2

(θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1 1 1

4 1√
2

(θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1 1 −1

5 1√
2

(θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1 1 −1

6 1√
2

(θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1 1 −1

7 1√
2

(θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0 1 0

8 1√
2

(θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0 1 0

9 1√
2

(θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0 1 0

10 1√
2

(θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0 1 0

II i decuplet of "eigenvectors" S03 S12 S56 γ(5+1) γ(3+1)

1 1√
2

(θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1 −1 −1

2 1√
2

(θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1 −1 −1

3 1√
2

(θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1 −1 −1

4 1√
2

(θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1 −1 1

5 1√
2

(θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1 −1 1

6 1√
2

(θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1 −1 1

7 1√
2

(θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0 −1 0

8 1√
2

(θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0 −1 0

9 1√
2

(θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0 −1 0

10 1√
2

(θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0 −1 0

Table 4.1. The two decouplets, the largest odd ”eigenvectors” of the Cartan subalge-
bra, Eq. (4.4), (S03,S12, S56, for SO(5, 1)) of the Lorentz algebra in Grassmann (5 + 1)-
dimensional space, forming two irreducible representations, are presented. Table is partly
taken from Ref. [3]. ”Vectors” within each decuplet are reachable from any member by Sab’s
and are decoupled from another decouplet. The two operators of handedness, Γ (d−1)+1 for
d = (5, 4) are invariants of the Lorentz algebra, Eq. (4.23).

which is just an identity, | I >, gives zero, ∂
∂θa

| I >= 0, while θa | I >, or any
superposition of products of θa’s applied on | I >, gives the ”vector” back.

The two by Sab decoupled Grassmann decouplets of Table 4.1 are the largest
two irreducible representations of odd products of θa’s. There are 12 additional
Grassmann odd ”vectors”, arranged into irreducible representation, (1

2
(θ0 ∓

θ3)(1± θ1θ2θ5θ6), 1
2
(θ1 ± iθ2)(1± θ0θ3θ5θ6), 1

2
(θ5 ± iθ6)(1± θ0θ3θ1θ2)).

And there are 32 Grassmann ”vectors” arranged into irreducible representa-
tions, which are superposition of even products of θa’s.

4.2.2 Second quantized ”Grassmann fermions” and bosons

It is not difficult to see that Grassmann ”vectors” of an odd Grassmann character
— odd products of superposition of θa’s — anticommute among themselves and
so do odd products of superposition of ∂

∂θa
’s, while equivalent even products

commute.
Defining the vacuum state in the Grassmann case as | 1 > [3] 2, one easily

sees that application of products of superposition of θa’s on | 1 > gives nonzero

2 We shall see in Part II that the vacuum states are for both kinds of the Clifford algebra
objects, γa’s and γ̃a’s, the sums of products of projectors.
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contribution, while application of products of superposition of ∂
∂θa

’s on | 1 > gives
zero.

Application of products of superposition of ∂
∂θa

’s on the corresponding Her-
mitian conjugated partners, which are products of superposition of θa’s, leads to
identity for either even or odd Grassmann character 3.

All these algebras of an odd character, the Grassmann one and the Clifford
two, offer the description of the anticommuting second quantized fields, as postu-
lated by Dirac. But the Grassmann ”fermions” carry the integer spins, while the
observed fermions — quarks and leptons — carry half integer spin.

a. Grassmann anticommuting ”vectors” with integer spins

Let us first study properties of Grassmann odd ”vectors”.
Let us use in d = 2(2n+ 1), n is a positive integer, for the starting Grassmann

odd ”vector” — in d = (5+ 1) this is the first ”vector” on Table 4.1 — the notation

b̂θ1†1 : = (
1√
2
)
d
2 (θ0 ± θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

(b̂θ1†1 )† = b̂θ11 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) . (4.7)

b̂θ11 is the Hermitian conjugate (b̂θ1†1 )†.
In the case of d = 4n, n is a positive integer, the starting Grassmann odd

”vectors” of one Lorentz irreducible representation, and correspondingly the
creation operator must be of the kind

bθ1†1 : = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,(4.8)

All the rest of ”vectors” belonging to the same irreducible representation follow by
the application of Sab. We denote them by b̂θk†1 and their Hermitian conjugated
partners by b̂θk1 .

Let those ”vectors” belonging to different irreducible representations be de-
noted by b̂θk†j and their Hermitian conjugated partners by b̂θkj = (b̂θk†j )†.

From Sect. 4.2.1 we derive

{b̂θki , b̂
θl†
j }+| 1 > = δij δ

kl | 1 > ,

{b̂θki , b̂
θl
j }+| 1 > = 0 | 1 > ,

{b̂θk†i , b̂θl†j }+ | 1 > = 0 | 1 > ,

b̂θkj | 1 > = 0 | 1 > . (4.9)

3 The Clifford case requires more detailed analyses, as we shall see in Part II: Clifford
odd ”vectors” of each of the two Clifford algebras anticommute with all the members
of the same irreducible representation and so do anticommute among themselves their
Hermitian conjugated partners. One must, however, introduce the family quantum
numbers in order that anticommutator of a ”vector” only with its Hermitian conjugated
parter gives a nonzero contribution.
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These anticommutation relations are just the relations among creation and annihila-
tion operators required by Dirac [13] for fermions. Fermion states correspondingly
follow by the application off creation operators on the vacuum state | 1 >.

|φkib > = b̂θk†i | 1 > (4.10)

But Grassmann ”fermions” have an integer spin — this follows from Eq. (4.5), and
is demonstrated on Table 4.1 — and not half integer spin as it is the case for the so
far observed fermions.

b. Grassmann commuting ”vectors” with integer spins

Grassmann even ”vectors” commute, and not anticommute as it is the case
for the Grassmann odd ”vectors”. Let us use in the Grassmann even case, that is in
the case of even number of θa’s, and correspondingly of the commuting ”vectors”,
in d = 2(2n+ 1) the notation

âθ1†j = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,(4.11)

Again the rest of ”vectors”, belonging to the same Lorentz irreducible representa-
tion, follow by the application of Sab. The Hermitian conjugated partner of âθ1†1
is âθ11 = (âθ1†1 )†

âθ11 = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
−

∂

∂θ3
) . (4.12)

Let us noticed, that the ”vector” identity, 1, is not allowed, since the Hermitian conjugated
”vector” of the identity is the identity back. Then the last requirement of Eq.(4.9) for
the commutation relations in the case of Grassmann even ”vectors”, instead of the
anticommutation relations in the case of Grassmann odd ”vectors”, presented in
Eq. (4.9), could not be fulfilled.

If âθkj represents a Grassmann even operator, then one obtains, with the
index j denoting different irreducible representations and the index k denoting
a particular member of the jth irreducible representations, taking into account
Sect. 4.2.1, the relations

{âθki , â
θk ′†
j }−| 1 > = δij δkl | 1 > ,

{âθki , â
θl
j }−| 1 > = 0 | 1 > ,

{âθk†i , âθk
′†

j }− | 1 > = 0 | 1 > ,

âθkj | 1 > = 0 | 1 > ,

âθk†i | 1 > = |φkia > . (4.13)

c. Action for free massless Grassmann ”fermions” with integer spin [3]

To obtain the equations of motion for at least noninteracting Grassmann
massless ”fermions” the corresponding Lorentz invariant action for a free massless
”fermions” must be proposed. We follow here the suggestion from Ref. [3].

AG =

∫
ddx ddθ ω {φ†(1− 2θ0

∂

∂θ0
)
1

2
θapaφ}+ h.c. . (4.14)
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We use the integral over θa coordinates with the weight functionω from Eq. (4.21,
4.22). Requiring the Lorentz invariance we add after φ† the operator γ0G (γaG
= (1− 2θa ∂

∂θa
)), which takes care of the Lorentz invariance. Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) , (4.15)

while θa, ∂
∂θa

and pa transform as Lorentz vectors. The equations of motion follow
from the action, Eq. (4.14),

1

2
γ0G (θa −

∂

∂θa
)pa |φ > = 0 , (4.16)

as well as the Klein-Gordon equation, γ0G (θa − ∂
∂θa

)pa γ
0
G (θb − ∂

∂θa
)pb |φ >= 0,

leading to

{θapa,
∂

∂θb
pb}+ = papa = 0 . (4.17)

From the Lagrange density, presented in Eq. (4.14), using Eq. (4.2), and the
relations γa = (θa + ∂

∂θa
), γ̃a = i (θa − ∂

∂θa
), γ0G = −iηaaγaγ̃a, it follows, up to

the surface term,

LG = −i
1

2
φ† γ0G γ̃

a (p̂aφ)

= −i
1

4
{φ† γ0G γ̃

a p̂aφ − p̂aφ
† γ0G γ̃

aφ }. (4.18)

One correspondingly finds equations of motion

∂LG
∂φ†

− p̂a
∂LG
∂p̂aφ†

= 0 =
−i

2
γ0G γ̃

a p̂aφ ,

∂LG
∂φ

− p̂a
∂LG
∂(p̂aφ)

= 0 =
i

2
p̂aφ

†γ0G γ̃
a , (4.19)

The eigenstates of Eq. (4.16, 4.19) for free massless ”fermions” are superposi-
tion of states |φki >, describing their internal degrees of freedom, with coefficients
depending on momentum pa, a = (0, 1, 2, 3, 5, . . . , d) of the plane wave solution
e−ipax

a

|φksp > =
∑
i

ckspi b̂
θk†
i | 1 > e−ipax

a

, (4.20)

with s representing different solutions of the equations of motion, and, since they
are orthogonalized, they fulfill the relation < φksp|φk

′

s ′p ′ >= δkk ′ δss ′ δ
pp ′ , where

we assumed the discretization of momenta.
One of the plane wave massless solutions of these equations, in d = (5+ 1),

for pa = (p0, p1, p2, p3, 0, 0), the positive energy p0 = |p0|, the spin 1
2

and the
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charge 1
2

, from the point of view of d = (3 + 1), for example, is b̂θ†1
2
, 1
2

(~p) =

β { ( 1√
2
)3 (θ0−θ3)(θ1+iθ2)− 2(|p0|−|p3|)

p1−ip2
( 1√
2
)2(θ0θ3+iθ1θ2) {

56

(+)) e−i(|p
0|x0−~p·~x),

β is the normalization factor.
The corresponding state follows by the application of the creation operator

b̂θ†1
2
, 1
2

(~p) on the vacuum state | 1 >, |φ 1
2
, 1
2
>= b̂θ†1

2
, 1
2

(~p) | 1 >. More solutions can
be found in [3] and the references therein.

4.3 Conclusions

We learn in this paper, in Part I, that products of superposition of θa’s, Eqs. (4.7,
4.5), exist, which together with their Hermitian conjugated partners, Eqs. (4.7, 4.6),
fulfill all the requirements for the anticommutation relations for Dirac fermions.
No postulation of anticommutation relations is needed. If using products of super-
position of θa’s as creation operators to describe the internal degrees of freedom
of ”Grassmann fermions”, these ”fermions” carry the integer spin, and in spaces
d ≥ 5 the corresponding charges belong to adjoint representations. No fami-
lies appear in this case, that means that there is no available operators, which
would connect different irreducible representations of the Lorentz group (without
breaking symmetries).

The presented Lorentz invariant action leads to the equations of motion for
free massless ”Grassmann fermions” [3].

No elementary fermions with these properties have been observed. The in-
teraction of such ”Grassmann fermions” [3] with the corresponding gauge fields
could tell more about the possibility whether or not these ”Grassmann fermions”
exist in nature, not yet observed.

In Part II two kinds of operators are studied; There are namely two kinds
of the Clifford algebra objects, γa = (θa + ∂

∂θa
), γ̃a = i (θa − ∂

∂θa
), which anti-

commute, {γa, γ̃a}+ = 0, and correspondingly form two kinds of independent
representations.

Each of these two kinds of independent representations can be arranged
into irreducible representations with respect to the two Lorentz generators —
Sab = i

4
(γaγb − γbγa), S̃ab = i

4
(γ̃aγ̃b − γ̃bγ̃a). All the Clifford irreducible

representations of any of the two kinds of algebras are independent and completely
disconnected.

The Dirac action in d-dimensional space for free massless fermions — A =∫
ddx 1

2
(ψ†γ0 γa paψ) + h.c. (or A =

∫
ddx 1

2
(ψ†γ̃0 γ̃a paψ) + h.c. ) — leads

to equations of motions, which have the solutions in both kinds of algebras for
either even or odd Clifford character, that is for an even or odd products of the
superposition of γa in one kind and γ̃a in another kind of the Clifford algebra
objects.

Although the ”vectors” of one irreducible representation of an odd Clifford
algebra character, anticommute among themselves and so do their Hermitian
conjugated partners in each of the two kinds of the Clifford algebras, the anticom-
mutation relations among creation and annihilation operators in each of the two
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Clifford algebras separately, do not fulfill the requirement, that only the Hermitian
conjugated partner of the creation operator gives nonzero contribution.

The decision, the postulate, that only one kind of the Clifford algebra objects
— let say γa — is used to describe the internal space of fermions, while the second
kind — γ̃a in this case — which does not contribute to description of the internal
space of fermions, determines quantum numbers of the irreducible representations
of the Sab, solves both problems: a. Different irreducible representations with
respect to Sab carry now different ”family” quantum numbers determined by
d
2

commuting operators among S̃ab. b. Creation operators and their Hermitian
conjugated partners, which are odd products of superpositions of γa, fulfill all the
requirements which Dirac postulated for fermions.

4.4 APPENDIX: Norms in Grassmann space and Clifford space

Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|θ >< C|θ >, < B|θ >=< θ|B >†, < b|θ >=∑d
k=0 ba1...akθ

a1 · · · θak , by requiring

{dθa, θb}+ = 0 ,

∫
dθa = 0 ,

∫
dθaθa = 1 ,

∫
ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πdk=0(
∂

∂θk
+ θk) , (4.21)

with ∂
∂θa

θc = ηac. We shall use the weight function [2]ω = Πdk=0(
∂
∂θk

+ θk) to
define the scalar product in Grassmann space < B|C >

< B|C > =

∫
ddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
b∗b1...bkcb1...bk . (4.22)

To define norms in Clifford space Eq. (4.21) can be used as well.

4.5 APPENDIX: Handedness in Grassmann and Clifford space

The handedness Γ (d) is one of the invariants of the group SOd, with the infinitesi-
mal generators of the Lorentz group Sab, defined as

Γ (d) = αεa1a2...ad−1
ad S

a1a2 · Sa3a4 · · ·Sad−1ad , (4.23)

with α, which is chosen so that Γ (d) = ±1.
In the Grassmann case Sab is defind in Eq. (4.3), while in the Clifford case

Eq. (4.23) simplifies, if we take into account that Sab|a 6=b = i
2
γaγb and S̃ab|a 6=b =

i
2
γ̃aγ̃b, as follows

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (4.24)
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2. N. Mankoč Borštnik, ”Spinor and vector representations in four dimensional Grass-
mann space”, J. of Math. Phys. 34 (1993) 3731-3745.
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9. N.S. Mankoč Borštnik, [ arXiv:1502.06786v1] [arXiv:1409.4981].
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Abstract. We discuss in Part I and Part II of this paper the possibility to present internal
part of degrees of freedom of the second quantized fermions in Grassmann space — in Part
I — and in Clifford space — Part II [1–3]. They both offer description for second quantized
fermions [3]. It is no need in either of these algebras to postulate the second quantization
relations as Dirac [13], since both algebras by themselves offer the appropriate anticommu-
tation relations. But while fermions with the internal degrees of freedom described by the
Clifford algebras manifest the half integer spins and charges in the fundamental representa-
tions — in agreement with the observed properties of quarks and leptons and antiquarks
and antileptons — the ”Grassmann fermions” manifest integer spins. In Part II we discuss
properties of the two kinds of the Clifford algebra objects — both expressible with the
Grassmann coordinates, γa = (θa + ∂

∂θa
) and γ̃a = i (θai − ∂

∂θa
) [2,4,5], {γa , γ̃b}+ = 0—

and conditions under which the members of the irreducible representation of the Lorentz
algebra carry the family quantum numbers.

Povzetek. Drugi del tega prispevka obravnava obstoj dveh neodvisnih vektorskih pros-
torov v Cliffordovi algebri, ki sta skupaj ekvivalentna prostoru, ki ga določa Grassmanova
algebra. Vsak od vektorskih prostorov v Cliffordovi algebri ponudi kreacijske in anihi-
lacijske operatorje, ki določajo na vakuumskem stanju, ki je vsota produktov anihilacijskih
operatorjev na kreacijskih operatotorjih, stanja fermionov s spinom 1

2
in so rešitve Weylove

enačbe. Avtorja postavita zahtevo, da samo ena od obeh Cliffordovih algeber določa vek-
torski prostor fermionov, druga pa opremi nerazcepne upodobitve Lorentzove grupe v
prostoru prve s kantnim številom družine. Zahteva zagotovi, da zadostijo kreacijski in
anihilacijski operatorji Diracovim postulatom za fermione v drugi kvantizaciji.

Keywords:Second quantization of fermion fields in Clifford and in Grassmann
space, Spinor representations in Clifford and in Grassmann space, Kaluza-Klein-
like theories, Higher dimensional spaces, Beyond the standard model

? Talk presented by N.S. Mankoč Borštnik
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5.1 Introduction

In Part I of this paper the properties of ”Grassmann fermions” of integer spins are
presented. Let us repeat: In d-dimensional Grassmann space of anticommuting
coordinates θa’s, i = (1, .., d), there are 2d ”vectors”, which are superposition
of products of θa’s. One can arrange them into irreducible representations with
respect to the Lorentz group. There are as well derivatives with respect to θa’s,
∂
∂θa

’s, which again form 2d ”vectors”, representing Hermitian conjugated part-
ners to the members of the irreducible representations of θa’s, Eq. (6) of Part I.
Grassmann coordinates offer correspondingly 2 · 2d vectors.

Taking superposition of products of θa’s as creation operators and their Her-
mitian conjugated partners as annihilation operators, the creation and annihilation
operators fulfill, applied on a simple vacuum state | 1 >, the anticommutation
relations required for the second quantized fermions, if the unity is not included.
The ”Grassmann fermions” of an odd products of θa’s carry integer spins and the
charges in adjoint representations. There are no elementary fermions with integer
spin observed so far.

In this Part II the properties of the two kinds of the Clifford algebras objects,
γa’s and γ̃a’s, both expressible with θa’s and ∂

∂θa
’s (γa = (θa + ∂

∂θa
), γ̃a =

i (θa − ∂
∂θa

) [2,4,5]), are presented and the conditions discussed, which limit the
space of Clifford ”vectors”, so that the Clifford algebra ”vectors” of each irreducible
representation of the corresponding Lorentz algebra of this limited space are
equipped by the family quantum numbers. This limited space of the Clifford
algebra ”vectors”, when used to describe the internal degrees of freedom of (the
second quantized) fermions, explain the anticommutation relations postulated by
Dirac [13].

These Clifford second quantized fermions enable the descriptions for not only
spins and all the charges of the observed quarks and leptons, but also for their
families.

We present in Sect. 5.2 properties of the Clifford algebra ”vectors” in the space
of d γa’s and d γ̃a’s and discuss conditions, under which operators of these two
kinds of the Clifford algebra objects demonstrate by themselves the anticommuta-
tion relations required for the second quantized ”fermions”, manifesting the half
integer spins, offering the explanation for the spin and charges of the observed
quarks and leptons and anti-quarks and anti-leptons and also for their families,
Refs. [1,2,6–12,3].

In Sect. 5.3 we comment on what we have learned from the second quantized
”Grassmann fermions”, carrying the integer spins and (from the point of view of
d = (3+ 1)) the charges in the adjoint representations and compare these recogni-
tions with the recognitions, which the Clifford algebra is offering for description
of the fermions, appearing on families, with half integer spins and charges in the
fundamental representations [1,2,6–11,3].
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5.2 Second quantized fermions in Clifford space

We learn in Part I that in d-dimensional space of anticommuting Grassmann
coordinates (and of their Hermitian conjugated partners — derivatives), Eqs. (2,6)
of Part I, there exist two kinds of the Clifford coordinates (operators) — γa and γ̃a

— which are expressible in terms of θa and their conjugate momentum pθa = i ∂
∂θa

[2].

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) , (5.1)

offering together 2 · 2d operators: 2d of those which are products of γa and 2d of
those which are products of γ̃a.

Taking into account Eqs. (1, 2) of Part I, ({θa, θb}+ = 0, { ∂
∂θa

, ∂
∂θb

}+ = 0,
{θa,

∂
∂θb

}+ = δab, θa† = ηaa ∂
∂θa

and ( ∂
∂θa

)† = ηaaθa), one finds

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηa γa , (γ̃a)† = ηaa γ̃a , (5.2)

with ηab = diag{1,−1,−1, · · · ,−1}.
It follows for the generators of the Lorentz algebra of each of the two kinds of

the Clifford algebra operators, Sab and S̃ab, that:

Sab =
i

4
(γaγb − γbγa) , S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) ,

Sab = Sab + S̃ab , {Sab, S̃ab}− = 0 ,

{Sab, γc}− = i(ηbcγa − ηacγb) , {S̃ab, γ̃c}− = i(ηbcγ̃a − ηacγ̃b) ,

{Sab, γ̃c}− = 0 , {S̃ab, γc}− = 0 , (5.3)

where Sab = i (θa ∂
∂θb

− θb ∂
∂θa

), Eq. (3) of Part I.
Let us make a choice of the Cartan subalgebra of the commuting operators

of the Lorentz algebra for each of the two kinds of the operators of the Clifford
algebra, Sab and S̃ab,

S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d . (5.4)

The two kinds of the Lorentz algebras, the one generated by γa and the
other by γ̃a, are obviously completely independent. We make a choice of the
irreducible representations of the two Lorentz groups to be the ”eigenvectors” of
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the corresponding Cartan subalgebras of Eq. (5.4), and take into account Eq. (5.2),

Sab
1

2
(γa +

ηaa

ik
γb) =

k

2

1

2
(γa +

ηaa

ik
γb) ,

Sab
1

2
(1+

i

k
γaγb) =

k

2

1

2
(1+

i

k
γaγb)

S̃ab
1

2
(γ̃a +

ηaa

ik
γ̃b) =

k

2

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

S̃ab
1

2
(1+

i

k
γ̃aγ̃b) =

k

2

1

2
(1+

i

k
γ̃aγ̃b) . (5.5)

The Clifford ”vectors” of both kinds are normalized, up to a phase, with respect
to Eq. (4.21) of App. 4.4. Both have half integer spin. The ”eigenvalues” of the
operator S03, for example, for the ”vector” 1

2
(γ0∓γ3) are equal to± i

2
, respectively,

for the ”vector” 1
2
(1±γ0γ3) are ± i

2
, respectively, while all the rest ”vectors” have

”eigenvalues” ± 1
2

. One finds equivalently for the ”eigenvectors” of the operator
S̃03: for 1

2
(γ̃0 ∓ γ̃3) the ”eigenvalues” ± i

2
, respectively, and for the ”eigenvectors”

1
2
(1± γ̃0γ̃3) the ”eigenvalues” k = ± i

2
, respectively, while all the rest ”vectors”

have k = ± 1
2

.
To make discussions easier let us introduce the notation for the ”eigenvectors”

of the two Cartan subalgebras, Eq. (5.4), Ref. [4,2].

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

(k)

†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,

ab

[k]: =
1

2
(1+

i

k
γaγb) ,

ab

[k]

†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,

ab
˜(k): =

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab
˜(k)
†

= ηaa
ab
˜(−k) , (

ab
˜(k))2 = 0 ,

ab
˜[k]: =

1

2
(1+

i

k
γ̃aγ̃b) ,

ab
˜[k]
†

=
ab
˜[k] , (

ab
˜[k])2 =

ab
˜[k] , (5.6)

with k2 = ηaaηbb. Let us point out that the eigenvectors of the Cartan subalgebras

are either the nilpotents — (
ab

(k))2 = 0 and (
ab
˜(k))2 = 0— or projectors — (

ab

[k])2 =
ab

[k]

and (
ab
˜[k])2 =

ab
˜[k].

Representations of γa and representations of γ̃a are completely independent,
each with 2

d
2
−1 members in 2 · 2 · 2d2−1 representations.

5.2.1 Properties of Clifford vectors

2d−1 odd and 2d−1 even Grassmann operators, which are superposition of odd
and even products of θa’s, are well distinguishable from their 2d−1 odd and 2d−1

even Hermitian conjugated operators, which are superposition of odd and even
products of ∂

∂θa
’s, Eq. (6) in Part I.

In the Clifford case (of either γa’s or γ̃a’s) the ”vectors”, made of products

of nilpotents (
ab

(k) or
ab
˜(k)) and projectors (

ab

[k] or
ab
˜[k]), Eq. (5.6), which each of them
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are ”eigenvectors” of one of the member of the Cartan subalgebra of one of the
two kinds, Eq. (5.4), the relations among ”vectors” and their Hermitian conjugated
partners are less transparent (although easy to be evaluated). This can be noticed
in Eq. (5.6), since 1√

2
(γa+ ηaa

i k
γb)† is ηaa 1√

2
(γa+ ηaa

i (−k)γ
b), while 1√

2
(1+ i

k
γaγb)

are self adjoint. This is the case also for representations in the sector of γ̃a’s.
Let us recognize the properties of the nilpotents and projectors. The relations

are taken from Ref. [6].

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

[k]
ab

[k]=
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0 . (5.7)

The same relations are valid also if one replaces
ab

(k) with
ab
˜(k) and

ab

[k] with
ab
˜[k].

We illustrate properties of ”vectors” of the Clifford algebra of γa’s on irre-
ducible representations of the Lorentz group SO(5, 1) and their subgroups SO(3, 1)

and SO(1, 1), presented in Table 5.1, for the case of γ̃a’s all
ab

(k)’s have to be replaced

by
ab
˜(k)’s and all

ab

[k] by
ab
˜[k]’s.

odd I i quadrupleta quadrupletb quadruplet c quadrupletd S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

1
03

(+i)
12
(+)

56
(+)

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
[+]

56
[+] i

2
1
2

1
2

1 1

2 [−i][−](+) (−i)(−)(+) (−i)[−][+] [−i](−)[+] − i
2

− 1
2

1
2

1 1

3 [−i](+)[−] (−i)[+][−] (−i)(+)(−) [−i][+](−) − i
2

1
2

− 1
2

1 −1

4 (+i)[−][−] [+i](−)[−] [+i][−](−) (+i)(−)(−) i
2

− 1
2

− 1
2

1 −1

odd II i quadrupleta quadrupletb quadruplet c quadrupletd S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

1 (−i)(+)(+) [−i][+](+) [−i](+)[+] (−i)[+][+] − i
2

1
2

1
2

−1 −1

2 [+i][−](+) (+i)(−)(+) (+i)[−][+] [+i](−)[+] i
2

− 1
2

1
2

−1 −1

3 [+i](+)[−] (+i)[+][−] (+i)(+)(−) [+i][+](−) i
2

1
2

− 1
2

−1 1

4 (−i)[−][−] [−i](−)[−] [−i][−](−) (−i)(−)(−) − i
2

− 1
2

− 1
2

−1 1

even I i quadrupleta quadrupletb quadruplet c quadrupletd S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

−1 −1

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

−1 −1

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

−1 1

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2

−1 1

even II i quadrupleta quadrupletb quadruplet c quadrupletd S03 S12 S56 Γ(5+1) Γ(3+1)

03 12 56 03 12 56 03 12 56 03 12 56

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

1 1

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

1 1

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

1 −1

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

1 −1

Table 5.1. 2d = 64 ”eigenvectors” of the Cartan subalgebra, Eq. (5.4), of the Clifford
γa algebra in d = (5 + 1) are presented, divided into four groups of four irreducible
representations. Two of four groups have an odd number of γa’s. ”Vectors” in the odd
I part have Hermitian conjugated partners among ”vectors” of the odd II part, and the
opposite. The two groups with the even number of γa’s, even I and even II, have their
Hermitian conjugated partners within their own group each. Numbers — 03 12 56 —
explain the indexes of the corresponding Cartan subalgebra. Equivalent table for γ̃a’s follow

by replacing all
ab

(k) by
ab

˜(k) and
ab

[k] by
ab

˜[k].



i
i

“proc19” — 2019/12/9 — 11:13 — page 125 — #141 i
i

i
i

i
i

5 Understanding the Second Quantization of Fermions. . . Part II 125

There are in the γa part of the Clifford algebra ”vectors” twice 2
6
2
−1 = 4

odd irreducible representations, each representation with 2
6
2
−1 = 4members and

twice 4 even irreducible representations with 4members, as presented in Table 5.1.

The representations for the γ̃a sector follow from Table 5.1, if one replaces
ab

(k) with
ab
˜(k) and

ab

[k] with
ab
˜[k].

Hermitian conjugation transforms 2
d
2
−1 Clifford odd representations with

2
d
2
−1 members, into 2

d
2
−1 · 2d2−1 Hermitian conjugated partners for each kind of

the two kinds of the Clifford algebra operators — γa and γ̃a. Hermitian conjugated
partners of one Lorentz irreducible representation with 2

d
2
−1 members, however,

belong to 2
d
2
−1 Lorentz irreducible representations: The first column of the four

representations in the odd I part has the corresponding Hermitian conjugated
partners in the fourth line of the odd II, for example.

In Table 5.2 only one quadruplet is presented, the quadruplet a from Table 5.1,
together with the corresponding Hermitian conjugated partner. All the ”vectors”
of the quadruplet are orthogonal among themselves and so are also the ”vectors”
of the Hermitian conjugated partners. The product of each of the Hermitian

conjugated partner with its ”vector” gives
03

[−i]
12

[−1]
56

([−1]. For the first ”vector” one

finds:
03

(−i)
12

(−)
56

(−) ·
03

(+i)
12

(+)
56

(+)=
03

[−i]
12

[−1]
56

[−1]. This follows by taking into account
Eq. (5.7).

If we denote by b̂m†f , with f = 1 andm = (1, 2, 3, 4), the first four ”vectors” of
Table 5.2, and their Hermitian conjugated partners by (b̂m†f )† = b̂mf , with f = 1

andm = (1, 2, 3, 4), we can write

b̂m
′

f · b̂
m†
f = δmm

′ 03

[−i]
12

[−1]
56

([−1] ,

for f = 1 and all (m,m ′) . (5.8)

One easily checks, taking into account Eq. (5.7), that quadruplets (a,b,c,d) of the
irreducible representation odd I fulfill the equivalent relations, only the products
of Hermitian conjugated partner m with its ”vector” m change: It follows that

b̂m
′

f · b̂
m†
f = δmm

′
(
03

[−i]
12

[−1]
56

[−1] ,
03

[+i]
12

[+1]
56

[−1] ,
03

[+i]
12

[−1]
56

[+1] ,
03

[−i]
12

[+1]
56

[+1] ) for f =
(1, 2, 3, 4), respectively. All these ”vectors”, which are products of b̂mf · b̂

m†
f , are

products of selfadjoint projectors only, having an even Clifford character.
One can check for d = (5+ 1), using Eq. (5.7), that it follows.

b̂mf · b̂m
′

f ′ = 0 ,

b̂m†f · b̂
m ′†
f ′ = 0 ,

b̂mf · b̂
m ′†
f = δmm

′
|ψoc > , for a chosen f ,

b̂m†f |ψoc >= |ψmf > ,

b̂mf |ψoc >= 0 , (5.9)
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for all (f, f ′) and all (m,m ′) of Clifford odd Lorentz irreducible representations,

with the normalized vacuum state |ψoc >=
1√
2
6
2

−1
(
03

[−i]
12

[−1]
56

[−1] +(
03

[+i]
12

[+1]
56

[−1]

+(
03

[+i]
12

[−1]
56

[+1] +(
03

[−i]
12

[+1]
56

[+1]).
The generalization of these recognitions to any even d, if d is either d =

2(2n+ 1) or d = 4n, n is a positive integer, is straightforward. We shall do this in
Subsect. 5.2.3).

i quadruplet a Her. con. quadruplet a

1
03

(+i)
12

(+)
56

(+)
03

(−i)
12

(−)
56

(−)

2
03

[−i]
12

[−]
56

(+)
03

[−i]
12

[−]
56

(−)

3
03

[−i]
12

(+)
56

[−]
03

[−i]
12

(−)
56

[−]

4
03

(+i)
12

[−]
56

[−]
03

(−i)
12

[−]
56

[−]

Table 5.2. The quadruplet a of the irreducible representation odd I, from Table 5.1, d = (5+1),
together with the Hermitian conjugated partner is presented. Each member of the quadruplet
a is a product of nilpotents and projectors, which are the ”eigenvectors” of the Cartan
subalgebra, Eq. (5.4), of the Clifford γa algebra.

Let us noticed that all the vectors of the first column, odd I, when applied on
the selfadjoint ”vector” of the quadruplet a of even I, give the vectors of the first
column, odd I, back, Eq. (5.7). The vectors of the second column, quadruplet b, odd I,
when applied on the selfadjoint ”vector” of the quadruplet b, even I, give the vectors
of the second column back. This also happens to the third column, quadruplet c,
odd I, when applied on the selfadjoint ”vector” of the quadruplet c, even I, and to
the fourth column, quadruplet d, odd I, when applied on the self adjoint vector of
the quadruplet d even I. Similar properties follow when the columns of odd II apply
on the corresponding selfadjoint operators of even II.

Let us notice also that all the annihilation operators anticommute among them-
selves, {b̂m

′

f , b̂mf ′ }+ = 0, the same is true for creation operators, {b̂m
′†

f , b̂m†f }+ = 0,
while {b̂m

′

f ′ , b̂
m†
f }+|f ′=f = δ

mm ′ |ψoc > is valid only for f ′ = f and not for the rest
members of particular family to which b̂m

′

f belong 1.
In any even dimensional space there is in any Clifford even irreducible rep-

resentation of the corresponding Lorentz algebra of the two kinds of Clifford
”vectors” (defined by either γa’s or γ̃a’s) one member, which is the product of d

2

selfadjoint projectors (1 + i
k
γaγb). Correspondingly the whole ”vector” is self-

1 Anticommutator {
03

(+i)
12

(+)
56

(+) ,
03

[+i]
12

[+]
56

(−)}+ = −
03

(+i)
12

(+)
56

[−], for example, and applied on

the first summand of |ψoc > gives this Clifford even creation operator −
03

(+i)
12

(+)
56

[−] back,
which can be found in Table 5.1 among even I in the third line of the column quadruplet a,

while
03

[+i]
12

[+]
56

(−) appears in the third line of quadruplet d in odd II and
03

(+i)
12

(+)
56

(+) appears
in the first line of quadruplet a in odd I of the same table.
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adjoint. In Table 5.1 there are in even I representations of Clifford even ”vectors”
four ”vectors” (m = (4, 3, 1, 2) of quadruplets (a,b,c,d), respectively), which can be
obtained as well from the application of the annihilation operator b̂m

′

f (odd II) on
its creation partner b̂m†f (odd I), for each irreducible representation f separately.

The selfadjoint even ”vectors” appear also in even II sector, belonging as well
to different irreducible representations of the Lorentz group (in the quadruplets
(a,b,c,d) they carry the family member number m = (4, 3, 1, 2), respectively). All
the Clifford even ”vectors” of the same irreducible Lorentz representation, applied
on their selfadjoint ”vector”, gives these ”vectors” back.

All the Clifford even representations follow from the products of the Clifford
odd ”vectors”,

Equivalent Clifford even representations as in the space of γa’s appear also in
the space of γ̃a’s.

5.2.2 Second quantized ”Clifford fermions”

We learned in Subsect. 5.2.1 that:
a. The two vector spaces, the one spanned by γa’s and the second one

spanned by γ̃a’s, are completely independent vector spaces, each with 2d ”vec-
tors”. The Clifford odd ”vectors” (the superposition of products of odd numbers
of γa’s or γ̃a’s, respectively) can be arranged for each kind of the Clifford algebras
as twice 2

d
2
−1 · 2d2−1 irreducible representations of the Lorentz group.

The Clifford even part (made of superposition of products of even numbers
of γa’s and γ̃a’s, respectively) splits again into twice 2

d
2
−1 · 2d2−1 irreducible

representations of the Lorentz group. b. The two groups of the Clifford odd parts
(of each of the two kinds) of ”vectors”, each with 2

d
2
−1 irreducible representations

of 2
d
2
−1 members, are Hermitian conjugated to each other.
b.i. The members of one irreducible representation share all the quantum

numbers (determined by the members of the Cartan sublagebra (of either Sab or
S̃ab) with the corresponding members of another irreducible representations. The
same is true also for their Hermitian conjugated partners.

b.ii. The 2
d
2
−1 members of each of the 2

d
2
−1 irreducible representations

are orthogonal and so are orthogonal their corresponding Hermitian conjugated
partners.

b.iii. Making a choice of ”vectors” and denoting them by b̂m†f , (where f
denotes different irreducible representations and m a member in the represen-
tation f), and their Hermitian conjugate partners by b̂mf = (b̂m†f )†, while choos-
ing the vacuum state |ψoc > as the sum of all the products of b̂mf · b̂

m†
f for all

f = (1, 2, · · · , 2d2−1), we end up with Eq. (5.9), valid for superposition of odd
products of either γa’s or γ̃a’s, each in its own ”vector space”.

b.iv. The Clifford odd creation and annihilation operators of any irreducible
representation f obey the anticommutation relations, postulated by Dirac for
fermions. However (as we learn in Subsect. 5.2.1), there exist among annihilation
operators 2

d
2
−1−1members of the same irreducible representation of annihilation

operators, to which the particular Hermitian conjugated partner b̂mf (of a particular
creation operator b̂m†f ) belong (obviously obtainable by the generators of the
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128 N.S. Mankoč Borštnik and H.B.F. Nielsen

Lorentz transformations, Sab or S̃ab, respectively), the anticommutators of which
with the creation operator b̂m†f gives one of the 2

d
2
−1 members (In Table 5.1 one

gets quadruplets (a,b,c,d) of even I, if one chooses b̂m†f from odd I — otherwise
one would get one member of even II — which does not belong to self adjoint
operators).

c. There are the same number of the Clifford even irreducible representations
— twice 2

d
2
−1, each with 2

d
2
−1 number of members — as in the case of the odd

irreducible representations. While in the case of the odd irreducible representations
the two groups of 2

d
2
−1 representations, each with 2

d
2
−1 members, are Hermitian

conjugated to each other, the Hermitian conjugated partners appear in the even
case within each of the two groups separately.

c.i. The members of one irreducible representation share all the quantum
numbers (determined by the members of the Cartan sublagebra (of either Sab or
S̃ab) with the corresponding members of another irreducible representations.

c.ii. Only 2
d
2
−1 − 1members of each of the 2

d
2
−1 irreducible representations

of each of the two groups are orthogonal to each other, while their application on
the member which is the product of the projectors only, gives the same member
back. All the members of one irreducible representation are orthogonal to all the
members of another representation and to all the members of all the representa-
tions of another group.

c.iii. All the Clifford even ”vectors” can be expressed as the products of the
Clifford odd ”vectors”.

The creation and annihilation operators of an odd Clifford algebras of both kinds, of
either γa’s or γ̃a’s, would obviously obey the anticommutation relations for the second
quantized fermions, postulated by Dirac, provided that each of the irreducible representa-
tions would carry a different quantum number.

But we know that a particular memberm of all the irreducible representations
have the same quantum numbers, that is the same ”eigenvalues” of the Cartan
subalgebra (for the vector space of either γa’s or γ̃a’s) Eq. (5.6).

The only possibility to ”dress” each irreducible representation of one kind
of the two independent vector spaces with a new, let us say ”family” quantum
number, is that we ”sacrifice” one of the two vector spaces, let us make a choice
of γ̃a’s, and use these operators to define the ”family” quantum number for
the irreducible representation of the vector space of γa’s, keeping the relations of
Eq. (5.2) unchanged: {γa, γb}+ = 2ηab = {γ̃a, γ̃b}+, {γa, γ̃b}+ = 0, (γa)† = ηaa γa,
(γ̃a)† = ηaa γ̃a, (a, b) = (0, 1, 2, 3, 5, · · · , d).

We therefore postulate:
Let γ̃a’s operate on γa’s as follows [5,2,10,11,5,3]

γ̃aB(γa) = (−)B i Bγa , (5.10)

with (−)B = −1, if B is an odd product of γa’s, otherwise (−)B = 1 [5].
The vector space of γ̃a’s have correspondingly no meaning any longer, it is

”frozen out”. (No vector space of γ̃a’s can be taken into account any longer).
Taking into account Eq. (5.10) we can check that

a. Relations of Eq. (5.2) remain unchanged.
b. Relations of Eq. (5.6) remain unchanged.
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c. The eigenvalues besides of the operators Sab also of S̃ab on nilpotents and
projectors of γa’s can be calculated, leading to

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (5.11)

demonstrating that the eigenvalues of Sab on nilpotents and projectors of γa’s
differ from the eigenvalues of S̃ab, so that S̃ab can be used to denote irreducible
representations of Sab with the ”family” quantum number.

d. We further recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while

γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(5.12)

e. One finds, using Eq. (5.10),

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −i ηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 ,
ab
˜[k]
ab

(k) =
ab

(k) ,
ab
˜[−k]

ab

(k)= 0 ,
ab
˜[k]
ab

[k]= 0 ,
ab
˜[−k]

ab

[k]=
ab

[k] . (5.13)

f. From Eq. (5.12) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (5.14)

g. Each irreducible representation of the odd I has now the ”family” quantum
number, determined by S̃ab of the Cartan subalgebra of Eq. (5.4). Correspondingly
the creation and annihilation operators fulfill the anticommutation relations of
Dirac fermions, without postulating them.

{b̂mf , b̂
m ′†
f ′ }+ |ψoc > = δmm

′
δff ′ |ψoc > ,

{b̂mf , b̂
m ′

f ′ }+ |ψoc > = 0 |ψoc > ,

{b̂m†f , b̂m
′†

f ′ }+ |ψoc > = 0 |ψoc > ,

b̂m†f |ψoc > = |ψmf > ,

b̂mf |ψoc > = 0 |ψoc > , (5.15)
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with (m,m ′) denoting the ”family” member and (f, f ′) denoting ”families”.
h. The vacuum state for the vector space determined by γa’s remains un-

changed |ψoc >, Eq. (80) of Ref. [3].

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |1 > ,
for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |1 > ,
for d = 4n , (5.16)

n is a positive integer.
i. Taking into account relation among θa in Eq. (5.1) it follows from Eq. (5.10),

since γ̃a · 1 = iγa

θa = γa ,
∂

∂θa
= 0 . (5.17)

The Hermitian conjugated part of the space in the Grassmann case ”freezed out”
together with the ”vector” space of γ̃a’s.

5.2.3 Second quantization of ”Clifford fermions” with families in any d

Let us generalize what we learned in Subsect. 5.2.2 to any dimension d, with the
vector space determined by γa’s, while γ̃a’s define the family quantum numbers
of each creation operator b̂m†f , which is the product of nilpotents and projectors,
Eq. (5.6).

Let us make a choice of the starting creation operator b̂1†1 of an odd Clifford
character and their Hermitian conjugated partner in d = 2(2n+ 1) as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) ,

b̂11 = (b̂1†1 )† =
d−1 d

(−)
d−3 d−2

(−) · · ·
56

(−)
12

(−)
01

(−i) . (5.18)

All the rest ”vectors”, belonging to the same Lorentz representation, follow by the
application of the Lorentz generators Sab’s.

The representations with different ”family” quantum numbers are reachable
by S̃ab, since, according to Eq. (5.14), we recognize that S̃ac transforms two nilpo-

tents
ab

(k)
cd

(k) into two projectors
ab

[k]
cd

[k], without changing k (S̃ac transforms
ab

[k]
cd

[k]

into
ab

(k)
cd

(k), as well as
ab

[k]
cd

(k) into
ab

(k)
cd

[k]). All the ”family” members are reachable
from one member of a new family also by the application of Sab’s from any of the
family members of a particular family.

In this way, by starting with the creation operator b̂1†1 , Eq. (5.18), 2
d
2
−1

”families” each with 2
d
2
−1 ”family” members follow. (In the odd I part of Ta-

ble 5.1 we correspondingly recognize four representations with the ”family” quan-
tum numbers (S̃03, S̃12, S̃56) = [( i

2
, 1
2
, 1
2
), (− i

2
,−1

2
, 1
2
), (− i

2
, 1
2
,−1

2
), ( i

2
,−1

2
,−1

2
)],

respectively, for d = (5+ 1).)
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The corresponding annihilation operators, that is the Hermitian conjugated
partners of 2

d
2
−1 ”families”, each with 2

d
2
−1 ”family” members, following from

the starting creation operator b̂1†1 , can be obtained besides with the Hermitian
conjugation also by the application of γ̃aγa on any member of any ”family” of the
Clifford odd creation operators. (The application of γ̃0γ0 on b̂1†1 leads to b̂11), all
the rest 2

d
2
−1 ·2d2−1 annihilation operators follow by the application of Sab and

S̃ab on b̂11). (Table 5.1 represents in the odd II part the annihilation operators to the
creation partners of the odd I part.)

The creation and annihilation operators of an odd Clifford character, expressed by
nilpotents and projectors of γa’s, obey the anticommutation relations of Eq. (5.15), without
postulating the second quantized anticommutation relations.

The even partners of the Clifford odd creation and annihilation operators
follow by either the application of γa on the creation operators, leading to 2

d
2
−1

”families”, each with 2
d
2
−1 members, or with the application of γ̃a on the creation

operators, leading to another group of the Clifford even operators, again with the
2
d
2
−1 ”families”, each with 2

d
2
−1 members.

It is not difficult to recognize, that each of the Clifford even ”families”, ob-
tained by the application of γa on the creation operators contains one selfadjoint
operator, which is the product of projectors only, determining the vacuum state,
Eq. (5.16). (Table 5.1 represents in the even I part these four selfadjoint operators,
together with the rest of (2

6
2
−1 − 1)·2 62−1 Clifford even operators.)

The second Clifford even group of 2
d
2
−1 ”families” with 2

d
2
−1 members,

which follows by the application of γa on the annihilation operators, has again
2
d
2
−1 selfadjoint operators, which would determine the vacuum state, if the annihi-

lation and the creation operators would exchange their roles. (Table 5.1 represents
in the even II part the second group of even operators, with ·2 62−1 selfadjoint
operators, together with the rest of (2

d
2
−1 − 1)·2d2−1 Clifford even operators.)

5.2.4 Action for free massless Clifford ”fermions” with half integer spin

The Lorentz invariant action for a free massless fermion in Clifford space is well
known

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (5.19)

pa = i ∂
∂xa

, leading to the equations of motion

γapa|ψ > = 0 , (5.20)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ > = papa|ψ >= 0 ,

(5.21)

for each of the basic states |ψmf >. γ0 appears in the action to take care of the
Lorentz invariance of the action.
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Solutions of Eq. (5.20) are for free massless ”fermions” superposition of b̂m†f ,
for a chosen ”family” f, describing internal degrees of freedom, with coefficients
depending on momentum pa, a = (0, 1, 2, 3, 5, . . . , d) of the plane wave solution
e−ipax

a

|φsfp > =
∑
m

cmsfp b̂
m†
f e−ipax

a

|ψoc > ,

b̂s†fp =
∑
m

cmsfp b̂
m†
f e−ipax

a

, (5.22)

s represents different solutions of the equations of motion, and, since they are
orthonormalized, they fulfill the relation < φsfp|φ

s ′

f ′p ′ >= δss ′ δff ′ δ
pp ′ , where we

assumed the discretization of momenta pa.

5.2.5 Solutions for n free massless Clifford ”fermions” with half integer spin with the
family quantum number

The number of creation operators b̂s†fp in d-dimensional space is

2
d
2
−1 · 2d2−1 (5.23)

for a chosen momentum pa, due to the number of families and number of members
in each family, respectively. They all anticommute, fulfilling with the annihilation
operators Eq. (5.15) ([3] andreferences therein).

When we discus more then one ”fermion”, we must keep in mind that the
number of creation operators for a particular momentum is

22
d
2

−1·2
d
2

−1

, (5.24)

since each state can be either fulfilled by a fermion or empty. Since the momentum
can be any and the solutions of different momentum are, in the discretized case,
orthogonal, the number of states is correspondingly infinite.

Since the states are for different momentum orthogonal, the creation and
annihilation operators fulfill the anticommutation relations of Eq. (5.15) for each
momentum pa.

{b̂sfp, b̂
s ′†
f ′p ′ }+ |ψoc > = δss

′
δff ′ δpp ′ |ψoc > ,

{b̂sfp, b̂
s ′

f ′p ′ }+ |ψoc > = 0 |ψoc > ,

{b̂s†fp, b̂
s ′†
f ′p ′ }+ |ψoc > = 0 |ψoc > ,

b̂s†fp |ψoc > = |ψsfp > ,

b̂sfp |ψoc > = 0 |ψoc > . (5.25)

In Ref. [3], Eqs. (47, 65, 87), discuss properties of the n fermion states.
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5.3 Conclusions

We learn in Part I of this paper, that odd products of superposition of θa’s, Eqs. (7,6)
in Part I, exist, which together with their Hermitian conjugated partners, fulfill all
the requirements for the anticommutation relations for the Dirac fermions. There
is no need to postulate the anticommutation relations. However, these ”fermions”
carry the integer spin and the corresponding charges originating in d ≥ 5 belong to
adjoint representations. No families appear in this case, that means that there is no
available operators, which would connect different irreducible representations of
the Lorentz group.

In Part II we learn that the Grassmann space offers two kinds of the Clifford
operators — γa’s and γ̃a’s. Both kinds of the Clifford objects define two kinds
of independent Clifford spaces. ”Vectors” of an odd products of γa’s or γ̃a’s,
respectively, carry the half integer spins and charges, originating in d ≥ 5, in
fundamental representations. Both kinds of odd Clifford ”vectors” together offer
two times 2

d
2
−1 ·2d2−1 creation operators and two times 2

d
2
−1 ·2d2−1 annihilation

operators. The Clifford odd creation and annihilation operators of both kinds of the
Clifford spaces for each of the corresponding irreducible Lorentz representations
separately fulfill the anticommutation relations for the Dirac fermions – without
postulating them.

To achieve that at least in one of the two groups of the Clifford odd creation
and annihilation operators fulfill all the requirements for the Dirac fermions also
when different irreducible representations are taken into account, the ”family”
quantum number must be introduced for any of the irreducible representation.

To achieve this we ”sacrifice” one of the two kinds of the Clifford vector spaces
— the one determined by γ̃a’s — and use the corresponding S̃ab’s to define the
”family” quantum number for each irreducible representation of Sab. The creation
operators b̂m†f and the annihilation operators b̂m

′

f ′ — (f, f ′) determine now family
quantum numbers and (m,m ′) determine family members quantum numbers —
fulfill the anticommutation relations of Eq. (5.15). The solutions of equations of
motion for free massless fermions, Eq. (5.20), for a particular momentum pa fulfill
correspondingly the anticommutation relations of Eq. (5.25).

Solutions of equation of motion of different moments pa obviously anticom-
mute, due to the fact that the creation and annihillation operators fullfil the anti-
commutation relations of of Eq. (5.15). There is no need to postulate anticommutation
relations as Dirac did for the second quantized fermions.

The Clifford algebra by itself, including ”families”, explains the Dirac assumption for
second quantized fermions with the half integer spins and the charges in the fundamental
representations, if charges origin in d ≥ 5 .

The reduction of the Clifford space, defined with two completely independent
operators γa’s and γ̃a’s, into the space spanned by γa’s only has as the conse-
quencethat θa”s become γa’s, while their Hermitian conjugated partners do not
exist any longer.

While in Grassmann space the Grassmann odd ”vectors” fulfill the anticom-
mutation relations for ”fermions” with integer spins and charges in the adjoint
representations (originating in d ≥ 5), and the Grassmann even ”vectors” com-
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mute, with the vacuum state in both cases, which is just the identity, the Clifford
even ”vectors” are used to determine the (rather complicated) vacuum state.
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9. N.S. Mankoč Borštnik, [ arXiv:1502.06786v1] [arXiv:1409.4981].
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12. N.S. Mankoč Borštnik, H.B.F. Nielsen, Fortschritte der Physik, Progress of Physics (2017)

1700046.
13. P.A.M. Dirac Proc. Roy. Soc. (London), A 117 (1928) 610.



i
i

“proc19” — 2019/12/9 — 11:13 — page 135 — #151 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 20, NO. 2

Proceedings to the 22nd Workshop
What Comes Beyond . . . (p. 135)

Bled, Slovenia, July 6–14, 2019

6 Deriving Locality From Diffeomorphism
Symmetry in a Fiber Bundle Formalism ?
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Abstract. We normally assume that a quantum field theory should have an action of the
form S[φ] =

∫
L√gd4x, and we say that with this form the action is local. In the present

work we however do not assume locality, but rather derive it. The point of departure for
this derivation of locality, is a diffeomorphism symmetric, very general action Swhich is
Taylor expandable as a functional. We are moreover only interested in long distance physics,
compared to the fundamental scale. We already published - in a somewhat hidden way -
such an argument in reference [2], but here we extract this derivation as the main point,
and further formulate it in fiber bundle notation.

Povzetek. Običajno privzamejo, da ima akcija v kvantni teoriji polja obliko S[φ] =
∫
L√gd4x

in rečejo, da je akcija v tej obliki lokalna. Avtorja v tem prispevku ne predpostavita lokalnosti,
ampak jo izpeljeta. Izhodišče je zelo splošna akcija S z difeomorfno simetrijo. Akcija se da
razviti v Taylorjevo vrsto kot funkcional. Zanimajo ju lastnosti te akcije pri velikih razdaljah.
To izpelijavo sta na kratko že objavila v referenci [2], tukaj pa je osrednja točka prispevka.

Keywords: Deriving locality, fiber bundles

6.1 Introduction

In a generic physical model, the property of locality is usually taken for granted. Its
actual meaning is seldom discussed at great length, and this is even more true for
nonlocality. The unreflected assumption that locality is fundamental, is reflected
in the locality of the laws of nature, as well as in the continuity equation which
tells that there are no jumps!

We usually think of locality in terms of information being localized, propagat-
ing from one spacetime point to another by at most the speed of light. Another
way of expressing it, is that all cause-and-effect relations are limited by the speed
of light. Thus, an experiment in one place is not supposed to have an immediate
influence on an experiment in an other place, this is also true for effects like the
butterfly effect, because they take time.

? Talk presented by A. Kleppe
?? E-mail: hbech@nbi.ku.dk

??? E-mail: astri.kleppe@gmail.com
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A theory is local when every degree of freedom is assigned a spatio-temporal
site xµ. That means that all interactions take place in one spacetime point, implying
that there is a system for assigning one site xµ to each degree of freedom. In a local
theory the action S can be factorized, S = S1 + S2 + ..., such that each contribution
only depends on the fields in limited regions of xµ-spacetime. This locality concept
is moreover coordinate choice dependent,

S =

∫
L(x)d4x (6.1)

In the present work we do not assume that locality is fundamental, on the
contrary, our goal is to derive locality. Our point of departure is an analytic and
diffeomorphic symmetric action, using fiber bundle formalism. The philosophical
framework of this approach is Random Dynamics [1], which postulates that at a
fundamental level, there is a ”world machinery”, meaning a very general, random
mathematical structure, which merely contains non-identical elements and some
set-theoretical notions. From this ”world machinery”, differentiability, space and
time [2], diffeomorphism symmetry [3], locality, and eventually all other physical
concepts, are to be derived.

But even after locality has been derived, some smeared out left-over nonlocal
effects remain, showing up in coupling constants (which feel an average over
spacetime, and also depend on such averages). This remaining (mild) nonlocality
is moreover supported by the Multiple Point Principle (MPP) [4].

The “locality” that we want to derive comes about by formulating the action
as an integral over spacetime of a Lagrangian density

L(φ(x), ∂φ(x)/∂x)

which only depends on the fields - such as φ - and their (up to finite order)
derivatives taken with values of the spacetime point x. Our starting point is a
diffeomorphic symmetric action S[φ], a fiber bundle of dimension ≥ 4, and the
idea that we can get genuine locality (not super locality) along p = 4-dimensional
p-surfaces. When you have a field configuration on your fiber bundle (a compact
fiber bundle that you can integrate over), it is namely in the spirit of fields that
you can only make various local functions of them.

6.2 Diffeomorphisms

A diffeomorphism is an isomorphismψ on a smooth manifoldM (thus preserving
the structure ofM); and the group of diffeomorphisms onM is the set of such
mappings,

D(M) = {ψ :M→M}

Every diffeomorphism is a homeomorphism, but not every homeomorphism is
a diffeomorphism. To be diffeomorphic is a much stronger condition, since for a
mapping ψ to be diffeomorphic, both ψ and its inverse need to be differentiable;
while to be homeomorphic it suffices that ψ and its inverse are both continuous.
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We can always define a coordinate system on the manifold, whereby we iden-
tify the points on the manifold in terms of the coordinates. Diffeomorphisms can
be perceived as synonymous with reparametrizations, which in local coordinates
xµ are analytic or at least smooth maps,

ψ : xµ → xµ + ηµ = x ′µ, (6.2)

and in changing coordinates inM we establish the transformation rules between
two different coordinate systems. We can introduce a new coordinate system and
transform to it, or we can just keep our first coordinate system, and then intoduce
a diffeomorphism

φ :M→M
which is the same as “moving” the points on the manifold, after which we have
to evaluate the coordinates of the new points. We then think of diffeomorphism
invariance as reparametrization invariance, but the diffeomorphic symmetry exists
whether we use coordinates or not.

Our first challenge is to formulate what diffeomorphism symmetry means in
the case of a functional over the fields onM.

6.3 Analyticity

We do not assume that our initial action is local, so it may in principle comprehend
nonlocal terms of the form f(x, y), which depend on more than one spacetime
point.

An analytic function is locally given by a convergent power series. There is
however no demand that a power series must depend on a single variable, it can
just as well be an infinite series of the form

f(x, y, · · · , z) =
∞∑

jx,jy,··· ,jz=0

ajx,jy,··· ,jz(x− Cx)
jx(y− Cy)

jy · · · (y− Cz)
jz (6.3)

where jx, jy, · · · are natural numbers, ajx,jy,··· ,jz and x, y, .., z are variables, and
Cj constitute the ’center’.

The theory of such series is trickier than for single-variable series, with more
complicated regions of convergence, but for example the power series

∑∞
n=0 x

n
1 x
n
2

is absolutely convergent in the set {(x1, x2) : x1x2 < 1} between two hyperbolas.
This means that a nonlocal function can be analytic, implying that analyticity does
not in itself guarantee locality. Our action, however, is not only analytic but also
diffeomorphic symmetric, and we want to prove that this is enough to make it
local. It remains to formulate analyticity in the case of a functional over the fields
onM.

6.4 The action

In our action S[φ], the function φ is defined over the manifoldM. For a field on a
manifold, a value in one single point has no signification (because it is of Lebesgue
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measure = 0), in the sense that in a continuous field a given point can always be
replaced by some small integral piece, so these fields must be integrated over.
The integration is taken over such small integral pieces, and the final, generic
action is some complicated combination of these integrals. Moreover, if you have
diffeomorphism symmetry, you cannot have boundaries on your integrals, so
every integral must be taken over the whole space (which is assumed to be a
connected manifold). Our action must thus be a function of integrals over the
entire space.

By loosely identifying a point onMwith its coordinates xj, the summing over
the various j=1,2,...,N gets replaced by integrals over the coordinate variable sets
on the manifold, and the Taylor expansion of the functional for a single function
φ(x) is then defined as

S[φ] = S[φ = 0] +

∫
δS

δφ(x)
φ(x)ddx+

1

2!

∫ ∫
δ2S

δφ(x)δφ(y)
φ(x)φ(y)ddxddy+ · · · =

(6.4)

=
∑
n

1

n!

∫
n· · ·
∫

δnS

δφ(x1) · · · δφ(xn)
|(φ = 0)φ(x1) · · ·φ(xn)ddx1 · · ·ddxn (6.5)

Initially we only consider a subset of diffeomorphism transformations that leave
the local d-volume invariant, i.e. a subset of diffeomorphism transformations
x→ x ′(x) such that

det

(
∂x ′µ(x)

∂xν

)
= 1, (6.6)

which means that the d-volume of spacetime

εµν···τdx
µdxν · · ·dxτ (6.7)

remains invariant under this subset of diffeomorphism transformations.
In the second step, we include “pseudoscalar” fields P(x) that have other

transformation properties than mere scalars under diffeomorphism transforma-
tions, transforming as

P(x)→ P(x ′)

(
∂x ′µ(x)

∂xν

)
(6.8)

Imposing the diffeomorphism symmetry coordinate shift x→ x ′, preserving the
integral ddx = ddx ′ on the Taylor expansion

S[φ] ∼
∑

n=0,1,..

φ(x1) · · ·φ(xn)ddx1 · · ·ddxn (6.9)

leads to the requirement that the coefficients, i.e. the derivatives

δS

δφ(x1) · · · δφ(xn)
(6.10)

must be invariant in a similar way under diffeomorphism transformations, except
if some of the xj’s are infinitely close or coinciding, which implies that we get
terms like (6.9) multiplied with δ functions δ(xj − xk). When including the terms
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coming from δ function forms at the coincidences, we however also get integrals
over various products of the fields and their derivatives, though the integrals
allowed by the diffeomorphism symmetry turn out to be such that the quantities
getting integrated in the appearing integrals, are all time “pseudoscalars”, like the
P(x)’s themselves.

This implies that the total Taylor expansion runs out to be a function of a
lot of integrals over various pseudoscalars, which can be formed in terms of the
various variables/fields in the theory.

With the condition of diffeomorhism invariance, these integrals must thus be
pseudoscalar (i.e. transform as

√
g), resulting in an action which by definition is

pseudoscalar, that is, a function (not a functional) of all the various pseudoscalar
terms that we can construct, and we can make differentiation through all these
pseudoscalar contributions.

We can write the functional derivative of S as a partial derivative of S with
respect to all the different integrals over the whole space summed over, multiplied
by the functional derivatives of the latter,

δ[S]

δξ(x)
=
∑
k

∂S

∂Vk
δVk

δξ(x)
=
δSeff

δξ(x)
(6.11)

where
Seff =

∫
M

∑
k

∂S

∂Vk
Pk(x)d4x, (6.12)

and Pk(m) ≈ Lk(x)
√
g(x) = Lk(m)

√
g(m) are pseudoscalars, Lk(m) are La-

grangian densities, and Vk are the integrals

Vk =

∫
Pk(m)dm, (6.13)

wherem ∈M are spacetime points/events. In local coordinates xµ onM, xµ(m)

are the coordinates of the event m, and d4x is a measure in the coordinates xµ,
such that d4x = dx1dx2 · · ·dxd ≡ dm.
In general relativity the transformation property of the metric tensor field gµν is

g̃µν(x) =
∂ψη

∂xµ
∂ψρ

∂xν
gηρ(ψ(x)), (6.14)

we infer that by having terms like a second order tensor field

g = gµν
∂

∂xµ
∂

∂xν
, (6.15)

we can formulate a theory with effective locality (and no super-locality), there
will however still be a certain nonlocality, because with the assumption of local
diffeomorphism symmetry, the effective action comes out as

Seff =

∫
L(pseudoscalar)dx

1 ∧ dx2 ∧ · · ·dxd (6.16)

although with a very important detail: The coupling constants or coefficients
become complicated integrals over the whole manifold/base spaceM, i.e. over all
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spacetime including both future and past. So in this restricted sense the resulting
theory is still non-local, although the non-locality only comes in via the coupling
constants.

In our Taylor expansion philosophy, there is an interesting point: If we just
take the usual inverse metric tensor field gµν as the field provididng the indices to
be contracted with the ones from the derivative, on say the scalar fields φ(x), we
cannot obtain in a Taylor expansion that only provides polynomials, the needed
pseudoscalar factor

√
g(x), where g(x) = det(gµν). The reason is that the square

root is singular - at zero field - thus this conventional model of general relativity
does not work for our philosophy, even in the case of a purely bosonic theory.
So even for the purely bosonic theory - wherein one a priori expects that the
gravity based on just the metric tensor would be o.k. - we cannot obtain in our
Taylor expansion in the usual action form, because of the square root singularity is
needed. In fact one can easily see that all polynomially constructed pseudoscalar-
like field combinations based on the metric tensor alone, obtain transformation
rules of the form of being multiplied with an even power of the det ∂x

µ

∂x ′ν
factor.

But for the construction of a diffeomorphism invariant integral we need an odd
power, namely the “pseudoscalar” replacing

√
g(x) which transforms with this

determinant of the partial derivative matrix to first power only.
One could thus claim that we have a (kind of) prediction that there should be

vier beins (or some replacement for vierbeins) rather than the simple metric tensor
in the theory where locality is obtained in the spirit of our derivation. And this
claim is of course only of much interest in the case where we ignore the fermions,
because with fermions we need the vierbein anyway.

As a consequence of this consideration we should say that the typical example
of fields to be used for illustrating our model for deriving locality, should have a
vierbein among the fundamental fields.

6.5 Fiber bundles

A fiber bundle is often simply written as (E, B, F, π), where E, B and F are topo-
logical spaces, and π is a continuous map. E is known as the total space of the
fiber bundle, B as the base space, F is the fiber, and in small regions of E, the fiber
bundle π : E→ B behaves like a map from B× F to B. This is a local relation that
is not necessarily globally valid.
A simple example of a fiber bundle is the S1 × R surface of an infinitely long
cylinder, which by definition is a differentiable manifold. Here the total space
(E) is the entire cylinder, the base space (B) is the circle S1 running around the
cylinder, and the fiber (F) is R.

The fiber that runs through b ∈ B is called a fiber over b, and is formally
defined as the pre-image π−1(b) ∈ E, which is diffeomorphic to F. The fiber over
c ∈ B is a different fiber, but the fibers are all diffeomorphic to each other. It is this
set that constitutes a fiber “bundle”, in the sense that while there is only one total
space E and one base space B, there is a whole set of fibers; we say that E is a fiber
bundle of F over B.
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In the case of the cylinder, the pre-image π−1(B) of B is trivial, i.e. it is the
entire total space, π−1(B) = B× F = E, so the topology of the total space E is the
usual topology on a 2-dimensional manifold. In the general case, however, it is
only the pre-image of an open set O in the base space that is (locally) trivial, i.e.
π−1(O) ∼ B× F.

Now, since E is locally diffeomorphic to a product space, a point p in E can
be written as (b, f) where b ∈ B and f ∈ F, and π: (b, f) → b. As we take b back
to E under π−1, the pre-image π−1(b) of b is not a point, but a subset of E that
is diffeomorphic to F under π. Around any point in B, we can moreover find at
least one neighbourhood Oi ⊂ B such that its pre-image π−1(Oi) is trivial, i.e.
diffeomorphic toOi×F. There is thus a mapping (ψ,π) : π−1(Oi)→ Oi×F, where
ψ : π−1(Oi)→ F is a homeomorphism.
A different open set Ok ⊂ Bwill have different pre-image in E, and projected on
F by a different homeomorphism φ : π−1(Ok) → F. Since π−1(Oi) and π−1(Ok)
are connected to F by ψ and φ, respectively, the intersection π−1(Oi) ∩ π−1(Ok) is
also connected to F by these two homeomorphisms, from which we can construct
the diffeomorphisms ψ ◦ φ−1 and φ ◦ψ−1 : F→ F. Such diffeomorphisms define
the structure group G(F), which is a subset of the group of diffeomorphisms D(F)

on F. Every transition function of the fiber bundle must belong to the structure
group.
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In the case of the cylinder, G(F) is the identity element, G(F) = I. On the
Möbius band, most of the transition functions can be identified with the identity,
but at least one of them must be negative, i.e. G(Möbius) ∼ {I,−I}.

6.6 Analyticity in fiber bundle notation

As a visualisation of the relation between fiber bundles and tangent spaces, con-
sider all of the unit tangent vectors on the sphere. Over every point in S2, there
is a circle of unit tangent vectors all of which constitute a principal bundle E on
the sphere with the circle S1 as fiber, and every tangent vector projects to its base
point in S2, giving the map π : E→ S2.

For our purpose, we identify the 4-dimensional spacetime manifold as the
basis space, i.e. B = M(spacetime), and the total space is then identified as the
p-dimensional space E = B× F.

We say that the functional S[φ], φ : B→ E, is “analytic” provided we have a
convergent Taylor expansion

S[φ] = S[φ0] +

∫
δS

δφi(m)
(φi(m) − φi0(m))dm+ · · · (6.17)
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wherem ∈ B, and

δS

δφ(m)
∼

δS

δφi(m)
dφi = dS ∈ [cotangent space for F] (6.18)

Locally in B-space you have coordinates, so we define ∆φi(m) as

∆φi(m ′)|(at m) = (φi(m ′) − φi0(m
′))

∂

∂φi(m)
(6.19)

which is a tangent vector, and δS/δφi(m) is the basis of the tangent space. In terms
of the coordinates xµ = (x1, x2, · · · ), the basis in the tangent space is

∂

∂xµ
= τµ, (6.20)

and the tangent vectors tµτµ ∈ T , where T is the tangent vector space.
The p = 4 surfaces should run through the d-dimensional E-space so as to

have their 4-dimensional tangent vector space embedded (naturally) in the tangent
space of B at the pointm, in such a way that it is just the one that is spanned by
the four tangent vectors Va = Vµaδ/δx

µ. Now

δS

δφi(m)
∆φi(m)|(at m) =

δS

δφi(m)
dφi∆φ(m ′)|(at m ′) = dS(m)∆φ(m)|(at m)

(6.21)
where

dφi
δ

δφk(m)
= δik, (6.22)

In order to express this in the language of functionals, we expand S around φ0:

S[φ] =

∞∑
n=0

1

n!

δnS[φ0]

δφi1(m1)δφi2(m2)..δφin(mn)

(
φi1(m1) − φ

i1
0 (m1)

)
× (6.23)

×
(
φi2(m2) − φ

i2
0 (m2)) · · · (φin(mn) − φin0 (mn)

)
dm1 · · ·dmn (6.24)

and then define a dual function to the tangent space vector, i.e. a covector,Dφi(m),
by using the tangent space basis vectors

δ

δφj(m ′)
(6.25)

to define the number

〈Dφi(m)|
δ

δφj(m ′)
〉 = δijδ(m−m ′) (6.26)

One tests δ(m−m ′) by a test function K(m),

K(m)Dφi(m)
δ

δφi(m ′)
= δijK(m

′) (6.27)
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Is this the right definition of Dφi(m)? Dφi(m) should be in the dual space of the
functional tangent space in which the basis vectors are δ/δφj(m ′). So Dφi(m) is
defined by defining its action

〈Dφi(m)|
δ

δφj(m ′)
〉 = δijδ(m−m ′) (6.28)

Inserting a product of n of these delta-functions in the action, we obtain

S[φ] =

∞∑
n=0

∫
n· · ·
∫
1

n!

δnS[φ0]

δφi1(m1)δφi2(m2)..δφin(mn)

〈Dφi1(m1)|
δ

δφj1(m ′1)
〉 · · · 〈Dφin(mn)|

δ

δφjn(m ′n)
〉·

·(φi1(m ′1)−φ
i1
0 (m ′1))(φ

i2(m ′2)−φ
i2
0 (m ′2)) · · · (φin(m ′n)−φ

in
0 (m ′n))dm

′
1 · · ·dm ′n

(6.29)

Now define
∆φ =

∫
(φj(m ′) − φj0(m

′))
δ

δφj(m ′)
dm ′ (6.30)

we get

S[φ] =

∞∑
n=0

∫
n· · ·
∫
1

n!

δnS[φ0]

δφi1(m1)δφi2(m2)..δφin(mn)

Dφi1(m1)⊗ · · ·Dφin(mn)∆φ⊗ · · · ⊗ ∆φ =

=

∞∑
0

δ⊗S(∆φ)⊗n (6.31)

Actually the simple requirement that (6.29) should be constant when the arguments
mi are all different, is only true if we restrict the diffeomorphisms by which we
shuffle them around, to those transformations that keep the det(∂x

j

∂x ′
) equal to unity.

For more general diffeomorphisms we have to modify the functional derivatives
for volume-non-preserving diffeomorphisms, by inserting density factors that
are constant rather than simply derivatives. This is achieved by multiplying the
functional partial derivatives by “pseudoscalar” correction factors, like (6.13).

6.7 Diffeomorphisms of the action

Let us consider a symmetry under a group of bundle maps f:

f : E→ E bijective; and f ◦ π = π ◦ f is a requirement for bundle map (6.32)

This induces a transformation onM, f̃(M)→M so that if

π ◦ f(e) = f̃(e)⇐ e ∈ F(m) (6.33)

f̃(m) = m ′, then if π ◦ f(e) = m ′ ⇔ π(e) = m, (6.34)

the symmetry transforms φ1 → φ2 where
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• f : E→ E

• f̃ :M→M (defined from fwhen bundle map).
• π ◦ f = f̃ ◦ π,

i.e. f ◦ π = π ◦ f⇒ the fiber F over say π−1(m) is mapped onto/into itself, where
F is a function F(V1, ....Vk, φi10 |scalar, ...). For e ∈ π−1(m), π ◦ f(e) = f ◦ π(e) is
independent of e, except throughm. So for eachm there is a map fm(e) inside the
fiber onm,

φ2(e) = fπ(e)(φ1(f̃
−1(π(e)))) (6.35)

A true diffeomorphism is defined by choosing an f̃ rather than f, and then deduce
a f according to semi-local rules like

gστ → ∂xσ

∂xν
∂xτ

∂xµ
gνµ (6.36)

This is semi-local: it only depends on derivatives and values near or at x, and then
going to x. Then we can almost choose f̃ freely and still get ∂xν/∂xρ, etc.

Assuming:

• that we have so much symmetry that all diffeomorphic maps f̃ :M→M are
achievable.

• that the full transformation f : E→ E as far as the moving around on the fiber
is concerned, i.e. fm for all m ∈ M, is determined by derivations of f̃ in the
neighbourhood ofm,

then we can prove that we can choose some subset of f̃’s in the supposed symmetry
group so that it follows that

δnS

δφi1(m1)δφi2(m2) · · · δφin(mn)
(6.37)

must be the same even if one moves any of the mi’s, except if this mi coincides
with (up to infinitesimals) anotherm, saymj.

This implies first that if we ignore any grouping of themi, i.e. if they are all
different, then (6.37) is independent of the mi’s. We should and could (if we think
of true diffeomorphisms with usual tensors) also assume that

• we can arrange f̃ in such a way that the subsequent f can locally “rotate” or
“transform” indices (on the φ’s) so that the pseudoscalars are not transformed,
so there is only a dependence on φi(mi).

With the assumption that we have a diffeomorphism invariant “expansion start
field φ0” which is constant for scalars, and otherwise zero, the form F(φi10 , · · ·φ

in
0 )

becomes constant over the entire base space product, and so the derivative

δnS

δφi1(m1)δφi2(m2) · · · δφin(mn)
(6.38)

is only allowed in the form F(φi10 (m1)|(scalar), · · ·φin0 (mn)|(scalar)), where the
scalars are the φij0 -values corresponding to scalar components of the φij(m). Then
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only Dφi(m) with a scalar component will be relevant in

δ⊗nS =

∫
n· · ·
∫

δnS

δφi1(m1) · · · δφin(mn)
Dφi1(m1) · · · Dφin(mn)dm1 · · ·dmn =

= δ⊗nS| (projected onto
the ”scalar” component)

∫
Dφi1(scalar)(m1) · · · Dφ

in
(scalar)(mn)dm1 · · ·dmn =

= VnF(φi10 |sc, φ
i2
0 |sc, · · ·φin0 |sc) (6.39)

The quantity (6.38) depends on a background field which a priori is a combination
of all the fields in the theory, but for any fixed value of the fields it depends on
n event-pointsm1 ,m2,...mn. Now in (6.39) this dependence on the set of the n
m-values (m1, ...,mn) gets intergrated over them’s with a weighting by the duals
of the partial derivatives called D(mi), i.e. by a product of n such D(mi)’s. This
contraction with such D’s leads to (6.39).

It is with the simplification to the case of a constant start field φ0, that we
get that (6.38) can only be constant - as long as the arguments (m1,m2, ...,mn) do
not coincide. The background is that while we in the general case Taylor expand
around start functions that are not necessarily diffeomorphism invariant, for the
simplicity of the argument, we restrict ourselves to scalar or pseudoscalar fields
φ. Then by transformation with det{∂x

′µ

∂xν
} = 1, we can argue that merely with

invariance under the restricted diffeomorphisms, in order to keep the total action
S invariant it must not change as themi’s move around on the base manifold B,
unless some of themi’s are moved to a place with a different φ0(mi) value.

But inside a range with given value of the (φ0(m1), ..., φ0(mn)), the diffeo-
morphism invariance implies that the expression (6.38) should be unchanged by
such moving around, which in its turn implies that the expression (6.38) can only
be of the form F(φ0(m1), ..., φ0(mn)).

If we look for components with more complicated types of transformation,
like vector components or tensor components, we could consider diffeomorphism
transformations that are restricted in a different way, so that the components
considered remain unchanged. The question is if the separate nmi’s can still be
moved around for such restricted diffeomorphisms, of course with the exception
of coinciding points, since we naturally cannot move such points to different
places with a continuous diffemorphism. Such an appropriate “moving around
diffeomorphism” is in general easy to construct, because we do not require all
vector components in a given direction to be unchanged under the diffeomorphism,
but only certain components infinitesimally near the pointsm1 ,m2 ,...,mn that
we want to move. With the freedom to move as we please sufficiently far away
from the n special points, it is easy to make the desired transformations, bringing
the n mi’s wherever we like, modulo coincidence. It means that for all these
components of the fields, we can deduce the form F(φi10 (m1), ..., φin(mn)) for the
expression (6.38). Here the function F could of course be a complicated function
of its n arguments, and its form depends on the original “fundamental” action
functional S. We just derived the existence of such an F.

To sum up, we argue that as a consequence of diffeomorphism invariance,
the functional derivatives of the action S w.r.t. pseudoscalars, are constant over
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the basis space. To come through this argument, we simplify by only considering
the case where the function from which we expand “φ0 ”, is diffeomorphism
invariant. That implies that all components which are not genuine scalars will be
zero, because the field would otherwise tranform under the diffeomorphisms. But
even the scalar fields have to be constant over the base space ( ∼ spacetime), and
the pseudoscalars must be zero in order to keep the reparametrization invariance
of the “expansion start function φ0”. This assumption is all right if we have
assumed that S is “analytic” over the entire space of sections, so that we have
Taylor expandability for all start functions, also for diffeomorphism invariant ones.

Let us note that the ∆φwhich of course are present in the Taylor expansion,
have been left out in (6.39). Thus in (6.39) there is no dependence on the fields
(=cross sections), apart for the dependence on the start field; but those are essen-
tially taken to be zero. At least for a start field that is zero all over, (6.39) only
depends on the action S, but not on any field configuration.

The quantity δ⊗nS in (6.39) thus is a tensor in function space in the sense that
it is expanded on the D(m)’s, it is in fact a product of n such D(m), which in the
last step in equation (6.39) is embedded in the definition of the V’s.

So for the separate points at which we differentiated, we only get non-zero
functional differential quotients (6.38) for differentiation w.r.t. pseudoscalars, and
then the differential quotients must be constant in the base space. We only took the
true scalars in the start-function to be non-zero, and they are also constant over
the base space. Now we get the integrals∫

M
(φi(m) − φi0(m))dm = Vi (6.40)

where i is “pseudoscalar”. Our Taylor expansion then takes the form

S[φ] =

∞∑
n=0

1

n!

n∑
p=0

(
n

p

)
fnp(V

1)n−p(V2)p = F(V1, V2, φ0) (6.41)

where Vk =
∫
M Pkdm only depend on “pseudoscalar” components of φi(m), and

we shall think of φ0 = 0.
There are also the cases where two or more of themi’s are infinitely close/coin-

ciding. In such cases we however only get non-negligible contributions to S[φ] if
we let the derivative

δnS

δφi1(m1)δφi2(m2) · · · δφin(mn)
(6.42)

have factors δ(mi − mj). Derivatives of δ-functions may also contribute, then
the derivative (6.42) will have a series of terms classified by clusterings of the
mi’s. The number of ways of creating clusters corresponding to the partition
n = p1 + p2 + · · ·+ pl is(

n

p1, p2, · · · , pl

)
=

n!

p1!p2! · · · , pl!
(6.43)

For each cluster with a number of say pmi-values, we need a δ-function with p−1
delta functions δ(mi−mj) to compensate for p− 1 of the dmi integrations, so that
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only one integration remains and gives us an all-over the spacetime manifold B
integral∫

δnS

δφi1(m1)δφi2(m2)...δφin(mn)
dmi

∝ Π(p−1 of the i-values)δ(mi −mj) · · ·Π(p of the i-values)dmi · · · (6.44)

When the φik ’s are pseudoscalar, the integral
∫
A

δS
δφik

ddx integrated over a region
A, will be the same as the integral over the image f̃(A) of this A, by a diffeo-
morphism f̃ of the base spaceM = B. This corresponds to the diffeomorphically
transformed quantity i.e.∫

A

δS

δφik
ddx =

∫
f̃(A)

(with
δS

δφik
ddx transformed by the f̃). (6.45)

Now, the integral
∫
A
ddx actually gives the formal integral over the coordinates

xl for the region A. By using an active diffeomorphism to push it around to f̃(A),
and also correspondingly transforming the coordinates, we get the same number
of coordinate in all points that are related by the diffeomorphism - i.e. we get the
same integral, ∫

A

ddx =

∫
f̃(A)

(ddx transformed under f̃). (6.46)

We indeed see that in order to have diffeomorphism invariance, small regions
(with δS/δφ(i−k) removed) must transform in such a way that they are the same
all over. Generalized this means that by taking the φjk as pseudosacalars we
indeed get the constancy.

6.8 Locality

The invariance under transformations that only transform f in the neighbourhood
of one of the clusters, will only allow a non-zero contribution when the δ-functions
of the cluster with the associated derivatives in the δ-functions eventually run out
to extract a “pseudoscalar” component (of order p) from the product

(φik(mk) − φ
ik
0 (mk))(φ

il(mk) − φ
il
0 (mk)) · · ·

that it is going to multiply.
So apart from the S[φ0]-term (though it best to just assume S[φ0]=S[0]),

the only non-zero cluster-contributions are total spacetime integrals over “pseu-
doscalar” combinations of the fields, such as∫ √

g(m)gµν(m)∂µφ(m)∂νφ(m)dm (6.47)

Here we could think of
√
g as just a (fundamental) pseudoscalar field transforming

under diffeomorphism symmetry with a determinant of the transformation partial
derivatives,

√
g(x)→ det(

∂xν

∂xµ
)
√
g(x ′) (6.48)
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arranged in such a way that
∫√

gdm is diffeomorphism invariant.
Everything in the Taylor expansion after choosing φ0 = 0 (by field re-

definition) becomes expressed by means of all integrals over M of the type
Vk =

∫
M Pkdm. For sufficiently high n, we can expect to get the same Pk out of

several of the clusters into which we partition such “big enough” n. In that case
we might evaluate the

1

n!

(
n

p1 · · ·pl

)
(6.49)

and count the possibilities, but it is not really needed because the weight coeffi-
cients for the term combination can only be obtained if we somehow know the
fundamental action functional S. We have already seen that we apriori shall get a
series of terms in which all powers and all products of such powers of the integrals
Vk =

∫
M Pkdm occur. That is to say, we get an expression of the form

S[φ] =

∞∑
k1,k2,···kq

Ck1k2···kqV
k1Vk2 · · ·Vkq (6.50)

which in fact is the Taylor expansion for any function in the variables (V1, V2, ..),
provided one chooses the Ck1k2···kq appropriately.

So all we have derived is that S[φ] is a function of these variables (V1, V2, ..),
but we do not know which function. The variables on which are allM-integrals
of the “pseudoscalar” field combinations Vk. Now we shall however follow our
earlier work where we derived an effective locality.

The main use of the action is via the Euler-Lagrange equations. Suppose we
have a field ξwhich can even be a component of some tensor field, or whatever;
then the Euler-Lagrange equation for ξ is

δS[φ]

δξ(x)
= 0 (6.51)

and now, since we derived S to be of the form S[V1, V2, ..], we get

δS[φ]

δξ(x)
=
∑
k

∂S[φ]

∂Vk
δVk

δξ(x)
= (6.52)

=
∑
k

∂S[φ]

∂Vk
δPk
δξ(x)

(mod partial integration) =
δSeff

δξ(x)
(6.53)

where
Seff =

∫
M

∑
k

∂S

∂Vk
Pk(x)dm (6.54)

which by construction is local, provided the coefficients ∂S/∂Vk do not depend
on the Vk’s. But these Vk are “constants” in the sense that they do not depend on
space and time, i.e. not onm ∈M (careful with double labeling withm and x).

So we got locality except that the coupling constants via the ∂S/∂Vk’s depend
on integrals taken over all spacetime.
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6.9 Conclusion

We have derived locality from an analytic and diffeomorphism symmetric, very
general action S, except for the mildly non-local coupling constants. This non-
locality would not be easy to observe, because it is difficult to establish the de-
pendence of the effective action on the derivatives of the (over all spacetime)
integrals Vi of the coupling constants. The problem is that we do not know the
original/fundamental action, and in any case, one would have to determine these
derivatives by simple measurements (renormalizing the couplings). The only way
out would be that we either manage to successfully guess the fundamental action
S, or use the fact that there will appear a consistency problem in the integrals Vi,
being integrals over a spacetime development on which the constants themselves
depend (in a presumably complicated way).

Very mild assumptions about general properties of the fundamental action
S, combined with such a consistency restriction, might however lead to interest-
ing results. We indeed argued that our beloved “law of nature” Multiple point
principle can be derived within such a consistency philosophy.
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Abstract. It is by now well established that non-relativistic matter in the Universe is
dominated by dark matter, the origin and nature of which still remains a mystery. Although
the collisionless dark matter paradigm works very well at large distances, a few puzzles at
galactic scales arise. These problems may be tackled assuming a self-interacting dark matter.
If dark matter is accumulated inside a star it will modify its evolution and its properties,
such as mass-to-radius profiles and frequency oscillation modes. Asteroseismology is a
relatively new, powerful tool that allows us to constrain dark matter models, offering us
complementary bounds to the results coming from other means, such as collider or direct
searches. I will present here the main results we have obtained assuming that the dark
matter particle is a boson, which inside a star is modelled as a Bose-Einstein condensate with
a polytropic equation-of-state. We have computed i) the radial and non-radial oscillation
modes of light clumps of dark matter made of ultra light repulsive scalar fields, and ii) the
mass-to-radius profiles as well the frequencies of radial modes of admixed dark matter
strange quark stars.

Povzetek. Temna snov poskrbi za večino snovi v vesolju. Kaj je temna snov zgolj ugibamo.
Z običajno snovjo temna snov (skoraj) ne interagira. Avtor meni, da lahko nekaj izvemo o
temni snovi iz opazovanja zvezd, v katerih se je nakopičila temna snov, ker se lastnosti takih
zvezd razlikujejo od lastnosti običajnih zvezd — denimo v razmerju med maso in radijem in
v frekvenci oscilacij. Avtor predstavi model, ki predpostavi, da tvorijo temno snov bozoni,
ki se znotraj zvezde obnašajo kot Bose-Einsteinov kondenzat, opisljiv s politropno enačbo
stanja. Izračunal je: i. Radialne in neradialne nihajne načine zelo lahkih gruč temne snovi iz
skalarnih polj, z odbojno medsebojno interakcijo. ii. Masne profile v odvisnosti od radija in
frekvence radialnih nihajnih načinov za zvezde, ki jih sestavljajo čudni kvarki s primesjo
temne snovi.

Keywords: Composition of astrophysical objects; Asteroseismology; Self-interacting
dark matter; Bose-Einstein condensates.
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7.1 Introduction

Since the pioneer work of F. Zwicky about the dynamics of the Coma galaxy
cluster in the 30’s [1], and the observations made by V. Rubin to determine the
rotation curves of galaxies a few decades later [2], we are convinced that most
of the non-relativistic matter in the Universe is dark, usually referred to as cold
dark matter. In modern times current well-established data coming from many
different sources confirm the existence of dark matter [3], although its nature and
origin still remains a mystery. For a review on dark matter see [4,5], and for recent
reviews on dark matter detection searches see [6–8].

Usually dark matter (DM) in the standard parametrization of the Big-Bang
cosmological model is assumed to be made of weakly interacting massive particles,
a conjecture which works very well at large (cosmological) scales (≥ Mpc), but
encounters several problems at smaller (galactic) scales, like the core-cusp prob-
lem, the diversity problem, the missing satellites problem and the too-big-to-fail
problem [9]. These problems may be tackled in the context of self-interacting dark
matter [10,11], as any cuspy feature will be smoothed out by the dark matter
collisions. In addition, if dark matter consists of ultralight scalar particles with a
massm ≤ eV , and with a small repulsive quartic self-interaction a Bose-Einstein
condensate (BEC) may be formed with a long range correlation. This scenario has
been proposed as a possible solution to the aforementioned problems at galactic
scales [12–14].

Boson stars are star-like, self-gravitating bosonic configurations, where bosons
are exclusively trapped in their own gravitational potentials. Boson stars have been
studied in [15–23], see also [24–27] for Newtonian self-gravitating Bose-Einstein
condensates. The maximum mass of bosons stars in non-interacting systems was
found in [15,16], while in [17,18] it was shown that self-interactions can cause
significant changes. In [20,21] the authors constrained the boson star parameter
space using data from galaxy and galaxy cluster sizes.

Unlikely many other forms of matter, compact objects [28–30], which are
formed at the end stages of stellar evolution, are unique probes to study the
properties of matter under exceptionally extreme conditions. The matter inside
such objects is characterized by ultra-high matter densities for which the usual
classical description of stellar plasmas in terms of non-relativistic Newtonian
fluids is inadequate. Therefore, such very dense compact objects are relativistic
and as such, they are only properly described within the framework of Einstein’s
General Relativity (GR) [31].

Strange quark stars [32–37], at the moment hypothetical objects, can be viewed
as ultra-compact NSs. Since quark matter is by assumption absolutely stable, it may
be the true ground state of hadronic matter [38,39], and therefore this new class
of relativistic compact objects has been proposed as an alternative to typical NSs.
In fact strange quark stars may explain the observed super-luminous supernovae
[40,41], which occur in about one out of every 1000 supernovae explosions, and
which are more than 100 times more luminous than regular supernovae. One
plausible explanation is that since quark stars are much more stable than NSs, they
could explain the origin of the huge amount of energy released in super-luminous
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supernovae. Many works have been recently proposed to validate its existence in
different astrophysical scenarios [42,43].

It is well-known that the properties of stars, such as mass and radius, depend
crucially on the equation-of-state. Furthermore,the presence of DM inside a star is
expected to influence the structure, the evolution as well as certain properties of
the object, such as mass-to-radius profiles and frequency oscillation modes. Even
if dark matter does not interact directly with normal matter, it can have significant
gravitational effects on stellar objects DM that can influence evolution and struc-
ture of compact objects [44–58]. Given the recent advances in Helioseismology and
Asteroseismology in general, studying the oscillations of stars and computing the
frequency modes offer us the opportunity to probe the interior of the stars and
learn more about the equation-of-state, since the precise values of the frequency
modes are very sensitive to the thermodynamics of the internal structure of the star
[59]. For previous works on radial oscillations of stars see [60–68] and references
therein.

7.2 Impact of DM on strange quark stars

In the first part of the presentation we discuss the impact of bosonic self-interacting
DM on properties of strange quark stars.

7.2.1 Mass-to-radius profiles

-Structure equations: We briefly review relativistic stars in General Relativity (GR).
The starting point is Einstein’s field equations without a cosmological constant

Gµν = Rµν −
1

2
Rgµν = 8πTµν (7.1)

where we have set Newton’s constant equal to unity, G = 1, and in the exterior
problem the matter energy momentum tensor vanishes. For matter we assume a
perfect fluid with pressure p, energy density ρ and an equation of state p(ρ), while
the energy momentum trace is given by T = −ρ+ 3p. For the metric in the case of
static spherically symmetric spacetimes we consider the following ansatz

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2 (7.2)

with two unknown functions of the radial distance f(r), g(r). For the exterior
problem one obtains the well-known Schwarzschild solution [69]

f(r) = g(r)−1 = 1−
2M

r
(7.3)

whereM is the mass of the star. For the interior solution we introduce the function
m(r) instead of the function g(r) defined as follows

g(r)−1 = 1−
2m(r)

r
(7.4)
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so that upon matching the two solutions at the surface of the star we obtain
m(R) =M, where R is the radius of the star. The Tolman-Oppenheimer-Volkoff
(TOV) equations for the interior solution of a relativistic star with a vanishing
cosmological constant read [70,71]

m ′(r) = 4πr2ρ(r) (7.5)

p ′(r) = −(p(r) + ρ(r))
m(r) + 4πp(r)r3

r2(1− 2m(r)
r

)
(7.6)

where the prime denotes differentiation with respect to r, and the equations are to
be integrated with the initial conditions m(r = 0) = 0 and p(r = 0) = pc, where
pc is the central pressure. The radius of the star is determined requiring that the
pressure vanishes at the surface, p(R) = 0, and the mass of the star is then given
byM = m(R).

-Two-fluid formalism: Now let us assume that the star consists of two fluids,
namely strange matter (de-confined quarks) and dark matter with only gravi-
tational interaction between them, and equations of state ps(ρs), pχ(ρχ) respec-
tively. The total pressure and the total energy density of the system are given by
p = ps + pχ and ρ = ρs + ρχ respectively. Since the energy momentum tensor of
each fluid is separately conserved, the TOV equations in the two-fluid formalism
for the interior solution of a relativistic star with a vanishing cosmological constant
read [72,73]

m ′(r) = 4πr2ρ(r) (7.7)

p ′s(r) = −(ps(r) + ρs(r))
m(r) + 4πp(r)r3

r2(1− 2m(r)
r

)
(7.8)

p ′χ(r) = −(pχ(r) + ρχ(r))
m(r) + 4πp(r)r3

r2(1− 2m(r)
r

)
(7.9)

In this case in order to integrate the TOV equations we need to specify the central
values both for normal matter and for dark matter ps(0) and pχ(0) respectively.
So in the following we show the mass-radius diagram for a certain value of the
constant K = 2πl/m3χ and for fixed dark matter fraction

ε =
pχ(0)

ps(0) + pχ(0)
(7.10)

and we consider four cases, namely ε = 0.02, 0.035, 0.05, 0.09. We have chosen
these values in agreement with the current dark matter constraints obtained from
stars like the Sun. Actually, as shown by several authors, even smaller amounts of
DM (as a percentage of the total mass of the star) can have a quite visible impact
on the structure of these stars [74–76]. As we discuss in this work even such small
amounts of DM can change theM− R relation of neutron stars.

-Equation-of-states: For the condensed dark matter we shall consider the
equation of state obtained in [77], namely Pχ = Kρ2χ, where the constant K =

2πl/m3χ is given in terms of the mass of the dark matter particles mχ and the
scattering length l. In a dilute and cold gas only the binary collisions at low energy
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are relevant, and these collisions are characterized by the s-wave scattering length
l independently of the form of the two-body potential [77]. Therefore we can
consider a short range repulsive delta-potential of the form

V(~r1 −~r2) =
4πl

mχ
δ(3)(~r1 −~r2) (7.11)

which implies a dark matter self interaction cross section of the form σχ = 4πl2

[52,77]. Following previous studies we fix the scattering length to be l = 1fm

[52,77], and for σχ/mχ we apply the bounds discussed in the Introduction

0.45
cm2

g
<
σχ

mχ
< 1.5

cm2

g
(7.12)

which then implies the following range for the mass of the dark matter particle

0.05GeV < mχ < 0.16GeV (7.13)

and thus for the constant K
4

B
< K <

150

B
(7.14)

where now the constant K is given in units of the bag constant. Our main results
are shown in figures 7.1 and 7.2. In Fig. 7.1 we show the mass-to-radius profiles
for K = 4/B and for ε = 0.02, 0.05, 0.09, while in Fig. 7.2 we show the profiles for
K = 150/B and for ε = 0.02, 0.035, 0.05. The standard curve corresponding to no
DM (in black) is shown as well for comparison reasons.

For strange matter we shall consider the simplest equation of state corre-
sponding to a relativistic gas of de-confined quarks, known also as the MIT bag
model [78,79]

ps =
1

3
(ρs − 4B) (7.15)

and the bag constant has been taken to be B = (148MeV)4 [80].
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Fig. 7.1. Mass-to-radius profile for K = 4/B.
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Fig. 7.2. Mass-to-radius profile for K = 150/B.

7.2.2 Radial oscillations

If δr is the radial displacement and δP is the perturbation of the pressure, the
equations governing the dimensionless quantities ξ = δr/r and η = δP/P are the
following [81,82]

ξ ′(r) = −
1

r

(
3ξ+

η

γ

)
−

P ′

P + ε
ξ (7.16)

η ′(r) = ξ

[
ω2r

P + ε

P
eλ−A −

4P ′

P
− 8π(P + ε)reλ +

r(P ′)2

P(P + ε)

]
+ η

[
−

εP ′

P(P + ε)
− 4π(P + ε)reλ

] (7.17)

where eλ, eA are the two metric functions, ω is the frequency oscillation mode,
and γ is the relativistic adiabatic index defined to be

γ =
dP

dε
(1+ ε/P) (7.18)

The system of two coupled first order differential equations is supplemented
with two boundary conditions, one at the center as r → 0, and another at the
surface r = R. The boundary conditions are obtained as follows: In the first
equation, ξ ′(r) must be finite as r→ 0, and therefore we require that

η = −3γξ (7.19)

must satisfied at the center. Moreover, in the second equation, η ′(r) must be finite
at the surface as ε, P → 0 and therefore we demand that

η = ξ

[
−4+ (1− 2M/R)−1

(
−
M

R
−
ω2R3

M

)]
(7.20)

must satisfied at the surface, where we recall that M,R are the mass and the
radius of the star respectively. Using the shooting method we first compute the
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Fig. 7.3. Eigenfunctions ξ vs r/R.

Fig. 7.4. Eigenfunctions η vs r/R.

Fig. 7.5. Large frequency separation.
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dimensionless quantity ω̄ = ωt0 where t0 = 1ms. Then the frequencies are
computed by

ν =
ω̄

2π
kHz (7.21)

Therefore, contrary to the previous hydrostatic equilibrium problem, which is
an initial value problem, this is a Sturm-Liouville boundary value problem, and
as such the frequency ν is allowed to take only particular values, the so-called
eigenfrequencies νn. Each νn corresponds to a specific radial oscillation mode of
the star. Accordingly, each radial mode is identified by its νn and by an associated
pair of eigenfunctions – the displacement perturbation ξn(r) and the pressure
perturbation ηn(r). Our main results are shown in figures 7.3, 7.4 and 7.5. In par-
ticular, in Fig. 7.3 we show several eigenfunctions ξn (n=0,1,2,10,11,18,19) versus
normalized coordinate distance r/R, in Fig. 7.4 we show several eigenfunctions
ηn (same values of n), and in Fig. 7.5 we show the large frequency separation
∆νn = νn+1 − νn versus frequencies in kHz for 3 cases, namely i) no DM (red
color), 5% of DM (black color) and 12% of DM (grey color).

7.3 Newtonian stars made of ultralight repulsive DM

Equation-of-state: The perturbative Lagrangian of a relativistic real scalar field φ
is given by

L =
1

2
∂µφ∂

µφ− V(φ) (7.22)

where the scalar potential is of the form

V(φ) =
1

2
m2φ2 +

1

24

m2

F2
φ4 + ... (7.23)

and where we consider renormalizable theories only, ignoring all higher order
terms. In this work the scalar field is identified with any pseudo-Goldstone boson.
The sign of the quartic self-interaction is taken to be positive since we assume a
repulsive self-interaction for the Dark pseudo-Goldstone boson. Therefore, the
model assumed here is characterized by two unknown mass scales, namely the
mass of the scalar particle,m, as well as the decay constant, F� m, arising from
the spontaneous breaking of some global symmetry. Unfortunately, it turns out
that it is not easy to obtain scalar field models with a tiny mass and a repulsive
force within known Particle Physics, although some attempts have been made [83].
In the following, without relying on concrete Particle Physics models, we shall
assume that this is possible, and we shall study radial oscillations of objects made
of Dark pseudo-Goldstone bosons.

The above scalar potential combined with the Gross-Pitaevskii equation
[84–86], also known as non-linear Schrödinger equation, leads to the following
equation-of-state for the ultralight pseudo-Goldstone boson [83,87]:

P(ε) = Kε2 (7.24)
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where the constant K is computed to be [83,87]

K =
1

(2Λ)4
(7.25)

where a new mass scale Λ ≡
√
mF has been introduced.

-Hydrostatic equilibrium: Since the axion star is non-relativistic described
by a polytropic EoS, to study the hydrostatic equilibrium one has to solve the
non-relativistic version of the Tolman-Oppenheimer-Volkoff (TOV) equations
[70,71]

m ′(r) = 4πr2ε(r) (7.26)

for the mass function, and

P ′(r) = −ε(r)
m(r)

r2
(7.27)

for the pressure, where the prime denotes differentiation with respect to the radial
coordinate r. Combining these two equations we can derive a single second order
differential equation, known as the Lane-Emden equation [28]

d

dx

(
x2
dθ

dx

)
= −x2θ (7.28)

with the initial conditions θ(0) = 1 and dθ/dx(0) = 0, where the new variables are
defined as follows

x =
r

a
(7.29)

and

θ =
ε

εc
(7.30)

with εc being the central energy density, while a is given by a =
√
K/2π. It is easy

to verify that the solution

θ(x) =
sin(x)

x
(7.31)

satisfies both the Lane-Emden equation and the initial conditions. Therefore, the
energy density as a function of the radial coordinate is given by

ε(r) = εc
sin(r/a)

(r/a)
. (7.32)

The above equation is valid for the radius varying from r = 0 until the first zero of
the function ε(r), therefore the function ε(r) varies between εc and 0. Finally, the
massM and the radius R of the star are given by

M = 4πεca
3

∫π
0

dxx2θ(x) (7.33)

R = πa (7.34)

Clearly, only the mass of the star depends on the central energy density, while the
radius is fixed. This happens only in the special case n = 1, whereas in general
bothM and R depend on the central energy density. This can also be seen in the
mass-to-radius profile for Newtonian boson stars with repulsive forces as shown
in the work of Chavanis and collaborators (see Fig. 2 of [26] and Fig. 4 of [27]).
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Fig. 7.6. Radial oscillations: Acoustic potential vs acoustic time.
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Fig. 7.7. Radial oscillations: Eigenfunctions vs acoustic time.
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Fig. 7.8. Radial oscillations: Large frequency separation inmHz.

7.3.1 Radial oscillations

In the first part of the presentation we presented the first order system of two
coupled equations for the perturbations of a pulsating star. Here, however, we
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prefer to work equivalently with a second order differential equation used in [66]

−f2ζ ′′ +Gζ ′ + (H−ω2)ζ = 0, (7.35)

supplemented with the boundary conditions at the origin r = 0 and at the surface
of the star r = R: ζ(r = 0) = 0 and δp(r = R) = 0. In the previous equation
ζ = r2e−A/2ξ, with eA ≡ gtt being the temporal component of the metric tensor,
while the background functions f, G an H are given by

f2(r) =
γPeA−λ

P + ε
, (7.36)

G(r) = −
f2

γP

[
γP

2
(λ+ 3A) + (γP) ′ −

2γP

r

]
, (7.37)

H(r) = −
f2

γP

[
4P ′

r
+ 8πP(P + ε)eλ −

(P ′)2

P + ε

]
, (7.38)

and finally the perturbation of the pressure can be computed as

δp(r) = −
eA/2

r2
(ζP ′ + γPζ ′). (7.39)

The Sturm-Liouville boundary value problem at hand can be treated equiva-
lently as a quantum mechanical problem by recasting the second order differential
equation for ζ into a Schrödinger-like equation [88] of the form

d2ψ

dτ2
+
[
ω2 −U(τ)

]
ψ = 0, (7.40)

where the new variables τ and ψ are defined as acoustic radius τ =
∫r
0
f−1(z)dz

and ψ(τ) = ζ/u. The effective potential is found to be

U = H+
Π2

4
+
fΠ ′

2
, (7.41)

where the function Π is given by Π = −f ′ − G/f while u is determined by the
condition u ′/u = −Π/(2f).

The acoustic potential with the first 5 eigenvalues, the corresponding eigen-
functions as well as the large frequency separation inmHz are shown in the figures
7.6, 7.7 and 7.8, respectively.

7.3.2 Nonradial oscillations

Linear adiabatic acoustic perturbations in the Cowling approximation [89], where
the perturbations of the gravitational potential are neglected, are described by the
following equation [90]

ζ ′′(r) +

(
2

r
+
2ε ′(r)

ε(r)

)
ζ ′(r) +

(
ω2n,l
c2s

−
l(l+ 1)

r2

)
ζ(r) = 0 (7.42)
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where cs is the speed of sound defined by c2s = dP/dε, ωn,l (= 2πνn,l) are the
discrete eigenvalues, l > 0 is the degree of angular momentum (or degree of the
mode), and n = 0, 1, 2, ... is the overtone number (or radial mode).

The Sturm-Liouville boundary value problem at hand can be treated equiva-
lently as a quantum mechanical problem by recasting the second order differential
equation for ζ into a Schrödinger-like equation [88,91,92] of the form

d2ψ

dτ2
+
[
ω2 −Ul(τ)

]
ψ = 0. (7.43)

Introducing the functions

A(r) =
2

r
+
2ε ′(r)

ε(r)
, (7.44)

Hl(r) = cs(r)
2 l(l+ 1)

r2
, (7.45)

and
P(r) = A(r)cs(r) − c

′
s(r). (7.46)

The new variables τ and ψ are defined as follows

ψ(r) =
ζ(r)

u(r)
(7.47)

where u satisfies the condition u ′/u = −P/(2cs), and τ is the acoustic time

τ =

∫r
0

c−1s (z)dz. (7.48)

Finally, the effective potential is found to be

Ul(r) = Hl(r) +

(
P(r)

2

)2
+
cs(r)P

′(r)

2
, (7.49)

and we thus obtain the effective potential as a function of the acoustic time in
parametric form τ(r), Ul(r).

The acoustic potential with the first 7 eigenvalues, the corresponding eigen-
functions as well as the large frequency separation inmHz for l = 2 are shown in
the figures 7.9, 7.10 and 7.11, respectively.

7.4 Conclusions

In this presentation we have presented results of our work on properties of self-
interacting scalar field dark matter in two respects. In particular, in the first part
we studied the impact of dark matter on the mass-to-radius profiles as well as
on the radial oscillation modes of non-rotating, spherically symmetric strange
quark stars in which dark matter is accumulated. Then, in the second part we
studied radial and non-radial oscillations of self-gravitating bosonic (star-like)
configurations.
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Fig. 7.9. Non radial oscillations: Acoustic potential vs acoustic time for l = 2.
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Fig. 7.10. Non radial oscillations: Eigenfunctions vs acoustic time for l = 2.

æ

æ

æ
æ

æ æ æ æ æ æ æ æ æ æ

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1.0

Ν @mHzD

D
Ν
@m

H
z
D

Fig. 7.11. Non radial oscillations: Large frequency separation inmHz for l = 2.

Strange stars are hypothetical compact objects that are supposed to be much
more stable than neutron stars, and thus could explain the super luminous su-
pernovae. For the star interior problem we have solved numerically the Tolman-
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Oppenheimer-Volkoff equations in the two-fluid formalism. For strange matter
we have assumed the simplest version of the MIT bag model (radiation plus the
bag constant), while if dark matter is modelled inside the star as a BEC, it can be
described by a polytropic equation of state with index n = 1. We have shown the
mass-radius diagram assuming that strange stars are made of up of (5 − 10) %
of dark matter. We conclude that if strange stars do exist, and if they accumulate
dark matter, our findings limit in a certain way the radius and the mass of these
compact objects.

After that we studied the radial oscillations of dark matter admixed strange
stars. Integrating numerically the equations for the perturbations we solved the
corresponding boundary value problem to compute the first 11 frequency radial
modes for three stars with the same mass and radius, but with different dark
matter amounts. The large frequency separation were computed as well, and we
showed them for all three models in the same plot for comparison reasons so that
the impact of dark matter could be inferred.

In the second part we studied radial oscillations of Dark BEC stars made of
ultralight repulsive scalar particles in the Fermi-Thomas approximation. Using
the known background solution to the Lane-Emden equation for a Newtonian
polytropic star with index n = 1we solved the Sturm-Liouville boundary value
problem for the perturbation with the shooting method. We have computed the
fundamental as well as several excited modes for two different star masses, and
we have shown graphically i) several eigenfunctions corresponding to the first
three and two highly excited oscillation modes, and ii) how the large frequency dif-
ference varies with the frequencies themselves. In addition, we have reformulated
the boundary value problem equivalently by writing down a Schrödinder-like
equation, and we have shown the effective potential together with the first five
values ofω2.

Finally, we have studied non-radial oscillations of bosonic configurations
made of ultralight repulsive scalar particles in the Cowling approximation. For
three different values of the angular degree l = 1, 2, 3we have computed the lowest
frequencies, several associated eigenfunctions, and the effective potential in the
equivalent description in terms of a Schrödinder-like equation. The large frequency
separations are shown as well. In all three cases, like in the radial oscillation case,
for the higher excited modes the large separation tends to a constant determined
entirely by the mass scale Λ =

√
mF, where m is the mass of the scalar field and F

is a high mass scale that determines the self-interaction coupling constant in the
scalar potential.
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Abstract. We discuss how to probe a class of models where the Standard Model-like Higgs
boson is identified with a pseudo Nambu Goldstone Boson (pNGB) associated with the
spontaneous breaking of a global symmetry. We focus on the minimal version of such
models. There SO(5) symmetry is broken to SO(4) so that four pNGBs appear which
corresponds to the Higgs doublet in the SM. In order to probe such a model, double Higgs
production process is found to be quite powerful. It is shown that the production cross
section of this process has a model specific behavior so that we can distinguish different
new physics scenarios.

Povzetek. Avtor študira model, ki uporabi za opis Higgsovega skalarja psevdo Nambu-
Goldstonove bozone, ki nastanejo pri spontani zlomitvi globalne simetrije SO(5) v SO(4).
Štirje psevdo Nambu-Goldstonovi bozoni ustrezajo Higgsovemu dubletu standardnega
modela. Avtor pokaže, da je presek za nastanek teh dveh Higgsovih bozonov odvisen od
parametrov realizacije modela, s čimer se spremenijo tudi napovedi modela.

Keywords: Hierarchy problem, composite Higgs model, double Higgs production
processes

8.1 Introduction

In 2012, the Higgs boson was discovered at the LHC experiments, and the Stan-
dard model (SM) is then experimentally established. However, the SM has several
serious problems. There is a well-known theoretical problem known as a gauge
hierarchy problem. If there is a unified theory including gravity, the unified theory
is considered to be realized at around the Planck scale ∼ 1019 GeV. On the other
hand, the typical energy scale of the SM (electroweak theory) is the scale of the
Higgs vacuum expectation value, 175 GeV. There is a colossal hierarchy between
these two energy scales. It is an origin of gauge hierarchy problem. The so-called
gauge hierarchy problem is a mixture of two kinds of problems. One is how to set
appropriate values for the model parameters of order of 100 GeV if the fundamen-
tal scale is of the order of 1019GeV at the boundary. The naive expectation in such
a case is that all the parameters with a mass dimension are set to be O(1019) GeV.

? E-mail: shindou@cc.kogakuin.ac.jp
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Even if we can set the value of parameters to beO(100) GeV by some mechanisms,
the parameters can be affected by radiative corrections, and they may be as large
as O(1019) GeV. In order to avoid it, we need a fine-tuning or some mechanisms
to cancel such a huge radiative correction. It is the second type of problem.

In order to address the hierarchy problem, several excellent mechanisms are
proposed in the literature. For example, supersymmetry provides a cancellation
between a bosonic loop and fermionic loop. Therefore quadratic divergences in
scalar mass parameter disappear (The second type of problem is solved). The first
type of problem in the SUSY model is known as µ-problem[1], and there are many
attempts to solve it(e.g. [2]). There are other many ideas such as the gauge Higgs
unification scenario, models with the classical conformal invariance, and so on. In
a model where the Higgs boson is identified with a pNGB associated with some
global symmetry breaking, the Higgs mass parameter is naturally set to be much
smaller than the fundamental scale (A solution to the first problem). Also, such
pNGB can be sometimes considered as a composite state by the analogy of the
pion which can be treated as a pNGB associated with chiral symmetry breaking.
In such a scenario, the cut-off scale of the model is lowered to be O(10) TeV1 and
the second problem can become milder.

In this talk, based on Ref. [3], we focus on the minimal version of such a
scenario with pNGB, so-called Minimal Composite Higgs models (MCHMs)[4]
and we study phenomenology in MCHMs. We have found that the double Higgs
production process is interesting and powerful to probe MCHMs.

8.2 Model

Since there are four real degrees of freedom in a SU(2) doublet, the minimal setup
of models where the SM-like Higgs doublet is identified with pNGBs contains four
pNGBs. It means that the breaking pattern of global symmetry should include
four broken generators. One of the minimal breaking patterns is SO(5) to SO(4).
We here consider SO(5)× U(1)X → SO(4)× U(1)X model. The breaking occurs at
the scale f. Associated with this symmetry breaking, four NGBs appears. Since
the SU(2)L×U(1)Y subgroup in SO(4)×U(1)X is gauged, the global symmetry is
explicitly broken by the gauge coupling. Also, the matter fermions in the SM
cannot compose SO(5) multiplet so that the SM Yukawa interactions explicitly
break the global symmetry too. Because of these explicit breaking effects, the NGBs
become pNGBs, and they get smaller mass compared to the symmetry breaking
scale.

The gauge interactions in the low energy effective theory are completely
determined by the breaking pattern of the global symmetry, while the Yukawa
interactions depend on what representations of SO(5) the SM fermions are em-
bedded into. In this review, we consider three cases; all the SM fermions are
embedded into 4 dimensional representations (MCHM4), 5 dimensional repre-
sentations (MCHM5) and 14 dimensional representations (MCHM14) of SO(5). In

1 It means that there can be some intermediate theory which may include a strong dynamics
before appearing the final unified theory.
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each model, the effective Lagrangian for fermion interactions with the SM-like
Higgs boson is given by

Lmatter
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where Σ is given by

Σ =
sin(h/f)
h

(h1, h2, h3, h4, h cot(h/f)) , h =
√
haha , (8.2)

with ha being the pNGBs. Also Ψ(R)
r denotes the R-dimensional representation

into which the SM matter fermion r = q, u, d, `, e is embedded, Γi are the gamma
matrices in SO(5), and Π’s andM’s are the form factor. In the following, we only
focus on the third generation quarks and leptons.

In Table 8.1, deviations in the Higgs couplings from the SM predictions are
summarized. All the deviations depend on a model parameter ξ ≡ v2/f2 where
v is the vev of the Higgs boson, and f is the scale where the global symmetry is
broken. In the table, we use the scale factors κa, which are defined by κa ≡ ga/gSM

a ,
where ga denote the coupling constants of the Higgs boson coupling with the
weak gauge bosons V = W and Z, matter fermions and the Higgs boson itself
as a = hVV , htt, hbb, and hhh. For κhVV , κhtt and κhbb, the abbreviations κV ,
κt and κb, respectively are used. For hhVV couplings, we use the parameter
chhVV = ghhVV/g

SM
hhVV . In the effective theories of the MCHMs, there are new

dimension five operators of two Higgs bosons and two fermions such as hhtt̄.
The coupling constant for hhtt̄ is parameterised as ghhtt = chhttmt/(2v2). The
four point interactions such as hhVV and hhtt̄ also play important roles in our
analysis.
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Model κV chhVV κhhh κt κb κτ chhtt

MCHM4
1 − 1

2
ξ 1 − 2ξ

1 − 1
2
ξ 1 − 1

2
ξ 1 − 1

2
ξ 1 − 1

2
ξ −ξ

MCHM5
1 − 3

2
ξ

1 − 3
2
ξ

1 − 3
2
ξ 1 − 3

2
ξ

−4ξ

MCHM14 1 −
9Mt1+64M

t
2

6Mt
1
+16Mt

2

ξ −
4(3Mt1+23M

t
2)

3Mt
1
+8Mt

2

ξ

Table 8.1. Deviations in coupling constants with the Higgs boson in MCHM4, MCHM5 and
MCHM14. The formulae in the table are approximated for ξ� 1. The table is taken from
[3].
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Fig. 8.1. The production cross section of pp → ggX → hhX in MCHM4(green),
MCHM5(blue) and MCHM14(red) at LHC with the collision energy of 14 TeV. The figure is
taken from [3].

8.3 Numerical results for double Higgs production

First, we show the numerical results for the double Higgs boson production at
LHC. The double Higgs boson production at LHC is dominated by the gluon
fusion process, pp → ggX → hhX. In the MCHMs, the cross section is affected
by deviations in the top Yukawa coupling constant and the triple Higgs boson
coupling constant. In addition to these contributions, the dimension five interac-
tion hhtt̄ enhances the cross section. As a result, the cross section of this process
depends on the parameters κt, κhhh, and chhtt. In Fig. 8.1, the production cross
section of pp → ggX → hhX in each MCHM at the LHC with

√
s = 14 TeV is

shown as a function of the compositeness parameter ξ. As shown there, the cross
section is suppressed in MCHM4, and it is enhanced in MCHM5 and MCHM14.

Second, we consider the double Higgs production at an electron-positron
collider. This process at the lepton collider is sensitive to the triple Higgs boson
coupling hhh and the contact interaction hhVV . Fig. 8.2 shows the

√
s dependence

of the production cross section of the process e+e− → hhν̄ν in MCHM4, MCHM5
and MCHM14 for fixed values of the compositeness parameter ξ = 0.1 and 0.2.
The cross section of e+e− → hhν̄ν is dominated by Z-strahlung which is always
suppressed by the scale factors in the MCHMs for

√
s . 600 GeV and byW-fusion

which is enhanced as a result of unitarity non-cancellation for
√
s & 600 GeV.

Within the expected accuracy of measurements[5,6], such a specific behaviour
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Fig. 8.2. The production cross sections for e+e− → ν̄νhh in MCHM4 (Left) and in MCHM5
and MCHM14 (Right). The solid curve is for the total cross section. The green(blue) and the
brown (magenta) curves are for the case of ξ = 0.1 and ξ = 0.2, respectively. The dashed
and dotted curves show theW-fusion and the Z-strahlung subprocesses, respectively, and
the black curves show the SM prediction. The figures are taken from [3].

Fig. 8.3. Left: The cross section of e+e− → hhZ in the two Higgs doublet model. Right:
The cross section of e+e− → hhν̄ν in the model. Here, the SM-like Higgs boson mass is
fixed to be 120 GeV and the masses of extra Higgs bosons are taken to be degenerate as
mΦ ≡ mH = mA = mH± . These figures are taken from Ref. [7].

might be observed by the
√
s scan at the ILC and the CLIC in the cases with a

significant size of ξ. This
√
s dependence of the double Higgs boson production

cross section in the MCHMs is different from that in other new physics models
such as the two Higgs model with a significant deviation of the triple Higgs boson
coupling from the SM predction[7] as shown in . Fig. 8.3. In the two Higgs doublet
model, large enhancement of the triple Higgs boson coupling enhances the double
Higgs boson production cross section via the Z-strahlung, while the cross section
byW-fusion contribution is suppressed. This behavior is opposed to the case of
MCHMs.
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8.4 Summary

The scenario where the SM-like Higgs boson is identified with pNGBs is attractive
new physics model from the view point of gauge hierarchy problem. In this talk,
we review a phenomenological study in MCHMs. In particular, we focus on the
double Higgs boson production both at LHC and at future lepton collider experi-
ments. We show that MCHMs can be probed by using this process. Especially, the
predicted production process at lepton collider e+e− → hhνn̄u shows a specific
behavior so that we might be able to distinguish MCHMs from other new physics
scenarios by this process unless the parameter ξ is too small.
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Discussion Section

The discussion section is reserved for those open problems presented and
discussed during the workshop, that might start new collaboration among partici-
pants or at least stimulate participants to start to think about possible solutions
of particular open problems in a different way, or to invite new collaborators on
the problems, or there was not enough time for discussions and will hopefully be
discussed in the next Bled workshop.

Since the time between the workshop and the deadline for contributions for
the proceedings is very short and includes for most of participants also their holi-
days, it is not so easy to prepare there presentations or besides their presentations
at the workshop also the common contributions to the discussion section.

However, the discussions, even if not presented as a contribution to this
section, influenced participants’ contributions, published in the main section.
Contributions in this section might not be yet pedagogically enough written,
although they even might be innovative and correspondingly valuable indeed.

As it is happening every year also this year quite a lot of started discussions
have not succeeded to appear in this proceedings. Organizers hope that they will
be developed enough to appear among the next year talks, or will just stimulate
the works of the participants.

There are seven contributions in this section this year.
The author of one contribution presents his own inovative model (which

has been started by using the binary code to express the spins and charges of
fermions, and correlated later the binary code with the Clifford algebra basis of
the spin-charge-family theory), representing the elementary fermions as defects in
the periodical tessalations of small charged domains.

The relations between the Clifford algebra and the Dirac matrices with the ap-
perance of families in (3+1)-dimensional space, embedded into (5+1)-dimensional
space, so that spin in the fifth and sixth dimensions represents the charge of
fermions, are presented.

One contribution has started the generalization of the new way of the second
quantized fermions in the Clifford space, presented in the talk section, trying
to reformulate the cross products of the Hilbert space of indefinite numbers of
fermions.

The contribution, reviewing the novel string field theory of authors, are
pointing out that the possibility for objects to annihilate and create needs to be
included.
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In one contribution it is assumed that neutrinos are composition of Dirac and
Majorana neutrinos, fitting correspondingly the parametrization of mass matrices
to the experimental data.

There is the contribution studyng the possibility that the dark matter particles
might decay and annihilate fast enough that the corresponding gamma rays should
be observable, but yet they are not because of absorbtion.

One contribution considers clusters of primordial black holes, decoupled from
the cosmological expansion and therefore heated as compared to the surrounding
matter.

All discussion contributions are arranged alphabetically with respect to the
authors’ names.
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Diskusije

Ta razdelek je namenjen odprtim vprašanjem, o katerih smo med delavnico
razpravljali in bodo morda privedli do novih sodelovanj med udeleženci, ali pa
so pripravili udeležence, da razmislijo o možnih rešitvah odprtih vprašanj na
drugačne načine, ali pa bodo k sodelovanju pritegnili katerega od udeležencev, ali
pa ni bilo dovolj časa za diskusijo na določeno temo in je upati, da bo prišla na
vrsto na naslednji blejski delavnici.

Ker je čas med delavnico in rokom za oddajo prispevkov zelo kratek, vmes pa
so poletne počitnice, je zelo težko pripraviti prispevek in še težje poleg prispevka,
v katerem vsak udeleženec predstavi lastno delo, pripraviti še prispevek k temu
razdelku.

Tako se precejšen del diskusij ne bo pojavil v letošnjem zborniku. So pa gotovo
vplivale na prispevek marsikaterega udeleženca. Nekateri prispevki še morda niso
dovolj pedagoško napisani, so pa vseeno lahko inovativni in zato dragoceni.

Organizatorji upamo, da bodo te diskusije do prihodnje delavnice dozorele
do oblike, da jih bo mogoče na njej predstaviti.

Letos je v tem razdelku sedem prisepvkov.
Avtor enega prispevka predstavi svoj inovativni model (začel ga je z uporabo

binarne kode za zapis spinov in nabojev fermionov, zapis pa nadgradil s tem, da
je povezal binarni zapis s Cliffordovo algebro v teoriji spinov-nabojev-družin), v
katerem osnovne fermione predstavi kot defekte v periodičnem razcepu prostora
(teselacijo) na majhne nabite podcelice.

Avtorji predstavijo zvezo med Cliffordovo algebro, s katero opišejo poleg
spina in ročnosti tudi družine, in Diracovimi matrikami v (3 + 1)-razsežnem
prostoru, ki ga vstavijo v (5 + 1)-razsežni prostor, tako da spin v peti in šesti
dimenziji predstavlja naboj fermiona.

Avtorja želita v njuni novi formulaciji druge kvantizacije, ki pojasni Diracovo
drugo kvantizacijo (v predavanjih v tem zborniku pojasnita ta novi predlog druge
kvantizacije), posplošiti produkt Hilbertovih prostorov z nedoločenim številom
fermionov.

Avtorja predstavita svojo novo teorijo polj s strunami ter namero, da vkljucita
v to teorijo tudi anihilacijo in tvorbo objektov te teorije.

V prispevku, ki privzame, da nevtrine sestavljajo Diracovi in Majoranini
nevtrini, avtor išče parametrizacijo, ki ustreza eksperimentalnim podatkom.
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Avtorji prispevka obravnavajo možnost, da delci temne snovi razpadajo in
se anihilirajo tako hitro, da bi morali opaziti nastale žarke γ, vendar jih zaradi
absorbcije ne opazimo.

Prispevek obravnava zgručo prvotnih črnih lukenj, ki ni sklopljena s koz-
mološko širitvijo vesolja in se zato segreva glede na snov v okolici.

Prispevki v tej sekciji so, tako kot prispevki v glavnem delu, urejeni po abeced-
nem redu priimkov avtorjev.
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Abstract. We analyse here some programming tools (MC-generators) from viewpoint of
their application to the tasks of dark matter (DM) interpretation of cosmic rays puzzles. We
shortly describe our tasks, where the main goal is the solution of the problem of suppression
of gamma-rays induced by the products of DM decay or annihilation in Galaxy. We show
that existing MC-generators do not fully satisfy our task, comparing them, and suggest our
own one.

Povzetek. Avtorji domnevajo, da delci temne snovi razpadajo in se tudi anihilirajo dovolj
pogosto, da bi pri tem nastale žarke gama morali opaziti. Študirajo procese, ki povzročajo
absorpcijo žarkov gama. Analizirajo obstoječa programska orodja in predlagajo svoje
ustreznejše orodje.

Keywords: dark matter physics, MC-generators, interaction Lagrangians

9.1 Introduction

The necessity of the usage of different MC-programs1 appears in different areas.
One of them is connected with dark matter (DM) processes. DM can give signal
in cosmic rays (CR) due to their decay or annihilation. Positron anomaly [1,2] or
possible excess of electrons and positrons [3] at high energy in CR is one of such
subject.

DM physics is unknown, what requires a respective flexibility of calculations
of the predicted signal in CR e+e−. Realization of this with the help of using some
programming tools imposes definite requirements on them about which we will
talk. We do not pretend to comprehensive review, we are reviewing it from point
of view of our task, what can be useful for many adjacent ones too.

? Talk presented by E. Shlepkina
?? E-mail: k-belotsky@yandex.ru

??? E-mail: kamaletdinov.a.h@yandex.ru
† shlepkinaes@gmail.com
1 MC is decoded as Monte Carlo. Such programs are called as ME (Matrix Element) as

well, implying the program tools able to simulate new (high energy) physics process.
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The physical task itself comes from our previous works [4–14] studying
compatibility of DM interpretation of CR e+e− with cosmic gamma-ray data.
The main problem is that, when we are trying to explain CR e+e− anomalies we
start to contradict to cosmic gamma-ray data even in the framework of, seeming,
minimal model case from viewpoint of gamma-ray production. The latter is pure
e+e− decay or annihilation mode where gamma appears as (a) FSR (Final State
Radiation) and (b) due to interaction of e+e− with interstellar medium. Both
contributions seem to be unavoidable. Nonetheless, even in this minimal case we
got contradiction with gamma-ray data.

There are a few attempts to try to avoid this contradiction (we reviewed them
in [5,12,11]), i.e. to suppress gamma coming from DM. It can relate to specifics
of space distribution of DM like clumping or existence of dark disk component
(supposing that a dominant halo DM component does not produce CR), or specifics
in DM interaction. The latter includes both different decay/annihilation modes
and Lagrangian of DM particles interaction with ordinary matter.

Specifics of DM physics may involve also opportunity of decay of DM parti-
cles onto two identical fermions like X++ → e+e+. In such model it is supposed
there exist two types of double charged DM particles, X++ and Y−−. It is assumed
that the last one is in form of electrically neutral bound state states with He, X++

form bound state with Y−− and decay [15–18]. In case of X++ → e+e+γ decay,
we have factor two of suppression of FSR gamma per one e+ (because they are
two in one decay), and also extra suppression is expected due to identity itself of
fermions in final state. The last reason takes place explicitly in classical case (dipole
radiation of same charged particles is zero) and somehow partially in quantum
case – due to so called single photon theorem [19].

All this accounts for necessity to have respective programming tool able to
calculate the processes in the aforementioned tasks and, of course, not only. It does
not cancel a desirability of analytical calculations. But the latter is often difficult to
do and a crosscheck is necessary even when it is possible. It, in its turn, requires
opportunity of step by step tracking calculations making with programming tools.

We demonstrate here the work of some such tools (Section 9.2). They does not
provide identical and, therefore, reliable results at the absolutely same initially set
parameters. It related to our tasks. We here come to conclusion of creation of MC
(HEP) generator (Section 9.3,9.4) which would allow simple step by step checking
of calculation procedure.

9.2 Programming tools analysis

As we told, it is impossible to build a model of dark matter in framework of
dark halo or dark disk that would completely explain the positron anomaly in
cosmic rays. Such attempts will lead to an excess of FSR arising from the de-
cay/annihilation of a dark matter particle into two charged leptons or during the
propagation in the interstellar medium.

This task requires to create a new physical models that go beyond the Standard
Model (BSM). It is necessary to find the most suitable programming tools for such
a task that would correspond the following minimum requirements:
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1. the possibility to implement new physical models (BSM),
2. compute a matrix element and squared matrix element in analytical form,
3. the possibility of an explicit description of charge conjugation,
4. high enough precision of calculation.

To describe the decay or annihilation of DM particles, taking into account
possible FSR, the different programming tools such as MadGraph [20], CompHEP
[21], CalcHEP [22] and FormCalc [23] were considered.

Implementing BSM models in a generator such as MadGraph requires de-
scribing the model using the FeynRules [24] package. FeynRules is a package
with Mathematica [25] source code that allows calculating the Feynman rules in
momentum space for any physical model of quantum field theory.

One of the reasons for using this package is the possibility of describing
charge conjugation for fermions, which is necessary in our models.

In FeynRules, we started with the following DM models: the simplest model
of DM particle X decay on two opposite charged leptons and the model of double
charged scalar particles X. In both models particle X is hypothetical long-lived
scalar particle with a mass of about 1-3 TeV. Feynman rules for the Lagrangians
presented below, which describes the decay of this particle, were tested:

L = Xψ(a+ bγ5)ψ+ψγµAµψ (9.1)

L = XψC(a+ bγ5)ψ+ X∗ψ(a− bγ5)ψC −ψγµAµψ (9.2)

where a and b are the unknown constant parameters.
At the output, sets of model files written in the Universal FeynRules Output

(UFO) were obtained that can be used for calculations and modeling of various
processes in the MC-generator MadGraph5aMC@NLO.

MadGraph is programming tool wich allows calculating cross-sections and
squared matrix elements in numerical form.

Using the FeynRules model files, several decay modes of the DM particle
X, namely, the processes X → e+e+ and X → e+e+γ, were simulated in this
generator. MadGraph allows calculating cross-section, but it does not allow geting
the squared matrix element in an analytical form, so this generator does not
corresponds to all the previously set requirements.

The next two MC-generators that we used in our task are CompHEP and
CalcHEP. These tools have attracted our attention since they have the ability
to obtain a squared matrix elements. Obtaining the squared matrix elements in
analytical form for each of the processes X → e+e±, X → e+e±γ, we get the
opportunity to monitor the correctness of the results and compare them with those
that were obtained manually.

To implement our models to CalcHEP, one can use the LanHEP [26] package.
LanHEP has been designed as part of the MC-generator CalcHEP. This pack-
age,similar to the FeynRules package, is used to generate Feynman rules in a
momentum representation based on a given Lagrangian.The output can be written
in the form of CalcHEP’s model files, which allows to start computing processes
in a new physical model.
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One of the alternatives to the MC-generators that we considered in frame-
work of this task was FormCalc. FormCalc is the tool wich based on the FORM
syntax and implemented as Mathematica package that allows one to calculate
Feynman diagrams . Receiving input Feynman diagrams generated by the Fey-
nArts (FeynArts [27] tool for generating Feynman diagrams), FormCalc is able to
make calculations of the squared matrix element and write it out in Fortran code.
The advantage of this program is that one can see some intermediate results, such
as squared matrix element. However, FormCalc is a complex modular system of
several packages and tools.

Figures 9.2 and 9.3 show approximate schemes for working with some
MC-generators.

The main task at the first stage was the need to determine which programming
tools is the most suitable for aforementioned task. An analysis of the above MC-
generators was carried out, which consisted in comparing the results obtained
from different MC-generators using the same model created using LanHEP. A
positive result would be a complete

(within the errors) agreement between their results. We considered dependen-
cies of the decay width of the DM particle on its mass (fig. 9.1). These graphs do
not show the results obtained from the MadGraph MC-generator, since the decay
width obtained using this tool is too large and could not be used in the general
analysis. The reason for such deviations has not yet been found.

Fig. 9.1. Comparative analysis of MC-generators, using two processes as an example. Left:
X→ e+e−γ , Right: X→ e+e+γ

.

Figure 9.1 shows the results of the tests. As can be seen, the decay widths
for the same model and masses of particle X differ. This deviation motivates us to
look for additional verification tools.

It is almost impossible to determine the cause of such differences, since in the
process of decay modeling it is impossible to obtain any intermediate results, such
as, for example, matrix elements, etc.

The summary table (table 9.1) of the capabilities of some MC-generators was
compiled, as applied, in particular, to BSM processes.

Summing up, we can conclude that none of the programming tools we have
use are not fully suitable for our task.
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Options CompHEP CalcHEP Madgraph Pythia
Implementing of new
models

+ + + −

Charge conjugation + + + −

Matrix element in analyt-
ical form

− − − −

|M|2 in analytical form + + − −

High precision ±2 ± ± +
Performance3 ± + ± ±
Have an implementation
packages4

− + + −

Hadronisation − − − +

Table 9.1. Comparison of different MC-generators from viewpoint of calculation DM parti-
cle processes.

FeynRules or LanHEP

MadGraph CalcHEP CompHEP

FeynCalc

Fig. 9.2. Approximate schemes for working with some MC-generators

9.3 Idea of creating of new MC-generator

From analysis of existing MC-generators, given above, we come to conclusion that
there is so far a necessity of creation of new one adjusted for our (of course, not
only) tasks. The proposed new HEP generator allows calculating and displaying
all intermediate results of calculations - i.e. analytical form of matrix element, the
square of the matrix element in the form of traces of gamma matrices, the square of
matrix element in form of kinematic variables and result of integrating the square
of the matrix element of the given process over the phase volume.

Estimation of intermediate calculation results can be useful for validation of
calculation processes and in the phenomenological areas of high energy physics to

2 Hereinafter, the sign ± will mean that this tool does not fit exclusively to our task, but it
copes well with other processes and models.

3 Characterizes the speed of calculations
4 New models can be loaded into CalcHEP and MadGraph with the help, for example,

FeynRules and LanHEP packages, while in CompHEP one can add new models only by
hand.
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FeynRules

FeynArt

FormCalc

Fortran Code

. . .

Fig. 9.3. Modular system of FormCalc using

understand the contribution of specific Lagrangian terms to the various distribu-
tions.

In specific of our work on dark matter interaction physics [4–7] we need to
estimate why given components of Interaction Lagrangian lead to certain effects.

The developing generator is based on FORM symbolic manipulation system
[28], which is designed to work with algebraic expressions and constructions.
It reads text files containing definitions of mathematical expressions as well as
statements which tell it how to manipulate these expressions. It is widely used in
the theoretical particle physics community, but it is not restricted to applications
in this specific field.

FORM ”doesn’t know” anything about the particle physics processes and
calculations of amplitudes and cross sections. Everything that FORM makes - it
searches in the string the substrings matching the pattern and replaces them with
the developer-specified expressions. Then it leads similar terms and displays the
result.

User can enter the expression of Lagrangian or the expression of partial term
of a perturbation theory series. It is also necessary to explicitly indicate the types
of fields used in the Lagrangian and ”in” and ”out” states. See Figure 9.4.

We want to note the monolithic architecture of the developing generator. That is
all described above tasks are performed within one single program.
The matrix element calculation algorithm is based on the principle of secondary
canonical quantization. That is if user enter the expression of lagrangian, program
approximate the T-exponent by Teylor series, that give the perturbation theory
series.
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User

FieldsLagrangian In and out states

Interface

Matrix element calculation Matrix element

Squaring Matrix Element
|M|2 = Tr(...)

|M|2 = F(pout)

Output

Integral over phase volume
Distribution

Input

Fig. 9.4. General structure of the developing generator modules

e−iS = 1− iS+
(−iS)2

2
+

(−iS)3

3!
+ ... (9.3)

where S ≡
∫
d4xL - is the action of model.

And take interesting term of this one. After that generator takes the fields of
considering model and performs the second quantization5:

L ≡ L(φ, ∂µφ)

φ→ φ̂ ≡
∫
d3p

(2π)3
1√
2ωp

(âpe
−ipx + â†pe

ipx)
(9.4)

where âp - is the lattice operator such that [âp, â
†
q] = (2π)3δ(3)(p− q)

FORM can perform specified instructions with given expressions taking into
account the non-commutativity of variables.

Developing generator should include explicitly the permutation rules of the
given non-commuting variables in the form of instructions which patterns should
be replaced by other expressions.

That is the replacing of bosonic rising operators at each iteration schematically
looks like:

... · âpâ
†
q · ...→ ... ·

(
(2π)3δ(3)(p − q) − â†qâp

)
· ... (9.5)

5 This means that the symbols Φ are replaced by other text expressions corresponding to
operators.
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Then program takes the expression of matrix element in form of approximated
T-exponent by the Teylor series with second quantization (see Eq.9.4):〈

out
∣∣∣e−iS∣∣∣in〉 =

〈
out

∣∣∣(1− iS+ (−iS)2

2
+

(−iS)3

3!
+ ...

)∣∣∣in〉. (9.6)

Here |in〉 ≡ â†q1 ...â
†
qk |0〉 and 〈out| ≡ 〈0|âp1 ...âpn are the initial and final states of

process which are specified by user and are expressed by specific character sets.
Then the program performs the normal ordering of rising operators according

to the instructions indicated explicitly in the algorithm and described schematically
(9.5) above.

One of features of the developing generator is the opportunity for the user to
indicate perturbation theory order, as well as choose or enter only the interesting
term of perturbation theory for consider only it’s contribution.

After the matrix element of the process has been calculated - its analytical
expression is displayed to the user on the screen (See Figure 9.4 - Matrix element
calculation).

The part of the program described above has already been developed.
The next block of the algorithm in the Figure 9.4 (Squaring of the matrix

element) takes an expression for the matrix element, which was calculated in the
previous block of the diagram, and builds an expression for hermitian conjugate
operator in the form of a specific string of characters.

Then the product |M|2 = M ·M† should be reduced to a trace of gamma
matrices and displays to the user.

After substituting kinematic variables into the obtained expression and taking
the trace, integration over the phase volume is performing to obtain the distribu-
tion.

9.4 Application of programming tools

We compare the results, computed by developing generator with the standard
processes of particle physics and the specific processes of our work, previously
calculated manually. The results are follows:

1)Two-particle decay of a neutral Dark Matter particle into an electron and a
positron user enter the fields X, Ψ, Ψ̄ and interaction lagrangian of the model

L = XΨ̄(a+ bγ5)Ψ (9.7)

Then he indicates the statistic of fields, that is X - is the scalar field and Ψ - is the
spinor field.

This leads to:

M = FB(e, k1) · (a+ b ·G(5)) · FC(e, k2) · S(X, k3) (9.8)

that means:
M = ū(k1)(a+ bγ5)v(k2) (9.9)

2) Two-parrticle decay of a double charged Dark Matter particle into two
positrons.
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Similarly:
L = XΨ̄(a+ bγ5)Ψ(c) +H.C. (9.10)

with fixed initial and final states as |in >≡ |X > and |fin >≡ |e+, e+ >

M = −FCT(e, k1) · iG(2) ·G(0) · (a+ b ·G(5)) · FC(e, k2) · S(X, k3)+
+FCT(e, k2) · iG(2) ·G(0) · (a+ b ·G(5)) · FC(e, k1) · S(X, k3)

(9.11)

that means:

M = −vT (k1)iγ
2γ0(a+ bγ5)v(k2) + v

T (k2)iγ
2γ0(a+ bγ5)v(k1) (9.12)

9.5 Conclusion

Here we considered capabilities of several MC-generators (CompHEP, CalcHEP,
MadGraph with applications to some of them such packages as LanHEP, Feyn-
Rules and etc. and some modular tools like FormCalc). This was done in frame-
work of our task concerning DM signal search in CR. More concretely, we consid-
ered decay of DM particles with different interaction Lagrangians. We see that the
considered tools do not quite satisfy our requests. We need some single tool what
would allow providing to show “step by step” results of calculations. We suggest
it here on the base of code FORM.
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10 Tessellation Approach in Modeling Properties of
Physical Vacuum and Fundamental Particles

E.G. Dmitrieff ?

Irkutsk State University, Russia

Abstract. The approach of representing fundamental particles by defects in the periodical
tessellations built of small electrically-charged domains is discussed in this paper. We give
reasons for its use, enumerate the assumptions underlying it, formulate the main tasks that
arise with this approach and provide some of solutions for them that we found.

Povzetek. Avtor predstavi svoj model za opis lastnosti osnovnih gradnikov snovi – kvarkov,
leptonov in njihovih antidelcev ter interakcij med njimi. Elementarne delce predstavi kot
defekte v periodični teselaciji prostora, ki jih določajo majhna električno nabita območja.
Pove od kod je črpal vzpodbudo za svoj model, našteje privzetke, na katerih je model
zdrajen ter napovedi, ki jih model ponuja.

Keywords: tessellation, bit graph, particle, defect, triple-periodical, satori

10.1 Introduction

The Tessellation approach is the denotation for using some analogy between funda-
mental particles, on one hand, and structure defects in periodical spatial tessella-
tions, on another hand, in calculation of particle properties and speculations about
particle physics problems.

We do not know exactly, how deep this analogy is, and what causes such
a correspondence, but we found this approach useful and productive, and also
found it interesting to explore its limits, trying to extend them.

We formulated assumptions of the approach while developing several particle
models based on bit graphs, aiming to get digital, more calculable by computers,
representation of particles instead of usual quantum mechanical one [1].

There are approaches, that have some correspondences to our approach,
among them are the Spin-charge-family theory [2], the Cellular automata interpre-
tation [3], [4], and the ether hypothesis [5].

The bit graphs generalize the idea of numbers as bit sequences by allowing
not just ordered, i.e. sequential, but also non-ordered and partially-ordered bit
combinations. For instance, three bit organized in a closed loop appeared suitable
to describe both the color charge of quarks or anti-quarks, and the color absence,
characteristic of leptons and anti-leptons [1].
? E-mail: elia@sr.isu.ru
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Two three-bit loops was found enough to represent also gluons, weak bosons,
and the electrical charge for all the particles. Adding two more bits to the graph, we
get a model suitable to describe three fermion families, triplet- and singlet-states
of bosons, Higgs scalar and the photon.

All these models provide the correct quantum numbers of the corresponding
particles as combinations of their bit’s values. The only thing one must assume
is that the bit’s values are not 0 and 1 but +1

6
or −1

6
and they have the physical

sense of electric charge.
The weak points of our bit-graph models, including the most advanced one,

was that they were completely C-symmetrical, and therefore they did not provide
the representation of the handedness and the parity asymmetry. To overcome
this obstacle, we modified the principal three-bit loop graph, assuming it directed,
and, therefore, we get the whole model chiral and CP-symmetrical. The charge
conjugation C, meaning exchange of all bit values from 0 to 1 (+1

6
to −1

6
) or back,

and P, meaning the reverse of all loops’ directions, being applied together, turn
the model back to the original state.

This trick helped, but the bits looked this time rather less like binary digits
because they must somehow carry, in addition to the electric charge, some extra
information about the direction.

According to our eight-bit model, there must be two different versions for
all the bosons, one of them more, and another one less symmetrical, which we
associated with the triplet and single state of them. The scalar Higgs boson H
took, in this model, the place of the singlet Z. Because of CP-symmetry, the same
thing also happened to the photon representation, predicting some new scalar
chargeless particle taking place of the singlet, or longitudinal, photon.

Stacking, like children’s blocks, several copies of our Higgs boson model
graphs with each other, we found that an electrically and color-neutral filling of
space with unlimited size is easily obtained in this way. We associate it with the
vacuum condensate. It is chiral because its CP-symmetrical partner is another
condensate, which is produced the same way by stacking with each other the
copies of longitudinal photon model graphs.

We recognized that it can be very effective to consider this condensate as
vacuum background, instead of empty free space. It looks like regular periodic
directed bit graph, infinite or big enough, consisting of multiple copies of the
background bit combination, either Higgs or longitudinal photon. Some of these
copies can be easily replaced with other model graphs corresponding to any of
known particles, so particles will be just defects in the regular structure, with one
or more bits with inverted charge.

Since the background is chiral, the left- and right-handed configurations
become completely different. As an example, the photon and Z boson, that were
CP-partners, went far one from another. Heavy and short-living Z has 6 defect bits
in respect to the background while the light-weight and stable photon has only
two defected bits.

The Higgs boson manifests itself as a scalar neutral particle on the background
of longitudinal photon condensate. On its own background it would be non-
distinguished from it, and thus experimentally not observable, i.e. non-existent
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- the same way as the longitudinal photon does not exist on the background of
itself.

That was the first time we think about the space as filled with the regular
structure so it can be treated as a start point of our tessellation approach. In
contrast to the purely mathematical structure of the bit graph, filling of the space
with regions of different charge is a picture that can be called physical. It can be
explored to find out what laws can exist in this ’world’ and under which of them
it will be more similar to ours.

10.2 Assumptions

The assumptions we listed below constitute an essential part of the approach.
Changing them, we usually get a model that significantly differs from the observ-
ables.

Generally, they are as follows:

• the idea of tessellation,
• the statement of electrical charge carried by domains in it, and
• grouping of charged domains into triplets and pairs.

10.2.1 The ground state is a domain tessellation

The principal assumption of the tessellation approach is to treat the vacuum not as
an empty space, either with fluctuations or without them, but, instead, as a dense
filling of small regions, or domains. The domains can be either similar or different
from each other, and may be either separated or not separated by some kind of
walls. These are details that can vary in particular models.

This filling, or tessellation, is assumed to be the ground state, so that all
fluctuations, defects, geometric distortions should be considered against this
background.

In principle, the tessellation can be assumed global, crystal-like, or local,
similar to some fluid, and even finite, looking like gas of domain clusters. In the
last case, though, it is not the tessellation, but something more close to the classical
empty space with free distinct particles in it. The liquid tessellation, with just
near order of domains, should have some secondary unordered walls separating
these ordered regions from each other, that, on our opinion, contradicts to the
observations. So we assume the long-ranged, up to the infinity, and, in the first
approximation, strictly periodical crystal-like space filling as the basic object for
our model. In fact, each defect is the local violation of the periodicity, and the
vicinity of a defect also can be slightly distorted. Also, there can be waves of the
distortion, but all this is considered as excitations of the ideally periodical ground
state.

10.2.2 Domains are electrically charged

As the second assumption, we take the statement that the principal difference
between domains, and probably the only one, is the difference in their electric
charge. We assume it to be either +1/6 or −1/6 in units of proton charge e.



i
i

“proc19” — 2019/12/9 — 11:13 — page 193 — #209 i
i

i
i

i
i

10 Tessellation Approach in Modeling Properties. . . 193

Fulfillment of this requirement is necessary to ensure that all the particles will
have their electrical charges proportional to ±1

3
only. In this case, the tessellation

model gets compatible with the bit graph models we studied before, so we can
use the bit values 1 and 0, converted to the charges +1/6 or −1/6, to represent the
particle that we want to explore.

In fact, it is not mandatory for absolutely all domains to carry these charges:
it is only required for those domains that can change their charges individually or
along with another domains of the same charge.

In case a pair of domain can participate just in mutual charge exchanges, or
in case of individual domains that can not change its charge at all, these domains
could have any charge as long as they keep compensating each other.

However, this is a kind of complification, that we try to avoid. Our 8-bit
graph model allows exchange between any pair of bits, so the tessellation, that
is compatible to it, must have all the domains charged with either +1/6 or −1/6
only.

On our opinion, the scalar electric potential of these charges can play the
role of Higgs field in explanation of particle masses, so we do not assume an extra
Higgs field for this purpose. The electric field of domains is the only primary field
assumed [7].

This hypothetical unification of both fields allows to estimate the domain
radius:

r ≈ α

62η
≈ 1

36 · 137 · 246GeV
≈ 8, 2 · 10−7GeV−1 ≈ 1.7 · 10−20cm. (10.1)

The whole picture of vacuum as a scalar field, non-zero almost everywhere
(excepting walls), looks now close to the vacuum domain model [6] with the
difference that domain sizes are not on cosmological but on sub-particle scale.
This could, in our opinion, explain the paradox of absence of domain observations
while they are predicted as a consequence of symmetry break in the electroweak
theory.

10.2.3 Triplets and Pairs

It is well known that all the fundamental particles have their electrical charge
values in the range from -1 to 1. All the multi-charged particles are considered
composite, as bound states. In the tessellation approach we consider this limit
as an evidence in favor of assumption that the count of domains that are able to
possess simultaneous inversion in the same direction, is exactly three. We suppose
them to reside in the tessellation in the close vicinity of each other, most likely
being the immediate neighbors.

In other words, the tessellation consists of multiple positive- and negative-
charged domain triplets, each carrying electric charge of ±1

2
, and one, two of three

domains in a triplet can be defected, i.e. have the charge inverted.
This assumption immediately leads to the phenomena of the isotopic symme-

try, because it stipulate existence of two variants for each defect configuration,
depending on place where it occurs: either instead of positive triplet in the ground
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state tessellation, or instead of negative one. The difference of electrical charge
between them is exactly 1, so defects in the positive triplets are down particles;
the same defects in negative triples are up.

The relocation of the defected triplet from originally negative place to the
positive one, is, in fact, its exchange with the positive triplet resided in its place. It
causes, besides the transformation of the up particle into down one, the appearance
of new positive-charged triple defect in the negative place. It corresponds to the
weak boson, so all this exchange should be considered as an example of weak
interaction, for instance: u

2
3 → d−

1
3 +W+. This defect can migrate, exchanging

its place with triplets in negative places, or cause the relocation of some defected
triplet from the positive place into negative one.

In addition to triplets, we assume the possibility of domain pairs. It is the
artificial construction, serving as the simplest way to represent several different
particles with the same charge. The exchange between domains in a pair affects
neither color nor electric charge, but the result combination differs from the origi-
nal.

10.3 Objectives of the tessellation approach

To be applied to problems in particle physics, the tessellation approach requires
the concrete suitable tessellation. To calculate energies, including masses, it is
necessary to figure out, what is the energy in this case. For the dynamic processes,
including interactions, the way of defect migration also should be identified.

So the determining of the most optimal structure, obtaining the appropriate
Hamiltonian and definition of dynamic may be considered as main objectives for
the research.

Also it is possible that there are some physical systems, analogous to the
tessellations, for instance foams and liquid-liquid mixtures, so the approach could
be applied to them, and some observations and experiments with these systems
can improve the knowledge of this subject.

10.3.1 Finding the optimal structure

There are a lot of mathematically possible different spatial fillings that, in principle,
can be used in the tessellation approach. Each of them provides, as its defect
combinations, the spectrum of possible fundamental particles. Some of them are
better than others, i.e. their defect combinations looks more similar to the particles
found in the real world. So there should be one or several tessellations that provide
the best correspondence to experimental data. So, Determining of the optimal
structure is the first and main task of the tessellation approach.

We examined five structures, in the following order:

• 1-dimensional probe tessellation of 8-bit ’V’ bit graphs
• simple cubic grid (NaCl type),
• body-centered cubic grid (CsCl),
• Weaire-Phelan [8] structure, or A15 phase [9] (β-W, Nb3Sn) [10], and
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• 4-dimensional ’Satori’ structure [11], built as alternation of two modified A15
grids.

All the structures are compatible with, but not limited by, our 8-bit model.
In all these cases we considered electrically-neutral grids containing equal

quantities of positive- and negative-charged domains in their nodes.
In the simple cubic grid, to ensure both the neutrality, and also the CP-

symmetry, we used as node’s charge its parity, calculated as product of its row’s,
column’s and layer’s parities.

Since all subsequent grids can be produced from the (hyper-)cubic grid per-
forming shifts of its rows, columns and/or layers, the parity is still defined for
their nodes so we distribute the charge in the same way.

To obtain the domain structure from the grid, we use the Voronoi diagram [12]
built for the nodes. In case of simple cubic grid, the Voronoi diagram is also simple
cubic, dual to the original. In case of body-centered grid, the Voronoi diagram is
the Kelvin structure, the tessellation of equal tetrakaidecahedra, each of them is
truncated octahedron.

In both cases, the structure is not chiral, so both even and odd domains have
identical shape and spatial orientation.

The key difference of the Weaire-Phelan structure in respect to simple and
body-centered grids is that in it the domains of different parity have different
orientation, being mirror reflections of each other. Moreover, there are two different
kinds of domains: for each three tetrakaidekahedra of three different orientations,
there is one dodecahedron. Each translation unit consist of two equilateral triangles
built from tetrakaidecahedra and two dodecahedra of opposite parities. So it is
obviously compatible with the 8-bit graph model, while the first two are not.

The last tessellation that is 4-dimensional, now it is constructed but not well-
studied yet. We needed the four-dimensional structure in order to have any model
of three-dimensional defect motion (see below). Like A15, from which it is derived,
it has minimal wall pro cell ratio, but, in contrast to it, is built of the domains
having the same shape.

10.3.2 Constructing the Hamiltonian

The electrical charge of particles, factorized into ones’ complement bit represen-
tation, define most of the quantum numbers as bit combinations: weak charge,
hyper-charge, baryon- and lepton-numbers, and matter type (matter-or-anti-matter
bit). The unary triplet-bit-loop represents the color charge. So, it is easy to deter-
mine bit combinations and corresponding defects for the properties that influence
on the electric charge.

It is more difficult to guess the possible combinations, that would represent the
equal-charged particles of both handedness-es, different spin, members of three (or
more) families, or possessing boson and fermion kind of statistic. For instance, they
are up, charm, and top quarks, orW− boson, tau, muon, and electron. However, it
can be done, following the symmetry of the tessellation structure.

But the problem of particle masses, which are very different, very special, and
do not manifest any dependence on the particle’s charge, on our opinion, can be
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solved in the tessellation approach just by applying some additional assumption
about mass origin.

Since there is nothing in the model but spatially distributed electrical charge,
the mass of particle, which appears as some difference in the distribution structure
in respect to background one, should depend on this difference, that can be
expressed analytically in geometric terms.

We start with choosing of the suitable definition for mass. The best one, on
our opinion, is to treat as the particle’s mass, the part of energy, associated with it
regardless of its state of motion and of its interactions with other particles. It is
preferable to the inertial mass definition, because it does not depend on motion,
and to the gravitational one, since it does not require more than one particle.

It means that if we prepare the model containing one non-moving defect,
corresponding to a particle, in the infinite periodic tessellation, and calculate
the difference in energy between pure and defected models, we should get the
particle’s mass.

The tensor field of tessellation distortion, that might emerge around the defect,
as we suppose, should be associated with the gravitational field of the particle.
In this approach, the field of gravity is not created by mass nor by energy, but
it is an essential part of the energy, and particularly, of mass. Following it, we
should consider the total mass as split in two different parts: one of them is
connected to the changes of not only sizes but also of the topology of domain
walls, that is occurred in the place of defect; while another part is connected to the
minor residual changes in shape of domains around it, that retain the tessellation
topology, but can spread on rather bigger distances. Both parts are supposed to be
able to exchange their energy and minimize it.

So, obtaining the appropriate Hamiltonian is the second task of the ap-
proach, essential for its application to mass and energy prediction. The energy
function could depend on domains’ and walls’ volume, area, curvature, thickness,
charge density and so on. To check it, we calculate the Hamiltonian for the sample
pure background tessellation (that should be as large as possible, ideally infinite).
After that we figure out how the appearance of the particular defect rearranges the
tessellation components in-place and in the vicinity, and calculate the Hamiltonian
again, this time for the defected tessellation. The difference we treat as defect
energy, which should be equivalent to the particle mass in absence of interactions
and movements (in the reference frame where the domain centers are motionless).

In addition to the mass calculation, the Hamiltonian can play another signifi-
cant role. Both the initial assumption about existing of the domain tessellation, and
choosing concrete structure for it, need some physical grounding for them, aside
of their usefulness in explaining or predicting the particle and vacuum properties.
We suppose that the energy depends on the structure shape so that it has the
locally or globally minimum corresponding to the tessellation in the ground state.

Taking the Hamiltonians gradient as analogue of tension force, we can allow
the model to relax under it, and do not care anymore about maintaining of correct
form of domains.

In the most preferable case, we can omit the step of choosing the shape of tes-
sellation, allowing the Hamiltonian minimization to self-assemble the tessellation.
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This task looks rather real because, for instance, the tessellation A15 is an example
of extremal case: it has minimal known wall area to given domain volume ratio
among all 3-dimensional equal-volumed tessellations.

Nevertheless, the use of just such a Hamiltonian is not necessary: for sim-
plicity, tessellation can be given imperatively, by the coordinates of points, or
analytically, for example by a trigonometric or exponential function.

We have considered some simple rules of calculating energy, as follows:

• The simplest hypothesis is to estimate the energy as being proportional to the
count of bits or domains that are inverted with respect to the ground state. Its
advantage is that it can be applied to infinite or even to the finite bit graphs
regardless of their structure.
The results are mostly qualitative, and can only be considered valid for a few
cases. For instance, the smallest but non-zero masses must correspond to the
photon and neutrino because they are represented with just two inverted bits.
The most heavy particle should be Higgs boson, built from eight defects. Z
corresponds to six defects while triplet-W does with five ones. So the mass
ratios should be mW

mH
= 5
8
= 0, 625, mZ

mH
= 6
8
= 0, 75, while experimental values

are 0.643 and 0.728.
• Considering two kinds of bits, that reside in triplets and in pairs, as different,

and treating solo changes of domain in pairs as having no influence on the
mass, we could improve these results. This caused us to move from bit models
to tessellations, where we can take in account the geometric properties.

• In the polyhedral approximation of A15 structure, constructed from domains
of two parities (and, of course, two corresponding charges), there are three
kinds of faces of different area, and they can separate domains of either equal
or opposite charge.
We supposed that the energy is proportional to area of the domain walls and
it is different for two types of wall: for double-layered walls between opposite-
charged domains, containing zero-charged film in their core, and for walls
between domains of the same charges: these walls supposed to have another
structure, without zero surface inside.
The particle, as combinations of several defects, define the configuration of
walls, that can be calculated manually, even without computer simulation, just
by counting faces of particular type.
For A15 model, this energy calculation leads to existence of massless, low-
massive, and highly massive particles. The massless particles correspond to
inversions in dodecahedra, that have six equal pentagonal faces of each type,
and after recharging they have six equal faces of each type, again.
Since the changes can be in both directions, and the difference between arith-
metic mean of two face’s area and the third face is very small, the particles
containing combinations, compensating each other, are lite-weight. Others are
massive.
We could not reproduce all the known masses in this simple scheme, but
slightly varying the tessellation geometry, we found some defect combinations,
that simultaneously give correct quantum numbers and also correct masses,
for the photon, neutrinos, electron, weak bosons and Higgs.
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Gluon threads in mesons, supposed as 1-dimensional condensates of diagonal
(rr̃, gg̃, bb̃) gluons, also appear massless excepting their ends. The solo gluons,
not stacked in threads, have in this schema sufficient masses on GeV scale,
so the conception of threads is preferable. Quarks do not look like individual
particles, but as indispensable ends of diagonal gluon thread or, for closed
non-diagonal one, as sites where it changes its direction.
Some mass values, for example 105.65MeV for the muon, could not be repre-
sented this way unless we allow not just even but also odd count of changed
faces, even though they always appear in pairs. This can mean that the second
family should be considered in dynamics only, as oscillation or combination
of two forms, having both even but different changed faces count, producing
odd arithmetic mean.

So by now we have not suggested the Hamiltonian that we could call ultimate
nor close to it. The task seems to be complex because it should allow to take in
account the particle’s motion, including relativistic case.

10.3.3 Dynamics, time and motion

To be able to represent dynamic effects we needed at least the tessellation that
can get changed. However, we did not see that such an ability is present in
any of the three-dimensional tessellations that we considered. Both the ground
state, and the defects, manifest their tendency to be stable, motionless, especially
under the Hamiltonian minimization. Nothing forces the defects to jump into
another locations and also nothing causes them to keep jumping conserving their
momentum or velocity.

Cellular automaton as 4d tessellation One thing we could do is to consider
consequential ’snapshots’ of the same tessellation, where the defects took different
places, ’moving’ in the same sense as ’move’ the motionless frames on a film. By
assuming some external, additional rules of the jumps we could get the working
model that would be a kind of cellular automaton.

Geometrically, the cellular automaton build on the basis of three-dimensional
Kelvin or A15 structure is the infinite four-dimensional tessellation with the dedi-
cated direction, that is the direction of computation, orthogonal to the other three.
Each 3-dimensional domain turns in it into the 4-dimensional cylinder or prism.

From the viewpoint of the tessellation approach, there is no reason to believe
that the shape of prism or cylinder is the best shape for the domain in the tes-
sellation, suitable for the modeling. Instead, we should get one step back and
suggest some 4-dimensional tessellation that would be ’good’ or may be ’the best’
according to its abilities to reproduce the phenomena we want in our model.

Cross-sections with ’moving’ domains On another hand, observing the 2-dimen-
sional cross-sections1 of the 3-dimensional A15 model, we found out that its

1 In the trigonometrical approximation, with ρ = 1
4
(sin z(1 − cos x)(1 + cosy) + sin x(1 −

cosy)(1 + cos z) + siny(1 − cos z)(1 + cos x))
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sequential cross-sections, that can be taken continually, look like a cartoon film,
showing perpetually moving two-dimensional domains, even in the pure non-
defected tessellations. The character of movement could be described as kind of
oscillation or rotation, but since the similar-charged domains are indistinguishable,
when they meet, they can exchange, so the movement also can be treated as
directed relocation of domains on any distance and in any direction with the
limited velocity.

Any defect, occurred in this tessellation, in order to conserve its charge,
must participate in its neighborhood’s movement. Otherwise, it would overlay
with other domain of the same charge, causing the double-charged domain, or
mutually cancel the domain of opposite charge, forming the domain with reduced
or zero charge. Both cases violate the principal assumption of the domain behavior,
postulating their constant charge. So the charge conservation can be treated as the
cellular automaton law, determining domain migration into the appropriate place
on the each step.

Hypothetical speculations about modeling movements and time Each time
when the defected domain meets two neighbors of the opposite charge, it must
choose, which place to take. Manipulating with this choice, we can control the
movement: if it happens predominantly in one direction, than the defect moves
there; otherwise it moves randomly or oscillating, keeping close to the point of
origin.

The small distortions of the domain’s walls shape, caused by last choice made,
can play role of the short-term memory, keeping some information about it, and
make influence on the next upcoming choice. This possibility turns the process
to be analog of Markov chain and allows keeping the movement direction, for
instance, with the mechanism similar to the Bresenham’s line algorithm.

We also supposed that the number of situations of making some choice
of direction, can play role of the own time for the particle, that influences on
the probability of the particle’s decay. Propagating with high velocities, close to
the limit, defected domains have less freedom in choosing direction, that can be
treated by the low-velocity observer as the time dilation of the quickly propagating
particle.

Unfortunately, the effect of ’moving’ domains could not be used directly
to represent the movement in the 3-dimensional model, because it reduces the
dimension count by one, so in each temporal moment, i.e. cross-section, the model
space is flat.

Combining the idea of cellular automaton, as a 4-dimensional tessellation,
with the observations of movement-like behavior of domains in flat cross-sections,
we supposed that there exists a 4-dimensional tessellation allowing cross-sections,
which in turn are 3-dimensional tessellations, able to represent known set of
particles, and the movement observed from within 3d sections is a certain process
in 4d one, equivalent to sampling successive sections in some direction with strict
conservation of charge for each domain in the section.

So the third task of the tessellation approach can be formulated as to find
the appropriate 4-dimensional tessellation. It must offer the same possibilities
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as 3-dimensional ones, but, additionally, provide the way to represent momentum
and, ideally, the law that causes domains to conserve it.

4d tessellation ’Satori’ Since the most successive 3-dimensional model was the
optimal space tessellation, we looked for the references to optimal tessellation in
the 4-dimensional space, but did not find any. So we analyzed the way how the
optimal tessellations in 2 and 3 dimensions are build, and found out that they are
relaxed Voronoi diagrams of square or cubic point grids, with some nodes shifted
on the unit half-size along the rows, columns or through layers.

We noted that the optimal 3d node grid is produced from two isomeric optimal
2d grids (in one of them each second row is shifted while in another one the points
are shifted in each second column). Being placed in alternating adjacent layers,
they offer possibility to perform additional shift of 1

4
points along the straight lines

orthogonal to the layers, so the ratio of shifted points raises from 0 in 1 dimension
through 1

2
in 2d up to 3

4
in 3d, and the calculated value of the optimality criterion2

was reduced, which meant compaction.
This procedure also produces two 3d-isomers, depending on selection of

even-odd or odd-even order of 2d isomers used.
Following this way, we repeated the same operation once more, placing two

alternating isomeric 3d grids in adjacent spaces. Doing so, we got all the remaining
non-shifted 1

4
points disposing on straight lines perpendicular to the spatial layers,

so we could perform the ultimate shift along these lines.
Calculating the Voronoi diagram (using the qhull package [13]), we found out

that it consists of all the regions having the same size and the same shape. They are
78-verticed polytopes, with 26 3d faces, two of which are distorted dodecahedra
while the remaining 24 are nonahedra. They have 4 orthogonal orientations, that
can be defined by the vector connecting centers of their dodecahedral 3d-faces.
Polytopes of the same orientation stack together sharing dodecahedral 3d-faces
along each of four orthogonal axis. Even and odd polytopes are alternating along
the stack, being the mirror reflections of each other.

Calculating the optimality criterion, we found it3 ≈ 4.9% less than in 3d, so
since all the points are yet shifted, it is impossible to get more compact tessellation
with the same way. It means that, probably, this 4d tessellation that we called
’Satori’ is the most compact one in all the Euclidean spaces.

2 The optimality criterion we calculate as c = Dd−1

d· d
√
NDd−1

d

where d is the space dimension

count, Dd−1 is the hyper-area of walls in the sample of N domains, and Dd is the hyper-
volume of the sample. It has the value of 1 for simple hyper-cubic grids in all dimensions.

The optimal flat honeycomb has c =
√

3

2
√
3
≈ 0.93060 while non-relaxed A15 has

c ≈ 0.882825.

3 c = 1
8

(
1 + 7

√
2
3

)
≈ 0.83943
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Checking the cross-sections4, we made sure that they keep the ’moving’ behav-
ior of domains, now in three dimensions. The section is to be made orthogonal to
one of the axis . In contrast, when the section is performed orthogonal to the diago-
nal of the Cartesian reference frame, the ’movement’ looses its stochastic character,
keeping all domains in 4-beat oscillating near points close to their centers.

The new structure is made of equal domains so it is supposed to be stable
under the relaxation with the tension applied with suitable Hamiltonian.

4d Cylinder tessellation With all its advantages, the Satori structure has at least
two drawbacks that make us look for improvements. First, there is no more D-type
domains that had equal count of neighbors of both parities, which allowed us to
easily build models for massless particles using them. Now each domain shares
two dodecahedral 3d-faces with two its neighbors, so even in mutual charge
exchange between two neighbors the opposite 3d-faces would change their kind,
that we usually treat as a sign of some mass connected with such a defect.

Second, the tessellation looks having the lack of causality from the viewpoint
of observer inside 3d cross-section. Propagating in some direction, the process
of cross-sectioning can meet regions, containing other defects, that for the 3d
observer would be miracle artifacts, appearing from nowhere and violating the
conservation laws.

We see that the possible solution for both problems listed above is the restric-
tion in one of four dimensions with only one translating unit, turning the tessellation
into the 4-dimensional cylinder, infinite in three dimensions but periodical in the
fourth one.

In this case two domains of opposite parity lying along the periodical axis
would share both dodecahedral 3d-faces, so they both will remain intact in the
mutual charge exchanges. The process of cross-sectioning is limited now with
only four domain layers, so it cannot meet anything that does not exists in these
layers. That ensures the same reality for both 4d and 3d observers. The sectioning
process degenerates to the directed oscillation or rotation between four 3d-spaces,
schematically shown below:

0





��
3

22

,,1

rr

ll

2

JJ

]]

in which states of domains in each space depend only on states of domains in two
previous spaces, and also influence only on the state of domains in two subsequent
spaces (rules for even and odd spaces are different due to their different structures).

4 In the trigonometric approximation of the ’Satori’ structure that we constructed having
extremal points in the domain centers: ρ = 1

4
(sin x(cosy−cos z+cos t−cosy cos z cos t)+

siny(cos z−cos x+cos t−cos z cos x cos t)+sin z(cos x−cosy+cos t−cos x cosy cos t)−
sin t(cos x + cosy + cos z + cos x cosy cos z))
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10.4 Discussion

It is not obvious whether the tessellation approach is compatible with the known
’no-go’ theorems. For instance, it should not be considered as deterministic because
it is based on bit graphs, which are multivalent, producing multiple eigenvalues
as result of the serialization, which corresponds to the quantum measurement.
Also, it offers some combination of spatial and internal degrees of freedom so it is
interesting to check against the Coleman-Mandula theorem.

10.5 Conclusion

The tessellation approach that we define and discuss in this paper allow us to
formulate and solve problems of the particle modeling. Some of them have also
the general mathematical meaning, for instance the problem of multi-dimensional
filling optimality and measurement of information that tessellation holds.
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11 Mass Matrix Parametrization for Pseudo-Dirac
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Abstract. An overview of pseudo-Dirac neutrino framework is given starting from general
spinor phenomenology. The framework is then tested by simulation of oscillations for T2K
experiment parameters. Two possible derivations [7] and [8] of oscillation parameters are
indicated to have the same result.

Povzetek. Avtor poda pregled modela psevdo Diracovega nevtrina v okviru splošne
fenomenologije spinorjev. Model preizkusi s simulacijo oscilacij za parametre poskusa
TK2. Pokaže, da izpeljavi [7] in [8] privedeta do enakega rezultata.

Keywords: neutrino oscillations, sterile neutrinos, pseudo-Dirac neutrinos, neu-
trino oscillation experiments

11.1 Introduction

Massive neutrinos directly indicate presence of physics beyond the Standard
model (BSM). Precise measurements of neutrino oscillations provide the possibility
to probe various BSM theories.

Since the absolute values of neutrino masses are currently beyond direct
measurements various experiments are focused on the standard neutrino model
(νSM) oscillation parameters – square mass differences ∆m2 and δ-phase.

Some experiments however reported the existence of anomalies in experimen-
tal data. These anomalies can find explanation in theories with additional neutrino
interactions, most notably the sterile neutrinos.

Recently a number of short-baseline reactor experiments declared an obser-
vation of sterile neutrinos with the significance of 3σ. However the observations
are not entirely compatible to each other. The matter is under investigation in the
ongoing STEREO, PROSPECT, SoLid and Neutrino-4 experiments. Experimental
evidences suggesting sterile neutrino with mass ∼ 1 eV can be explained in the
simplest way in 3+1 neutrino model.

? E-mail: gorin@inr.ru
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Standard unitary 3+1 data fit suffers from strong tension between MINOS

and MINOS+ bound on
(−)
νµ disappearance [2] and LSND&MiniBooNE

(−)
νµ → (−)

νe
appearance [3,3,4]. There are two ways to approach this problem.

First possibility is to consider 3+1 non-unitary mixing scenario [5]. It can be
used to explain short-baseline disappearance experiments however the anomalies
observed in LSND and MiniBooNE experiments [6] remain unexplained.

Second possibility is addressing to more than one sterile neutrino. 3+2 scenario
can be studied in general framework of 3 active and 3 sterile neutrino. Here we
are probing the pseudo-Dirac scenario with 3 active and 3 sterile neutrinos.

In Section 11.2 we will describe how pseudo-Dirac neutrinos naturally arise
when the neutrino is a composition of Dirac and Majorana spinors.

In Section 11.3 we will show that pseudo-Dirac neutrinos can be effectively
described by three parameters. Then the mass matrix can be effectively diago-
nalized which we show using two different approaches. Then we will plot the
oscillation probability for pseudo-Dirac scenario against pure Dirac neutrinos for
the setup of T2K experiment.

In Section 11.4 we will discuss what can be further done to address the
problem of streile neutrinos and neutrino mass generation.

11.2 General spinor formalism

Lagrangian mass term for two spinors χ and η has the form

Lmass =
1

2

(
χ η
)

M
(
χ

η

)
(11.1)

where mass is given by M =

(
A M

M B

)
andM,A,B are 2x2 matrices.

For the most general free field case we can write down “Weyl-Majorana-Dirac
equation”

iσµ∂
µψL − ηD,RmD,RψR − ηLmL(iσ2)ψ

∗
L = 0

iσ̄µ∂
µψR − ηD,LmD,LψL − ηRmR(iσ2)ψ

∗
R = 0

(11.2)

with non-negative mass terms m and phase terms η = eiϕ from unitary group

U(1). Defining m̃ = ηm and ψR =

(
ψ1 + iψ2
ψ3 + iψ4

)
, ψL =

(
ψ5 + iψ6
ψ7 + iψ8

)
this equation

can be transformed into the form [1]:

�Φ+ M̂2Φ = 0 (11.3)

whereΦ = (ψ1..ψ8)
T

Now let us illustrate only the simple casemD,L = mD,R = mD. For this case
general spinor mass matrix is positive semi-definite Hermitian matrix of the form

M̂2 =


MR 0 0 A

0 MR −A 0

0 −B ML 0

B 0 0 ML

 (11.4)
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whereMR =

(
ν1 +m

2
R −ν2

ν2 ν1 +m
2
R

)
,ML =

(
ν1 +m

2
L −ν2

ν2 ν1 +m
2
L

)
,

B =

(
µ1 µ2
µ2 −µ1

)
, A =

(
k 0

0 −k

)
and m̃Dm̃L + m̃∗Dm̃R = k > 0 and moreover

m̃∗Dm̃L+m̃Dm̃R = µ1+iµ2 m̃
2
D = ν1+iν2. This matrix has four doubly degenerate

eigenvalues. Considering real and positivemR andmD and complexmL we are
down to just two eigenvalues.

Now consider χ and η in 11.1 to be the left- and right-handed neutrino fields
νL and νR. We can work with two Majorana neutrinos if we stipulate νR = ν

′C
L .

Then M =

(
mL mD
mD mR

)
There are three commonly known special cases for the

values of the elements of this matrix:

• First case ismL = mR. In this scenario we have a pair of eigenvaluesmD±mL
and mixing angle between νL and νR is given by tan2θ = 2mD

mR−mL
= π
4

. No
active-sterile oscillations are realized in this case.

• Second case ismL = mR = 0. In this scenario we have a pure Dirac neutrino.
• Last case ismL,mR � mD. This scenario is referred to as pseudo-Dirac case.

In general, neutrino can have Majorana and Dirac parts

LD+M
mass = LDmass + LLmass + LRmass (11.5)

and Dirac neutrino can be represented as two Majorana neutrinos. Left-handed
neutrinos are concerned active while right-handed are sterile i.e. they are singlets
under SU(2)L ×U(1)Y .

For the Pseudo-Dirac neutrino the symmetry of mass matrix is not the sym-
metry of the weak interaction. It is easy to obtain Pseudo-Dirac neutrino decom-
position

ψ±L =
1√
2

(
0

η1 ± iη2

)
=

1√
2
(N1L ± iN2L)→ 1√

2
(N1L ± eiϕN2L)

ψ±R =
1√
2

(
−iσ2(η∗1 ± iη∗2)

0

)
=

1√
2
(NC1L ± iNC2L)→ 1√

2
(NC1L ± eiϕNC2L)

(11.6)

for a pair of almost degenerate mass Majorana neutrino with opposite CP sign
and lepton number not being conserved in higher order weak interaction.

Because of the small value of mass matrix distortions the mixing angle be-
tween two Majorana neutrinos is ∼ π

4
.

11.3 Modeling

11.3.1 Mass matrix diagonalization

For chirality preserving processes it is suffice to diagonalizeM†M. We will now
consider two possibilities – M2 and M diagonalization and show that in the
leading order they provide the same result for pseudo-Dirac neutrinos.
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In general, 6x6 mass matrix diagonalization gives 15 mixing angles, multiple
violating CP phases and 6 eigenvalues. Under Pseudo-Dirac assumption this can
be approximated by ordinary 3x3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [7].

M†M '
(

m†DmD m∗Lm
T
D +m†Dm

∗
R

m∗DmL +mRmD m∗Dm
T
D

)
(11.7)

consider bi-unitary transformation U†RmDUL = diag(m1,m2,m3) = m then

V =

(
UL 0

0 U∗R

)
and

V†(M†M)V =

(
m2 U†Lm

†
LU
∗
Lm+mU†Rm

∗
RU
∗
R

mUTLmLUL +U
T
RmRURm m2

)
(11.8)

If we completely ignore off-diagonal parts then it is just Dirac scenario with
doubly-degenerate eigenvalues. Otherwise in the first order approximation each

pair takes the form
(
m2i ε∗imi
εimi m2i

)
Now we obtain 6 mass eigenstates νiS = 1√

2
(νiL + e

iϕiνiR) νiA = 1

i
√
2
(νiL −

eiϕiνiR) such that eiϕi = εi
|εi|

for decomposition 11.6 and mass eigenvalues given
bym2iS,A = m2i ± εimi.

Another method for diagonalization M itself is completely removing left-
handed Majorana spinor part of the Dirac one – mass matrix takes the formM =(

0 m
′

D

m
′

D Ms

)
In [8] it is shown that the appropriate diagonalizing transformation is

given in form

V =
1√
2

(
U† 1

U 1

)(
1 δ

−δ† 1

)
(11.9)

where U diagonalizesm
′

D and δ = U(ε/2+ε), εT = −ε andMs = 2εmD−εmD+

mDε. This produces
M = V†mV

where

m =

(
mD(1+ ε) 0

0 −mD(1− ε)

)
Now m2 in the leading order have the eigenvalues m2i ± ε

′

imi which are the
same as in the previous case.

11.3.2 Probing the pseudo-Dirac scenario

With these eigenvalues we can write down the oscillation probability in terms of
ordinary PMNS matrix. Assume that mass eigenvalues splitting for pseudo-Dirac
neutrino is given by m2iS,A = m2i ± εimi. Using the results from [7] it is easy to
model νµ → νe oscillation probability which is
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P(να → νβ) =
1

4

∣∣∣∣∣∣
3∑
j=1

Uβj(e
i
m2
jS
2E
t + ei

m2
jA
2E

t)U∗αj

∣∣∣∣∣∣
2

(11.10)

To illustrate potentially observable differences between Dirac and pseudo-
Dirac scenario we will simulate oscillations for T2K experiment parameters:

• L = 295 km and E ≤ 2 GeV.
• δ = −π

2
and sin2θ12 = 0.307 sin2θ23 = 0.5 sin2θ13 = 0.218.

• ∆m212 = 7.53 · 10−5eV2 ∆m223 = 2.44 · 10−3eV2.
• normal mass hierarchy.

This allows us to probe the impact of small Majorana additives. Please also
note that energy spectrum now depends on the absolute mass of neutrino because
of the splitting. First we will model the situation where εi = 0.1, Fig. 11.1.

Please note that neutrino beam in T2K experiment has energy distribution
with maximum at 0.6 GeV and almost all neutrinos have energy in the interval
0.5 ÷ 1 GeV. So we cannot make any assumptions considering pseudo-Dirac
neutrinos using only T2K data.

Fig. 11.1. Pseudo-Dirac neutrino νµ → νe oscillation probability compared to pure Dirac
scenario for T2K experiment parameters and naive assumptions for pseudo-Dirac mass
eigenvalues.

Let us illustrate the difference in energy spectrum for more realistic εi param-
eters. In Fig. 11.2 we have takenm1 = 0.01 eV, ε1 = 2.6 · 10−3,ε2 = 4.0 · 10−3 and
ε3 = 5.0 · 10−3 proportional to mass squares differences.
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Fig. 11.2. Pseudo-Dirac neutrino νµ → νe oscillation probability compared to pure Dirac
scenario for T2K experiment parameters for more realistic mass splittings.

11.4 Discussion and Conclusion

Now we are in the situation where combined experimental data from atmospheric,
reactor and accelerator neutrino experiments is in good agreement with 3 active
neutrino model for the first three oscillation peaks. Upcoming experiments can
provide more experimental data thus clarifying the situation.

Long-baseline experiments can provide precise values of νSM oscillation
parameters and provide enough data to determine the neutrino mass hierarchy.

Short-baseline experiments can either improve their statistics and cancel out
all anomalies or successfully approve that the νSM needs expansion.

Using precise β-decay and K-capture measurements it would be arguably
possible to measure neutrino masses directly or at least put a constraints on them.

ββ and 0νββ observations as well as atmospheric, solar, galactic and extra-
galactic neutrino experiments are important for probing different neutrino mass
generation mechanisms.

It is also important to consider theoretical models for processes in early
Universe – the constraints from these models are generally less strict than from
direct observations but still helpful either for a cross-checking or for limiting the
potential of exotic mass generation and mixing models.

Here we presented the derivation of pseudo-Dirac neutrino from general
spinor formalism.

For the parameters of T2K experiment the probability of νµ → νe oscillation
was modeled. The current setup of the experiment however is not sensitive to
differences in Dirac and pseudo-Dirac oscillations.
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It was shown that in the leading order approximation PD neutrino can be
effectively described by three ε parameters of mass splitting – it is valid for M2

andM diagonalization.
There are questions arising naturally in the context of neutrino mass genera-

tion mechanism.
First question is whether it is suffice to consider pseudo-Dirac neutrino to fit

observations or general framework is needed? This question will be addressed by
the future observations.

Second question is about the compatibility of particular mass generation
mechanism with pseudo-Dirac scenario in particular and it’s rigidity to possible
observational data as a whole. Which mechanisms are the best candidates, Yukawa
coupling or multiple scalar fields (like in Zee model) or maybe even geometric
models of mass generation?
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Abstract. In the spin-charge-family theory [2–7] there are ∀n ∈ N, 2d Clifford operators,
forming the vector space. Space can have for given n ∈ N dimension d = 2(2n + 1) or 4n.
Half of them are Clifford odd operators with the properties of fermion creation and annihi-
lation operators for 2

d
2
−1 family members of 2

d
2
−1 families, fulfilling for each momentum

pk the anticommutation relations for the second quantized fermions [8]. Families in Clifford
space are reachable by S̃ab = 1

2
γ̃aγ̃b, a 6= b and family members by Sab = i

2
γaγb, a 6= b. In

this paper the basis in d = (3+1) Clifford space is discussed, chosen in a way that the matrix
representation of γa and of generators of the Lorentz transformations in internal space, Sab,
coincide for each family quantum number, determined by S̃ab, with Dirac matrices. The
appearance of charges in Clifford space is discussed by embedding d = (3 + 1) space into
d = (5 + 1)-dimensional space.

Povzetek. V teoriji spina-naboja-družin [2–7] je v d dimenzionalnem prostoru 2d Cliffor-
dovih operatorjev, ki določajo vektorski prostor. Teorija izbere d ≥ (13 + 1). Če uredimo
vektorski prostor tako, da so vektorji lastni vektorji Cartanove podalgebre Lorentzove
grupe, izpolnjujejo lihi Cliffordovi vektorji 2

d
2
−1 družin s po 2

d
2
−1 člani vse Diracove

pogoje za fermione v drugi kvantizaciji. Družinske člane določajo generatorji Lorentzove
grupe S̃ab (= 1

2
γ̃aγ̃b, a 6= b), družine pa Sab = i

2
γaγb, a 6= b.

V tem prispevku predstavijo avtorji bazo v d = (3 + 1) razsežnem Cliffordovem
prostoru ter matrično upodobitev za operatorje γa, Sab, S̃ab, γ̃a ter S̃ab. d = (3 + 1)

razsežni Cliffordov prostor vgradijo v prostor d = (5 + 1) ter komentirajo pojav naboja
fermionov v d = (3 + 1) .

12.1 Introduction

In the Grassmann graded algebra of anticommuting coordinates θa there are in
d-dimensional space 2d vectors, which define, together with the corresponding
derivatives ∂

∂θa
, two kinds of the Clifford algebra objects: γa and γ̃a [2,6–8],

both with the anticommutation properties of the Dirac γa matrices, while the

? Talk presented by N.S. Mankoč Borštnik
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anticommutators among γa and γ̃b are equal to zero.

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , {γa, γ̃b}+ = 0 ,

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a ,

Sab =
i

4
(γaγb − γbγa) , S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) ,

{Sab, S̃ab}+ = 0 ,

(a, b) = (0, 1, 2, 3, 5, · · · , d) . (12.1)

The two Clifford algebras, γa’s and γ̃a’s, are obviously completely independent
and form two independent spaces, each with 2d vectors [9].

Sacrificing the space of γ̃a’s by defining

γ̃aB(γa) = (−)B i Bγa , (12.2)

with (−)B = −1, if B is an odd product of γa’s, otherwise (−)B = 1 [7], we end up
with vector space of 2d degrees of freedom, defined by γa’s only.

A general vector can correspondingly be written as

B = a0 +

d∑
k=1

aa1a2...ak γ
a1γa2 . . . γak |ψo > ,ai < ai+1 , k = 1, . . . , d (12.3)

where |ψo > is the vacuum state.
We arrange these vectors as products of nilpotents and projectors

ab

(k): =
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0 .

ab

[k]: =
1

2
(1+

i

k
γaγb) , (

ab

[k])2 =
ab

[k] , (12.4)

where k2 = ηaaηbb. Their Hermitian conjugated values follow from Eq. (12.1).

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] . (12.5)

Vectors in Clifford space are chosen to be eigenstates of the Cartan subalgebra,
Eq. (12.6), of the generators of the Lorentz transformations Sab in the internal
space of γa’s.

S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (12.6)

with the eigenvalues Sab
ab

(k)= 1
2
k
ab

(k), Sab
ab

[k]= 1
2
k
ab

[k]. All the relations of
Eq. (12.1) remain unchanged after the assumption of Eq. (12.3), while each irre-
ducible representation of the Lorentz algebra Sab receives the additional quantum
number f, defined by S̃ab.

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] . (12.7)
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Eq. (12.7) demonstrates that the eigenvalues of Sab on nilpotents and projectors
generated by γa’s differ from the eigenvalues of S̃ab.

States, which are products of projectors and nilpotents, have well defined
handedness of both kinds, Γ (d) and Γ̃ (d).

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa) , if d = 2n ,

Γ̃ (d) : = (i)d/2
∏
a

(
√
ηaaγ̃a) , if d = 2n . (12.8)

The spin-charge-family theory [2–7] of N.S. Mankoč Borštnik uses products
of nilpotents, 1

2
(γa + ηaa

ik
γb), and projectors, 1

2
(1+ i

k
γaγb), to define 2d vectors

in this space of the Clifford graded algebra [3–5]. In this theory Sab determine
in d = (3 + 1) space, which is a part of d = (13 + 1)-dimensional space, spins
and charges of quarks and leptons, while S̃ab determine families of quarks and
leptons.

It is interesting to notice ([9,8] and references therein): Vectors, which are su-
perposition of odd products of nilpotents and projectors, anticommute fulfilling the anti-
commutation relations postulated by Dirac [1] for second quantized fermions, explaining
correspondingly Dirac’s postulate [9,8].

In Sect. 12.2 the properties of products of nilpotents and projectors are dis-
cussed, arranged in eigenvectors of the Cartan subalgebra, defining the internal
vector space of fermions in d-dimensional space when d = (3 + 1)-dimensional
space is embedded into d = (5+1)-dimensional space, so that the spin in d = (5, 6)

determines the charge of fermions in d = (3+ 1).
In Sect. 12.2.3 the matrix representation of vectors are presented.

12.2 Properties of vectors in Clifford space

In Refs. [9,8] the fact that the Clifford vectors, spanned by products of an odd
number of γa’s, fulfill the anticommutation relations postulated by Dirac for the
second quantized fermions, explains these Dirac’s anticommutation relations. Let
us see on the case that d = (5+ 1) how this happens.

Let us denote vectors in d = (5 + 1), presented in Table 12.1 as products of
three nilpotents or projectors or both, by b̂f†m,m = (ch, s), the member quantum
numberm includes the charge, ch and the spin s. The corresponding Hermitian
conjugated partner is denoted by (b̂f†m)† = b̂fm.

The first member m = (1
2
, 1
2
) of the first family a, which is the product

of three nilpotents, is correspondingly denoted by b̂a†
( 1
2
, 1
2
)
=

03

(+i)
12

(+) |
56

(+). All

the rest vectors of the family f = a follow by the application of Sab. The families
f = (b, c, d) follow from f = a by the application of S̃ab. The Hermitian conjugated
partners follow by the application of Eq. (12.1).

Table 12.1, taken from Table IV of Ref. [8], represents four families of Clifford
odd vectors and their Hermitian conjugated partners. All the families have the
same quantum numbers m of the corresponding members, (S03, S12, S56), each
family carries its own family quantum number f.
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f(amily)m (ch, s) b̂
f†
m b̂fm S03 S12 S56 Γ3+1 S̃03 S̃12 S̃56

a 1 ( 1
2
, 1
2

)
03

(+i)
12
(+) |

56
(+) (−)

56
(−) |(−)

12
(−)

03
(−i) i

2
1
2

1
2

1 i
2

1
2

1
2

a 2 ( 1
2
,− 1
2

)
03

[−i]
12
[−] |

56
(+) (−)

56
(−) |

12
[−]

03
[−i] − i

2
− 1
2

1
2

1 i
2

1
2

1
2

a 3 (− 1
2
, 1
2

)
03

[−i]
12
(+) |

56
[−]

56
[−] |(−)

12
(−)

03
[−i] − i

2
1
2

− 1
2

−1 i
2

1
2

1
2

a 4 (− 1
2
,− 1
2

)
03

(+i)
12
[−] |

56
[−]

56
[−] |

12
[−]

03
(−i) i

2
− 1
2

− 1
2

−1 i
2

1
2

1
2

b 1 ( 1
2
, 1
2

)
03

[+i]
12
[+] |

56
(+) (−)

56
(−) |

12
[+]

03
[+i] i

2
1
2

1
2

1 − i
2

− 1
2

1
2

b 2 ( 1
2
,− 1
2

)
03

(−i)
12
(−) |

56
(+) (−)

56
(−) |(−)

12
(+)

03
(+i) − i

2
− 1
2

1
2

1 − i
2

− 1
2

1
2

b 3 (− 1
2
, 1
2

)
03

(−i)
12
[+] |

56
[−]

56
[−] |

12
[+]

03
(+i) − i

2
1
2

− 1
2

−1 − i
2

− 1
2

1
2

b 4 (− 1
2
,− 1
2

)
03

[+i]
12
(−) |

56
[−]

56
[−] |(−)

12
(+)

03
[+i] i

2
− 1
2

− 1
2

−1 − i
2

− 1
2

1
2

c 1 ( 1
2
, 1
2

)
03

[+i]
12
(+) |

56
[+]

56
[+] |(−)

12
(−)

03
[+i] i

2
1
2

1
2

1 − i
2

1
2

− 1
2

c 2 ( 1
2
,− 1
2

)
03

(−i)
12
[−] |

56
[+]

56
[+] |

12
[−]

03
(+i) − i

2
− 1
2

1
2

1 − i
2

1
2

− 1
2

c 3 (− 1
2
, 1
2

)
03

(−i)
12
(+) |

56
(−) (−)

56
(+) |(−)

12
(−)

03
(+i) − i

2
1
2

− 1
2

−1 − i
2

1
2

− 1
2

c 4 (− 1
2
,− 1
2

)
03

[+i]
12
[−] |

56
(−) (−)

56
(+) |

12
[−]

03
[+i] i

2
− 1
2

− 1
2

−1 − i
2

1
2

− 1
2

d 1 ( 1
2
, 1
2

)
03

(+i)
12
[+] |

56
[+]

56
[+] |

12
[+]

03
(−i) i

2
1
2

1
2

1 i
2

− 1
2

− 1
2

d 2 ( 1
2
,− 1
2

)
03

[−i]
12
(−) |

56
[+]

56
[+] |(−)

12
(+)

03
[−] − i

2
− 1
2

1
2

1 i
2

− 1
2

− 1
2

d 3 (− 1
2
, 1
2

)
03

[−i]
12
[+] |

56
(−) (−)

56
(+) |

12
[+]

03
[−i] − i

2
1
2

− 1
2

−1 i
2

− 1
2

− 1
2

d 4 (− 1
2
,− 1
2

)
03

(+i)
12
(−) |

56
(−) (−)

56
(+) |(−)

12
(+)

03
(−i) i

2
− 1
2

− 1
2

−1 i
2

− 1
2

− 1
2

Table 12.1. The basic creation operators, which are sums of odd products of γa’s — b̂f†m,m =

(ch, s), ch represents the spin in d = (5, 6), manifesting in d = (3 + 1) as the charge, and s
represents the spin in d=(1,2), according to the choice of the Cartan subalgebra, Eq. (12.6)
— and their annihilation partners — b̂fm — are presented for the d = (5 + 1)-dimensional
case. The basic creation operators are the products of nilpotents and projectors, which are
the ”eigenstates” of the Cartan subalgebra generators, (S03, S12, S56) and (S̃03, S̃12, S̃56),
presented in Eq. (12.6). The Clifford odd parts of creation operators, belonging to d = (3+1)

space, are marked.

Half of vectors, the eigenvectors of the Cartan subalgebra, Eq. (12.6), which
are products of nilpotents and projectors, are odd products of γa’s and half of them
are even products of γa’s. On Table 12.1 only Clifford odd vectors are presented.

Let us make a choice of the vacuum state [6–9]. (In the case of a general
even d the normalization factor is 1√

2
d
2

−1
, since the vacuum states, generated

by projectors only, follows from the starting products of d
2

projectors, let say
03

[−i]
12

[−] |
56

[−]
d−1d

[−] ), by changing all possible pairs of [−]...[−], with [−i] included,
to [+]...[+], leading therefore to 2

d
2
−1 summands.

|ψo > = (
1√
2
)2 (

03

[−i]
12

[−] |
56

[−] +
03

[+i]
12

[+] |
56

[−] +
03

[+i]
12

[−] |
56

[+] +
03

[−i]
12

[+] |
56

[+]) |1 > .

(12.9)
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It then follows that

b̂f†m |ψo > = |ψfm > ,

b̂fm |ψo > = 0 |ψo > ,

{b̂f†m , b̂
f ′

m ′ }+ = δff
′
δmm ′ |ψo > ,

{b̂f†m , b̂
f ′†
m ′ }+ = 0 |ψo > ,

{b̂fm , b̂
f ′

m ′ }+ = 0 |ψo > ,

∀m and∀ f . (12.10)

Eq. (12.10) represents all the requirements for the second quantized fermions.

12.2.1 Action

The action for a free massless fermion is needed and the corresponding equations
of motion to take into account the ordinary space as well.

The Lorentz invariant action for a free massless fermion in Clifford space is
well known

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (12.11)

pa = i ∂
∂xa

, leading to the equations of motion

γapa|ψ > = 0 , (12.12)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ > = papa|ψ >= 0 ,

(12.13)

for each of the basic vectors |ψmf >= b̂f†m |ψo >. (γ0 appears in the action to take
care of the Lorentz invariance of the action.)

Solutions of equtions of motion, Eq. (12.12), for a free massless fermions
with momentum pa = (p0, p1, p2, p3, 0, 0) and a particular charge ±1

2
, are super-

position of vectors with spin 1
2

and −1
2

, multiplied by the plane wave e−ipax
a

.
Coefficients in superposition depend on the momentum pa.

12.2.2 Creation and annihilation operators in d = (3+ 1) space embedded in
d = (5+ 1)

The creation and annihilation operators of Table 12.1 are all of an odd Clifford
character (they are superposition of odd products of γa’s). The rest of 24 creation
operators of an even Clifford character can be found in Refs. [9,8].

Taking into account Eq. (12.1) one recognizes that γa transform
ab

(k) into
ab

[−k],

never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(12.14)
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With the knowledge presented in Eq. (12.14) it is not difficult to reproduce Ta-
ble 12.2, representing vectors that belong to d = (3 + 1) space. Vectors carry no
charge and have either an odd or an even Clifford character. Multiplying these
vectors by the appropriate charge (that is by either the nilpotent— if the d = (3+1)

part has an even Clifford character — or the projector — if the d = (3+ 1) part has
an odd Clifford character — both must be the eigenfunction of S56) we end up
with the Clifford odd vectors from Table 12.1.

The properties of vectors of Table 12.2 are analyzed in details in order that the
correspondence with the Dirac γmatrices in d = (3+ 1) space would be easy to
recognize. Superposition of vectors with the spin ±1

2
(either Clifford even or odd)

solve the equations of motion, Eq. (12.12), for free massless fermions.
As seen in Table 12.2 γa as well as γ̃a change the handedness of states.

Sab, which do not belong to Cartan subalgebra, generate all the states of one
representation of particular handedness, Eq. (12.8), and particular family quantum
number. S̃ab, which do not belong to Cartan subalgebra, transform a family
member of one family into the same family member of another family, γ̃a change
the family quantum number as well as the handedness Γ̃ (3+1), Eq. (12.8).

Dirac matrices γa and Sab do not distinguish among the families: Corre-
sponding family members of any family have the same properties with respect
to Sab and γa, manifesting for d = (3 + 1) space four times twice 2× 2 by diag-
onal matrices, which are, up to a phase, identical. The operators γa and Sab are
correspondingly four times 4× 4matrices.

One finds that half of vectors of Table 12.2 are Hermitian conjugated to

each other. In the Clifford odd part of Table 12.2 one finds that b̂a†
m=(3,4) (

03

[−i]
12

(+)

,
03

(+i)
12

[−]) have as the Hermitian conjugated partners b̂(d,c)m=2 (
03

[−i]
12

(−) ,
03

(−i)
12

[−]), re-

spectively. And b̂b†
m=(3,4) (

03

(−i)
12

[+] ,
03

[+i]
12

(−)) have as the Hermitian conjugated

partners b̂(d,c)m=1 (
03

(+i)
12

[+] ,
03

[+i]
12

(+)), respectively.
The vacuum state for the d = (3+ 1) case is correspondingly:

( 1√
2
)2 (

03

[−i]
12

[−] +
03

[+i]
12

[+] +
03

[+i]
12

[−] +
03

[−i]
12

[+]).

Embedding b̂b†m=3 (=
03

[−i]
12

(+)) into odd part of Table 12.1 the creation operator

extends into
03

[−i]
12

(+)
12

[−], manifesting in d = (3+ 1) the charge −1
2

.

12.2.3 γa matrices in d = (3+ 1)

There are 24 = 16 basic states in d = (3+ 1), presented in Table 12.2. They all can
be found as well as a part of states in Table 12.1 with either nilpotent or projector,
expressing the charge, added. We make a choice of products of nilpotents and
projectors, which are eigenstates of the Cartan subalgebra operators, Eq. (12.6), as
presented in Eqs. (12.7).

The family members of a family are reachable by either Sab or by γa, and
represent twice two vectors of definite handedness Γ (d) in d = (3+ 1). Different
families are reachable by either S̃ab or by γ̃a. Each state carries correspondingly
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ψ
f m

γ
0
ψ
f m
γ
1
ψ
f m
γ
2
ψ
f m
γ
3
ψ
f m
γ̃
0
ψ
f m
γ̃
1
ψ
f m
γ̃
2
ψ
f m
γ̃
3
ψ
f m
S
0
3
S
1
2
S̃
0
3
S̃
1
2
Γ
3
+
1
Γ̃
3
+
1

ψ
a 1
(+
i)
(+

)
ψ
a 3

ψ
a 4

iψ
a 4

ψ
a 3

−
iψ
c 1

−
iψ
d 1

ψ
d 1

−
iψ
c 1

i 2
1 2

i 2
1 2

1
1

ψ
a 2

[−
i]
[−

]
ψ
a 4

ψ
a 3

−
iψ
a 3

−
ψ
a 4

iψ
c 2

iψ
d 2

−
ψ
d 2

iψ
c 2
−
i 2
−
1 2

i 2
1 2

1
1

ψ
a 3

[−
i]
(+

)
ψ
a 1

−
ψ
a 2

−
iψ
a 2

−
ψ
a 1

iψ
c 3

iψ
d 3

−
ψ
d 3

iψ
c 3
−
i 2

1 2
i 2

1 2
−
1

1

ψ
a 4

(+
i)
[−

]
ψ
a 2

−
ψ
a 1

iψ
a 1

ψ
a 2

−
iψ
c 4

−
iψ
d 4

ψ
d 4

−
iψ
c 4

i 2
−
1 2

i 2
1 2

−
1

1

ψ
b 1

[+
i]
[+

]
ψ
b 3

ψ
b 4

iψ
b 4

ψ
b 3

−
iψ
d 1

iψ
c 1

ψ
c 1

iψ
d 1

i 2
1 2
−
i 2
−
1 2

1
1

ψ
b 2
(−
i)
(−

)
ψ
b 4

ψ
b 3

−
iψ
b 3

−
ψ
b 4

iψ
d 2

−
iψ
c 2

−
ψ
c 2

−
iψ
d 2
−
i 2
−
1 2
−
i 2
−
1 2

1
1

ψ
b 3

(−
i)
[+

]
ψ
b 1

−
ψ
b 2

−
iψ
b 2

−
ψ
b 1

iψ
d 3

−
iψ
c 3

−
ψ
c 3

−
iψ
d 3
−
i 2

1 2
−
i 2
−
1 2

−
1

1

ψ
b 4

[+
i]
(−

)
ψ
b 2

−
ψ
b 1

iψ
b 1

ψ
b 2

−
iψ
d 4

iψ
c 4

ψ
c 4

iψ
d 4

i 2
−
1 2
−
i 2
−
1 2

−
1

1

ψ
c 1

[+
i]
(+

)
ψ
c 3

−
ψ
c 4

−
iψ
c 4

ψ
c 3

iψ
a 1

iψ
b 1

−
ψ
b 1

−
iψ
a 1

i 2
1 2
−
i 2

1 2
1

−
1

ψ
c 2

(−
i)
[−

]
ψ
c 4

−
ψ
c 3

iψ
c 3

−
ψ
c 4

−
iψ
a 2

−
iψ
b 2

ψ
b 2

iψ
a 2
−
i 2
−
1 2
−
i 2

1 2
1

−
1

ψ
c 3
(−
i)
(+

)
ψ
c 1
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c 2
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c 2

−
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a 3
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b 3
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b 3
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a 3
−
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−
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−
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−
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]
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−
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ψ
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−
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−
iψ
a 4
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−
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−
1

ψ
d 1
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]
ψ
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−
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−
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quantum numbers of the two kinds of the Cartan subalgebra. In Table 12.2 also
Γ (3+1) (= −4iS03S12) and Γ̃ (3+1) (= −4iS03S12) are presented.

When once the basic states are chosen and Table 12.2 is made it is not difficult
to find the matrix representations for the operators (γa, Sab, γ̃a, S̃ab, Γ (3+1),
Γ̃ (3+1)). They are obviously 16× 16matrices with a 4× 4 diagonal or off diagonal
or partly diagonal and partly off diagonal substructure.

Let us define, to simplify the notation, the unit 4 × 4 submatrix and the
submatrix with all the matrix elements equal to zero as follows

1 =

(
1 0

0 1

)
= σ0, 0 =

(
0 0

0 0

)
. (12.15)

We also use (2× 2) Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (12.16)

It is easy to find the matrix representations for γ0, γ1, γ2 and γ3 from Ta-
ble 12.2

γ0 =


0 σ0

σ0 0
0 0 0

0 0 σ0

σ0 0
0 0

0 0 0 σ0

σ0 0
0

0 0 0 0 σ0

σ0 0

 , (12.17)

γ1 =


0 σ1

−σ1 0
0 0 0

0 0 −σ1

σ1 0
0 0

0 0 0 −σ1

σ1 0
0

0 0 0 0 σ1

−σ1 0

 , (12.18)

γ2 =


0 −σ2

σ2 0
0 0 0

0 0 σ2

−σ2 0
0 0

0 0 0 σ2

−σ2 0
0

0 0 0 0 −σ2

σ2 0

 , (12.19)

γ3 =


0 σ3

−σ3 0
0 0 0

0 0 σ3

−σ3 0
0 0

0 0 0 σ3

−σ3 0
0

0 0 0 0 σ3

−σ3 0

 , (12.20)

manifesting the 4× 4 substructure along the diagonal of 16× 16matrices.
The representations of the γ̃a do not appear in the Dirac case. They manifest

the off diagonal structure as follows

γ̃0 =


0 −iσ3 0

0 iσ3
0 0

iσ3 0
0 −iσ3

0 0 0
0 0 0 iσ3 0

0 −iσ3

0 0 −iσ3 0

0 iσ3
0

 (12.21)
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γ̃1 =


0 0 −iσ3 0

0 iσ3
0

0 0 0 iσ3 0
0 −iσ3

−iσ3 0

0 iσ3
0 0 0

0 iσ3 0
0 −iσ3

0 0

 , (12.22)

γ̃2 =


0 0 σ3 0

0 −σ3
0

0 0 0 −σ3 0

0 σ3

−σ3 0

0 σ3
0 0 0

0 σ3 0
0 −σ3

0 0

 , (12.23)

γ̃3 =


0 −iσ3 0

0 iσ3
0 0

−iσ3 0

0 iσ3
0 0 0

0 0 0 iσ3 0
0 −iσ3

0 0 iσ3 0
0 −iσ3

0

 . (12.24)

Matrices Sab have again along the diagonal the 4×4 substructure, as expected,
manifesting the repetition of the Dirac 4 × 4 matrices, up to a phase, since the
Dirac Sab do not distinguish among families.

S01 =



i
2
σ1 0

0 − i
2
σ1

0 0 0

0 − i
2
σ1 0

0 i
2
σ1

0 0

0 0 − i
2
σ1 0

0 i
2
σ1

0

0 0 0
i
2
σ1 0

0 − i
2
σ1


, (12.25)

S02 =



− i
2
σ2 0

0 i
2
σ2

0 0 0

0
i
2
σ2 0

0 − i
2
σ2

0 0

0 0
i
2
σ2 0

0 − i
2
σ2

0

0 0 0 − i
2
σ2 0

0 i
2
σ2


, (12.26)

S03 =



i
2
σ3 0

0 − i
2
σ3

0 0 0

0
i
2
σ3 0

0 − i
2
σ3

0 0

0 0
i
2
σ3 0

0 − i
2
σ3

0

0 0 0
i
2
σ3 0

0 − i
2
σ3


, (12.27)

S12 =



1
2
σ3 0

0 1
2
σ3

0 0 0

0
1
2
σ3 0

0 1
2
σ3

0 0

0 0
1
2
σ3 0

0 1
2
σ3

0

0 0 0
1
2
σ3 0

0 1
2
σ3


, (12.28)
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S13 =



1
2
σ2 0

0 1
2
σ2

0 0 0

0 − 1
2
σ2 0

0 − 1
2
σ2

0 0

0 0 − 1
2
σ2 0

0 − 1
2
σ2

0

0 0 0
1
2
σ2 0

0 1
2
σ2


, (12.29)

S23 =



1
2
σ1 0

0 1
2
σ1

0 0 0

0 − 1
2
σ1 0

0 − 1
2
σ1

0 0

0 0 − 1
2
σ1 0

0 − 1
2
σ1

0

0 0 0
1
2
σ1 0

0 1
2
σ1


. (12.30)

Γ3+1 = −4iS03S12 =


1 0
0 −1 0 0 0

0 1 0
0 −1 0 0

0 0 1 0
0 −1 0

0 0 0 1 0
0 −1

 . (12.31)

The operators S̃ab have again off diagonal 4× 4 substructure, except S̃03 and
S̃12, which are diagonal.

S̃01 =


0 0 0 − i

2
1

0 0 − i
2

1 0
0 − i

2
1 0 0

− i
2

1 0 0 0

 , (12.32)

S̃02 =


0 0 0 1

2
1

0 0 1
2

1 0
0 −1

2
1 0 0

−1
2

1 0 0 0

 , (12.33)

S̃03 =


i
2

1 0 0 0
0 − i

2
1 0 0

0 0 i
2

1 0
0 0 0 − i

2
1

 , (12.34)

S̃12 =


1
2

1 0 0 0
0 1
2

1 0 0
0 0 −1

2
1 0

0 0 0 −1
2

1

 , (12.35)

S̃13 =


0 0 0 − i

2
1

0 0 i
2

1 0
0 − i

2
1 0 0

i
2

1 0 0 0

 , (12.36)

S̃23 =


0 0 0 −1

2
1

0 0 1
2

1 0
0 1

2
1 0 0

−1
2

1 0 0 0

 . (12.37)
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Γ̃3+1 = −4iS̃03S̃12 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (12.38)

12.3 Conclusions

We present in this contribution the matrix representations of operators applying
on the basis, defined by the creation and annihilation operators in d-dimensional
Clifford space — d = 2(2n+ 1), or 4n, n is a positive integer. We make a choice of
d = (3+ 1) and d = (5+ 1).

Creation and annihilation operators, which define the vector space, are in
our case products of nilpotents and projectors (applying on the vacuum state,
Eq. (12.9)), which are eigenvectors of the Cartan subalgebra, Eq. (12.6), of the
Lorentz algebra of Sab, as well as of the corresponding Cartan subalgebra, Eq. (12.6),
of the Lorentz algebra of S̃ab. Creation and annihilation operators are Hermitian
conjugated to each other. We make a choice of the creation operators by choosing
the vacuum state, Eq. (12.9), to be the sum of the Clifford odd (they are superposi-
tion of an odd number of γa’s) annihilation operators multiplying their Hermitian
conjugated partners from the left hand side.

Sab generate 2
d
2
−1 family members of a particular family of an odd Clifford

character, S̃ab generate the corresponding 2
d
2
−1 families. The Hermitian conjuga-

tion determines their 2
d
2
−1× 2d2−1 partners (which are reachable also by γaγ̃a).

The Clifford even representations follow from the odd 2d−1 vectors by the applica-
tion of γa’s or γ̃a’s. There are correspondingly 2d vectors in d-dimensional space
(d = 2(2n+ 1), 4n).

The Clifford even operators keep the Clifford character unchanged. γa’s and
γ̃a’s change the Clifford character of vectors — from odd to even or opposite.

Embedding SO(3 + 1) into SO(d), d > (3 + 1), d even, spins in d ≥ (5 + 1)

manifest in d = (3+ 1) as charges.
One can check that the creation operators of an odd Clifford character and

their Hermitian conjugated partners, applied on the vacuum state, Eq.(12.9), ful-
fill the anticomutation relations for the second quantized fermions, Eq. (12.10),
postulated by Dirac, what explains the Dirac’s second quantization postulates.

One can also observe the appearance of families, used in the spin-charge-family
theory for the explanation of families of quarks and leptons [3–5].

In this contribution the matrix representations for operators (γa’s, Sab’s, γ̃a’s,
S̃ab’s) are presented for the basis in which creation operators are eigenstates of
the Cartan subalgebras of both kinds, Eq. (12.7). It is discussed how do Clifford
odd and even products of nilloptents and projectors in (3 + 1) become a part of
creation and annihilation operators of an odd Clifford character in d = (5 + 1),
manifesting the spin in a = (5, 6) as the charge in d = (5+ 1).

There are 24 = 16 basic vectors in d = (3 + 1) and correspondingly all the
matrices have dimension 16× 16, which are for the operators, determined by γa’s,
by diagonal and for the operators, determined by γ̃a’s, off diagonal. We keep the
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Clifford odd and the Clifford even vectors as the basic vectors. We treat in the
Clifford odd part the creation and annihilation operators as they would all define
the vector space, to point out, that if space of d = (3+ 1) is embedded into d ≥ 6 ,
all the parts, even and odd contribute to the enlarged vector space as factors.
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4. N.S. Mankoč Borštnik, ”Spin-charge-family theory is offering next step in understand-
ing elementary particles and fields and correspondingly universe”, Proceedings to the
Conference on Cosmology, Gravitational Waves and Particles, IARD conferences, Ljubl-
jana, 6-9 June 2016, The 10th Biennial Conference on Classical and Quantum Relativistic
Dynamics of articles and Fields, J. Phys.: Conf. Ser. 845 012017 [arXiv:1607.01618v2].
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9. N.S. Mankoč Borštnik, H.B.F. Nielsen, ”Understanding the second quantization of
fermions in Clifford and in Grassmann space” New way of second quantization of fermions
— Part I and Part II, Proceedings to the 22nd Workshop ”What comes beyond the
standard models”, 6 - 14 of July, 2019, Ed. N.S. Mankoč Borštnik, H.B. Nielsen, D.
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Abstract. In the contributions [4,5] of this proceedings the new way of the second quan-
tization of fermions is proposed, inspired by the fact that the Clifford and Grassmann
algebra by themselves offer basis in internal space, presented as creation operators on the
corresponding vacuum state, which together with their Hermitian conjugated annihilation
partners fulfill all the requirements for the second quantized fermions, provided that the
part of the basis in the ordinary space is orthogonal. In the Hilbert space of indefinite
number of fermions it is assumed that each fermion has to distinguish from all the others
either in ordinary or in internal space or in both spaces. The purpose of this contribution is
to generalize this last requirement for either fermions or bosons.

Povzetek. V prispevkih [4,5] tega zbornika predstavita avtorja nov način druge kvanti-
zacije fermionov. Cliffordov in Grassmanov prostor ponudita namreč bazo v notranjem
prostoru fermionov, ki jo določajo kreacijski operatorji na vakuumskem stanju, ti pa sku-
paj s Hermitsko andjungiranimi operatorji (annihilacijskimi operatorji) izpolnjujejo vse
Diracove zahteve za fermione v drugi kvantizaciji pod pogojem, da je baza v prostoru
gibalnih količin ortogonalna. V Hilbertovem prostoru nedoločenega števila fermionov mora
vsakemu fermionu ustrezati drugačen notranji prostor ali drugačna gibalna količina, V
drugi kvantizaciji je Hilbertov prostor direkten produkt neskončne množice Hilbertovih
prostorov za izbrano vrednost gibalne količine. Namen tega prispevka je posplošiti ta drugi
del zahteve tako za fermione kot za bozone.

Keywords: second quantization, bosons, fermions, cross product

13.1 Introduction

We present in this contribution the possibility to make a new step in the new way
of the second quantization of fermions, presented in the contributions [4,5] of this
proceedings, for indefinite number of fermions and bosons.

It is the purpose of the present discussion to seek to use such a formulation
of second quantized theories to generalize them to possibly quite new types of
second quantization like theories. This is inspired from the type of theory put
forward by one of us as being unification theory of spin, charges and families [1–5]

? H.B. Nielsen presented the talk.
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Second quantization as Cross product

It is rather trivial and welknown that a second quantized (free) theory of
bosons has a second quantized Hilbert space, that can be written as a Cartesian
cross product over an (infinite) set of (smaller) Hilbert spaces, each of which is
attached for example to the momentum, and tells how many particles have just
this momentum.

Simplest case: A scalar without internal degrees of freedom

If we think of a charged scalar - like π+ - it may be natural to even include
in our “momentum” also the sign of the energy and use that as the ‘factorisation
parameter” p. We like to do it as abstract and general as possible, so we now use
the letter p and you can think of it as “(factorization) parameter” or as momentum
as you like.

In the π+ case we take the “factorization parameter” p to be:

p = (~p, sign(E)). (13.1)

The general form as factorized space:

The Hilbert space for the second quantized boson system can always be
written like

H =
⊗

p

Hp. (13.2)

In the π+ example, where p = (~p, sign(E)), the Hilbert space Hp is actually
that of harmonic oscillator for which the number operator counts the number of
π+ particles with just the p-specification p.

(Here we stepped too fast over the Dirac sea for bosons problem, but that is not
so crucial just now; just think of antiparticles instead, when formally sign(E) < 0.)

Dream of generalization(s)

In the formulation as the Cartesian product

H =
⊗

p

Hp (13.3)

one could dream about making a new - and perhaps interesting theory - by
replacing the Hilbert spaces that are factors in the Cartesian product such asHp

by some Hilbert spaces with a different structure, e.g. different dimensionality.
E.g. Could we decide that all these harmonic oscillators could only be excited

up to their 7th level, after that it would not be possible to put more π+ in with a
given p ?
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We could of course postulate such a “theory” but it would be rather strange
physically. A postulate of only up to 7 particles per p would violate locality

In a big universe particles with the same momentum are so far from each
other that one cannot from locality feel if there are more or less than 7 particles in
the same momentum eigenstate.

If we use x̃ instead of p then locality would be automatic.
If one thinks of a discretized (d-1)-space, i.e. really a (perhaps a bit irregular)

lattice, and take the state of the universe to be described by the a state in the
Hilbert spaceH, then factorization of the type

H =
⊗
~x

H~x (13.4)

i.e. where we as “factorization parameter” use the spatial position ~x - the lat-
tice point, if discretized - this Cartesian product would be automatically suited
for locality, one should just only provide it with local interaction, but could for
the structure and operators acting on the single factors H~x be very free since
everything would be o.k..

Usual second quantization for the Norma’s spin-charge-family theory

Once one has decided on the inner degrees of freedom, the statistics – fermion
or boson – and of dimension of space time and thus of the dimension of the
momentum vectors, one would than think that there is only one way to second
quantize.

This way will then turn out in the boson case to indeed be of the form that the
full second quantized Hilbert spaceH takes the product form, and thus be written
in the product way.

However, if one starts by a product form and has not gotten it via the stan-
dard procedure, then we would feel a priori unsafe if this would be a physically
meaningful way or not.

It probably depends strongly on the details.

A couple of trivialities on component numbers

i. A Dirac (rather Weyl) massless spinor in an even number d of space time
dimensions has 2

d
2
−1 components.

ii. In Norma’s spin-charge-family theory ([3] and the references therein) there is
not only the usual Dirac spin index with 2

d
2
−1 components, but a quite analogous

family index again with the 2
d
2
−1 components. So in this model the number of

components could be marked by two Dirac indices, or instead using another but
equivalent formalism with projection and nilpotent “operators”. But in any case
of these two formalisms the number of components for a full fermion particle
is the square of the number for an ordinary Dirac construction. The number of
components is therefore 2d−2. One can learn in Ref. [4,5] in this proceedings that:
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a. Only operators of an odd character can offer the second quantization
fermions.

b. The operators of an odd character split into two parts, Hermitian conjugated
to each other.

iii. If we ignore momentum and look at one single momentum only, then the
number of different states one could produce by having for this single momentum
various possible numbers with the 2d−2 different components filled or unfilled
would be 22

d−2

. Let us add that the rest of possibilities belong to either the Her-
mitian conjugated partners or have the evenness Character and do not fulfil the
anticommutation relations for fermions (and probably even not for bosons. In any
case the number is much much more than the number of components.

Standard second quantization procedure in factor language

Before telling this standard procedure of quantizing fermions by the factoriza-
tion into the Cartesian product of “subHilbert” spaces, we have to admit that one
cannot do that without some essential modification, which we though postpone to
discuss below in the section called “The problem of fermions”.

However, we are for the moment interested in reaching to the point, where we
can see the problems when one attempts to make a new way of second quantizing
by postulating some algebraic structure for the operators acting on the “subHilbert”
spaces Hp going into the Cartesian product. For this problem presumably the
statistics being fermion or boson statistics may however not matter so much, so
our postponing is not so crucial for that.

iv. Let us first look for a fixed momentum p and calculate which states are
needed to describe the possibilities for filling with the allowed number of particles
(up to one for fermions, and up to infinity for bosons) all the internal states.

v. Then we construct the Hilbert space Hp,of which is just the number of
different ways of filling particles into the different combinations of internal states.

vi. Then finally you can take the Cartesian product and get the genuine Hilbert
space for the full second quantized theory.

Standard way dim(Hp) = 22
d−2

for Norma’s theory.

Since there are (2
d
2
−2)2 component combinations, namely say 2

d
2
−2 genuine

Dirac components, and 2
d
2
−2 family index values, there for assumed fermion-

statistic 22
d−2

possibilities for filling or not filling these 2d−2 difference internal
states.

Thus the Hilbert-space for only one momentum should have the dimension

dim(Hp) = 2
2d−2

. (13.5)

(Notice that this space Hp thus has a much bigger dimension than the space of single
particle internal states, which has only dimension = 2d−2 . )
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We ignored at first equations of motion.

We have to modify the above simplified proposal by:
vii. Notice that using the momentum energy relation

E2 − ~p2 = 0 (13.6)

we have for each (d-1)-momentum ~p two values for the energy E of the particle,
so that we should let, as already mentioned, as a possibility

p = (~p, E) , (13.7)

meaning a doubling of the space of momenta to be used.
viii. Let us take into account that the (free) equation of motion (the Dirac

equation, the Weyl equation indeed) for a choice of energy E = ±
√
~p2 only allow

a subspace of the internal space of states for the (single) particle,

(/p)ψ = 0 . (13.8)

Standard second quantization as product over (~p, sign(E)).

Letting an index emr denote that we have restricted the single particle sates to
the states obeying the equations of motion (emr = “equation of motion restricted”)
we write the true standard second quantized Hilbert space

Hemr =
⊗

(~p,sign(E))

H(~p,sign(E)),emr, (13.9)

where nowH(~p,sign(E)),emr is constructed from space of single particle internal
states obeying the Dirac equation and having E = sign(E)

√
~p2, which because

of the restriction by the equation of motion has only half the dimensionality of
2d/2−1 in the simple Dirac case or half of 2d−2 in the case with families. So

dim(H(~p,sign(E)),emr) = 2
2d−1/2 = 22

d−2

. (13.10)

13.2 The problem of fermions

Yet a problem for Cartesian product form for fermions.

For just constructing the Hilbert space we could claim that this Cartesian
product procedure is o.k. even for fermions, but for the creation and annihilation
operators or the field operators for fermions there is a problem more:

If we take a true Cartesian product and let it be understood that the creation
and annihilation operators for a state with (~p, sign(E)) = p alone shall act on the
Cartesian product factorHp, then we cannot make such fermion creation or annihilation
operators for different p anticommute! Operators acting alone on different Cartesian
product factors will namely always commute.
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Suggested trick to solve the anticommutation problem:

Use operators (−1)Fp , where Fp is the fermion number for the fermions in the
Cartesian factorHp.

That is to say to construct the “true creation or annihilation operators” –
b†(i;p) or b(i;p) – for the p Cartesian factor we modify the truly “local ones”,
c†(i;p) and c(i;p) defined so as to only act on the Cartesian factorHp, not touching
the other factors, by multiplying it with a lot of factors of the form (−1)Fp ′ .

Associate in fact to each essentially momentum p a subset of this kind of
essential momenta B(p) and define

b†(i;p) =

 ∏
p ′∈B(p)

(−1)Fp ′

 c†(i;p) (13.11)

b(i;p) =

 ∏
p ′∈B(p)

(−1)Fp ′

 c(i;p) (13.12)

13.3 Dream of Algebra

Although we for fermions must introduce the modification from c†(i;p) to b†(i;p)
in order to achieve the anticommutativity of the annihilation operators b(i;p),
when we build up the Hilbert space construction from a Cartesian product, we
might dream of using this Cartesian product idea to make a generalization of the
algebra for the operators acting on one of these Hilbert spacesHp (we could call
them factor-Hilbert spaces) from which the Cartesian product is made up to a
more general algebra, say F. That is to say we imagine an algebra F consisting of
operators acting on the Hilbert spaceHp.

We can easily think of e.g. a couple operators/elements f, g ∈ F, which e.g.
anticommute {f, g}+ = 0. Of course we shall then have such algebra elements
for every factor-Hilbert-spaceHp, and correspondingly we should of course dis-
tinguish analogous algebra elements related to different factor-Hilbert-spaces or
equivalently different p as we decided to enumerate these factor-Hilbert-spaces.
That is to say we should write f(p) for the operator of a given structure in F when
it acts onHp.

But now if we do not even make the modification of inserting the (−1)Fp ′ -
factors when in the ordering we had to have p and p ′ were in a certain relative
order - say p ′ < p - then of course any f(p) and any g(p) at one p will commute
with any f(p ′) and any g(p ′) at another “momentum” p ′ 6= p, independent of
how f and g for the same p may happen to commute or anticommute.

In other words we cannot prevent the commutation due to independent
factor-Hilbert-spaces for the operators, what ever we take the local algebra to
be, i.e. it does not modify this commutation to let the operators say anticommute
locally, it does not help even if say {f(p), g(p)}+ = 0 to prevent [f(p), g(p ′)] = 0

for p 6= p ′.
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13.3.1 Even with (−1)Fp -factors

Even if we improve our purely Cartesian product construction with the (−1)Fp -
factors as above, it will not bring us to get the commutation or anticommutation to
progress from the “local” to the inter p commutator or anticommutator so easily.
If we indeed include the type of factor (from (13.11,13.12) ) being the product over
the factors (−1)Fp ′ for all p ′ which are say “smaller” in the ordering than the p con-
sidered, then we will achieve that we get anticommutation all operators g(p) say
at p with all the ones at another place p ′ provided both operators carry a fermion
number in the sense that they shift the value of the fermion number Fp for their
factor Hilbert space by their action. So if e.g. two operators are fermionic in this
quantum number F sense and even if they commuted when at the same site, they
will anticommute when they are at different sites. If oppositely they anticommute
locally they will again anticommute when at different sites(= different p’s).

The conclusion from the remarks just above should be:
Using the starting point of the Cartesian product and only modifying by

the extra factor of the type from equations (13.11,13.12) the commutation versus
anticommutation of operators associated with different p-values depend alone
on:

a. the fermion number of the operators,
b. from whether one introduce transformation (13.11, 13.12) above at all or not.

But it does not depend on on how the algebra elements considered may commute
or not in the “local algebra” i.e. for the same p-value.

13.3.2 More generally:

The above proposed method for making fermion-fields on the basis of a Cartesian
product by means of an ordering of all the p-values is really not very attractive.
In fact such an ordering does not match well with the topological structure of
a momentum space or a position space except for the spatial dimension being
dspatial = 1. In higher dimensions you rather have to use the axiom of choice to
even see that there exists such an ordering. We also need such a construction if we
would like to make fermionization, and then this only by axiom of choice found
ordering would not seem attractive at all either.

So attempting to generalize this method of constructing fermion fields from a
Cartesian product is highly called for.

Now if there is in the theory some sort of gauge freedom one might not re-
quire quite as strict the properties of the extra factors introduced to convert the
a priori commuting fields appearing from operators acting on different factor-
Hilbert-spaces from (13.11.13.12). If one allows more freedom in the construc-
tion then one might optimistically hope to construct such factors to convert the
boson-commuting operators into fermion ones to have some continuity and thus
compatibility with the topology of a higher dimensional space(than just dimension
=1).

We here at first write down the type of transformation to be made to construct
fermions from commuting fields in a general way. Then one may investigate how
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much one needs to require about the multiplying factors U(p,p ′) converting the
bosons to fermions so to speak.

Unfortunately we have not come far in developing these conditions, but just
the thought of looking at it more generally might turn out useful:

b†(i;p) =

 ∏
p ′∈B(p)

U(p,p ′)†

 c†(i;p)
b(i;p) =

 ∏
p ′∈B(p)

U(p,p ′)

 c(i;p)
Not even crudely local b†(~x) unless the modification by U(~x,~x ′) inessen-

tial.

So there should preferably be a “gauge” transformation which could be the
effect of the modification U(~x,~x ′) or “jump over correction”-replacement.

Natural that the U(~x,~x ′) depends on the direction from ~x to ~x ′, and thus is a
function of a point on thee sphere Sd−2.

Also the ‘gauge”like modifications must lie in a groupG. So need map Sd−2 →
G.

13.3.3 Anyons

To exercise constructing other statistics than bosons from the Cartesian product one
would of course like to exercise with two spatial dimensions because this is the first
case after the one spatial dimension case in which there are essentially no problem
and fermionization is already well done. But now just 2 spatial dimensions is the
interesting case in which also Leinaas Myhrheim or anyon statistics is possible[6].

With the suspicion of the gauge symmetries being important in allowing a
more developed choice of the conversion factors U(p,p ′) a first exercise might
be to even construct a system of anyons or first just a pair by electromagnetic
ingredients.
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Fig. 13.1. Anyons as electric magnetic made.
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2. N. Mankoč Borštnik, ”Spinor and vector representations in four dimensional Grass-
mann space”, J. of Math. Phys. 34 (1993) 3731-3745.
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Abstract. We review our Novel String Field theory, and then it is pointed out very impor-
tant remaining problem.

Povzetek. Avtorja na kratko predstavita njuno Novo teorijo polj s strunami in obravnavata
ključen problem te teorije.

Keywords: string field theory

14.1 Introduction

It has been shown that Super string Theories loop corrections constructed in the
theories do not lead to ultraviolet divergences, contrary to the conventional field
theories. Nevertheless they have so good physical properties, e.g. revealing Regge
trajectories. Thus they are considered serious candidates for the theory of Nature.

From the point of view of the Novel String Field theory advocated by H.B.
Nielsen and M. Ninomiya[1], they can considered the strings composite from
an infinite number of what are called “objects” – to some extend similar to C.
Thorn’s string bits[2]. But they deviate by the fact that the objects correspond to a
description of the right and left variables on the string τ−σ and τ+σ respectively,
while C. Thorn rather discretizes the σ variable.

We figure out that in the field theory typical diagrams of 2 particles → 2
particles scattering processes in perturbation as Fig 14.1.

If we took the particles to be closed strings the usual string theory formulation
would lead to the corresponding string pictures in Fig 14.2. But it happens that
if we consider the particles in Fig. 14.1 open strings, then in our formalism with
cyclically ordered chains of objects, the second line could actually also represent
the topological structure of the developments in our formalism (for open strings
then).

In the string theory the diagrams of the first few diagram of 2 closed strings→ 2 closed strings processes are given by Fig2 above.

? Talk presented by H.B.N. at 22nd Bled workshop July 6. – 14., 2019, Bled, Slovenia
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Fig. 14.1. Feynman diagrams for scatterings; Incoming particles are denoted as A and B,
while intermediate ones are denoted as X, Y, Z · · · respectively.

Fig. 14.2. The topological structure of the developments in our formalism (for open strings).

String theory actually avoids the ultraviolet divergences even in the loop cor-
rections such as (d), corresponding to the loop corrections (c) and (d). In quantum
field theory one has such divergences. However, in the string theories the loop
corrections, e.g. (d’) falls off exponentially with a squared of the external momenta
expression.

14.2 Analogy with parton model.

One can consider the string as composed objects of infinitely many constituents
such as partons [3]. Thus they have Bjorken’s [4] variable x = 0.

In deep inelastic scattering one often uses the concept that a hadron (e.g.
proton) is composed of partons as a bound state; see e.g. Fig 14.3.

When Bjorken x is non-zero one can obtain for sufficiently high collision
energy large transverse momenta — jets — for scattering of constituent partons
with x 6= 0.

Such scattering could again cause ultraviolet divergences, so to realize our
analogy of getting rid of ultraviolet divergences for the bound, we should usu
bound states with all Bjorken variables x = 0.

14.3 Some characteristic features of the novel string field theory

Our novel SFT [1] is a kind of string-bit theory similar to that of C.Thorn [2]; but
we use the right moving and left moving fields XR and XL respectively. And that
each of them are functions of the variables τ − σ and τ + σ, contrary to those of
Thorn who uses the genuine string parameter σ.
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Fig. 14.3. The constituents i = 1, 2,.. carry the longitudinal momentum x i*p where the
longitudinal momentum of the total bound state is p.

Thus our constituents objects are associated rather with wave packets running
along the string back and forth.

It turns out that our constituents equal to objects do not change at all. Thus
scattering is exchange of objects rather than interpreted as collisions of the objects.

Other aspects of our SFT [1] is the following:
At first straight and resting string, you may produce a wave-packet in just

one direction until it reflects at the end, and run back (see Fig 14.4 ).

Fig. 14.4. Producing a wave packet.

The whole way around in a period would correspond to a run both forth and
back and thus have the topology of S1: see Fig 14.5.

14.4 One of the great points in our novel SFT: Objects do not
change

We now stress that one of the great points of our novel SFT is that it corresponds
to the fact that the wave packets run along the string without any change, we
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Fig. 14.5. The topology of S1.

arrange that our objects - which describe these wave structures as moving along -
do not change in time at all.

Thus our description of several string theory (= a string field theory has no
development in the object formulation.The string theory is so to speak solved in
terms of objects.

This is the great hallmark of our novel SFT: Nothing moves.
All scattering (etc.) is fake.
To form the cyclically ordered chains of objects corresponding to moving

forth and backward along the open string we need a cyclic ordering of a series
of objects. We could describe that by a successor function f that is mapping one
object to the next one in the chain:

f(object1) = object1 + 2(modN) (14.1)

(we only consider, due to a technical detail, with an even number in the cyclic
chain series)

14.5 Conclusion and future outlook

We have constructed a String Field theory called “Novel String Field theory” by
using objects. The strings are in our theory considered as bound states of several
objects.

In our theory we can derive the Veneziano amplitude with recourse to ex-
change objects between incoming strings.

However we did not introduce the possibility for objects to annihilate and
create will be our subject to be investigated in our String Field theory.
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Fig. 14.6. Cyclicaly ordered chains(→ indicates fmap).
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Abstract. We consider a cluster of Primordial Black Holes which is decoupled from the
cosmological expansion (Hubble flow) and this region is heated as compared to the sur-
rounding matter. The increased temperature inside the region can be explained by several
mechanisms of Primordial Black Holes formation. We study the temperature dynamics of
the heated region of Primordial Black Holes cluster.

Povzetek. Avtorja obravnavata gručo prvotnih črnih lukenj, ki ni sklopljena s kozmološko
širitvijo (Hubblovim tokom) v območju segretem glede na snov, ki območje obdaja. Povišano
temperaturo lahko pojasnita z več mehanizmi nastanka prvotnih črnih lukenj. Obravnavata
gibanje temperature segretega območja gruče prvotnih črnih lukenj.

Introduction

The idea of the Primordial Black Holes (PBH) formation was predicted five decades
ago [1]. Although they have not yet been identified in observations but some
astrophysical effects can be attributed to PBH: supermassive black holes in early
quasars. Therefore till now, PBH give information about processes in the Early
Universe only in the form of restrictions on the primordial perturbations [2] and
on physical conditions at different epochs. It is important now to describe and
develop in detail models of PBH formation and their possible effects in cosmology
and astrophysics.

There are several models of PBH formation. PBH can be formed during the
collapses of adiabatic (curvature) density perturbations in relativistic fluid [3].
They could be formed as well at the early dust-like stages [4] and rather effectively
on stages of dominance of dissipative superheavy metastable particles owing to
a rapid evolution of star-like objects that such particles form [5]. There is also an
exciting model of PBH formation from the baryon charge fluctuations [6]. Another
set of models uses the mechanism of domain walls formation and evolution with
the subsequent collapse [7]. Quantum fluctuations of a scalar field near a potential

? Talk presented by P. Petriakova
?? E-mail: petriakovapolina@gmail.com

??? E-mail: sergeirubin@list.ru
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maximum or saddle point during inflation lead to the formation of closed domain
walls [12]. After the inflation is finished, the walls could collapse into black holes in
the final state. There is a substantial amount of the inflationary models containing a
potential of appropriate shape. The most known examples are the natural inflation
[8] and the hybrid inflation [9] (and its supergravity realization [10]). The landscape
string theory provides us with a wide class of the potentials with saddle points,
see review [11] and references within. Heating of the surrounding matter is the
inherent property of the domain wall mechanism of PBH cluster formation. While
collapsing the domain wall partially transfers its kinetic energy to the ambient
matter. It would allow to distinguish different models by observations.

15.1 The first Chapman–Enskog approximation

According to the discussion above, PBH are gathering into the clusters with heated
media inside them. It is assumed that after decoupling from the cosmological
expansion the temperature of gas inside the cluster and its density is higher than
that around the cluster. These factors can ignite a new chain of nuclear reactions
changing chemical composition of the matter in given region. We are going to study
the rate of temperature spreading into surrounding space and the temperature
distribution within the cluster. The temperature dynamics is described by the
appropriate equations in the framework of the Chapman–Enskog procedure.

The Chapman–Enskog method [13] makes it possible to obtain a solution to
the transport equation and it can be applied to the relativistic transport equation
in general case. The applicability condition of this method: macroscopic wave-
lengths should be significantly greater than the mean free path. This excludes
the propagation velocity that is faster than the thermal velocity of particles [14].
Using this method, we can find linear laws for flows, thermodynamic forces and
expressions for transfer coefficients based on the solution of linearized transfer
equation. After that we apply this linear laws to continuity, energy and motion
equations. This leads to the relativistic Navier–Stokes equations which form a
closed system for hydrodynamic variables. In the first approximation various
irreversible flows are linearly related to non-uniformities present in the system. In
this case the relativistic generalization of the Fourier–law for the heat flux and the
linear expression for the viscous pressure tensor has the form (c = ~ = kB = 1)

Iµq = λ
(
∇µT −

T

hn
∇µp

)
(15.1)

Πµν = 2η ˚∇µuµ + ηv∆
µν∇σuσ (15.2)

λ – the heat conductivity, η – the shear viscosity, ηv – the volume viscosity,∇µ =

∆µν∂ν , ∆µν = gµν − uµuν and this operator acts as a projector: ∆µνuν = 0. They
are designed to select two hydrodynamic four–velocity expressions proposed by
Eckart and Landau–Lifshitz. We will use the definition of Eckart [15] which relates
the hydrodynamic four–velocity directly to the particle four–flow Nµ

uµ =
Nµ

√
NνNν

. (15.3)
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The relativistic equation of motion and equation of energy are given by [16]

hnDuµ = ∇µp−∆µν∇σΠνσ + (hn)−1Πµν∇νp− (15.4)

−
(
∆µνDI

ν
q + Iµq∇νuν + Iνq∇νuµ

)
nDe = −p∇µuµ + Πµν∇νuµ −∇µIµq + 2IµqDuµ. (15.5)

After linearization, the energy equation is reduced to

DT

T
=
1

cv

[
∇µuµ −

λ

p

(
∇2T −

T

hn
∇2p

)]
(15.6)

where we have taken into account the linear laws (15.1) and (15.2),∇2 stands for
∇2 = ∇µ∇µ and D = uµ∂µ.

If the hydrodynamic four–velocity is constant and p = nT (we will see it in
the next section) the energy equations reduce to the relativistic heat-conduction
equation:

ncvDT = −λ

(
∇2T −

T

hn
∇2p

)
. (15.7)

15.2 The thermodynamic values

The equilibrium distribution function with no external fields takes the form of the
Juttner distribution function

f(p) =
1(
2π
)3 exp

(
µ− pµuµ

T

)
. (15.8)

It allows to calculate the particle four–flow in equilibrium

Nµ =
1(
2π
)3 ∫ d3pp0 pµ exp

(
µ− pµuµ

T

)
. (15.9)

The Juttner distribution function outlines one direction in space–time. As a result,
it must be proportional to four–velocity, where the proportionally factor of this
relation is the particle density

n =
1(
2π
)3 ∫ d3pp0 pµ uµ exp

(
µ− pνuν

T

)
. (15.10)

The integral is a scalar and it can be calculated at selected uµ = (1, 0, 0, 0). This
result can be expressed in the modified Bessel function of the second kind

n =
4πm2T(
2π
)3 K2(mT

)
exp

(
µ

T

)
. (15.11)
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We can obtain the equilibrium pressure following the same reasoning to calculate
the energy–momentum tensor in equilibrium:

p = −
1

3
Tµν∆µν = −

1

3

∫
d3p

p0
pµ pν ∆µνf(p) = (15.12)

=
4πm2T2(
2π
)3 K2

(
m

T

)
exp

(
µ

T

)
= nT .

Hence, if we identify T with the temperature of the system the standard scheme of
thermodynamics could be clearly seen.

Using recurrence relation for the modified Bessel function of the second kind
and taking into account particle density the expression has the form

e = m
K3(m/T)

K2(m/T)
− T . (15.13)

Considering the result of (15.12) for pressure we can find the enthalpy per particle

h = e+ pn−1 = m
K3(m/T)

K2(m/T)
− T + T = m

K3(m/T)

K2(m/T)
. (15.14)

The heat capacity per particle at constant volume by definition

cv = ∂e/∂T . (15.15)

We can get asymptotic behaviour of these values for large arguments of the mod-
ified Bessel function of the second kind (which corresponds to the case of low
temperatures) and for small arguments (which corresponds to the case of massless
particles). For small values of temperature we have the asymptotic ratio for large
arguments (w = m/T ):

Kn(w) '
1

ew

√
π

2w

[
1+

4n2 − 1

8w
+

(4n2 − 1)(4n2 − 9)

2!(8w)2
+ . . .

]
. (15.16)

It allows to obtain the enthalpy per particle:

h = m+
5

2
T +

15

8

T2

m
+ . . . (15.17)

and to derive the caloric equation of state of relativistic perfect gas (15.13) and the
heat capacity per particle at constant volume (15.15):

e = m+
3

2
T +

15

8

T2

m
+ . . . (15.18)

cv =
∂e

∂T
=
3

2
+
15

4

T

m
+ . . . (15.19)

Massless particles are essential in relativistic kinetic theory. For this purpose
we should expand our formulas in this special case. The results can be obtained
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by taking the limit inm→ 0 with the asymptotic relation for the modified Bessel
function of the second kind:

lim
w→0wnKn(w) = 2n−1(n− 1)! (15.20)

e = 3T , h = 4T , cv = 3 . (15.21)

In this case, with the caloric equation of state of relativistic gas and p = nT we can
obtain well-known expression for pressure for massless particles: p = en/3.

We can find Fourier differential equation of the heat conduction in the non–
relativistic case. Following expression (15.17) in the case of low temperatures
(T � m) and considering the ratio p = nT we obtain

ncvDT = −λ
(
∇2T −

T

hn
∇2p

)
h −λ∇2T. (15.22)

In this case, the heat–conduction equation allows an infinite propagation velocity.
Although this feature is already present in the non–relativistic theory in the rela-
tivistic theory it becomes a paradox: the thermal disturbances can not propagate
faster than the speed of light. This paradox is easily resolved in the framework of
the Chapman–Enskog procedure. In fact the restriction inherent in the Chapman–
Enskog method (the macroscopic wave lengths has to be much greater than the
mean free path) prevents the existence of propagation velocities faster than the
thermal velocity of particles.

15.3 Thermal equilibrium

We should check the applicability of our results by estimating to what extent the
electron–proton–photon plasma is close to kinetic equilibrium before and during
recombination. All our previous calculations were made under the assumption
that the distribution functions have equilibrium form and all components have
the same temperature equal to the photon temperature. To make sure that the
temperature of electron–proton component coincides with the photon temperature
we have to study the following effect. The effective temperature of photons would
decrease in time slower than that of electrons and protons. Thus we have to check
that energy transfer from photons to electrons and protons is sufficiently fast.

Electrons get energy from photons via Compton scattering process that occurs
with Thomson cross section. The time between two subsequent collisions of a
given electron with photons is

τ =
1

nγσT
(15.23)

here σT – the Compton cross section and nγ – the number density of photons.
For energy transfer the time τE in which an electron obtains kinetic energy of the
same order of magnitude as temperature due to the Compton scattering should
be found. We note that the typical energy transfer in a collision of a slow electron
with a low energy photon is actually suppressed for estimation of this time. The
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estimation for number of scattering events needed to heat up a moving electron is
given by [17]

N ∼

(
T

∆E

)2
∼
me

T
. (15.24)

We can obtain the time of electron heating [17]

τE(T) ∼ Nτ(T) ∼
me

nγ(T)σTT
. (15.25)

At the moment of recombination τE(Trec) ' 6 yrs. It is much smaller than the
Hubble time and energy transfer from photons to electrons is efficient. Thus
electrons and protons have the photon temperature.

What about the heating of protons? Doing the same procedure
(
with mp

substituted forme in (25)
)

we obtain that process of direct interaction of proton
with photons is irrelevant. Since the Thomson cross section is proportional tom−2

e

the time for protons is larger by a factor
(
mp/me

)3 and this time is larger than
the Hubble time. Energy transfer to protons occurs due to elastic scattering of
electrons off protons. The energy transfer time [17] is

τE(T) ∼
memp

16πne(T)α2 ln(6TrD/α)

(
3T

me

)3/2
(15.26)

here rD =

√
T

4πneα
and during recombination τE(Trec) ∼ 104 s and this time is

very small compared to the Hubble time at recombination. The estimation done for
protons is valid for electrons as well withme substituted formp and numeric factor.
This means that electrons and protons have equilibrium distribution functions
with temperature equal to photon temperature.

15.4 Transport coefficients

The divergence of the collision integrals is the main difficulty encountered when
applying the transport equation to plasma. The many particle correlations which
provide the Debye shielding are not included in the transport equation due to the
long range nature of electromagnetic interaction. In the Standard Model of the
Universe Compton scattering between photons and electrons was the dominant
mechanism for energy and momentum transfer in the radiation–dominated era
(RD–stage). It seems worthy to present a quantitative description of the non–
equilibrium processes that can be expected in a hot photon gas coupled to plasma
by Compton scattering.

In case of low temperatures we have the following expression for heat con-
ductivity [16]

λ =
4

5

xγ

xe

1

σT
(15.27)
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here xi – the fraction of particles, σT – the Compton cross section and the ratio
of electron and photon number densities through baryon–to–photon ratio with
electric neutrality of the Universe

ηB =
nB

nγ
= 0.6 10−9 . (15.28)

15.5 Dependence of the equation on the rate of expansion of
space

We should set the form of operators included in the equation (15.7). If the matter
of the surrounding space is stationary as a whole then the four–velocity takes the
form uµ = (1, 0, 0, 0) hence D = uµ∂µ = ∂t.

We need to make the following substitution: ∇µ = ∆µν∂ν −→ ∆µνDν in
order to take into account the expansion of space. For a scalar field covariant
differentiation is simply partial differentiation: Dµ = ∂µ, for a covariant vector we
have: DµAν = ∂µAν − ΓαµνAα and for a contravariant vector: DµAν = ∂µA

ν +

ΓναµA
α. The Christoffel symbols of the second kind: Γαµν = gασ

(
∂µgνσ + ∂νgµσ −

∂σgµν
)
/2.

Thus our operator∇2 is explicitly dependent on the metric

∇2 = ∇µ∇µ = ∇µgµν∇ν = ∆µνDνgµν∆
νk∂k . (15.29)

The rate of temperature spreading into the surrounding space will be calculated
with respect to the Friedmann–Lemaı̂tre–Robertson–Walker metric. The metric
tensor in this case has the form

gµν = diag(1,−a2(t),−a2(t)r2,−a2(t)r2 sin2 θ) . (15.30)

The scale factor a(t) can be found from Friedmann equations(
ȧ

a

)2
=
8π

3
Gρ ,

dρ

da
= −3ξ

ρ

a
(15.31)

here ξ = 4/3 (1) for RD–stage (MD–stage).
Finally we get the following dependence for scale factor

a(t) =

[
1+

3ξ

2

√
8πGρ0

3
(t− t0)

]2/3ξ
(15.32)

obtained under the conditions a(t0) = 1, ρ(t0) = 0.53 · 10−5GeV/cm3, t0 '
14 · 109 yrs– the age of Universe.

15.6 Final statement of the problem and result of calculation

We consider spherical symmetry for simplicity. The heat–conduction equation
(15.7) with expression (15.12) for pressure and in case of stationary matter takes
the form

ncv

λ

∂

∂t

(
T(r, t)

)
= −∇2T(r, t) + T(r, t)

hn
∇2nT(r, t) (15.33)
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with boundary conditions 
∂

∂r
T(r, t)

∣∣∣∣
r=0

= 0 ,

T(r, t)|r=∞ =
Tout

a(t)

(15.34)

here the dependence for scale factor a(t) is taken from (15.32).
The initial condition is

T(r, 0) = Tin exp(−r2/r20) + Tout (15.35)

here Tin and Tout – temperatures of matter inside cluster and the surrounding
space respectively, r0– temperature distribution parameter.

In general the obtained expressions can also be used in calculations at the
RD–stage (stage of radiation dominance) and the MD–stage (stage of the matter
domination). For this purpose the expression for the scale factor (15.32) should be
taken at different ξ and with modified heat conductivity. Presumably the cluster
of primordial black holes virializes at the end of the RD–stage. It makes sense to
estimate its cooling before the end of this stage. We need to choose specific values
of the following parameters:

· temperature distribution parameter r0 = 1 pc;
· temperature inside the area Tin = 100 keV;
· temperature of the surrounding space Tout = 1 keV;
· dependence a(t) in boundary condition is selected for RD–stage;
· for enthalpy and heat capacity we should select forms in case of

low temperatures (15.17) and (15.19) accordingly.
Using numerical simulation in MAPLE by the BackwardEuler method with the
interval of spatial points on a discrete grid 1/60 we have Fig.15.1. As can be
seen from the figure, the gravitationally bound region almost completely retains
temperature which was obtained during the formation at the RD–stage. The next
step is to determine what happens with this heated region at the MD–stage.

15.7 Estimation for MD–stage

We will be interested in the internal temperature of the gravitationally bound
region during the MD–stage. At the end of the RD–stage we have a region with
higher temperature. It is possible to ignite a new chain of nuclear reactions chang-
ing chemical composition of the matter in given region. The temperature inside the
cluster can be calculated in Minkowski space and we can find the dependence of
the thermal conductivity on temperature in the non–relativistic case. The thermal
diffusivity by definition is given by 1

χ =
λ

necv
= 3.16

Teτe

mecv
=

3.16

2
√
2π
√
meq4eZne(T) ln(6TrD/α)

T5/2e (15.36)

1 Here the values are expressed in the CGS system and the temperature in eV
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The thermal diffusivity in
[

pc2

year

]
is

χ(T) '
2.3 · 10−14√
Te(eV)

. (15.37)

The calculated value allows to retain the increased temperature inside the cluster
until the recombination starts. The heat is conserved within a region starting from
the moment of its formation. Thus, there are significant prerequisites for anomalies
in the chemical composition of this region which makes sense to consider in future.

Conclusion

We investigated the temperature dynamics of the heated region around the primor-
dial black holes cluster. For this purpose the relativistic heat–conduction equation
(without convective terms) was considered taking into account the expansion
of space in the framework of the Chapman–Enskog relativistic procedure. The
numerical solution was found with the corresponding initial and boundary con-
ditions. According to our calculations, the gravitationally bound region almost
completely retains temperature which was obtained during the formation. At the
MD–stage the increased temperature inside the cluster is conserved until then
recombination will start. Thus, there are significant prerequisites for anomalies
in the chemical composition of this region. In prospect, we are going to study
possible anomalies in the chemical content of the region with comparison to the
observed data.
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Abstract. Being a unique multi-functional complex of science and education online, Virtual
Institute of Astroparticle Physics (VIA) operates on website http://viavca.in2p3.fr/site.html.
It supports presentation online for the most interesting theoretical and experimental results,
participation online in conferences and meetings, various forms of collaborative scientific
work as well as programs of education at distance, combining online videoconferences with
extensive library of records of previous meetings and Discussions on Forum. Since 2014
VIA online lectures combined with individual work on Forum acquired the form of Open
Online Courses. Aimed to individual work with students the Course is not Massive, but
the account for the number of visits to VIA site converts VIA in a specific tool for MOOC
activity. VIA sessions are now a traditional part of Bled Workshops’ programme. At XXII
Bled Workshop they involved not only remote presentations but also online streaming of
most of the talks and discussions, supporting world-wide propagation of the main ideas,
presented at this meeting. Special VIA sessions were dedicated at the XXII Bled Workshop
to scientific debuts of students.

Povzetek. Virtual Institute of Astroparticle Physics (VIA, http://viavca.in2p3.fr/site.html),
ponuja direktne predstavitve najbolj zanimivih in aktualnih teoretičnih spoznanj ter eksper-
imentalnih rezultatov, odprtih diskusij na konferencah, delavnicah, videokonferencah in
drugih srečanjih, ponuja tudi izobraževanje preko spleta. Na svoji spletni strani hrani zapis
vseh predavanj, diskusij in drugih dogodkov. Po letu 2014 so postala predavanja z odrtimi
diskusijami na daljavo tudi izobraževalni tečaji, ki vključujejo tudi individualno mentorstvo
za posamezne študente (MOOC). Seje VIA so postale tradicionalen del programa vsako-
letnih Blejskih delavnic z nalovom “Kako preseči oba standardna modela, elektrošibkega
in barvnega ter kozmološkega”. Ponujajo ne le živ (sproten) prenos predavanj in diskusij,
ampak omogočajo raziskovalcem iz vseh laboratorijev po svetu, ki jih teme delavnice
zanimajo, komentarje, vprašanja. 22. delavnica je ponudila podoktorskim študentom na
posebni seji prve predstavitve raziskovalnih spoznanj.

Keywords: astroparticle physics, physics beyond the Standard model, e-learning,
e-science, MOOC
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16.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1,2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3,4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating platform for such studies.

Starting from the January of 2008 the activity of the Institute takes place on
its website [6] in a form of regular weekly videoconferences with VIA lectures,
covering all the theoretical and experimental activities in astroparticle physics and
related topics. The library of records of these lectures, talks and their presenta-
tions was accomplished by multi-lingual Forum. Since 2008 there were 207 VIA
online lectures, VIA has supported distant presentations of 132 speakers at 27
Conferences and provided transmission of talks at 74 APC Colloquiums.

In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became a
natural part of Bled Workshops’ programs, opening the virtual room of discussions
to the world-wide audience. Its progress was presented in [8–17].

Here the current state-of-art of VIA complex, integrated since 2009 in the
structure of APC Laboratory, is presented in order to clarify the way in which
discussion of open questions beyond the standard models of both partcile physics
and cosmology were presented at the XXII Bled Workshop with the of VIA facility
to the world-wide audience. Active involvement of young scientists in VIA ses-
sions and discussions and VIA streaming of virtually all the talks were specific
new features of VIA activity at XXII Bled Workshop.

16.2 VIA structure and activity

16.2.1 VIA activity

The structure of the VIA complex is illustrated by the Fig. 16.1. The home page,
presented on this figure, contains the information on the coming and records of the
latest VIA events. The upper line of menu includes links to directories (from left
to right): with general information on VIA (About VIA); entrance to VIA virtual
rooms (Rooms); the library of records and presentations (Previous), which contains
records of VIA Lectures (Previous→ Lectures), records of online transmissions
of Conferences (Previous→ Conferences), APC Colloquiums (Previous→ APC
Colloquiums), APC Seminars (Previous→ APC Seminars) and Events (Previous→ Events); Calender of the past and future VIA events (All events) and VIA
Forum (Forum). In the upper right angle there are links to Google search engine
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Fig. 16.1. The home page of VIA site
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(Search in site) and to contact information (Contacts). The announcement of the
next VIA lecture and VIA online transmission of APC Colloquium occupy the
main part of the homepage with the record of the most recent VIA events below.
In the announced time of the event (VIA lecture or transmitted APC Colloquium)
it is sufficient to click on ”to participate” on the announcement and to Enter as
Guest (printing your name) in the corresponding Virtual room. The Calender
shows the program of future VIA lectures and events. The right column on the
VIA homepage lists the announcements of the regularly up-dated hot news of
Astroparticle physics and related areas.

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [18].

Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public programme ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal webcams and microphones. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [19]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA video-
conference. In 2012 VIA facility was first used for online transmissions from the
Science Festival in the University Paris 7. This tradition was continued in 2013,
when the transmissions of meetings at Journées nationales du Développement
Logiciel (JDEV2013) at Ecole Politechnique (Paris) were organized [21].

In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which
the first hand information on the first results of AMS02 experiment was presented
[20].
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In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [22] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [23].

In 2015 VIA facility supported the talk at distance at All Moscow Astrophysi-
cal seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all the
presentations at this Section were given at distance (by Rita Bernabei from Rome,
Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain and by
Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its work was
chaired by M.Khlopov from Paris [28]. In the end of 2015 M. Khlopov gave his
distant talk ”Dark atoms of dark matter” at the Conference ”Progress of Russian
Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow State
University.

In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapiensa
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system [29]. At the defense of PhD thesis by F. Gregis VIA
facility made possible for his referee in California not only to attend at distance at
the presentation of the thesis but also to take part in its successive jury evaluation.

Since 2018 VIA facility is used for collaborative work on studies of various
forms of dark matter in the framework of the project of Russian Science Foundation
based on Southern Federal University (Rostov on Don). In September 2018 VIA
supported online transmission of 17 presentations at the Commemoration day
for Patrick Fleury, held in APC [30].

The discussion of questions that were put forward in the interactive VIA
events is continued and extended on VIA Forum. Presently activated in En-
glish,French and Russian with trivial extension to other languages, the Forum
represents a first step on the way to multi-lingual character of VIA complex and
its activity. Discussions in English on Forum are arranged along the following
directions: beyond the standard model, astroparticle physics, cosmology, gravita-
tional wave experiments, astrophysics, neutrinos. After each VIA lecture its pdf
presentation together with link to its record and information on the discussion
during it are put in the corresponding post, which offers a platform to continue
discussion in replies to this post.
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16.2.2 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures
and their ppt presentations are put in the corresponding directory of the Forum
[24]. Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to study the cosmological scenario
based on this chosen model. The list of possible topics for such thesis is proposed
to students, but they are also invited to chose themselves any topic of their own on
possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously
present on Forum improved versions of work until it is accepted as admission for
student to pass exam. The record of videoconference with the oral exam is also
put in the corresponding directory of Forum. Such procedure provides completely
transparent way of evaluation of students’ knowledge at distance.

In 2018 the test has started for possible application of VIA facility to remote
supervision of student’s scientific practice. The formulation of task and discussion
of progress on work are recorded and put in the corresponding directory on Forum
together with the versions of student’s report on the work progress.

Since 2014 the second semester of the course on Cosmoparticle physics is
given in English and converted in an Open Online Course. It was aimed to develop
VIA system as a possible accomplishment for Massive Online Open Courses
(MOOC) activity [25]. In 2016 not only students from Moscow, but also from
France and Sri Lanka attended this course. In 2017 students from Moscow were
accompanied by participants from France, Italy, Sri Lanka and India [26]. The
students pretending to evaluation of their knowledge must write their small thesis,
present it and, being admitted to exam, pass it in English. The restricted number
of online connections to videoconferences with VIA lectures is compensated by
the wide-world access to their records on VIA Forum and in the context of MOOC
VIA Forum and videoconferencing system can be used for individual online work
with advanced participants. Indeed Google Analytics shows that since 2008 VIA
site was visited by more than 242 thousand visitors from 153 countries, covering
all the continents by its geography (Fig. 16.2). According to this statistics more
than half of these visitors continued to enter VIA site after the first visit. Still the
form of individual educational work makes VIA facility most appropriate for
PhD courses and it is planned to be involved in the International PhD program
on Fundamental Physics, which can be started on the basis of Russian-French
collaborative agreement. In 2017 the test for the ability of VIA to support fully
distant education and evaluation of students (as well as for work on PhD thesis
and its distant defense) was undertaken. Steve Branchu from France, who attended
the Open Online Course and presented on Forum his small thesis has passed exam
at distance. The whole procedure, starting from a stochastic choice of number of
examination ticket, answers to ticket questions, discussion by professors in the
absence of student and announcement of result of exam to him was recorded and
put on VIA Forum [27].
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Fig. 16.2. Geography of VIA site visits according to Google Analytics

In 2019 in addition to individual supervisory work with students the regular
scientific and creative VIA seminar is in operation aimed to discuss the progress
and strategy of students scientific workin the field of cosmoparticle physics.

16.2.3 Organisation of VIA events and meetings

First tests of VIA system, described in [5,7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format.

Initially the amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [31]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
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to use the upper left Chat window for immediate comments and urgent questions.
The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
out his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference room
in a normal way, projecting slides from their laptop on the screen. Having uploaded
in advance these slides in the VIA system, VIA operator, sitting in the conference
room, changes them following presenter, directing simultaneously webcam on
the presenter and the audience. If the advanced uploading is not possible, VIA
streaing is used - external webcam and microphone are directed to presenter and
screen and support online streaming.

16.3 VIA Sessions at XXII Bled Workshop

VIA sessions of XXII Bled Workshop continued the tradition coming back to the
first experience at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI,
XVII, XVIII, XIX, XX and XXI Bled Workshops [8–17]. They became a regular part
of the Bled Workshop’s program.

In the course of XXII Bled Workshop, the list of open questions was stipulated,
which was proposed for wide discussion with the use of VIA facility. The list
of these questions was put on VIA Forum (see [32]) and all the participants of
VIA sessions were invited to address them during VIA discussions. During the
XXII Bled Workshop the announcement of VIA sessions was put on VIA home
page, giving an open access to the videoconferences at VIA sessions. Though the
experience of previous Workshops principally confirmed a possibility to provide
effective interactive online VIA videoconferences even in the absence of any
special equipment and qualified personnel at place, VIA Sessions were directed at
I Workshop by M.Khlopov at place. Only laptop with microphone and webcam
together with WiFi Internet connection was proved to support not only attendance,
but also VIA presentations and discussions.

Starting from the Openening of the Workshop VIA streaming of most of the
talks was arranged for distant participents. This new form of VIA transmission
that avoids the necessity upload presentations in advance made possible to convert
VIA sessions with a very limited set of talks to online streaming of practically all
the conference accompanied by its record in the VIA library [33].

In the framework of the program of XXII Bled Workshop, E. Kiritsis, gave his
talk ”Emergent gravity (from hidden sector)” (Fig. 16.4), from Paris (see records in
[33]).
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Fig. 16.3. VIA streaming of Opening of XXII Bled Workshop by Norma Mankoc- Borstnik

Fig. 16.4. VIA talk ”Emergent gravity (from hidden sector)” by E. Kiritsis from Paris at XXII
Bled Workshop
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The talks ”Conspiracy of BSM Physics and BSM Cosmology” by Maxim Yu.
Khlopov (Fig. 16.5) ”Experimental consequences of spin-charge family theory”
by Norma Mankoc-Borstnik (Fig. 16.6), as well as virtually all other talks were
transmitted from Bled in the regime of streaming, inviting distant participants to
join the discussion and extending the creative atmosphere of these discussions to
the world-wide audience.

Fig. 16.5. VIA talk by Maxim Yu. Khlopov ”Conspiracy of BSM Physics and BSM Cosmol-
ogy” at XXII Bled Workshop

Two special VIA sessions provided remote presentation of students’ scien-
tific debuts in BSM physics and cosmology as it was the talk by Valery Nikulin
(Fig. 16.7) who could not attend the Workshop, but could manage to present his
interesting results with the use of VIA facility. The records of all these lectures and
discussions can be found in VIA library [33].

16.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information on
the newest scientific results, as well as support for various educational programs at
distance. This activity would easily allow finding mutual interest and organizing
task forces for different scientific topics of astroparticle physics and related topics.
It can help in the elaboration of strategy of experimental particle, nuclear, astro-
physical and cosmological studies as well as in proper analysis of experimental
data. It can provide young talented people from all over the world to get the
highest level education, come in direct interactive contact with the world known
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Fig. 16.6. VIA talk ”Dark matter, Matter-antimatter and spin-charge-family theory” by
Norma Mankoc-Borstnik at XXII Bled Workshop

Fig. 16.7. VIA talk ”Inflationary limits on the size of compact extra space” by Valery Nikulin
at XXII Bled Workshop
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scientists and to find their place in the fundamental research. These educational
aspects of VIA activity is now being evolved in a specific tool for International
PhD programme for Fundamental physics. Involvement of young scientists in
creative discussions was an important step of VIA activity at XXII Bled Workshop.
VIA applications can go far beyond the particular tasks of astroparticle physics
and give rise to an interactive system of mass media communications.

VIA sessions became a natural part of a program of Bled Workshops, main-
taining the platform of discussions of physics beyond the Standard Model for
distant participants from all the world. This discussion can continue in posts and
post replies on VIA Forum. The experience of VIA applications at Bled Workshops
plays important role in the development of VIA facility as an effective tool of
e-science and e-learning.
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BLED WORKSHOPS IN PHYSICS, VOL. 20, NO. 2

Zbornik 22. delavnice ‘What Comes Beyond the Standard Models’, Bled, 6. –
14. julij 2019

Proceedings to the 22nd workshop ’What Comes Beyond the Standard Models’,
Bled, July 6.–14., 2019
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