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Abstract. We study low lying resonances in models in which the pions linearly couple to
the quark core. We derive the coupled channel equations for pion scattering, and discuss
preliminary results for pion scattering in the Roper channel.

1 Introduction

In our previous work [1–3] we have presented a method to calculate the K-matrix
for pion scattering and electro-production in quark models with chiral mesons.
The method has several advantages over more standard methods because it al-
lows for a clear separation of the resonant part of the amplitude from the back-
ground. We have successfully applied it to the calculation of the phase shift and
electro-production amplitudes in the P33 channel.

In the present work we extend the method to cover the cases where it is nec-
essary to include two or more channels. This allows us to attack perhaps the most
intriguing among the low lying resonances – the Roper resonance. In this con-
tribution we develop the coupled channel formalism for scattering and present
some preliminary results.

2 K matrix in chiral quark models

We consider quark models in which p-wave pions couple linearly to the three-
quark core. Assuming a pseudo-scalar quark-pion interaction, the part of the
Hamiltonian referring to pions can be written as

Hπ =

∫
dk

∑

mt

{
ωk a

†
mt(k)amt(k) +

[
Vmt(k)amt(k) + V

†
mt(k)a

†
mt(k)

]}
, (1)

where a†mt(k) is the creation operator for a p-wave pion with the third compo-
nents of spin m and isospin t, and

Vmt(k) = −v(k)

3∑

i=1

σimτ
i
t (2)
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is the general form of the pion source, with v(k) depending on the model.
In the basis with good total angular momentum J and isospin T , in which the

K and T matrices are diagonal, it is possible to express the Kmatrix in the form[3]1

KJT (k, k0) = −π

√
ωk

k
〈ΨP
JT (W)||V(k)||ΦN〉 . (3)

The corresponding principal-value state[4] obeys

|ΨP
JT (W)〉 =

√
ω0

k0

{[
a†(k0)|ΦN〉

]JT
−

P
H−W

[V(k0)|ΦN〉]JT
}
, (4)

where [ ]JT denotes coupling to good J and T , and k0 andω0 the pion mementum
and energy.

We assume that the operator V , acting on the ground stateΦN, does not only
flip the quark spin and isospin but also excites quarks to higher spatial states. As
an example let us mention the state with the flipped spins (the bare delta) which
plays a crucial role in the formation of the ∆(1232) resonance, and the excitation
of one quark to the 2s state which is believed to be the main mechanism in the
formation of the Roper resonance.

The general form (4) therefore suggests the following ansatz in which the
states with excited quark core,ΦB, are separated from the state corresponding to
pion scattering on the nucleon. Neglecting the two-pion states we can write

|ΨJT (W)〉 =

√
ω0

k0

{
[
a†(k0)|ΦN〉

]JT

+

∫
dk

χ(k, k0)

ωk −ω0

[
a†(k)|ΦN〉

]JT
+

∑

B

cB(W)|ΦB〉
}
. (5)

The pion amplitude is related to the Kmatrix by

χ(k0, k0) =
k0

πω0
K(k0, k0) . (6)

3 Coupled channels

We have shown [3] that the above ansatz successfully describes scattering as well
as electro-production of pions in the P33 channel at lower energies. At higher en-
ergies, the two pion decay channel becomes important and cannot be neglected.
In most cases, the two pion decay proceeds through an intermediate resonance;
in the P11 channel as well as in the P33 channel this is the ∆(1232) which ac-
counts for 30 %–40 % of the width in the region of the Roper resonance and even
40 %–70 % in the region of the ∆(1600) resonance.

1 In the static approximation, k0 is uniquely related to the energy W = EN +ω0, so one
can use either k0 orW to label the states; for the on-shell Kmatrix we write K(k0, k0) =

K(W).
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In the simplest extension of the model we therefore include an additional
channel representing the pion scattering on the ∆(1232). The corresponding prin-
ciple-value state takes the form:

|Ψ∆JT (W,E)〉 =

√
ω0

k0

{
[
a†(kE)|Ψ∆(E)〉

]JT

+

∫
dk

χ∆(k, kE)

ωk −ωE

[
a†(k)|Ψ∆(E)〉

]JT
+

∑

B

cB(W,E)|ΦB〉
}
. (7)

The key point in the above ansatz is that the energy of the delta state, E, is not
fixed (e.g. to 1232 MeV) but is varied from the threshold value EN + mπ to the
maximum allowed value W − mπ. (Obviously, this channel opens at the two-
pion threshold, i.e at W = EN + 2mπ.) For simplicity we work in the static
limit in which the pion energy and momentum can be written as ωE = W − E ,

kE =
(
ω2E −m2π

)1/2
. The delta state in (7) is given by (5) except that it is now

normalized to δ(E− E ′) rather than to (1 + K∆(E)2)δ(E − E ′):

|Ψ∆(E)〉 =
1√

1 + K∆(E)2

√
ω0

k0

{[
a†(k0)|ΦN〉

]3
2

3
2

+

∫
dk

χ(k, k0)

ωk −ω0

[
a†(k)|ΦN(k)〉

] 3
2

3
2 + c∆(E)|Φ∆〉

}
. (8)

with ω0 = E− EN and k0 =
(
ω20 −m2π

)1/2.
By a straightforward extension of the formula (3) we can now write down

the K-matrix, which has two discrete indexes and one continuous index E, as

KNN(W) = −π

√
ω0

k0
〈ΦN||V†(k0)||ΨJT (W)〉 , (9)

KN∆(W,E) = −π

√
ωE

kE
〈Ψ∆(E)||V†(kE)||ΨJT (W)〉 , (10)

K∆N(W,E) = −π

√
ω0

k0
〈ΦN||V†(k0)||Ψ

∆
JT (W,E)〉 , (11)

K∆∆(W,E, E ′) = −π

√
ωE

kE
〈Ψ∆(E ′)||V†(kE ′)||Ψ∆JT (W,E)〉 . (12)

The full and the partial widths are related to the T matrix, and the phase shift
and the inelasticity to the S matrix. The T matrix is obtained from T = −K/(1 − iK)
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or T = −K+ iKT which yields the following set of integral equations:

TNN(W) = −KNN(W) + i
[
KNN(W)TNN(W)

+

∫W−mπ

EN+mπ

dEKN∆(W,E)T∆N(W,E)

]
, (13)

TN∆(W,E) = −KN∆(W,E) + i
[
KNN(W)TN∆(W,E)

+

∫W−mπ

EN+mπ

dE ′ KN∆(W,E ′)T∆∆(W,E ′, E)

]
, (14)

T∆N(W,E) = −K∆N(W,E) + i
[
K∆N(W,E)TNN(W,E)

+

∫W−mπ

EN+mπ

dE ′ K∆∆(W,E, E ′)T∆N(W,E ′)

]
, (15)

T∆∆(W,E, E ′) = −K∆∆(W,E, E ′) + i
[
K∆N(W,E)TN∆(W,E ′)

+

∫W−mπ

EN+mπ

dE ′′ K∆∆(W,E, E ′′)T∆∆(W,E ′′, E ′)

]
. (16)

From the first T matrix we deduce the phase shift δ and the elasticity η thought
the relation

S = 1 − 2iTNN(W) = η(W)e2iδ(W) . (17)

4 Solution of the coupled equations in a simplified model

To get more insight in the method let us consider a simplified case in which we
assume that the bare states dominate the channel states ΨJT and Ψ∆JT as well as
the states ΦN and Ψ∆. Then, to evaluate the matrix elements of the K matrix (12)
we use

|ΨJT (W)〉 ≈
√
ω0

k0

[
cB(W)|B〉 + δJ 1

2
δT 1

2
cN(W)|N〉

]
(18)

|Ψ∆JT (W,E)〉 ≈
√
ωE

kE

[
cB ′(W,E)|B ′〉 + δJ1

2
δT 1

2
cN
∆(W,E)|N〉 + δJ 3

2
δT 3

2
c∆∆(W,E)|∆〉

]

(19)

where for the P11 channel B = B ′ = R (i.e. N∗(1440)) while for the P33 channel we
use B = ∆(1232) and B ′ = ∆(1600).2 The second terms in the above expressions
ensure the mutual orthogonality of the channel states and the ground state. The
intermediate state appearing in Ψ∆JT can be approximated as

|Ψ∆(E)〉 ≈
√
ω

k

Ψ∆JT√
1 + K∆(E)2

|∆〉 ≈ 2 sin δ∆(E)√
2πΓ∆

|∆〉 , (20)

2 Note that we have not included the ∆(1600) in the first channel because of the relatively
small πN branching ratio.
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whereω = E−EN, k =
√
ω2 −m2π, Γ∆ = 2πω|〈N||V ||∆〉|2/k, K∆(E) = 1

2
Γ∆/(E∆ −

E). The coefficients cB and cB ′ are most easily determined from

(H −W)|ΨST (W)〉 = 0 and (H −W)|Ψ∆ST (W,E)〉 = 0 , (21)

which, after multiplying by 〈B|, yields

(EB −W)cB(W) = −〈B||V(k0)||N〉 , (22)

(EB ′ −W)c∆B ′(W,E) = −
2 sin δ∆(E)√

2πΓ∆
〈B ′||V(kE)||∆〉 . (23)

Here EB and EB ′ include the self-energy. For the coefficients cN and c∆ we get

cN
N(W) = −〈ΦN||a†(k0)||ΦN〉 ≈

〈N||V(k0)||N〉
W − EN

, (24)

cN
∆(W,E) = −〈ΦN||a†(kE)||Ψ∆(E)〉 ≈ 2 sin δ∆(E)√

2πΓ∆

〈N||V(kE)||∆〉
W − EN

, (25)

and similarly for c∆∆
We immediately notice that the K matrices can be written in a separable form;

in the P11 channel we find

Ki,j =
aiaj

ER −W
−
bibj

ω0
, i = N, ∆; j = N, ∆ (26)

with

aN(W) =

√
πω0

k0
〈B||V(k0)||N〉 , a∆(W,E) =

√
πωE

kE

2 sin δ∆(E)√
2πΓ∆

〈B ′||V(kE)||∆〉 ,
(27)

bN(W) =

√
πω0

k0
〈N||V(k0)||N〉 , b∆(W,E) =

√
πωE

kE

2 sin δ∆(E)√
2πΓ∆

〈N||V(kE)||∆〉 .
(28)

The coefficients bN and b∆ strongly influence the phase shift close to the
threshold but in the vicinity of the resonance we can neglect them. In this in case
it is possible to find the solution for the T matrices in a simple form:

Tij = −
aiaj

ER −W − i
[
a2N +

∫W−mπ

EN+mπ
dEa∆(E)2

] . (29)

The partial widths read

ΓNN(W) = 2aN(W)2 =
2πω0

k0
〈B||V(k0)||N〉2 , (30)

ΓN∆(W) = 2

∫
dEa∆(W,E)2 ≈ 2πωE

kE
〈B ′||V(k)||∆〉2 . (31)

To get the latter expression we have assumed that a∆(W,E) is sufficiently strongly
peaked around E = E∆. The phase shift for πN → πN is obtained from (17):

tan 2δ(W) =
ΓNN(W)(ER −W)

(ER −W)2 − 1
4

(ΓNN(W)2 − ΓN∆(W)2)
. (32)
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The inelasticity is expressed as

ImT in = −ImTNN − |TNN|2 =
1
4
ΓNN(W)ΓN∆(W)

(ER −W)2 + 1
4

(ΓNN(W) + ΓN∆(W))
2
. (33)

5 Preliminary results for the Roper in the Cloudy Bag Model

We shall illustrate the method using the simplified approach presented in the pre-
vious section by calculating scattering in the P11 channel which is dominated by
the Roper resonance. Though the above expressions are general and can be ap-
plied to any model in which the pions linearly couple to the quark core we choose
here the Cloudy Bag Model, primarily because of its simplicity. The Hamiltonian
of the model has the form (1) and (2) with

v(k) =
1

2fπ

k2√
12π2ωk

ω0MIT

ω0MIT − 1

j1(kR)

kR
, (34)

when no radial excitation of of the core takes place, and

v∗(k) = rωv(k) , rω =
1√
3

[
ω1MIT(ω0MIT − 1)

ω0MIT(ω1MIT − 1)

]1/2
, (35)

when one quark is excited from the 1s state to the 2s state. Here ω0MIT = 2.04

and ω1MIT = 5.40 The free parameter is the bag radius R. Though the bare val-
ues of different 3-quark configurations are in principle calculable in the model,
the model lacks a mechanism that would account for large hyperfine splitting
between certain states, e.g. the nucleon and the delta. For each R, we therefore
adjust the splitting between the bare states such that the experimental position of
the resonance is reproduced. Furthermore, using the experimental value of fπ in
(34) leads to too small coupling constants irrespectively of the bag radius; in our
calculation we have therefore decreased this value by 10 %.

Preliminary results for the phase shift and inelasticity in the P11 channel
have been calculated using the simplified model of the previous section. We have
used the parameters with which the P33 phase shift is reproduced in the region
of the delta resonance, i.e. the bag radius in the range 0.8 fm < R < 1.1 fm and
fπ = 81 MeV.

N N N

N

N N N N N

= + + + ...
∆RR

Fig. 1. Processes dominating scattering in the P11 channel: the nucleon pole term, the direct
term and the crossed term with the delta intermediate state.

The experimental phase shift (Fig. 2 can be reasonable well reproduced by
the the direct term only (see Fig. 1) provided we use a smaller value of the bag
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radius. (Larger values yield too small the resonance width.). Yet, close to the
threshold the phase shift exhibits a wrong behavior; it should be negative with
the strength dictated by the piNN coupling constant. The proper behavior at low
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Fig. 2. Different contribution to the phase shift in the P11 channel: the direct term (dashed
line), the inclusion of the nucleon pole (dotted line), the inclusion of the crossed term with
the ∆(1232) (dashed and dotted line), the inclusion of the second ∆(1600) (full line). The
bag radius R = 0.83 fm is used. The data points are from [7].

energies is established through the inclusion of the nucleon pole term. The nu-
cleon pole term is in our model generated by requiring the orthogonality of the
channel state vector to the ground state; including this term provides a consistent
behavior at small energies (and in particular in the limitω0 → 0). However, at in-
termediate energies the agreement is strongly deteriorated. Since the strength of
this term is fixed by the πNN coupling constant which is well reproduced in the
model, additional, non-resonant, terms are needed to cure this behavior. The im-
portant contribution that increases the phase shift comes from the crossed terms,
and in particular from the term with the intermediate delta states (see the last
term in Fig. 1), as noted already in [6]. To the leading order it contributes the term

K∆NN = π
ω0

k0

4

9

〈N||V ||∆〉2
ω0 + E∆ − EN

(36)

to the K matrix in the πN channel. But even if we increase the model value of
the πN∆ vertex such that the experimental width of ∆(1232) is reproduced, the
phase shift at lower energies remain still too negative. Another intermediate state
that has a relatively strong coupling to the πN channel is the excited delta state,
∆(1600). If we include the corresponding term in our calculation we obtain an
almost perfect agreement with the experiment at lower energies; which, taking
into account the crudeness of our model, should not be considered as a proof of a
great predictive power of our approach but rather as an indication of the impor-
tant role that other resonances may play in the formation of the Roper resonance.



Chiral models for exciting baryons 63

Fig. 3 shows that the calculated inelasticity in the resonance region qualita-
tively agrees with the experimental one. It does, however, not reproduce the large
inelasticity above the resonance energy which approaches the unitarity limit.
From our formula (33) such an behavior can be explained by assuming that the
partial widths, ΓN∆ and ΓNN, remain almost equal over a relatively large interval
of energies. This could again be attributed to the interplay of different processes
involving neighboring resonances not included in the present calculation.
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Fig. 3. The inelasticity in the P11 channel. The left figure is from [8], the right figure is our
calculation with the direct terms only.

To conclude, our very preliminary calculation points out the importance of
including different contributions stemming from the neighboring resonances to
explain the rather peculiar properties of the Roper resonance. We believe that
such conventional mechanisms have to be carefully exploited before making any
conclusion about possible necessity of exotic degrees of freedom.
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